1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/i386/i386/vm_machdep.c 332759 2018-04-19 06:20:53Z avg $");
45
46#include "opt_isa.h"
47#include "opt_npx.h"
48#include "opt_reset.h"
49#include "opt_cpu.h"
50#include "opt_xbox.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/bio.h>
55#include <sys/buf.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/lock.h>
59#include <sys/malloc.h>
60#include <sys/mbuf.h>
61#include <sys/mutex.h>
62#include <sys/pioctl.h>
63#include <sys/proc.h>
64#include <sys/sysent.h>
65#include <sys/sf_buf.h>
66#include <sys/smp.h>
67#include <sys/sched.h>
68#include <sys/sysctl.h>
69#include <sys/unistd.h>
70#include <sys/vnode.h>
71#include <sys/vmmeter.h>
72
73#include <machine/cpu.h>
74#include <machine/cputypes.h>
75#include <machine/md_var.h>
76#include <machine/pcb.h>
77#include <machine/pcb_ext.h>
78#include <machine/smp.h>
79#include <machine/vm86.h>
80
81#ifdef CPU_ELAN
82#include <machine/elan_mmcr.h>
83#endif
84
85#include <vm/vm.h>
86#include <vm/vm_extern.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_page.h>
89#include <vm/vm_map.h>
90#include <vm/vm_param.h>
91
92#ifdef XEN
93#include <xen/hypervisor.h>
94#endif
95#ifdef PC98
96#include <pc98/cbus/cbus.h>
97#else
98#include <x86/isa/isa.h>
99#endif
100
101#ifdef XBOX
102#include <machine/xbox.h>
103#endif
104
105#ifndef NSFBUFS
106#define	NSFBUFS		(512 + maxusers * 16)
107#endif
108
109#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
110#define CPU_ENABLE_SSE
111#endif
112
113_Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
114    "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
115_Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
116    "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
117
118static void	cpu_reset_real(void);
119#ifdef SMP
120static void	cpu_reset_proxy(void);
121static u_int	cpu_reset_proxyid;
122static volatile u_int	cpu_reset_proxy_active;
123#endif
124
125static int nsfbufs;
126static int nsfbufspeak;
127static int nsfbufsused;
128
129SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufs, CTLFLAG_RDTUN, &nsfbufs, 0,
130    "Maximum number of sendfile(2) sf_bufs available");
131SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufspeak, CTLFLAG_RD, &nsfbufspeak, 0,
132    "Number of sendfile(2) sf_bufs at peak usage");
133SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufsused, CTLFLAG_RD, &nsfbufsused, 0,
134    "Number of sendfile(2) sf_bufs in use");
135
136static void	sf_buf_init(void *arg);
137SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
138
139LIST_HEAD(sf_head, sf_buf);
140
141/*
142 * A hash table of active sendfile(2) buffers
143 */
144static struct sf_head *sf_buf_active;
145static u_long sf_buf_hashmask;
146
147#define	SF_BUF_HASH(m)	(((m) - vm_page_array) & sf_buf_hashmask)
148
149static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
150static u_int	sf_buf_alloc_want;
151
152/*
153 * A lock used to synchronize access to the hash table and free list
154 */
155static struct mtx sf_buf_lock;
156
157union savefpu *
158get_pcb_user_save_td(struct thread *td)
159{
160	vm_offset_t p;
161	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
162	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
163	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
164	return ((union savefpu *)p);
165}
166
167union savefpu *
168get_pcb_user_save_pcb(struct pcb *pcb)
169{
170	vm_offset_t p;
171
172	p = (vm_offset_t)(pcb + 1);
173	return ((union savefpu *)p);
174}
175
176struct pcb *
177get_pcb_td(struct thread *td)
178{
179	vm_offset_t p;
180
181	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
182	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
183	    sizeof(struct pcb);
184	return ((struct pcb *)p);
185}
186
187void *
188alloc_fpusave(int flags)
189{
190	void *res;
191#ifdef CPU_ENABLE_SSE
192	struct savefpu_ymm *sf;
193#endif
194
195	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
196#ifdef CPU_ENABLE_SSE
197	if (use_xsave) {
198		sf = (struct savefpu_ymm *)res;
199		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
200		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
201	}
202#endif
203	return (res);
204}
205
206/*
207 * Finish a fork operation, with process p2 nearly set up.
208 * Copy and update the pcb, set up the stack so that the child
209 * ready to run and return to user mode.
210 */
211void
212cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
213{
214	register struct proc *p1;
215	struct pcb *pcb2;
216	struct mdproc *mdp2;
217
218	p1 = td1->td_proc;
219	if ((flags & RFPROC) == 0) {
220		if ((flags & RFMEM) == 0) {
221			/* unshare user LDT */
222			struct mdproc *mdp1 = &p1->p_md;
223			struct proc_ldt *pldt, *pldt1;
224
225			mtx_lock_spin(&dt_lock);
226			if ((pldt1 = mdp1->md_ldt) != NULL &&
227			    pldt1->ldt_refcnt > 1) {
228				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
229				if (pldt == NULL)
230					panic("could not copy LDT");
231				mdp1->md_ldt = pldt;
232				set_user_ldt(mdp1);
233				user_ldt_deref(pldt1);
234			} else
235				mtx_unlock_spin(&dt_lock);
236		}
237		return;
238	}
239
240	/* Ensure that td1's pcb is up to date. */
241	if (td1 == curthread)
242		td1->td_pcb->pcb_gs = rgs();
243#ifdef DEV_NPX
244	critical_enter();
245	if (PCPU_GET(fpcurthread) == td1)
246		npxsave(td1->td_pcb->pcb_save);
247	critical_exit();
248#endif
249
250	/* Point the pcb to the top of the stack */
251	pcb2 = get_pcb_td(td2);
252	td2->td_pcb = pcb2;
253
254	/* Copy td1's pcb */
255	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
256
257	/* Properly initialize pcb_save */
258	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
259	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
260	    cpu_max_ext_state_size);
261
262	/* Point mdproc and then copy over td1's contents */
263	mdp2 = &p2->p_md;
264	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
265
266	/*
267	 * Create a new fresh stack for the new process.
268	 * Copy the trap frame for the return to user mode as if from a
269	 * syscall.  This copies most of the user mode register values.
270	 * The -16 is so we can expand the trapframe if we go to vm86.
271	 */
272	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
273	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
274
275	td2->td_frame->tf_eax = 0;		/* Child returns zero */
276	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
277	td2->td_frame->tf_edx = 1;
278
279	/*
280	 * If the parent process has the trap bit set (i.e. a debugger had
281	 * single stepped the process to the system call), we need to clear
282	 * the trap flag from the new frame unless the debugger had set PF_FORK
283	 * on the parent.  Otherwise, the child will receive a (likely
284	 * unexpected) SIGTRAP when it executes the first instruction after
285	 * returning  to userland.
286	 */
287	if ((p1->p_pfsflags & PF_FORK) == 0)
288		td2->td_frame->tf_eflags &= ~PSL_T;
289
290	/*
291	 * Set registers for trampoline to user mode.  Leave space for the
292	 * return address on stack.  These are the kernel mode register values.
293	 */
294#if defined(PAE) || defined(PAE_TABLES)
295	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
296#else
297	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
298#endif
299	pcb2->pcb_edi = 0;
300	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
301	pcb2->pcb_ebp = 0;
302	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
303	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
304	pcb2->pcb_eip = (int)fork_trampoline;
305	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
306	/*-
307	 * pcb2->pcb_dr*:	cloned above.
308	 * pcb2->pcb_savefpu:	cloned above.
309	 * pcb2->pcb_flags:	cloned above.
310	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
311	 * pcb2->pcb_gs:	cloned above.
312	 * pcb2->pcb_ext:	cleared below.
313	 */
314
315	/*
316	 * XXX don't copy the i/o pages.  this should probably be fixed.
317	 */
318	pcb2->pcb_ext = 0;
319
320	/* Copy the LDT, if necessary. */
321	mtx_lock_spin(&dt_lock);
322	if (mdp2->md_ldt != NULL) {
323		if (flags & RFMEM) {
324			mdp2->md_ldt->ldt_refcnt++;
325		} else {
326			mdp2->md_ldt = user_ldt_alloc(mdp2,
327			    mdp2->md_ldt->ldt_len);
328			if (mdp2->md_ldt == NULL)
329				panic("could not copy LDT");
330		}
331	}
332	mtx_unlock_spin(&dt_lock);
333
334	/* Setup to release spin count in fork_exit(). */
335	td2->td_md.md_spinlock_count = 1;
336	/*
337	 * XXX XEN need to check on PSL_USER is handled
338	 */
339	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
340	/*
341	 * Now, cpu_switch() can schedule the new process.
342	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
343	 * containing the return address when exiting cpu_switch.
344	 * This will normally be to fork_trampoline(), which will have
345	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
346	 * will set up a stack to call fork_return(p, frame); to complete
347	 * the return to user-mode.
348	 */
349}
350
351/*
352 * Intercept the return address from a freshly forked process that has NOT
353 * been scheduled yet.
354 *
355 * This is needed to make kernel threads stay in kernel mode.
356 */
357void
358cpu_set_fork_handler(td, func, arg)
359	struct thread *td;
360	void (*func)(void *);
361	void *arg;
362{
363	/*
364	 * Note that the trap frame follows the args, so the function
365	 * is really called like this:  func(arg, frame);
366	 */
367	td->td_pcb->pcb_esi = (int) func;	/* function */
368	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
369}
370
371void
372cpu_exit(struct thread *td)
373{
374
375	/*
376	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
377	 * and %gs before we free it in case they refer to an LDT entry.
378	 */
379	mtx_lock_spin(&dt_lock);
380	if (td->td_proc->p_md.md_ldt) {
381		td->td_pcb->pcb_gs = _udatasel;
382		load_gs(_udatasel);
383		user_ldt_free(td);
384	} else
385		mtx_unlock_spin(&dt_lock);
386}
387
388void
389cpu_thread_exit(struct thread *td)
390{
391
392#ifdef DEV_NPX
393	critical_enter();
394	if (td == PCPU_GET(fpcurthread))
395		npxdrop();
396	critical_exit();
397#endif
398
399	/* Disable any hardware breakpoints. */
400	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
401		reset_dbregs();
402		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
403	}
404}
405
406void
407cpu_thread_clean(struct thread *td)
408{
409	struct pcb *pcb;
410
411	pcb = td->td_pcb;
412	if (pcb->pcb_ext != NULL) {
413		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
414		/*
415		 * XXX do we need to move the TSS off the allocated pages
416		 * before freeing them?  (not done here)
417		 */
418		kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext,
419		    ctob(IOPAGES + 1));
420		pcb->pcb_ext = NULL;
421	}
422}
423
424void
425cpu_thread_swapin(struct thread *td)
426{
427}
428
429void
430cpu_thread_swapout(struct thread *td)
431{
432}
433
434void
435cpu_thread_alloc(struct thread *td)
436{
437	struct pcb *pcb;
438#ifdef CPU_ENABLE_SSE
439	struct xstate_hdr *xhdr;
440#endif
441
442	td->td_pcb = pcb = get_pcb_td(td);
443	td->td_frame = (struct trapframe *)((caddr_t)pcb - 16) - 1;
444	pcb->pcb_ext = NULL;
445	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
446#ifdef CPU_ENABLE_SSE
447	if (use_xsave) {
448		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
449		bzero(xhdr, sizeof(*xhdr));
450		xhdr->xstate_bv = xsave_mask;
451	}
452#endif
453}
454
455void
456cpu_thread_free(struct thread *td)
457{
458
459	cpu_thread_clean(td);
460}
461
462void
463cpu_set_syscall_retval(struct thread *td, int error)
464{
465
466	switch (error) {
467	case 0:
468		td->td_frame->tf_eax = td->td_retval[0];
469		td->td_frame->tf_edx = td->td_retval[1];
470		td->td_frame->tf_eflags &= ~PSL_C;
471		break;
472
473	case ERESTART:
474		/*
475		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
476		 * 0x80 is 2 bytes. We saved this in tf_err.
477		 */
478		td->td_frame->tf_eip -= td->td_frame->tf_err;
479		break;
480
481	case EJUSTRETURN:
482		break;
483
484	default:
485		td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error);
486		td->td_frame->tf_eflags |= PSL_C;
487		break;
488	}
489}
490
491/*
492 * Initialize machine state (pcb and trap frame) for a new thread about to
493 * upcall. Put enough state in the new thread's PCB to get it to go back
494 * userret(), where we can intercept it again to set the return (upcall)
495 * Address and stack, along with those from upcals that are from other sources
496 * such as those generated in thread_userret() itself.
497 */
498void
499cpu_set_upcall(struct thread *td, struct thread *td0)
500{
501	struct pcb *pcb2;
502
503	/* Point the pcb to the top of the stack. */
504	pcb2 = td->td_pcb;
505
506	/*
507	 * Copy the upcall pcb.  This loads kernel regs.
508	 * Those not loaded individually below get their default
509	 * values here.
510	 */
511	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
512	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
513	    PCB_KERNNPX);
514	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
515	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
516	    cpu_max_ext_state_size);
517
518	/*
519	 * Create a new fresh stack for the new thread.
520	 */
521	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
522
523	/* If the current thread has the trap bit set (i.e. a debugger had
524	 * single stepped the process to the system call), we need to clear
525	 * the trap flag from the new frame. Otherwise, the new thread will
526	 * receive a (likely unexpected) SIGTRAP when it executes the first
527	 * instruction after returning to userland.
528	 */
529	td->td_frame->tf_eflags &= ~PSL_T;
530
531	/*
532	 * Set registers for trampoline to user mode.  Leave space for the
533	 * return address on stack.  These are the kernel mode register values.
534	 */
535	pcb2->pcb_edi = 0;
536	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
537	pcb2->pcb_ebp = 0;
538	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
539	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
540	pcb2->pcb_eip = (int)fork_trampoline;
541	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
542	pcb2->pcb_gs = rgs();
543	/*
544	 * If we didn't copy the pcb, we'd need to do the following registers:
545	 * pcb2->pcb_cr3:	cloned above.
546	 * pcb2->pcb_dr*:	cloned above.
547	 * pcb2->pcb_savefpu:	cloned above.
548	 * pcb2->pcb_flags:	cloned above.
549	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
550	 * pcb2->pcb_gs:	cloned above.
551	 * pcb2->pcb_ext:	cleared below.
552	 */
553	pcb2->pcb_ext = NULL;
554
555	/* Setup to release spin count in fork_exit(). */
556	td->td_md.md_spinlock_count = 1;
557	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
558}
559
560/*
561 * Set that machine state for performing an upcall that has to
562 * be done in thread_userret() so that those upcalls generated
563 * in thread_userret() itself can be done as well.
564 */
565void
566cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
567	stack_t *stack)
568{
569
570	/*
571	 * Do any extra cleaning that needs to be done.
572	 * The thread may have optional components
573	 * that are not present in a fresh thread.
574	 * This may be a recycled thread so make it look
575	 * as though it's newly allocated.
576	 */
577	cpu_thread_clean(td);
578
579	/*
580	 * Set the trap frame to point at the beginning of the uts
581	 * function.
582	 */
583	td->td_frame->tf_ebp = 0;
584	td->td_frame->tf_esp =
585	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
586	td->td_frame->tf_eip = (int)entry;
587
588	/*
589	 * Pass the address of the mailbox for this kse to the uts
590	 * function as a parameter on the stack.
591	 */
592	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
593	    (int)arg);
594}
595
596int
597cpu_set_user_tls(struct thread *td, void *tls_base)
598{
599	struct segment_descriptor sd;
600	uint32_t base;
601
602	/*
603	 * Construct a descriptor and store it in the pcb for
604	 * the next context switch.  Also store it in the gdt
605	 * so that the load of tf_fs into %fs will activate it
606	 * at return to userland.
607	 */
608	base = (uint32_t)tls_base;
609	sd.sd_lobase = base & 0xffffff;
610	sd.sd_hibase = (base >> 24) & 0xff;
611	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
612	sd.sd_hilimit = 0xf;
613	sd.sd_type  = SDT_MEMRWA;
614	sd.sd_dpl   = SEL_UPL;
615	sd.sd_p     = 1;
616	sd.sd_xx    = 0;
617	sd.sd_def32 = 1;
618	sd.sd_gran  = 1;
619	critical_enter();
620	/* set %gs */
621	td->td_pcb->pcb_gsd = sd;
622	if (td == curthread) {
623		PCPU_GET(fsgs_gdt)[1] = sd;
624		load_gs(GSEL(GUGS_SEL, SEL_UPL));
625	}
626	critical_exit();
627	return (0);
628}
629
630/*
631 * Convert kernel VA to physical address
632 */
633vm_paddr_t
634kvtop(void *addr)
635{
636	vm_paddr_t pa;
637
638	pa = pmap_kextract((vm_offset_t)addr);
639	if (pa == 0)
640		panic("kvtop: zero page frame");
641	return (pa);
642}
643
644#ifdef SMP
645static void
646cpu_reset_proxy()
647{
648
649	cpu_reset_proxy_active = 1;
650	while (cpu_reset_proxy_active == 1)
651		ia32_pause(); /* Wait for other cpu to see that we've started */
652
653	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
654	DELAY(1000000);
655	cpu_reset_real();
656}
657#endif
658
659void
660cpu_reset()
661{
662#ifdef XBOX
663	if (arch_i386_is_xbox) {
664		/* Kick the PIC16L, it can reboot the box */
665		pic16l_reboot();
666		for (;;);
667	}
668#endif
669
670#ifdef SMP
671	cpuset_t map;
672	u_int cnt;
673
674	if (smp_started) {
675		map = all_cpus;
676		CPU_CLR(PCPU_GET(cpuid), &map);
677		CPU_NAND(&map, &stopped_cpus);
678		if (!CPU_EMPTY(&map)) {
679			printf("cpu_reset: Stopping other CPUs\n");
680			stop_cpus(map);
681		}
682
683		if (PCPU_GET(cpuid) != 0) {
684			cpu_reset_proxyid = PCPU_GET(cpuid);
685			cpustop_restartfunc = cpu_reset_proxy;
686			cpu_reset_proxy_active = 0;
687			printf("cpu_reset: Restarting BSP\n");
688
689			/* Restart CPU #0. */
690			CPU_SETOF(0, &started_cpus);
691			wmb();
692
693			cnt = 0;
694			while (cpu_reset_proxy_active == 0 && cnt < 10000000) {
695				ia32_pause();
696				cnt++;	/* Wait for BSP to announce restart */
697			}
698			if (cpu_reset_proxy_active == 0) {
699				printf("cpu_reset: Failed to restart BSP\n");
700			} else {
701				cpu_reset_proxy_active = 2;
702				while (1)
703					ia32_pause();
704				/* NOTREACHED */
705			}
706		}
707
708		DELAY(1000000);
709	}
710#endif
711	cpu_reset_real();
712	/* NOTREACHED */
713}
714
715static void
716cpu_reset_real()
717{
718	struct region_descriptor null_idt;
719#ifndef PC98
720	int b;
721#endif
722
723	disable_intr();
724#ifdef XEN
725	if (smp_processor_id() == 0)
726		HYPERVISOR_shutdown(SHUTDOWN_reboot);
727	else
728		HYPERVISOR_shutdown(SHUTDOWN_poweroff);
729#endif
730#ifdef CPU_ELAN
731	if (elan_mmcr != NULL)
732		elan_mmcr->RESCFG = 1;
733#endif
734
735	if (cpu == CPU_GEODE1100) {
736		/* Attempt Geode's own reset */
737		outl(0xcf8, 0x80009044ul);
738		outl(0xcfc, 0xf);
739	}
740
741#ifdef PC98
742	/*
743	 * Attempt to do a CPU reset via CPU reset port.
744	 */
745	if ((inb(0x35) & 0xa0) != 0xa0) {
746		outb(0x37, 0x0f);		/* SHUT0 = 0. */
747		outb(0x37, 0x0b);		/* SHUT1 = 0. */
748	}
749	outb(0xf0, 0x00);		/* Reset. */
750#else
751#if !defined(BROKEN_KEYBOARD_RESET)
752	/*
753	 * Attempt to do a CPU reset via the keyboard controller,
754	 * do not turn off GateA20, as any machine that fails
755	 * to do the reset here would then end up in no man's land.
756	 */
757	outb(IO_KBD + 4, 0xFE);
758	DELAY(500000);	/* wait 0.5 sec to see if that did it */
759#endif
760
761	/*
762	 * Attempt to force a reset via the Reset Control register at
763	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
764	 * transitions from 0 to 1.  Bit 1 selects the type of reset
765	 * to attempt: 0 selects a "soft" reset, and 1 selects a
766	 * "hard" reset.  We try a "hard" reset.  The first write sets
767	 * bit 1 to select a "hard" reset and clears bit 2.  The
768	 * second write forces a 0 -> 1 transition in bit 2 to trigger
769	 * a reset.
770	 */
771	outb(0xcf9, 0x2);
772	outb(0xcf9, 0x6);
773	DELAY(500000);  /* wait 0.5 sec to see if that did it */
774
775	/*
776	 * Attempt to force a reset via the Fast A20 and Init register
777	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
778	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
779	 * preserve bit 1 while setting bit 0.  We also must clear bit
780	 * 0 before setting it if it isn't already clear.
781	 */
782	b = inb(0x92);
783	if (b != 0xff) {
784		if ((b & 0x1) != 0)
785			outb(0x92, b & 0xfe);
786		outb(0x92, b | 0x1);
787		DELAY(500000);  /* wait 0.5 sec to see if that did it */
788	}
789#endif /* PC98 */
790
791	printf("No known reset method worked, attempting CPU shutdown\n");
792	DELAY(1000000); /* wait 1 sec for printf to complete */
793
794	/* Wipe the IDT. */
795	null_idt.rd_limit = 0;
796	null_idt.rd_base = 0;
797	lidt(&null_idt);
798
799	/* "good night, sweet prince .... <THUNK!>" */
800	breakpoint();
801
802	/* NOTREACHED */
803	while(1);
804}
805
806/*
807 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
808 */
809static void
810sf_buf_init(void *arg)
811{
812	struct sf_buf *sf_bufs;
813	vm_offset_t sf_base;
814	int i;
815
816	nsfbufs = NSFBUFS;
817	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
818
819	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
820	TAILQ_INIT(&sf_buf_freelist);
821	sf_base = kva_alloc(nsfbufs * PAGE_SIZE);
822	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
823	    M_NOWAIT | M_ZERO);
824	for (i = 0; i < nsfbufs; i++) {
825		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
826		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
827	}
828	sf_buf_alloc_want = 0;
829	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
830}
831
832/*
833 * Invalidate the cache lines that may belong to the page, if
834 * (possibly old) mapping of the page by sf buffer exists.  Returns
835 * TRUE when mapping was found and cache invalidated.
836 */
837boolean_t
838sf_buf_invalidate_cache(vm_page_t m)
839{
840	struct sf_head *hash_list;
841	struct sf_buf *sf;
842	boolean_t ret;
843
844	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
845	ret = FALSE;
846	mtx_lock(&sf_buf_lock);
847	LIST_FOREACH(sf, hash_list, list_entry) {
848		if (sf->m == m) {
849			/*
850			 * Use pmap_qenter to update the pte for
851			 * existing mapping, in particular, the PAT
852			 * settings are recalculated.
853			 */
854			pmap_qenter(sf->kva, &m, 1);
855			pmap_invalidate_cache_range(sf->kva, sf->kva +
856			    PAGE_SIZE, FALSE);
857			ret = TRUE;
858			break;
859		}
860	}
861	mtx_unlock(&sf_buf_lock);
862	return (ret);
863}
864
865/*
866 * Get an sf_buf from the freelist.  May block if none are available.
867 */
868struct sf_buf *
869sf_buf_alloc(struct vm_page *m, int flags)
870{
871	pt_entry_t opte, *ptep;
872	struct sf_head *hash_list;
873	struct sf_buf *sf;
874#ifdef SMP
875	cpuset_t other_cpus;
876	u_int cpuid;
877#endif
878	int error;
879
880	KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
881	    ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
882	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
883	mtx_lock(&sf_buf_lock);
884	LIST_FOREACH(sf, hash_list, list_entry) {
885		if (sf->m == m) {
886			sf->ref_count++;
887			if (sf->ref_count == 1) {
888				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
889				nsfbufsused++;
890				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
891			}
892#ifdef SMP
893			goto shootdown;
894#else
895			goto done;
896#endif
897		}
898	}
899	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
900		if (flags & SFB_NOWAIT)
901			goto done;
902		sf_buf_alloc_want++;
903		SFSTAT_INC(sf_allocwait);
904		error = msleep(&sf_buf_freelist, &sf_buf_lock,
905		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
906		sf_buf_alloc_want--;
907
908		/*
909		 * If we got a signal, don't risk going back to sleep.
910		 */
911		if (error)
912			goto done;
913	}
914	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
915	if (sf->m != NULL)
916		LIST_REMOVE(sf, list_entry);
917	LIST_INSERT_HEAD(hash_list, sf, list_entry);
918	sf->ref_count = 1;
919	sf->m = m;
920	nsfbufsused++;
921	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
922
923	/*
924	 * Update the sf_buf's virtual-to-physical mapping, flushing the
925	 * virtual address from the TLB.  Since the reference count for
926	 * the sf_buf's old mapping was zero, that mapping is not
927	 * currently in use.  Consequently, there is no need to exchange
928	 * the old and new PTEs atomically, even under PAE.
929	 */
930	ptep = vtopte(sf->kva);
931	opte = *ptep;
932#ifdef XEN
933       PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag
934	   | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0));
935#else
936	*ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V |
937	    pmap_cache_bits(m->md.pat_mode, 0);
938#endif
939
940	/*
941	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
942	 * virtual-to-physical mapping was not used, then any processor
943	 * that has invalidated the sf_buf's virtual address from its TLB
944	 * since the last used mapping need not invalidate again.
945	 */
946#ifdef SMP
947	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
948		CPU_ZERO(&sf->cpumask);
949shootdown:
950	sched_pin();
951	cpuid = PCPU_GET(cpuid);
952	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
953		CPU_SET(cpuid, &sf->cpumask);
954		invlpg(sf->kva);
955	}
956	if ((flags & SFB_CPUPRIVATE) == 0) {
957		other_cpus = all_cpus;
958		CPU_CLR(cpuid, &other_cpus);
959		CPU_NAND(&other_cpus, &sf->cpumask);
960		if (!CPU_EMPTY(&other_cpus)) {
961			CPU_OR(&sf->cpumask, &other_cpus);
962			smp_masked_invlpg(other_cpus, sf->kva);
963		}
964	}
965	sched_unpin();
966#else
967	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
968		pmap_invalidate_page(kernel_pmap, sf->kva);
969#endif
970done:
971	mtx_unlock(&sf_buf_lock);
972	return (sf);
973}
974
975/*
976 * Remove a reference from the given sf_buf, adding it to the free
977 * list when its reference count reaches zero.  A freed sf_buf still,
978 * however, retains its virtual-to-physical mapping until it is
979 * recycled or reactivated by sf_buf_alloc(9).
980 */
981void
982sf_buf_free(struct sf_buf *sf)
983{
984
985	mtx_lock(&sf_buf_lock);
986	sf->ref_count--;
987	if (sf->ref_count == 0) {
988		TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
989		nsfbufsused--;
990#ifdef XEN
991/*
992 * Xen doesn't like having dangling R/W mappings
993 */
994		pmap_qremove(sf->kva, 1);
995		sf->m = NULL;
996		LIST_REMOVE(sf, list_entry);
997#endif
998		if (sf_buf_alloc_want > 0)
999			wakeup(&sf_buf_freelist);
1000	}
1001	mtx_unlock(&sf_buf_lock);
1002}
1003
1004/*
1005 * Software interrupt handler for queued VM system processing.
1006 */
1007void
1008swi_vm(void *dummy)
1009{
1010	if (busdma_swi_pending != 0)
1011		busdma_swi();
1012}
1013
1014/*
1015 * Tell whether this address is in some physical memory region.
1016 * Currently used by the kernel coredump code in order to avoid
1017 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
1018 * or other unpredictable behaviour.
1019 */
1020
1021int
1022is_physical_memory(vm_paddr_t addr)
1023{
1024
1025#ifdef DEV_ISA
1026	/* The ISA ``memory hole''. */
1027	if (addr >= 0xa0000 && addr < 0x100000)
1028		return 0;
1029#endif
1030
1031	/*
1032	 * stuff other tests for known memory-mapped devices (PCI?)
1033	 * here
1034	 */
1035
1036	return 1;
1037}
1038