1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/10/sys/i386/i386/pmap.c 321363 2017-07-22 06:40:57Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_xbox.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/ktr.h>
109#include <sys/lock.h>
110#include <sys/malloc.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/rwlock.h>
116#include <sys/sf_buf.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#else
124#include <sys/cpuset.h>
125#endif
126
127#include <vm/vm.h>
128#include <vm/vm_param.h>
129#include <vm/vm_kern.h>
130#include <vm/vm_page.h>
131#include <vm/vm_map.h>
132#include <vm/vm_object.h>
133#include <vm/vm_extern.h>
134#include <vm/vm_pageout.h>
135#include <vm/vm_pager.h>
136#include <vm/vm_phys.h>
137#include <vm/vm_radix.h>
138#include <vm/vm_reserv.h>
139#include <vm/uma.h>
140
141#ifdef DEV_APIC
142#include <sys/bus.h>
143#include <machine/intr_machdep.h>
144#include <machine/apicvar.h>
145#endif
146#include <machine/cpu.h>
147#include <machine/cputypes.h>
148#include <machine/md_var.h>
149#include <machine/pcb.h>
150#include <machine/specialreg.h>
151#ifdef SMP
152#include <machine/smp.h>
153#endif
154
155#ifdef XBOX
156#include <machine/xbox.h>
157#endif
158
159#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
160#define CPU_ENABLE_SSE
161#endif
162
163#ifndef PMAP_SHPGPERPROC
164#define PMAP_SHPGPERPROC 200
165#endif
166
167#if !defined(DIAGNOSTIC)
168#ifdef __GNUC_GNU_INLINE__
169#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
170#else
171#define PMAP_INLINE	extern inline
172#endif
173#else
174#define PMAP_INLINE
175#endif
176
177#ifdef PV_STATS
178#define PV_STAT(x)	do { x ; } while (0)
179#else
180#define PV_STAT(x)	do { } while (0)
181#endif
182
183#define	pa_index(pa)	((pa) >> PDRSHIFT)
184#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
185
186/*
187 * Get PDEs and PTEs for user/kernel address space
188 */
189#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
190#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
191
192#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
193#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
194#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
195#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
196#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
197
198#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
199    atomic_clear_int((u_int *)(pte), PG_W))
200#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
201
202struct pmap kernel_pmap_store;
203LIST_HEAD(pmaplist, pmap);
204static struct pmaplist allpmaps;
205static struct mtx allpmaps_lock;
206
207vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
208vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
209int pgeflag = 0;		/* PG_G or-in */
210int pseflag = 0;		/* PG_PS or-in */
211
212static int nkpt = NKPT;
213vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
214extern u_int32_t KERNend;
215extern u_int32_t KPTphys;
216
217#if defined(PAE) || defined(PAE_TABLES)
218pt_entry_t pg_nx;
219static uma_zone_t pdptzone;
220#endif
221
222static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pat_works = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
226    "Is page attribute table fully functional?");
227
228static int pg_ps_enabled = 1;
229SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
230    "Are large page mappings enabled?");
231
232#define	PAT_INDEX_SIZE	8
233static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
234
235/*
236 * pmap_mapdev support pre initialization (i.e. console)
237 */
238#define	PMAP_PREINIT_MAPPING_COUNT	8
239static struct pmap_preinit_mapping {
240	vm_paddr_t	pa;
241	vm_offset_t	va;
242	vm_size_t	sz;
243	int		mode;
244} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
245static int pmap_initialized;
246
247static struct rwlock_padalign pvh_global_lock;
248
249/*
250 * Data for the pv entry allocation mechanism
251 */
252static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
253static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
254static struct md_page *pv_table;
255static int shpgperproc = PMAP_SHPGPERPROC;
256
257struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
258int pv_maxchunks;			/* How many chunks we have KVA for */
259vm_offset_t pv_vafree;			/* freelist stored in the PTE */
260
261/*
262 * All those kernel PT submaps that BSD is so fond of
263 */
264struct sysmaps {
265	struct	mtx lock;
266	pt_entry_t *CMAP1;
267	pt_entry_t *CMAP2;
268	caddr_t	CADDR1;
269	caddr_t	CADDR2;
270};
271static struct sysmaps sysmaps_pcpu[MAXCPU];
272pt_entry_t *CMAP3;
273static pd_entry_t *KPTD;
274caddr_t ptvmmap = 0;
275caddr_t CADDR3;
276struct msgbuf *msgbufp = 0;
277
278/*
279 * Crashdump maps.
280 */
281static caddr_t crashdumpmap;
282
283static pt_entry_t *PMAP1 = 0, *PMAP2;
284static pt_entry_t *PADDR1 = 0, *PADDR2;
285#ifdef SMP
286static int PMAP1cpu;
287static int PMAP1changedcpu;
288SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
289	   &PMAP1changedcpu, 0,
290	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
291#endif
292static int PMAP1changed;
293SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
294	   &PMAP1changed, 0,
295	   "Number of times pmap_pte_quick changed PMAP1");
296static int PMAP1unchanged;
297SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
298	   &PMAP1unchanged, 0,
299	   "Number of times pmap_pte_quick didn't change PMAP1");
300static struct mtx PMAP2mutex;
301
302static void	free_pv_chunk(struct pv_chunk *pc);
303static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
304static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
305static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
306static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
307static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
308static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
309static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
310		    vm_offset_t va);
311static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
312
313static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
314static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
315    vm_prot_t prot);
316static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
317    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
318static void pmap_flush_page(vm_page_t m);
319static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
320static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
321		    pd_entry_t pde);
322static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
323static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
324static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
325static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
326static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
327static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
328static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
329static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
330static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
331    vm_prot_t prot);
332static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
333static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
334    struct spglist *free);
335static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
336    struct spglist *free);
337static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
338static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
339    struct spglist *free);
340static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
341					vm_offset_t va);
342static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
343static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
344    vm_page_t m);
345static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
346    pd_entry_t newpde);
347static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
348
349static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
350
351static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
352static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
353static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
354static void pmap_pte_release(pt_entry_t *pte);
355static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
356#if defined(PAE) || defined(PAE_TABLES)
357static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
358    int wait);
359#endif
360static void pmap_set_pg(void);
361
362static __inline void pagezero(void *page);
363
364CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
365CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
366
367/*
368 * If you get an error here, then you set KVA_PAGES wrong! See the
369 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
370 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
371 */
372CTASSERT(KERNBASE % (1 << 24) == 0);
373
374/*
375 *	Bootstrap the system enough to run with virtual memory.
376 *
377 *	On the i386 this is called after mapping has already been enabled
378 *	and just syncs the pmap module with what has already been done.
379 *	[We can't call it easily with mapping off since the kernel is not
380 *	mapped with PA == VA, hence we would have to relocate every address
381 *	from the linked base (virtual) address "KERNBASE" to the actual
382 *	(physical) address starting relative to 0]
383 */
384void
385pmap_bootstrap(vm_paddr_t firstaddr)
386{
387	vm_offset_t va;
388	pt_entry_t *pte, *unused;
389	struct sysmaps *sysmaps;
390	int i;
391
392	/*
393	 * Add a physical memory segment (vm_phys_seg) corresponding to the
394	 * preallocated kernel page table pages so that vm_page structures
395	 * representing these pages will be created.  The vm_page structures
396	 * are required for promotion of the corresponding kernel virtual
397	 * addresses to superpage mappings.
398	 */
399	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
400
401	/*
402	 * Initialize the first available kernel virtual address.  However,
403	 * using "firstaddr" may waste a few pages of the kernel virtual
404	 * address space, because locore may not have mapped every physical
405	 * page that it allocated.  Preferably, locore would provide a first
406	 * unused virtual address in addition to "firstaddr".
407	 */
408	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
409
410	virtual_end = VM_MAX_KERNEL_ADDRESS;
411
412	/*
413	 * Initialize the kernel pmap (which is statically allocated).
414	 */
415	PMAP_LOCK_INIT(kernel_pmap);
416	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
417#if defined(PAE) || defined(PAE_TABLES)
418	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
419#endif
420	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
421	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
422
423 	/*
424	 * Initialize the global pv list lock.
425	 */
426	rw_init(&pvh_global_lock, "pmap pv global");
427
428	LIST_INIT(&allpmaps);
429
430	/*
431	 * Request a spin mutex so that changes to allpmaps cannot be
432	 * preempted by smp_rendezvous_cpus().  Otherwise,
433	 * pmap_update_pde_kernel() could access allpmaps while it is
434	 * being changed.
435	 */
436	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
437	mtx_lock_spin(&allpmaps_lock);
438	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
439	mtx_unlock_spin(&allpmaps_lock);
440
441	/*
442	 * Reserve some special page table entries/VA space for temporary
443	 * mapping of pages.
444	 */
445#define	SYSMAP(c, p, v, n)	\
446	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
447
448	va = virtual_avail;
449	pte = vtopte(va);
450
451	/*
452	 * CMAP1/CMAP2 are used for zeroing and copying pages.
453	 * CMAP3 is used for the idle process page zeroing.
454	 */
455	for (i = 0; i < MAXCPU; i++) {
456		sysmaps = &sysmaps_pcpu[i];
457		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
458		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
459		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
460	}
461	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
462
463	/*
464	 * Crashdump maps.
465	 */
466	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
467
468	/*
469	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
470	 */
471	SYSMAP(caddr_t, unused, ptvmmap, 1)
472
473	/*
474	 * msgbufp is used to map the system message buffer.
475	 */
476	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
477
478	/*
479	 * KPTmap is used by pmap_kextract().
480	 *
481	 * KPTmap is first initialized by locore.  However, that initial
482	 * KPTmap can only support NKPT page table pages.  Here, a larger
483	 * KPTmap is created that can support KVA_PAGES page table pages.
484	 */
485	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
486
487	for (i = 0; i < NKPT; i++)
488		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
489
490	/*
491	 * Adjust the start of the KPTD and KPTmap so that the implementation
492	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
493	 */
494	KPTD -= KPTDI;
495	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
496
497	/*
498	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
499	 * respectively.
500	 */
501	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
502	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
503
504	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
505
506	virtual_avail = va;
507
508	/*
509	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
510	 * physical memory region that is used by the ACPI wakeup code.  This
511	 * mapping must not have PG_G set.
512	 */
513#ifdef XBOX
514	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
515	 * an early stadium, we cannot yet neatly map video memory ... :-(
516	 * Better fixes are very welcome! */
517	if (!arch_i386_is_xbox)
518#endif
519	for (i = 1; i < NKPT; i++)
520		PTD[i] = 0;
521
522	/*
523	 * Initialize the PAT MSR if present.
524	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
525	 * side-effect, invalidates stale PG_G TLB entries that might
526	 * have been created in our pre-boot environment.  We assume
527	 * that PAT support implies PGE and in reverse, PGE presence
528	 * comes with PAT.  Both features were added for Pentium Pro.
529	 */
530	pmap_init_pat();
531
532	/* Turn on PG_G on kernel page(s) */
533	pmap_set_pg();
534}
535
536/*
537 * Setup the PAT MSR.
538 */
539void
540pmap_init_pat(void)
541{
542	int pat_table[PAT_INDEX_SIZE];
543	uint64_t pat_msr;
544	u_long cr0, cr4;
545	int i;
546
547	/* Set default PAT index table. */
548	for (i = 0; i < PAT_INDEX_SIZE; i++)
549		pat_table[i] = -1;
550	pat_table[PAT_WRITE_BACK] = 0;
551	pat_table[PAT_WRITE_THROUGH] = 1;
552	pat_table[PAT_UNCACHEABLE] = 3;
553	pat_table[PAT_WRITE_COMBINING] = 3;
554	pat_table[PAT_WRITE_PROTECTED] = 3;
555	pat_table[PAT_UNCACHED] = 3;
556
557	/*
558	 * Bail if this CPU doesn't implement PAT.
559	 * We assume that PAT support implies PGE.
560	 */
561	if ((cpu_feature & CPUID_PAT) == 0) {
562		for (i = 0; i < PAT_INDEX_SIZE; i++)
563			pat_index[i] = pat_table[i];
564		pat_works = 0;
565		return;
566	}
567
568	/*
569	 * Due to some Intel errata, we can only safely use the lower 4
570	 * PAT entries.
571	 *
572	 *   Intel Pentium III Processor Specification Update
573	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
574	 * or Mode C Paging)
575	 *
576	 *   Intel Pentium IV  Processor Specification Update
577	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
578	 */
579	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
580	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
581		pat_works = 0;
582
583	/* Initialize default PAT entries. */
584	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
585	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
586	    PAT_VALUE(2, PAT_UNCACHED) |
587	    PAT_VALUE(3, PAT_UNCACHEABLE) |
588	    PAT_VALUE(4, PAT_WRITE_BACK) |
589	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
590	    PAT_VALUE(6, PAT_UNCACHED) |
591	    PAT_VALUE(7, PAT_UNCACHEABLE);
592
593	if (pat_works) {
594		/*
595		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
596		 * Program 5 and 6 as WP and WC.
597		 * Leave 4 and 7 as WB and UC.
598		 */
599		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
600		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
601		    PAT_VALUE(6, PAT_WRITE_COMBINING);
602		pat_table[PAT_UNCACHED] = 2;
603		pat_table[PAT_WRITE_PROTECTED] = 5;
604		pat_table[PAT_WRITE_COMBINING] = 6;
605	} else {
606		/*
607		 * Just replace PAT Index 2 with WC instead of UC-.
608		 */
609		pat_msr &= ~PAT_MASK(2);
610		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
611		pat_table[PAT_WRITE_COMBINING] = 2;
612	}
613
614	/* Disable PGE. */
615	cr4 = rcr4();
616	load_cr4(cr4 & ~CR4_PGE);
617
618	/* Disable caches (CD = 1, NW = 0). */
619	cr0 = rcr0();
620	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
621
622	/* Flushes caches and TLBs. */
623	wbinvd();
624	invltlb();
625
626	/* Update PAT and index table. */
627	wrmsr(MSR_PAT, pat_msr);
628	for (i = 0; i < PAT_INDEX_SIZE; i++)
629		pat_index[i] = pat_table[i];
630
631	/* Flush caches and TLBs again. */
632	wbinvd();
633	invltlb();
634
635	/* Restore caches and PGE. */
636	load_cr0(cr0);
637	load_cr4(cr4);
638}
639
640/*
641 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
642 */
643static void
644pmap_set_pg(void)
645{
646	pt_entry_t *pte;
647	vm_offset_t va, endva;
648
649	if (pgeflag == 0)
650		return;
651
652	endva = KERNBASE + KERNend;
653
654	if (pseflag) {
655		va = KERNBASE + KERNLOAD;
656		while (va  < endva) {
657			pdir_pde(PTD, va) |= pgeflag;
658			invltlb();	/* Play it safe, invltlb() every time */
659			va += NBPDR;
660		}
661	} else {
662		va = (vm_offset_t)btext;
663		while (va < endva) {
664			pte = vtopte(va);
665			if (*pte)
666				*pte |= pgeflag;
667			invltlb();	/* Play it safe, invltlb() every time */
668			va += PAGE_SIZE;
669		}
670	}
671}
672
673/*
674 * Initialize a vm_page's machine-dependent fields.
675 */
676void
677pmap_page_init(vm_page_t m)
678{
679
680	TAILQ_INIT(&m->md.pv_list);
681	m->md.pat_mode = PAT_WRITE_BACK;
682}
683
684#if defined(PAE) || defined(PAE_TABLES)
685static void *
686pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
687{
688
689	/* Inform UMA that this allocator uses kernel_map/object. */
690	*flags = UMA_SLAB_KERNEL;
691	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
692	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
693}
694#endif
695
696/*
697 * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
698 * Requirements:
699 *  - Must deal with pages in order to ensure that none of the PG_* bits
700 *    are ever set, PG_V in particular.
701 *  - Assumes we can write to ptes without pte_store() atomic ops, even
702 *    on PAE systems.  This should be ok.
703 *  - Assumes nothing will ever test these addresses for 0 to indicate
704 *    no mapping instead of correctly checking PG_V.
705 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
706 * Because PG_V is never set, there can be no mappings to invalidate.
707 */
708static vm_offset_t
709pmap_ptelist_alloc(vm_offset_t *head)
710{
711	pt_entry_t *pte;
712	vm_offset_t va;
713
714	va = *head;
715	if (va == 0)
716		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
717	pte = vtopte(va);
718	*head = *pte;
719	if (*head & PG_V)
720		panic("pmap_ptelist_alloc: va with PG_V set!");
721	*pte = 0;
722	return (va);
723}
724
725static void
726pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
727{
728	pt_entry_t *pte;
729
730	if (va & PG_V)
731		panic("pmap_ptelist_free: freeing va with PG_V set!");
732	pte = vtopte(va);
733	*pte = *head;		/* virtual! PG_V is 0 though */
734	*head = va;
735}
736
737static void
738pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
739{
740	int i;
741	vm_offset_t va;
742
743	*head = 0;
744	for (i = npages - 1; i >= 0; i--) {
745		va = (vm_offset_t)base + i * PAGE_SIZE;
746		pmap_ptelist_free(head, va);
747	}
748}
749
750
751/*
752 *	Initialize the pmap module.
753 *	Called by vm_init, to initialize any structures that the pmap
754 *	system needs to map virtual memory.
755 */
756void
757pmap_init(void)
758{
759	struct pmap_preinit_mapping *ppim;
760	vm_page_t mpte;
761	vm_size_t s;
762	int i, pv_npg;
763
764	/*
765	 * Initialize the vm page array entries for the kernel pmap's
766	 * page table pages.
767	 */
768	for (i = 0; i < NKPT; i++) {
769		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
770		KASSERT(mpte >= vm_page_array &&
771		    mpte < &vm_page_array[vm_page_array_size],
772		    ("pmap_init: page table page is out of range"));
773		mpte->pindex = i + KPTDI;
774		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
775	}
776
777	/*
778	 * Initialize the address space (zone) for the pv entries.  Set a
779	 * high water mark so that the system can recover from excessive
780	 * numbers of pv entries.
781	 */
782	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
783	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
784	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
785	pv_entry_max = roundup(pv_entry_max, _NPCPV);
786	pv_entry_high_water = 9 * (pv_entry_max / 10);
787
788	/*
789	 * If the kernel is running on a virtual machine, then it must assume
790	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
791	 * be prepared for the hypervisor changing the vendor and family that
792	 * are reported by CPUID.  Consequently, the workaround for AMD Family
793	 * 10h Erratum 383 is enabled if the processor's feature set does not
794	 * include at least one feature that is only supported by older Intel
795	 * or newer AMD processors.
796	 */
797	if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
798	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
799	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
800	    AMDID2_FMA4)) == 0)
801		workaround_erratum383 = 1;
802
803	/*
804	 * Are large page mappings supported and enabled?
805	 */
806	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
807	if (pseflag == 0)
808		pg_ps_enabled = 0;
809	else if (pg_ps_enabled) {
810		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
811		    ("pmap_init: can't assign to pagesizes[1]"));
812		pagesizes[1] = NBPDR;
813	}
814
815	/*
816	 * Calculate the size of the pv head table for superpages.
817	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
818	 */
819	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
820	    PAGE_SIZE) / NBPDR + 1;
821
822	/*
823	 * Allocate memory for the pv head table for superpages.
824	 */
825	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
826	s = round_page(s);
827	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
828	    M_WAITOK | M_ZERO);
829	for (i = 0; i < pv_npg; i++)
830		TAILQ_INIT(&pv_table[i].pv_list);
831
832	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
833	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
834	if (pv_chunkbase == NULL)
835		panic("pmap_init: not enough kvm for pv chunks");
836	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
837#if defined(PAE) || defined(PAE_TABLES)
838	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
839	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
840	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
841	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
842#endif
843
844	pmap_initialized = 1;
845	if (!bootverbose)
846		return;
847	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
848		ppim = pmap_preinit_mapping + i;
849		if (ppim->va == 0)
850			continue;
851		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
852		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
853	}
854}
855
856
857SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
858	"Max number of PV entries");
859SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
860	"Page share factor per proc");
861
862static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
863    "2/4MB page mapping counters");
864
865static u_long pmap_pde_demotions;
866SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
867    &pmap_pde_demotions, 0, "2/4MB page demotions");
868
869static u_long pmap_pde_mappings;
870SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
871    &pmap_pde_mappings, 0, "2/4MB page mappings");
872
873static u_long pmap_pde_p_failures;
874SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
875    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
876
877static u_long pmap_pde_promotions;
878SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
879    &pmap_pde_promotions, 0, "2/4MB page promotions");
880
881/***************************************************
882 * Low level helper routines.....
883 ***************************************************/
884
885/*
886 * Determine the appropriate bits to set in a PTE or PDE for a specified
887 * caching mode.
888 */
889int
890pmap_cache_bits(int mode, boolean_t is_pde)
891{
892	int cache_bits, pat_flag, pat_idx;
893
894	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
895		panic("Unknown caching mode %d\n", mode);
896
897	/* The PAT bit is different for PTE's and PDE's. */
898	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
899
900	/* Map the caching mode to a PAT index. */
901	pat_idx = pat_index[mode];
902
903	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
904	cache_bits = 0;
905	if (pat_idx & 0x4)
906		cache_bits |= pat_flag;
907	if (pat_idx & 0x2)
908		cache_bits |= PG_NC_PCD;
909	if (pat_idx & 0x1)
910		cache_bits |= PG_NC_PWT;
911	return (cache_bits);
912}
913
914/*
915 * The caller is responsible for maintaining TLB consistency.
916 */
917static void
918pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
919{
920	pd_entry_t *pde;
921	pmap_t pmap;
922	boolean_t PTD_updated;
923
924	PTD_updated = FALSE;
925	mtx_lock_spin(&allpmaps_lock);
926	LIST_FOREACH(pmap, &allpmaps, pm_list) {
927		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
928		    PG_FRAME))
929			PTD_updated = TRUE;
930		pde = pmap_pde(pmap, va);
931		pde_store(pde, newpde);
932	}
933	mtx_unlock_spin(&allpmaps_lock);
934	KASSERT(PTD_updated,
935	    ("pmap_kenter_pde: current page table is not in allpmaps"));
936}
937
938/*
939 * After changing the page size for the specified virtual address in the page
940 * table, flush the corresponding entries from the processor's TLB.  Only the
941 * calling processor's TLB is affected.
942 *
943 * The calling thread must be pinned to a processor.
944 */
945static void
946pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
947{
948	u_long cr4;
949
950	if ((newpde & PG_PS) == 0)
951		/* Demotion: flush a specific 2MB page mapping. */
952		invlpg(va);
953	else if ((newpde & PG_G) == 0)
954		/*
955		 * Promotion: flush every 4KB page mapping from the TLB
956		 * because there are too many to flush individually.
957		 */
958		invltlb();
959	else {
960		/*
961		 * Promotion: flush every 4KB page mapping from the TLB,
962		 * including any global (PG_G) mappings.
963		 */
964		cr4 = rcr4();
965		load_cr4(cr4 & ~CR4_PGE);
966		/*
967		 * Although preemption at this point could be detrimental to
968		 * performance, it would not lead to an error.  PG_G is simply
969		 * ignored if CR4.PGE is clear.  Moreover, in case this block
970		 * is re-entered, the load_cr4() either above or below will
971		 * modify CR4.PGE flushing the TLB.
972		 */
973		load_cr4(cr4 | CR4_PGE);
974	}
975}
976#ifdef SMP
977/*
978 * For SMP, these functions have to use the IPI mechanism for coherence.
979 *
980 * N.B.: Before calling any of the following TLB invalidation functions,
981 * the calling processor must ensure that all stores updating a non-
982 * kernel page table are globally performed.  Otherwise, another
983 * processor could cache an old, pre-update entry without being
984 * invalidated.  This can happen one of two ways: (1) The pmap becomes
985 * active on another processor after its pm_active field is checked by
986 * one of the following functions but before a store updating the page
987 * table is globally performed. (2) The pmap becomes active on another
988 * processor before its pm_active field is checked but due to
989 * speculative loads one of the following functions stills reads the
990 * pmap as inactive on the other processor.
991 *
992 * The kernel page table is exempt because its pm_active field is
993 * immutable.  The kernel page table is always active on every
994 * processor.
995 */
996void
997pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
998{
999	cpuset_t other_cpus;
1000	u_int cpuid;
1001
1002	sched_pin();
1003	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1004		invlpg(va);
1005		smp_invlpg(va);
1006	} else {
1007		cpuid = PCPU_GET(cpuid);
1008		other_cpus = all_cpus;
1009		CPU_CLR(cpuid, &other_cpus);
1010		if (CPU_ISSET(cpuid, &pmap->pm_active))
1011			invlpg(va);
1012		CPU_AND(&other_cpus, &pmap->pm_active);
1013		if (!CPU_EMPTY(&other_cpus))
1014			smp_masked_invlpg(other_cpus, va);
1015	}
1016	sched_unpin();
1017}
1018
1019void
1020pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1021{
1022	cpuset_t other_cpus;
1023	vm_offset_t addr;
1024	u_int cpuid;
1025
1026	sched_pin();
1027	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1028		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1029			invlpg(addr);
1030		smp_invlpg_range(sva, eva);
1031	} else {
1032		cpuid = PCPU_GET(cpuid);
1033		other_cpus = all_cpus;
1034		CPU_CLR(cpuid, &other_cpus);
1035		if (CPU_ISSET(cpuid, &pmap->pm_active))
1036			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1037				invlpg(addr);
1038		CPU_AND(&other_cpus, &pmap->pm_active);
1039		if (!CPU_EMPTY(&other_cpus))
1040			smp_masked_invlpg_range(other_cpus, sva, eva);
1041	}
1042	sched_unpin();
1043}
1044
1045void
1046pmap_invalidate_all(pmap_t pmap)
1047{
1048	cpuset_t other_cpus;
1049	u_int cpuid;
1050
1051	sched_pin();
1052	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1053		invltlb();
1054		smp_invltlb();
1055	} else {
1056		cpuid = PCPU_GET(cpuid);
1057		other_cpus = all_cpus;
1058		CPU_CLR(cpuid, &other_cpus);
1059		if (CPU_ISSET(cpuid, &pmap->pm_active))
1060			invltlb();
1061		CPU_AND(&other_cpus, &pmap->pm_active);
1062		if (!CPU_EMPTY(&other_cpus))
1063			smp_masked_invltlb(other_cpus);
1064	}
1065	sched_unpin();
1066}
1067
1068void
1069pmap_invalidate_cache(void)
1070{
1071
1072	sched_pin();
1073	wbinvd();
1074	smp_cache_flush();
1075	sched_unpin();
1076}
1077
1078struct pde_action {
1079	cpuset_t invalidate;	/* processors that invalidate their TLB */
1080	vm_offset_t va;
1081	pd_entry_t *pde;
1082	pd_entry_t newpde;
1083	u_int store;		/* processor that updates the PDE */
1084};
1085
1086static void
1087pmap_update_pde_kernel(void *arg)
1088{
1089	struct pde_action *act = arg;
1090	pd_entry_t *pde;
1091	pmap_t pmap;
1092
1093	if (act->store == PCPU_GET(cpuid)) {
1094
1095		/*
1096		 * Elsewhere, this operation requires allpmaps_lock for
1097		 * synchronization.  Here, it does not because it is being
1098		 * performed in the context of an all_cpus rendezvous.
1099		 */
1100		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1101			pde = pmap_pde(pmap, act->va);
1102			pde_store(pde, act->newpde);
1103		}
1104	}
1105}
1106
1107static void
1108pmap_update_pde_user(void *arg)
1109{
1110	struct pde_action *act = arg;
1111
1112	if (act->store == PCPU_GET(cpuid))
1113		pde_store(act->pde, act->newpde);
1114}
1115
1116static void
1117pmap_update_pde_teardown(void *arg)
1118{
1119	struct pde_action *act = arg;
1120
1121	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1122		pmap_update_pde_invalidate(act->va, act->newpde);
1123}
1124
1125/*
1126 * Change the page size for the specified virtual address in a way that
1127 * prevents any possibility of the TLB ever having two entries that map the
1128 * same virtual address using different page sizes.  This is the recommended
1129 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1130 * machine check exception for a TLB state that is improperly diagnosed as a
1131 * hardware error.
1132 */
1133static void
1134pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1135{
1136	struct pde_action act;
1137	cpuset_t active, other_cpus;
1138	u_int cpuid;
1139
1140	sched_pin();
1141	cpuid = PCPU_GET(cpuid);
1142	other_cpus = all_cpus;
1143	CPU_CLR(cpuid, &other_cpus);
1144	if (pmap == kernel_pmap)
1145		active = all_cpus;
1146	else
1147		active = pmap->pm_active;
1148	if (CPU_OVERLAP(&active, &other_cpus)) {
1149		act.store = cpuid;
1150		act.invalidate = active;
1151		act.va = va;
1152		act.pde = pde;
1153		act.newpde = newpde;
1154		CPU_SET(cpuid, &active);
1155		smp_rendezvous_cpus(active,
1156		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1157		    pmap_update_pde_kernel : pmap_update_pde_user,
1158		    pmap_update_pde_teardown, &act);
1159	} else {
1160		if (pmap == kernel_pmap)
1161			pmap_kenter_pde(va, newpde);
1162		else
1163			pde_store(pde, newpde);
1164		if (CPU_ISSET(cpuid, &active))
1165			pmap_update_pde_invalidate(va, newpde);
1166	}
1167	sched_unpin();
1168}
1169#else /* !SMP */
1170/*
1171 * Normal, non-SMP, 486+ invalidation functions.
1172 * We inline these within pmap.c for speed.
1173 */
1174PMAP_INLINE void
1175pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1176{
1177
1178	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1179		invlpg(va);
1180}
1181
1182PMAP_INLINE void
1183pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1184{
1185	vm_offset_t addr;
1186
1187	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1188		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1189			invlpg(addr);
1190}
1191
1192PMAP_INLINE void
1193pmap_invalidate_all(pmap_t pmap)
1194{
1195
1196	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1197		invltlb();
1198}
1199
1200PMAP_INLINE void
1201pmap_invalidate_cache(void)
1202{
1203
1204	wbinvd();
1205}
1206
1207static void
1208pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1209{
1210
1211	if (pmap == kernel_pmap)
1212		pmap_kenter_pde(va, newpde);
1213	else
1214		pde_store(pde, newpde);
1215	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1216		pmap_update_pde_invalidate(va, newpde);
1217}
1218#endif /* !SMP */
1219
1220static void
1221pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1222{
1223
1224	/*
1225	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1226	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1227	 * page mappings that might exist in the TLB.  Consequently, at this
1228	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1229	 * the address range [va, va + NBPDR).  Therefore, the entire range
1230	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1231	 * the TLB will not hold any 4KB page mappings for the address range
1232	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1233	 * 2- or 4MB page mapping from the TLB.
1234	 */
1235	if ((pde & PG_PROMOTED) != 0)
1236		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
1237	else
1238		pmap_invalidate_page(pmap, va);
1239}
1240
1241#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1242
1243void
1244pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1245{
1246
1247	if (force) {
1248		sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
1249	} else {
1250		KASSERT((sva & PAGE_MASK) == 0,
1251		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1252		KASSERT((eva & PAGE_MASK) == 0,
1253		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1254	}
1255
1256	if ((cpu_feature & CPUID_SS) != 0 && !force)
1257		; /* If "Self Snoop" is supported and allowed, do nothing. */
1258	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
1259	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1260#ifdef DEV_APIC
1261		/*
1262		 * XXX: Some CPUs fault, hang, or trash the local APIC
1263		 * registers if we use CLFLUSH on the local APIC
1264		 * range.  The local APIC is always uncached, so we
1265		 * don't need to flush for that range anyway.
1266		 */
1267		if (pmap_kextract(sva) == lapic_paddr)
1268			return;
1269#endif
1270		/*
1271		 * Otherwise, do per-cache line flush.  Use the sfence
1272		 * instruction to insure that previous stores are
1273		 * included in the write-back.  The processor
1274		 * propagates flush to other processors in the cache
1275		 * coherence domain.
1276		 */
1277		sfence();
1278		for (; sva < eva; sva += cpu_clflush_line_size)
1279			clflushopt(sva);
1280		sfence();
1281	} else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1282	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1283#ifdef DEV_APIC
1284		if (pmap_kextract(sva) == lapic_paddr)
1285			return;
1286#endif
1287		/*
1288		 * Writes are ordered by CLFLUSH on Intel CPUs.
1289		 */
1290		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1291			mfence();
1292		for (; sva < eva; sva += cpu_clflush_line_size)
1293			clflush(sva);
1294		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1295			mfence();
1296	} else {
1297
1298		/*
1299		 * No targeted cache flush methods are supported by CPU,
1300		 * or the supplied range is bigger than 2MB.
1301		 * Globally invalidate cache.
1302		 */
1303		pmap_invalidate_cache();
1304	}
1305}
1306
1307void
1308pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1309{
1310	int i;
1311
1312	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1313	    (cpu_feature & CPUID_CLFSH) == 0) {
1314		pmap_invalidate_cache();
1315	} else {
1316		for (i = 0; i < count; i++)
1317			pmap_flush_page(pages[i]);
1318	}
1319}
1320
1321/*
1322 * Are we current address space or kernel?  N.B. We return FALSE when
1323 * a pmap's page table is in use because a kernel thread is borrowing
1324 * it.  The borrowed page table can change spontaneously, making any
1325 * dependence on its continued use subject to a race condition.
1326 */
1327static __inline int
1328pmap_is_current(pmap_t pmap)
1329{
1330
1331	return (pmap == kernel_pmap ||
1332	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1333	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1334}
1335
1336/*
1337 * If the given pmap is not the current or kernel pmap, the returned pte must
1338 * be released by passing it to pmap_pte_release().
1339 */
1340pt_entry_t *
1341pmap_pte(pmap_t pmap, vm_offset_t va)
1342{
1343	pd_entry_t newpf;
1344	pd_entry_t *pde;
1345
1346	pde = pmap_pde(pmap, va);
1347	if (*pde & PG_PS)
1348		return (pde);
1349	if (*pde != 0) {
1350		/* are we current address space or kernel? */
1351		if (pmap_is_current(pmap))
1352			return (vtopte(va));
1353		mtx_lock(&PMAP2mutex);
1354		newpf = *pde & PG_FRAME;
1355		if ((*PMAP2 & PG_FRAME) != newpf) {
1356			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1357			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1358		}
1359		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1360	}
1361	return (NULL);
1362}
1363
1364/*
1365 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1366 * being NULL.
1367 */
1368static __inline void
1369pmap_pte_release(pt_entry_t *pte)
1370{
1371
1372	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1373		mtx_unlock(&PMAP2mutex);
1374}
1375
1376/*
1377 * NB:  The sequence of updating a page table followed by accesses to the
1378 * corresponding pages is subject to the situation described in the "AMD64
1379 * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1380 * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1381 * right after modifying the PTE bits is crucial.
1382 */
1383static __inline void
1384invlcaddr(void *caddr)
1385{
1386
1387	invlpg((u_int)caddr);
1388}
1389
1390/*
1391 * Super fast pmap_pte routine best used when scanning
1392 * the pv lists.  This eliminates many coarse-grained
1393 * invltlb calls.  Note that many of the pv list
1394 * scans are across different pmaps.  It is very wasteful
1395 * to do an entire invltlb for checking a single mapping.
1396 *
1397 * If the given pmap is not the current pmap, pvh_global_lock
1398 * must be held and curthread pinned to a CPU.
1399 */
1400static pt_entry_t *
1401pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1402{
1403	pd_entry_t newpf;
1404	pd_entry_t *pde;
1405
1406	pde = pmap_pde(pmap, va);
1407	if (*pde & PG_PS)
1408		return (pde);
1409	if (*pde != 0) {
1410		/* are we current address space or kernel? */
1411		if (pmap_is_current(pmap))
1412			return (vtopte(va));
1413		rw_assert(&pvh_global_lock, RA_WLOCKED);
1414		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1415		newpf = *pde & PG_FRAME;
1416		if ((*PMAP1 & PG_FRAME) != newpf) {
1417			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1418#ifdef SMP
1419			PMAP1cpu = PCPU_GET(cpuid);
1420#endif
1421			invlcaddr(PADDR1);
1422			PMAP1changed++;
1423		} else
1424#ifdef SMP
1425		if (PMAP1cpu != PCPU_GET(cpuid)) {
1426			PMAP1cpu = PCPU_GET(cpuid);
1427			invlcaddr(PADDR1);
1428			PMAP1changedcpu++;
1429		} else
1430#endif
1431			PMAP1unchanged++;
1432		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1433	}
1434	return (0);
1435}
1436
1437/*
1438 *	Routine:	pmap_extract
1439 *	Function:
1440 *		Extract the physical page address associated
1441 *		with the given map/virtual_address pair.
1442 */
1443vm_paddr_t
1444pmap_extract(pmap_t pmap, vm_offset_t va)
1445{
1446	vm_paddr_t rtval;
1447	pt_entry_t *pte;
1448	pd_entry_t pde;
1449
1450	rtval = 0;
1451	PMAP_LOCK(pmap);
1452	pde = pmap->pm_pdir[va >> PDRSHIFT];
1453	if (pde != 0) {
1454		if ((pde & PG_PS) != 0)
1455			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1456		else {
1457			pte = pmap_pte(pmap, va);
1458			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1459			pmap_pte_release(pte);
1460		}
1461	}
1462	PMAP_UNLOCK(pmap);
1463	return (rtval);
1464}
1465
1466/*
1467 *	Routine:	pmap_extract_and_hold
1468 *	Function:
1469 *		Atomically extract and hold the physical page
1470 *		with the given pmap and virtual address pair
1471 *		if that mapping permits the given protection.
1472 */
1473vm_page_t
1474pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1475{
1476	pd_entry_t pde;
1477	pt_entry_t pte, *ptep;
1478	vm_page_t m;
1479	vm_paddr_t pa;
1480
1481	pa = 0;
1482	m = NULL;
1483	PMAP_LOCK(pmap);
1484retry:
1485	pde = *pmap_pde(pmap, va);
1486	if (pde != 0) {
1487		if (pde & PG_PS) {
1488			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1489				if (vm_page_pa_tryrelock(pmap, (pde &
1490				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1491					goto retry;
1492				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1493				    (va & PDRMASK));
1494				vm_page_hold(m);
1495			}
1496		} else {
1497			ptep = pmap_pte(pmap, va);
1498			pte = *ptep;
1499			pmap_pte_release(ptep);
1500			if (pte != 0 &&
1501			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1502				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1503				    &pa))
1504					goto retry;
1505				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1506				vm_page_hold(m);
1507			}
1508		}
1509	}
1510	PA_UNLOCK_COND(pa);
1511	PMAP_UNLOCK(pmap);
1512	return (m);
1513}
1514
1515/***************************************************
1516 * Low level mapping routines.....
1517 ***************************************************/
1518
1519/*
1520 * Add a wired page to the kva.
1521 * Note: not SMP coherent.
1522 *
1523 * This function may be used before pmap_bootstrap() is called.
1524 */
1525PMAP_INLINE void
1526pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1527{
1528	pt_entry_t *pte;
1529
1530	pte = vtopte(va);
1531	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1532}
1533
1534static __inline void
1535pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1536{
1537	pt_entry_t *pte;
1538
1539	pte = vtopte(va);
1540	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1541}
1542
1543/*
1544 * Remove a page from the kernel pagetables.
1545 * Note: not SMP coherent.
1546 *
1547 * This function may be used before pmap_bootstrap() is called.
1548 */
1549PMAP_INLINE void
1550pmap_kremove(vm_offset_t va)
1551{
1552	pt_entry_t *pte;
1553
1554	pte = vtopte(va);
1555	pte_clear(pte);
1556}
1557
1558/*
1559 *	Used to map a range of physical addresses into kernel
1560 *	virtual address space.
1561 *
1562 *	The value passed in '*virt' is a suggested virtual address for
1563 *	the mapping. Architectures which can support a direct-mapped
1564 *	physical to virtual region can return the appropriate address
1565 *	within that region, leaving '*virt' unchanged. Other
1566 *	architectures should map the pages starting at '*virt' and
1567 *	update '*virt' with the first usable address after the mapped
1568 *	region.
1569 */
1570vm_offset_t
1571pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1572{
1573	vm_offset_t va, sva;
1574	vm_paddr_t superpage_offset;
1575	pd_entry_t newpde;
1576
1577	va = *virt;
1578	/*
1579	 * Does the physical address range's size and alignment permit at
1580	 * least one superpage mapping to be created?
1581	 */
1582	superpage_offset = start & PDRMASK;
1583	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1584		/*
1585		 * Increase the starting virtual address so that its alignment
1586		 * does not preclude the use of superpage mappings.
1587		 */
1588		if ((va & PDRMASK) < superpage_offset)
1589			va = (va & ~PDRMASK) + superpage_offset;
1590		else if ((va & PDRMASK) > superpage_offset)
1591			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1592	}
1593	sva = va;
1594	while (start < end) {
1595		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1596		    pseflag) {
1597			KASSERT((va & PDRMASK) == 0,
1598			    ("pmap_map: misaligned va %#x", va));
1599			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1600			pmap_kenter_pde(va, newpde);
1601			va += NBPDR;
1602			start += NBPDR;
1603		} else {
1604			pmap_kenter(va, start);
1605			va += PAGE_SIZE;
1606			start += PAGE_SIZE;
1607		}
1608	}
1609	pmap_invalidate_range(kernel_pmap, sva, va);
1610	*virt = va;
1611	return (sva);
1612}
1613
1614
1615/*
1616 * Add a list of wired pages to the kva
1617 * this routine is only used for temporary
1618 * kernel mappings that do not need to have
1619 * page modification or references recorded.
1620 * Note that old mappings are simply written
1621 * over.  The page *must* be wired.
1622 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1623 */
1624void
1625pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1626{
1627	pt_entry_t *endpte, oldpte, pa, *pte;
1628	vm_page_t m;
1629
1630	oldpte = 0;
1631	pte = vtopte(sva);
1632	endpte = pte + count;
1633	while (pte < endpte) {
1634		m = *ma++;
1635		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1636		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1637			oldpte |= *pte;
1638			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1639		}
1640		pte++;
1641	}
1642	if (__predict_false((oldpte & PG_V) != 0))
1643		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1644		    PAGE_SIZE);
1645}
1646
1647/*
1648 * This routine tears out page mappings from the
1649 * kernel -- it is meant only for temporary mappings.
1650 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1651 */
1652void
1653pmap_qremove(vm_offset_t sva, int count)
1654{
1655	vm_offset_t va;
1656
1657	va = sva;
1658	while (count-- > 0) {
1659		pmap_kremove(va);
1660		va += PAGE_SIZE;
1661	}
1662	pmap_invalidate_range(kernel_pmap, sva, va);
1663}
1664
1665/***************************************************
1666 * Page table page management routines.....
1667 ***************************************************/
1668static __inline void
1669pmap_free_zero_pages(struct spglist *free)
1670{
1671	vm_page_t m;
1672
1673	while ((m = SLIST_FIRST(free)) != NULL) {
1674		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1675		/* Preserve the page's PG_ZERO setting. */
1676		vm_page_free_toq(m);
1677	}
1678}
1679
1680/*
1681 * Schedule the specified unused page table page to be freed.  Specifically,
1682 * add the page to the specified list of pages that will be released to the
1683 * physical memory manager after the TLB has been updated.
1684 */
1685static __inline void
1686pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1687    boolean_t set_PG_ZERO)
1688{
1689
1690	if (set_PG_ZERO)
1691		m->flags |= PG_ZERO;
1692	else
1693		m->flags &= ~PG_ZERO;
1694	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1695}
1696
1697/*
1698 * Inserts the specified page table page into the specified pmap's collection
1699 * of idle page table pages.  Each of a pmap's page table pages is responsible
1700 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1701 * ordered by this virtual address range.
1702 */
1703static __inline int
1704pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1705{
1706
1707	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1708	return (vm_radix_insert(&pmap->pm_root, mpte));
1709}
1710
1711/*
1712 * Looks for a page table page mapping the specified virtual address in the
1713 * specified pmap's collection of idle page table pages.  Returns NULL if there
1714 * is no page table page corresponding to the specified virtual address.
1715 */
1716static __inline vm_page_t
1717pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1718{
1719
1720	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1721	return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
1722}
1723
1724/*
1725 * Removes the specified page table page from the specified pmap's collection
1726 * of idle page table pages.  The specified page table page must be a member of
1727 * the pmap's collection.
1728 */
1729static __inline void
1730pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1731{
1732
1733	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1734	vm_radix_remove(&pmap->pm_root, mpte->pindex);
1735}
1736
1737/*
1738 * Decrements a page table page's wire count, which is used to record the
1739 * number of valid page table entries within the page.  If the wire count
1740 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1741 * page table page was unmapped and FALSE otherwise.
1742 */
1743static inline boolean_t
1744pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1745{
1746
1747	--m->wire_count;
1748	if (m->wire_count == 0) {
1749		_pmap_unwire_ptp(pmap, m, free);
1750		return (TRUE);
1751	} else
1752		return (FALSE);
1753}
1754
1755static void
1756_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1757{
1758	vm_offset_t pteva;
1759
1760	/*
1761	 * unmap the page table page
1762	 */
1763	pmap->pm_pdir[m->pindex] = 0;
1764	--pmap->pm_stats.resident_count;
1765
1766	/*
1767	 * This is a release store so that the ordinary store unmapping
1768	 * the page table page is globally performed before TLB shoot-
1769	 * down is begun.
1770	 */
1771	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1772
1773	/*
1774	 * Do an invltlb to make the invalidated mapping
1775	 * take effect immediately.
1776	 */
1777	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1778	pmap_invalidate_page(pmap, pteva);
1779
1780	/*
1781	 * Put page on a list so that it is released after
1782	 * *ALL* TLB shootdown is done
1783	 */
1784	pmap_add_delayed_free_list(m, free, TRUE);
1785}
1786
1787/*
1788 * After removing a page table entry, this routine is used to
1789 * conditionally free the page, and manage the hold/wire counts.
1790 */
1791static int
1792pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1793{
1794	pd_entry_t ptepde;
1795	vm_page_t mpte;
1796
1797	if (va >= VM_MAXUSER_ADDRESS)
1798		return (0);
1799	ptepde = *pmap_pde(pmap, va);
1800	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1801	return (pmap_unwire_ptp(pmap, mpte, free));
1802}
1803
1804/*
1805 * Initialize the pmap for the swapper process.
1806 */
1807void
1808pmap_pinit0(pmap_t pmap)
1809{
1810
1811	PMAP_LOCK_INIT(pmap);
1812	/*
1813	 * Since the page table directory is shared with the kernel pmap,
1814	 * which is already included in the list "allpmaps", this pmap does
1815	 * not need to be inserted into that list.
1816	 */
1817	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1818#if defined(PAE) || defined(PAE_TABLES)
1819	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1820#endif
1821	pmap->pm_root.rt_root = 0;
1822	CPU_ZERO(&pmap->pm_active);
1823	PCPU_SET(curpmap, pmap);
1824	TAILQ_INIT(&pmap->pm_pvchunk);
1825	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1826}
1827
1828/*
1829 * Initialize a preallocated and zeroed pmap structure,
1830 * such as one in a vmspace structure.
1831 */
1832int
1833pmap_pinit(pmap_t pmap)
1834{
1835	vm_page_t m, ptdpg[NPGPTD];
1836	vm_paddr_t pa;
1837	int i;
1838
1839	/*
1840	 * No need to allocate page table space yet but we do need a valid
1841	 * page directory table.
1842	 */
1843	if (pmap->pm_pdir == NULL) {
1844		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1845		if (pmap->pm_pdir == NULL)
1846			return (0);
1847#if defined(PAE) || defined(PAE_TABLES)
1848		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1849		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1850		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1851		    ("pmap_pinit: pdpt misaligned"));
1852		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1853		    ("pmap_pinit: pdpt above 4g"));
1854#endif
1855		pmap->pm_root.rt_root = 0;
1856	}
1857	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1858	    ("pmap_pinit: pmap has reserved page table page(s)"));
1859
1860	/*
1861	 * allocate the page directory page(s)
1862	 */
1863	for (i = 0; i < NPGPTD;) {
1864		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1865		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1866		if (m == NULL)
1867			VM_WAIT;
1868		else {
1869			ptdpg[i++] = m;
1870		}
1871	}
1872
1873	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1874
1875	for (i = 0; i < NPGPTD; i++)
1876		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1877			pagezero(pmap->pm_pdir + (i * NPDEPG));
1878
1879	mtx_lock_spin(&allpmaps_lock);
1880	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1881	/* Copy the kernel page table directory entries. */
1882	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1883	mtx_unlock_spin(&allpmaps_lock);
1884
1885	/* install self-referential address mapping entry(s) */
1886	for (i = 0; i < NPGPTD; i++) {
1887		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1888		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1889#if defined(PAE) || defined(PAE_TABLES)
1890		pmap->pm_pdpt[i] = pa | PG_V;
1891#endif
1892	}
1893
1894	CPU_ZERO(&pmap->pm_active);
1895	TAILQ_INIT(&pmap->pm_pvchunk);
1896	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1897
1898	return (1);
1899}
1900
1901/*
1902 * this routine is called if the page table page is not
1903 * mapped correctly.
1904 */
1905static vm_page_t
1906_pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
1907{
1908	vm_paddr_t ptepa;
1909	vm_page_t m;
1910
1911	/*
1912	 * Allocate a page table page.
1913	 */
1914	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1915	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1916		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1917			PMAP_UNLOCK(pmap);
1918			rw_wunlock(&pvh_global_lock);
1919			VM_WAIT;
1920			rw_wlock(&pvh_global_lock);
1921			PMAP_LOCK(pmap);
1922		}
1923
1924		/*
1925		 * Indicate the need to retry.  While waiting, the page table
1926		 * page may have been allocated.
1927		 */
1928		return (NULL);
1929	}
1930	if ((m->flags & PG_ZERO) == 0)
1931		pmap_zero_page(m);
1932
1933	/*
1934	 * Map the pagetable page into the process address space, if
1935	 * it isn't already there.
1936	 */
1937
1938	pmap->pm_stats.resident_count++;
1939
1940	ptepa = VM_PAGE_TO_PHYS(m);
1941	pmap->pm_pdir[ptepindex] =
1942		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1943
1944	return (m);
1945}
1946
1947static vm_page_t
1948pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1949{
1950	u_int ptepindex;
1951	pd_entry_t ptepa;
1952	vm_page_t m;
1953
1954	/*
1955	 * Calculate pagetable page index
1956	 */
1957	ptepindex = va >> PDRSHIFT;
1958retry:
1959	/*
1960	 * Get the page directory entry
1961	 */
1962	ptepa = pmap->pm_pdir[ptepindex];
1963
1964	/*
1965	 * This supports switching from a 4MB page to a
1966	 * normal 4K page.
1967	 */
1968	if (ptepa & PG_PS) {
1969		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1970		ptepa = pmap->pm_pdir[ptepindex];
1971	}
1972
1973	/*
1974	 * If the page table page is mapped, we just increment the
1975	 * hold count, and activate it.
1976	 */
1977	if (ptepa) {
1978		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1979		m->wire_count++;
1980	} else {
1981		/*
1982		 * Here if the pte page isn't mapped, or if it has
1983		 * been deallocated.
1984		 */
1985		m = _pmap_allocpte(pmap, ptepindex, flags);
1986		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
1987			goto retry;
1988	}
1989	return (m);
1990}
1991
1992
1993/***************************************************
1994* Pmap allocation/deallocation routines.
1995 ***************************************************/
1996
1997#ifdef SMP
1998/*
1999 * Deal with a SMP shootdown of other users of the pmap that we are
2000 * trying to dispose of.  This can be a bit hairy.
2001 */
2002static cpuset_t *lazymask;
2003static u_int lazyptd;
2004static volatile u_int lazywait;
2005
2006void pmap_lazyfix_action(void);
2007
2008void
2009pmap_lazyfix_action(void)
2010{
2011
2012#ifdef COUNT_IPIS
2013	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
2014#endif
2015	if (rcr3() == lazyptd)
2016		load_cr3(curpcb->pcb_cr3);
2017	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
2018	atomic_store_rel_int(&lazywait, 1);
2019}
2020
2021static void
2022pmap_lazyfix_self(u_int cpuid)
2023{
2024
2025	if (rcr3() == lazyptd)
2026		load_cr3(curpcb->pcb_cr3);
2027	CPU_CLR_ATOMIC(cpuid, lazymask);
2028}
2029
2030
2031static void
2032pmap_lazyfix(pmap_t pmap)
2033{
2034	cpuset_t mymask, mask;
2035	u_int cpuid, spins;
2036	int lsb;
2037
2038	mask = pmap->pm_active;
2039	while (!CPU_EMPTY(&mask)) {
2040		spins = 50000000;
2041
2042		/* Find least significant set bit. */
2043		lsb = CPU_FFS(&mask);
2044		MPASS(lsb != 0);
2045		lsb--;
2046		CPU_SETOF(lsb, &mask);
2047		mtx_lock_spin(&smp_ipi_mtx);
2048#if defined(PAE) || defined(PAE_TABLES)
2049		lazyptd = vtophys(pmap->pm_pdpt);
2050#else
2051		lazyptd = vtophys(pmap->pm_pdir);
2052#endif
2053		cpuid = PCPU_GET(cpuid);
2054
2055		/* Use a cpuset just for having an easy check. */
2056		CPU_SETOF(cpuid, &mymask);
2057		if (!CPU_CMP(&mask, &mymask)) {
2058			lazymask = &pmap->pm_active;
2059			pmap_lazyfix_self(cpuid);
2060		} else {
2061			atomic_store_rel_int((u_int *)&lazymask,
2062			    (u_int)&pmap->pm_active);
2063			atomic_store_rel_int(&lazywait, 0);
2064			ipi_selected(mask, IPI_LAZYPMAP);
2065			while (lazywait == 0) {
2066				ia32_pause();
2067				if (--spins == 0)
2068					break;
2069			}
2070		}
2071		mtx_unlock_spin(&smp_ipi_mtx);
2072		if (spins == 0)
2073			printf("pmap_lazyfix: spun for 50000000\n");
2074		mask = pmap->pm_active;
2075	}
2076}
2077
2078#else	/* SMP */
2079
2080/*
2081 * Cleaning up on uniprocessor is easy.  For various reasons, we're
2082 * unlikely to have to even execute this code, including the fact
2083 * that the cleanup is deferred until the parent does a wait(2), which
2084 * means that another userland process has run.
2085 */
2086static void
2087pmap_lazyfix(pmap_t pmap)
2088{
2089	u_int cr3;
2090
2091	cr3 = vtophys(pmap->pm_pdir);
2092	if (cr3 == rcr3()) {
2093		load_cr3(curpcb->pcb_cr3);
2094		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
2095	}
2096}
2097#endif	/* SMP */
2098
2099/*
2100 * Release any resources held by the given physical map.
2101 * Called when a pmap initialized by pmap_pinit is being released.
2102 * Should only be called if the map contains no valid mappings.
2103 */
2104void
2105pmap_release(pmap_t pmap)
2106{
2107	vm_page_t m, ptdpg[NPGPTD];
2108	int i;
2109
2110	KASSERT(pmap->pm_stats.resident_count == 0,
2111	    ("pmap_release: pmap resident count %ld != 0",
2112	    pmap->pm_stats.resident_count));
2113	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2114	    ("pmap_release: pmap has reserved page table page(s)"));
2115
2116	pmap_lazyfix(pmap);
2117	mtx_lock_spin(&allpmaps_lock);
2118	LIST_REMOVE(pmap, pm_list);
2119	mtx_unlock_spin(&allpmaps_lock);
2120
2121	for (i = 0; i < NPGPTD; i++)
2122		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2123		    PG_FRAME);
2124
2125	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2126	    sizeof(*pmap->pm_pdir));
2127
2128	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2129
2130	for (i = 0; i < NPGPTD; i++) {
2131		m = ptdpg[i];
2132#if defined(PAE) || defined(PAE_TABLES)
2133		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2134		    ("pmap_release: got wrong ptd page"));
2135#endif
2136		m->wire_count--;
2137		atomic_subtract_int(&cnt.v_wire_count, 1);
2138		vm_page_free_zero(m);
2139	}
2140}
2141
2142static int
2143kvm_size(SYSCTL_HANDLER_ARGS)
2144{
2145	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2146
2147	return (sysctl_handle_long(oidp, &ksize, 0, req));
2148}
2149SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2150    0, 0, kvm_size, "IU", "Size of KVM");
2151
2152static int
2153kvm_free(SYSCTL_HANDLER_ARGS)
2154{
2155	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2156
2157	return (sysctl_handle_long(oidp, &kfree, 0, req));
2158}
2159SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2160    0, 0, kvm_free, "IU", "Amount of KVM free");
2161
2162/*
2163 * grow the number of kernel page table entries, if needed
2164 */
2165void
2166pmap_growkernel(vm_offset_t addr)
2167{
2168	vm_paddr_t ptppaddr;
2169	vm_page_t nkpg;
2170	pd_entry_t newpdir;
2171
2172	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2173	addr = roundup2(addr, NBPDR);
2174	if (addr - 1 >= kernel_map->max_offset)
2175		addr = kernel_map->max_offset;
2176	while (kernel_vm_end < addr) {
2177		if (pdir_pde(PTD, kernel_vm_end)) {
2178			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2179			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2180				kernel_vm_end = kernel_map->max_offset;
2181				break;
2182			}
2183			continue;
2184		}
2185
2186		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2187		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2188		    VM_ALLOC_ZERO);
2189		if (nkpg == NULL)
2190			panic("pmap_growkernel: no memory to grow kernel");
2191
2192		nkpt++;
2193
2194		if ((nkpg->flags & PG_ZERO) == 0)
2195			pmap_zero_page(nkpg);
2196		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2197		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2198		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2199
2200		pmap_kenter_pde(kernel_vm_end, newpdir);
2201		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2202		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2203			kernel_vm_end = kernel_map->max_offset;
2204			break;
2205		}
2206	}
2207}
2208
2209
2210/***************************************************
2211 * page management routines.
2212 ***************************************************/
2213
2214CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2215CTASSERT(_NPCM == 11);
2216CTASSERT(_NPCPV == 336);
2217
2218static __inline struct pv_chunk *
2219pv_to_chunk(pv_entry_t pv)
2220{
2221
2222	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2223}
2224
2225#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2226
2227#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2228#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2229
2230static const uint32_t pc_freemask[_NPCM] = {
2231	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2232	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2233	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2234	PC_FREE0_9, PC_FREE10
2235};
2236
2237SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2238	"Current number of pv entries");
2239
2240#ifdef PV_STATS
2241static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2242
2243SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2244	"Current number of pv entry chunks");
2245SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2246	"Current number of pv entry chunks allocated");
2247SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2248	"Current number of pv entry chunks frees");
2249SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2250	"Number of times tried to get a chunk page but failed.");
2251
2252static long pv_entry_frees, pv_entry_allocs;
2253static int pv_entry_spare;
2254
2255SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2256	"Current number of pv entry frees");
2257SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2258	"Current number of pv entry allocs");
2259SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2260	"Current number of spare pv entries");
2261#endif
2262
2263/*
2264 * We are in a serious low memory condition.  Resort to
2265 * drastic measures to free some pages so we can allocate
2266 * another pv entry chunk.
2267 */
2268static vm_page_t
2269pmap_pv_reclaim(pmap_t locked_pmap)
2270{
2271	struct pch newtail;
2272	struct pv_chunk *pc;
2273	struct md_page *pvh;
2274	pd_entry_t *pde;
2275	pmap_t pmap;
2276	pt_entry_t *pte, tpte;
2277	pv_entry_t pv;
2278	vm_offset_t va;
2279	vm_page_t m, m_pc;
2280	struct spglist free;
2281	uint32_t inuse;
2282	int bit, field, freed;
2283
2284	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2285	pmap = NULL;
2286	m_pc = NULL;
2287	SLIST_INIT(&free);
2288	TAILQ_INIT(&newtail);
2289	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2290	    SLIST_EMPTY(&free))) {
2291		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2292		if (pmap != pc->pc_pmap) {
2293			if (pmap != NULL) {
2294				pmap_invalidate_all(pmap);
2295				if (pmap != locked_pmap)
2296					PMAP_UNLOCK(pmap);
2297			}
2298			pmap = pc->pc_pmap;
2299			/* Avoid deadlock and lock recursion. */
2300			if (pmap > locked_pmap)
2301				PMAP_LOCK(pmap);
2302			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2303				pmap = NULL;
2304				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2305				continue;
2306			}
2307		}
2308
2309		/*
2310		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2311		 */
2312		freed = 0;
2313		for (field = 0; field < _NPCM; field++) {
2314			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2315			    inuse != 0; inuse &= ~(1UL << bit)) {
2316				bit = bsfl(inuse);
2317				pv = &pc->pc_pventry[field * 32 + bit];
2318				va = pv->pv_va;
2319				pde = pmap_pde(pmap, va);
2320				if ((*pde & PG_PS) != 0)
2321					continue;
2322				pte = pmap_pte(pmap, va);
2323				tpte = *pte;
2324				if ((tpte & PG_W) == 0)
2325					tpte = pte_load_clear(pte);
2326				pmap_pte_release(pte);
2327				if ((tpte & PG_W) != 0)
2328					continue;
2329				KASSERT(tpte != 0,
2330				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2331				    pmap, va));
2332				if ((tpte & PG_G) != 0)
2333					pmap_invalidate_page(pmap, va);
2334				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2335				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2336					vm_page_dirty(m);
2337				if ((tpte & PG_A) != 0)
2338					vm_page_aflag_set(m, PGA_REFERENCED);
2339				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2340				if (TAILQ_EMPTY(&m->md.pv_list) &&
2341				    (m->flags & PG_FICTITIOUS) == 0) {
2342					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2343					if (TAILQ_EMPTY(&pvh->pv_list)) {
2344						vm_page_aflag_clear(m,
2345						    PGA_WRITEABLE);
2346					}
2347				}
2348				pc->pc_map[field] |= 1UL << bit;
2349				pmap_unuse_pt(pmap, va, &free);
2350				freed++;
2351			}
2352		}
2353		if (freed == 0) {
2354			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2355			continue;
2356		}
2357		/* Every freed mapping is for a 4 KB page. */
2358		pmap->pm_stats.resident_count -= freed;
2359		PV_STAT(pv_entry_frees += freed);
2360		PV_STAT(pv_entry_spare += freed);
2361		pv_entry_count -= freed;
2362		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2363		for (field = 0; field < _NPCM; field++)
2364			if (pc->pc_map[field] != pc_freemask[field]) {
2365				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2366				    pc_list);
2367				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2368
2369				/*
2370				 * One freed pv entry in locked_pmap is
2371				 * sufficient.
2372				 */
2373				if (pmap == locked_pmap)
2374					goto out;
2375				break;
2376			}
2377		if (field == _NPCM) {
2378			PV_STAT(pv_entry_spare -= _NPCPV);
2379			PV_STAT(pc_chunk_count--);
2380			PV_STAT(pc_chunk_frees++);
2381			/* Entire chunk is free; return it. */
2382			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2383			pmap_qremove((vm_offset_t)pc, 1);
2384			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2385			break;
2386		}
2387	}
2388out:
2389	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2390	if (pmap != NULL) {
2391		pmap_invalidate_all(pmap);
2392		if (pmap != locked_pmap)
2393			PMAP_UNLOCK(pmap);
2394	}
2395	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2396		m_pc = SLIST_FIRST(&free);
2397		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2398		/* Recycle a freed page table page. */
2399		m_pc->wire_count = 1;
2400		atomic_add_int(&cnt.v_wire_count, 1);
2401	}
2402	pmap_free_zero_pages(&free);
2403	return (m_pc);
2404}
2405
2406/*
2407 * free the pv_entry back to the free list
2408 */
2409static void
2410free_pv_entry(pmap_t pmap, pv_entry_t pv)
2411{
2412	struct pv_chunk *pc;
2413	int idx, field, bit;
2414
2415	rw_assert(&pvh_global_lock, RA_WLOCKED);
2416	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2417	PV_STAT(pv_entry_frees++);
2418	PV_STAT(pv_entry_spare++);
2419	pv_entry_count--;
2420	pc = pv_to_chunk(pv);
2421	idx = pv - &pc->pc_pventry[0];
2422	field = idx / 32;
2423	bit = idx % 32;
2424	pc->pc_map[field] |= 1ul << bit;
2425	for (idx = 0; idx < _NPCM; idx++)
2426		if (pc->pc_map[idx] != pc_freemask[idx]) {
2427			/*
2428			 * 98% of the time, pc is already at the head of the
2429			 * list.  If it isn't already, move it to the head.
2430			 */
2431			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2432			    pc)) {
2433				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2434				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2435				    pc_list);
2436			}
2437			return;
2438		}
2439	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2440	free_pv_chunk(pc);
2441}
2442
2443static void
2444free_pv_chunk(struct pv_chunk *pc)
2445{
2446	vm_page_t m;
2447
2448 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2449	PV_STAT(pv_entry_spare -= _NPCPV);
2450	PV_STAT(pc_chunk_count--);
2451	PV_STAT(pc_chunk_frees++);
2452	/* entire chunk is free, return it */
2453	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2454	pmap_qremove((vm_offset_t)pc, 1);
2455	vm_page_unwire(m, 0);
2456	vm_page_free(m);
2457	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2458}
2459
2460/*
2461 * get a new pv_entry, allocating a block from the system
2462 * when needed.
2463 */
2464static pv_entry_t
2465get_pv_entry(pmap_t pmap, boolean_t try)
2466{
2467	static const struct timeval printinterval = { 60, 0 };
2468	static struct timeval lastprint;
2469	int bit, field;
2470	pv_entry_t pv;
2471	struct pv_chunk *pc;
2472	vm_page_t m;
2473
2474	rw_assert(&pvh_global_lock, RA_WLOCKED);
2475	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2476	PV_STAT(pv_entry_allocs++);
2477	pv_entry_count++;
2478	if (pv_entry_count > pv_entry_high_water)
2479		if (ratecheck(&lastprint, &printinterval))
2480			printf("Approaching the limit on PV entries, consider "
2481			    "increasing either the vm.pmap.shpgperproc or the "
2482			    "vm.pmap.pv_entry_max tunable.\n");
2483retry:
2484	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2485	if (pc != NULL) {
2486		for (field = 0; field < _NPCM; field++) {
2487			if (pc->pc_map[field]) {
2488				bit = bsfl(pc->pc_map[field]);
2489				break;
2490			}
2491		}
2492		if (field < _NPCM) {
2493			pv = &pc->pc_pventry[field * 32 + bit];
2494			pc->pc_map[field] &= ~(1ul << bit);
2495			/* If this was the last item, move it to tail */
2496			for (field = 0; field < _NPCM; field++)
2497				if (pc->pc_map[field] != 0) {
2498					PV_STAT(pv_entry_spare--);
2499					return (pv);	/* not full, return */
2500				}
2501			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2502			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2503			PV_STAT(pv_entry_spare--);
2504			return (pv);
2505		}
2506	}
2507	/*
2508	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2509	 * global lock.  If "pv_vafree" is currently non-empty, it will
2510	 * remain non-empty until pmap_ptelist_alloc() completes.
2511	 */
2512	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2513	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2514		if (try) {
2515			pv_entry_count--;
2516			PV_STAT(pc_chunk_tryfail++);
2517			return (NULL);
2518		}
2519		m = pmap_pv_reclaim(pmap);
2520		if (m == NULL)
2521			goto retry;
2522	}
2523	PV_STAT(pc_chunk_count++);
2524	PV_STAT(pc_chunk_allocs++);
2525	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2526	pmap_qenter((vm_offset_t)pc, &m, 1);
2527	pc->pc_pmap = pmap;
2528	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2529	for (field = 1; field < _NPCM; field++)
2530		pc->pc_map[field] = pc_freemask[field];
2531	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2532	pv = &pc->pc_pventry[0];
2533	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2534	PV_STAT(pv_entry_spare += _NPCPV - 1);
2535	return (pv);
2536}
2537
2538static __inline pv_entry_t
2539pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2540{
2541	pv_entry_t pv;
2542
2543	rw_assert(&pvh_global_lock, RA_WLOCKED);
2544	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2545		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2546			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2547			break;
2548		}
2549	}
2550	return (pv);
2551}
2552
2553static void
2554pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2555{
2556	struct md_page *pvh;
2557	pv_entry_t pv;
2558	vm_offset_t va_last;
2559	vm_page_t m;
2560
2561	rw_assert(&pvh_global_lock, RA_WLOCKED);
2562	KASSERT((pa & PDRMASK) == 0,
2563	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2564
2565	/*
2566	 * Transfer the 4mpage's pv entry for this mapping to the first
2567	 * page's pv list.
2568	 */
2569	pvh = pa_to_pvh(pa);
2570	va = trunc_4mpage(va);
2571	pv = pmap_pvh_remove(pvh, pmap, va);
2572	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2573	m = PHYS_TO_VM_PAGE(pa);
2574	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2575	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2576	va_last = va + NBPDR - PAGE_SIZE;
2577	do {
2578		m++;
2579		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2580		    ("pmap_pv_demote_pde: page %p is not managed", m));
2581		va += PAGE_SIZE;
2582		pmap_insert_entry(pmap, va, m);
2583	} while (va < va_last);
2584}
2585
2586static void
2587pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2588{
2589	struct md_page *pvh;
2590	pv_entry_t pv;
2591	vm_offset_t va_last;
2592	vm_page_t m;
2593
2594	rw_assert(&pvh_global_lock, RA_WLOCKED);
2595	KASSERT((pa & PDRMASK) == 0,
2596	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2597
2598	/*
2599	 * Transfer the first page's pv entry for this mapping to the
2600	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2601	 * to get_pv_entry(), a transfer avoids the possibility that
2602	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2603	 * removes one of the mappings that is being promoted.
2604	 */
2605	m = PHYS_TO_VM_PAGE(pa);
2606	va = trunc_4mpage(va);
2607	pv = pmap_pvh_remove(&m->md, pmap, va);
2608	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2609	pvh = pa_to_pvh(pa);
2610	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2611	/* Free the remaining NPTEPG - 1 pv entries. */
2612	va_last = va + NBPDR - PAGE_SIZE;
2613	do {
2614		m++;
2615		va += PAGE_SIZE;
2616		pmap_pvh_free(&m->md, pmap, va);
2617	} while (va < va_last);
2618}
2619
2620static void
2621pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2622{
2623	pv_entry_t pv;
2624
2625	pv = pmap_pvh_remove(pvh, pmap, va);
2626	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2627	free_pv_entry(pmap, pv);
2628}
2629
2630static void
2631pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2632{
2633	struct md_page *pvh;
2634
2635	rw_assert(&pvh_global_lock, RA_WLOCKED);
2636	pmap_pvh_free(&m->md, pmap, va);
2637	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2638		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2639		if (TAILQ_EMPTY(&pvh->pv_list))
2640			vm_page_aflag_clear(m, PGA_WRITEABLE);
2641	}
2642}
2643
2644/*
2645 * Create a pv entry for page at pa for
2646 * (pmap, va).
2647 */
2648static void
2649pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2650{
2651	pv_entry_t pv;
2652
2653	rw_assert(&pvh_global_lock, RA_WLOCKED);
2654	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2655	pv = get_pv_entry(pmap, FALSE);
2656	pv->pv_va = va;
2657	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2658}
2659
2660/*
2661 * Conditionally create a pv entry.
2662 */
2663static boolean_t
2664pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2665{
2666	pv_entry_t pv;
2667
2668	rw_assert(&pvh_global_lock, RA_WLOCKED);
2669	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2670	if (pv_entry_count < pv_entry_high_water &&
2671	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2672		pv->pv_va = va;
2673		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2674		return (TRUE);
2675	} else
2676		return (FALSE);
2677}
2678
2679/*
2680 * Create the pv entries for each of the pages within a superpage.
2681 */
2682static boolean_t
2683pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2684{
2685	struct md_page *pvh;
2686	pv_entry_t pv;
2687
2688	rw_assert(&pvh_global_lock, RA_WLOCKED);
2689	if (pv_entry_count < pv_entry_high_water &&
2690	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2691		pv->pv_va = va;
2692		pvh = pa_to_pvh(pa);
2693		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2694		return (TRUE);
2695	} else
2696		return (FALSE);
2697}
2698
2699/*
2700 * Fills a page table page with mappings to consecutive physical pages.
2701 */
2702static void
2703pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2704{
2705	pt_entry_t *pte;
2706
2707	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2708		*pte = newpte;
2709		newpte += PAGE_SIZE;
2710	}
2711}
2712
2713/*
2714 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2715 * 2- or 4MB page mapping is invalidated.
2716 */
2717static boolean_t
2718pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2719{
2720	pd_entry_t newpde, oldpde;
2721	pt_entry_t *firstpte, newpte;
2722	vm_paddr_t mptepa;
2723	vm_page_t mpte;
2724	struct spglist free;
2725	vm_offset_t sva;
2726
2727	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2728	oldpde = *pde;
2729	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2730	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2731	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
2732	    NULL)
2733		pmap_remove_pt_page(pmap, mpte);
2734	else {
2735		KASSERT((oldpde & PG_W) == 0,
2736		    ("pmap_demote_pde: page table page for a wired mapping"
2737		    " is missing"));
2738
2739		/*
2740		 * Invalidate the 2- or 4MB page mapping and return
2741		 * "failure" if the mapping was never accessed or the
2742		 * allocation of the new page table page fails.
2743		 */
2744		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2745		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2746		    VM_ALLOC_WIRED)) == NULL) {
2747			SLIST_INIT(&free);
2748			sva = trunc_4mpage(va);
2749			pmap_remove_pde(pmap, pde, sva, &free);
2750			if ((oldpde & PG_G) == 0)
2751				pmap_invalidate_pde_page(pmap, sva, oldpde);
2752			pmap_free_zero_pages(&free);
2753			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2754			    " in pmap %p", va, pmap);
2755			return (FALSE);
2756		}
2757		if (va < VM_MAXUSER_ADDRESS)
2758			pmap->pm_stats.resident_count++;
2759	}
2760	mptepa = VM_PAGE_TO_PHYS(mpte);
2761
2762	/*
2763	 * If the page mapping is in the kernel's address space, then the
2764	 * KPTmap can provide access to the page table page.  Otherwise,
2765	 * temporarily map the page table page (mpte) into the kernel's
2766	 * address space at either PADDR1 or PADDR2.
2767	 */
2768	if (va >= KERNBASE)
2769		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2770	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2771		if ((*PMAP1 & PG_FRAME) != mptepa) {
2772			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2773#ifdef SMP
2774			PMAP1cpu = PCPU_GET(cpuid);
2775#endif
2776			invlcaddr(PADDR1);
2777			PMAP1changed++;
2778		} else
2779#ifdef SMP
2780		if (PMAP1cpu != PCPU_GET(cpuid)) {
2781			PMAP1cpu = PCPU_GET(cpuid);
2782			invlcaddr(PADDR1);
2783			PMAP1changedcpu++;
2784		} else
2785#endif
2786			PMAP1unchanged++;
2787		firstpte = PADDR1;
2788	} else {
2789		mtx_lock(&PMAP2mutex);
2790		if ((*PMAP2 & PG_FRAME) != mptepa) {
2791			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2792			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2793		}
2794		firstpte = PADDR2;
2795	}
2796	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2797	KASSERT((oldpde & PG_A) != 0,
2798	    ("pmap_demote_pde: oldpde is missing PG_A"));
2799	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2800	    ("pmap_demote_pde: oldpde is missing PG_M"));
2801	newpte = oldpde & ~PG_PS;
2802	if ((newpte & PG_PDE_PAT) != 0)
2803		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2804
2805	/*
2806	 * If the page table page is new, initialize it.
2807	 */
2808	if (mpte->wire_count == 1) {
2809		mpte->wire_count = NPTEPG;
2810		pmap_fill_ptp(firstpte, newpte);
2811	}
2812	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2813	    ("pmap_demote_pde: firstpte and newpte map different physical"
2814	    " addresses"));
2815
2816	/*
2817	 * If the mapping has changed attributes, update the page table
2818	 * entries.
2819	 */
2820	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2821		pmap_fill_ptp(firstpte, newpte);
2822
2823	/*
2824	 * Demote the mapping.  This pmap is locked.  The old PDE has
2825	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2826	 * set.  Thus, there is no danger of a race with another
2827	 * processor changing the setting of PG_A and/or PG_M between
2828	 * the read above and the store below.
2829	 */
2830	if (workaround_erratum383)
2831		pmap_update_pde(pmap, va, pde, newpde);
2832	else if (pmap == kernel_pmap)
2833		pmap_kenter_pde(va, newpde);
2834	else
2835		pde_store(pde, newpde);
2836	if (firstpte == PADDR2)
2837		mtx_unlock(&PMAP2mutex);
2838
2839	/*
2840	 * Invalidate the recursive mapping of the page table page.
2841	 */
2842	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2843
2844	/*
2845	 * Demote the pv entry.  This depends on the earlier demotion
2846	 * of the mapping.  Specifically, the (re)creation of a per-
2847	 * page pv entry might trigger the execution of pmap_collect(),
2848	 * which might reclaim a newly (re)created per-page pv entry
2849	 * and destroy the associated mapping.  In order to destroy
2850	 * the mapping, the PDE must have already changed from mapping
2851	 * the 2mpage to referencing the page table page.
2852	 */
2853	if ((oldpde & PG_MANAGED) != 0)
2854		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2855
2856	pmap_pde_demotions++;
2857	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2858	    " in pmap %p", va, pmap);
2859	return (TRUE);
2860}
2861
2862/*
2863 * Removes a 2- or 4MB page mapping from the kernel pmap.
2864 */
2865static void
2866pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2867{
2868	pd_entry_t newpde;
2869	vm_paddr_t mptepa;
2870	vm_page_t mpte;
2871
2872	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2873	mpte = pmap_lookup_pt_page(pmap, va);
2874	if (mpte == NULL)
2875		panic("pmap_remove_kernel_pde: Missing pt page.");
2876
2877	pmap_remove_pt_page(pmap, mpte);
2878	mptepa = VM_PAGE_TO_PHYS(mpte);
2879	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2880
2881	/*
2882	 * Initialize the page table page.
2883	 */
2884	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2885
2886	/*
2887	 * Remove the mapping.
2888	 */
2889	if (workaround_erratum383)
2890		pmap_update_pde(pmap, va, pde, newpde);
2891	else
2892		pmap_kenter_pde(va, newpde);
2893
2894	/*
2895	 * Invalidate the recursive mapping of the page table page.
2896	 */
2897	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2898}
2899
2900/*
2901 * pmap_remove_pde: do the things to unmap a superpage in a process
2902 */
2903static void
2904pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2905    struct spglist *free)
2906{
2907	struct md_page *pvh;
2908	pd_entry_t oldpde;
2909	vm_offset_t eva, va;
2910	vm_page_t m, mpte;
2911
2912	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2913	KASSERT((sva & PDRMASK) == 0,
2914	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2915	oldpde = pte_load_clear(pdq);
2916	if (oldpde & PG_W)
2917		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2918
2919	/*
2920	 * Machines that don't support invlpg, also don't support
2921	 * PG_G.
2922	 */
2923	if ((oldpde & PG_G) != 0)
2924		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2925
2926	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2927	if (oldpde & PG_MANAGED) {
2928		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2929		pmap_pvh_free(pvh, pmap, sva);
2930		eva = sva + NBPDR;
2931		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2932		    va < eva; va += PAGE_SIZE, m++) {
2933			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2934				vm_page_dirty(m);
2935			if (oldpde & PG_A)
2936				vm_page_aflag_set(m, PGA_REFERENCED);
2937			if (TAILQ_EMPTY(&m->md.pv_list) &&
2938			    TAILQ_EMPTY(&pvh->pv_list))
2939				vm_page_aflag_clear(m, PGA_WRITEABLE);
2940		}
2941	}
2942	if (pmap == kernel_pmap) {
2943		pmap_remove_kernel_pde(pmap, pdq, sva);
2944	} else {
2945		mpte = pmap_lookup_pt_page(pmap, sva);
2946		if (mpte != NULL) {
2947			pmap_remove_pt_page(pmap, mpte);
2948			pmap->pm_stats.resident_count--;
2949			KASSERT(mpte->wire_count == NPTEPG,
2950			    ("pmap_remove_pde: pte page wire count error"));
2951			mpte->wire_count = 0;
2952			pmap_add_delayed_free_list(mpte, free, FALSE);
2953			atomic_subtract_int(&cnt.v_wire_count, 1);
2954		}
2955	}
2956}
2957
2958/*
2959 * pmap_remove_pte: do the things to unmap a page in a process
2960 */
2961static int
2962pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2963    struct spglist *free)
2964{
2965	pt_entry_t oldpte;
2966	vm_page_t m;
2967
2968	rw_assert(&pvh_global_lock, RA_WLOCKED);
2969	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2970	oldpte = pte_load_clear(ptq);
2971	KASSERT(oldpte != 0,
2972	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2973	if (oldpte & PG_W)
2974		pmap->pm_stats.wired_count -= 1;
2975	/*
2976	 * Machines that don't support invlpg, also don't support
2977	 * PG_G.
2978	 */
2979	if (oldpte & PG_G)
2980		pmap_invalidate_page(kernel_pmap, va);
2981	pmap->pm_stats.resident_count -= 1;
2982	if (oldpte & PG_MANAGED) {
2983		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2984		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2985			vm_page_dirty(m);
2986		if (oldpte & PG_A)
2987			vm_page_aflag_set(m, PGA_REFERENCED);
2988		pmap_remove_entry(pmap, m, va);
2989	}
2990	return (pmap_unuse_pt(pmap, va, free));
2991}
2992
2993/*
2994 * Remove a single page from a process address space
2995 */
2996static void
2997pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
2998{
2999	pt_entry_t *pte;
3000
3001	rw_assert(&pvh_global_lock, RA_WLOCKED);
3002	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3003	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3004	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3005		return;
3006	pmap_remove_pte(pmap, pte, va, free);
3007	pmap_invalidate_page(pmap, va);
3008}
3009
3010/*
3011 *	Remove the given range of addresses from the specified map.
3012 *
3013 *	It is assumed that the start and end are properly
3014 *	rounded to the page size.
3015 */
3016void
3017pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3018{
3019	vm_offset_t pdnxt;
3020	pd_entry_t ptpaddr;
3021	pt_entry_t *pte;
3022	struct spglist free;
3023	int anyvalid;
3024
3025	/*
3026	 * Perform an unsynchronized read.  This is, however, safe.
3027	 */
3028	if (pmap->pm_stats.resident_count == 0)
3029		return;
3030
3031	anyvalid = 0;
3032	SLIST_INIT(&free);
3033
3034	rw_wlock(&pvh_global_lock);
3035	sched_pin();
3036	PMAP_LOCK(pmap);
3037
3038	/*
3039	 * special handling of removing one page.  a very
3040	 * common operation and easy to short circuit some
3041	 * code.
3042	 */
3043	if ((sva + PAGE_SIZE == eva) &&
3044	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3045		pmap_remove_page(pmap, sva, &free);
3046		goto out;
3047	}
3048
3049	for (; sva < eva; sva = pdnxt) {
3050		u_int pdirindex;
3051
3052		/*
3053		 * Calculate index for next page table.
3054		 */
3055		pdnxt = (sva + NBPDR) & ~PDRMASK;
3056		if (pdnxt < sva)
3057			pdnxt = eva;
3058		if (pmap->pm_stats.resident_count == 0)
3059			break;
3060
3061		pdirindex = sva >> PDRSHIFT;
3062		ptpaddr = pmap->pm_pdir[pdirindex];
3063
3064		/*
3065		 * Weed out invalid mappings. Note: we assume that the page
3066		 * directory table is always allocated, and in kernel virtual.
3067		 */
3068		if (ptpaddr == 0)
3069			continue;
3070
3071		/*
3072		 * Check for large page.
3073		 */
3074		if ((ptpaddr & PG_PS) != 0) {
3075			/*
3076			 * Are we removing the entire large page?  If not,
3077			 * demote the mapping and fall through.
3078			 */
3079			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3080				/*
3081				 * The TLB entry for a PG_G mapping is
3082				 * invalidated by pmap_remove_pde().
3083				 */
3084				if ((ptpaddr & PG_G) == 0)
3085					anyvalid = 1;
3086				pmap_remove_pde(pmap,
3087				    &pmap->pm_pdir[pdirindex], sva, &free);
3088				continue;
3089			} else if (!pmap_demote_pde(pmap,
3090			    &pmap->pm_pdir[pdirindex], sva)) {
3091				/* The large page mapping was destroyed. */
3092				continue;
3093			}
3094		}
3095
3096		/*
3097		 * Limit our scan to either the end of the va represented
3098		 * by the current page table page, or to the end of the
3099		 * range being removed.
3100		 */
3101		if (pdnxt > eva)
3102			pdnxt = eva;
3103
3104		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3105		    sva += PAGE_SIZE) {
3106			if (*pte == 0)
3107				continue;
3108
3109			/*
3110			 * The TLB entry for a PG_G mapping is invalidated
3111			 * by pmap_remove_pte().
3112			 */
3113			if ((*pte & PG_G) == 0)
3114				anyvalid = 1;
3115			if (pmap_remove_pte(pmap, pte, sva, &free))
3116				break;
3117		}
3118	}
3119out:
3120	sched_unpin();
3121	if (anyvalid)
3122		pmap_invalidate_all(pmap);
3123	rw_wunlock(&pvh_global_lock);
3124	PMAP_UNLOCK(pmap);
3125	pmap_free_zero_pages(&free);
3126}
3127
3128/*
3129 *	Routine:	pmap_remove_all
3130 *	Function:
3131 *		Removes this physical page from
3132 *		all physical maps in which it resides.
3133 *		Reflects back modify bits to the pager.
3134 *
3135 *	Notes:
3136 *		Original versions of this routine were very
3137 *		inefficient because they iteratively called
3138 *		pmap_remove (slow...)
3139 */
3140
3141void
3142pmap_remove_all(vm_page_t m)
3143{
3144	struct md_page *pvh;
3145	pv_entry_t pv;
3146	pmap_t pmap;
3147	pt_entry_t *pte, tpte;
3148	pd_entry_t *pde;
3149	vm_offset_t va;
3150	struct spglist free;
3151
3152	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3153	    ("pmap_remove_all: page %p is not managed", m));
3154	SLIST_INIT(&free);
3155	rw_wlock(&pvh_global_lock);
3156	sched_pin();
3157	if ((m->flags & PG_FICTITIOUS) != 0)
3158		goto small_mappings;
3159	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3160	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3161		va = pv->pv_va;
3162		pmap = PV_PMAP(pv);
3163		PMAP_LOCK(pmap);
3164		pde = pmap_pde(pmap, va);
3165		(void)pmap_demote_pde(pmap, pde, va);
3166		PMAP_UNLOCK(pmap);
3167	}
3168small_mappings:
3169	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3170		pmap = PV_PMAP(pv);
3171		PMAP_LOCK(pmap);
3172		pmap->pm_stats.resident_count--;
3173		pde = pmap_pde(pmap, pv->pv_va);
3174		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3175		    " a 4mpage in page %p's pv list", m));
3176		pte = pmap_pte_quick(pmap, pv->pv_va);
3177		tpte = pte_load_clear(pte);
3178		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3179		    pmap, pv->pv_va));
3180		if (tpte & PG_W)
3181			pmap->pm_stats.wired_count--;
3182		if (tpte & PG_A)
3183			vm_page_aflag_set(m, PGA_REFERENCED);
3184
3185		/*
3186		 * Update the vm_page_t clean and reference bits.
3187		 */
3188		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3189			vm_page_dirty(m);
3190		pmap_unuse_pt(pmap, pv->pv_va, &free);
3191		pmap_invalidate_page(pmap, pv->pv_va);
3192		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3193		free_pv_entry(pmap, pv);
3194		PMAP_UNLOCK(pmap);
3195	}
3196	vm_page_aflag_clear(m, PGA_WRITEABLE);
3197	sched_unpin();
3198	rw_wunlock(&pvh_global_lock);
3199	pmap_free_zero_pages(&free);
3200}
3201
3202/*
3203 * pmap_protect_pde: do the things to protect a 4mpage in a process
3204 */
3205static boolean_t
3206pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3207{
3208	pd_entry_t newpde, oldpde;
3209	vm_offset_t eva, va;
3210	vm_page_t m;
3211	boolean_t anychanged;
3212
3213	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3214	KASSERT((sva & PDRMASK) == 0,
3215	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3216	anychanged = FALSE;
3217retry:
3218	oldpde = newpde = *pde;
3219	if (oldpde & PG_MANAGED) {
3220		eva = sva + NBPDR;
3221		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3222		    va < eva; va += PAGE_SIZE, m++)
3223			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3224				vm_page_dirty(m);
3225	}
3226	if ((prot & VM_PROT_WRITE) == 0)
3227		newpde &= ~(PG_RW | PG_M);
3228#if defined(PAE) || defined(PAE_TABLES)
3229	if ((prot & VM_PROT_EXECUTE) == 0)
3230		newpde |= pg_nx;
3231#endif
3232	if (newpde != oldpde) {
3233		/*
3234		 * As an optimization to future operations on this PDE, clear
3235		 * PG_PROMOTED.  The impending invalidation will remove any
3236		 * lingering 4KB page mappings from the TLB.
3237		 */
3238		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3239			goto retry;
3240		if ((oldpde & PG_G) != 0)
3241			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3242		else
3243			anychanged = TRUE;
3244	}
3245	return (anychanged);
3246}
3247
3248/*
3249 *	Set the physical protection on the
3250 *	specified range of this map as requested.
3251 */
3252void
3253pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3254{
3255	vm_offset_t pdnxt;
3256	pd_entry_t ptpaddr;
3257	pt_entry_t *pte;
3258	boolean_t anychanged, pv_lists_locked;
3259
3260	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3261	if (prot == VM_PROT_NONE) {
3262		pmap_remove(pmap, sva, eva);
3263		return;
3264	}
3265
3266#if defined(PAE) || defined(PAE_TABLES)
3267	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3268	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3269		return;
3270#else
3271	if (prot & VM_PROT_WRITE)
3272		return;
3273#endif
3274
3275	if (pmap_is_current(pmap))
3276		pv_lists_locked = FALSE;
3277	else {
3278		pv_lists_locked = TRUE;
3279resume:
3280		rw_wlock(&pvh_global_lock);
3281		sched_pin();
3282	}
3283	anychanged = FALSE;
3284
3285	PMAP_LOCK(pmap);
3286	for (; sva < eva; sva = pdnxt) {
3287		pt_entry_t obits, pbits;
3288		u_int pdirindex;
3289
3290		pdnxt = (sva + NBPDR) & ~PDRMASK;
3291		if (pdnxt < sva)
3292			pdnxt = eva;
3293
3294		pdirindex = sva >> PDRSHIFT;
3295		ptpaddr = pmap->pm_pdir[pdirindex];
3296
3297		/*
3298		 * Weed out invalid mappings. Note: we assume that the page
3299		 * directory table is always allocated, and in kernel virtual.
3300		 */
3301		if (ptpaddr == 0)
3302			continue;
3303
3304		/*
3305		 * Check for large page.
3306		 */
3307		if ((ptpaddr & PG_PS) != 0) {
3308			/*
3309			 * Are we protecting the entire large page?  If not,
3310			 * demote the mapping and fall through.
3311			 */
3312			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3313				/*
3314				 * The TLB entry for a PG_G mapping is
3315				 * invalidated by pmap_protect_pde().
3316				 */
3317				if (pmap_protect_pde(pmap,
3318				    &pmap->pm_pdir[pdirindex], sva, prot))
3319					anychanged = TRUE;
3320				continue;
3321			} else {
3322				if (!pv_lists_locked) {
3323					pv_lists_locked = TRUE;
3324					if (!rw_try_wlock(&pvh_global_lock)) {
3325						if (anychanged)
3326							pmap_invalidate_all(
3327							    pmap);
3328						PMAP_UNLOCK(pmap);
3329						goto resume;
3330					}
3331					sched_pin();
3332				}
3333				if (!pmap_demote_pde(pmap,
3334				    &pmap->pm_pdir[pdirindex], sva)) {
3335					/*
3336					 * The large page mapping was
3337					 * destroyed.
3338					 */
3339					continue;
3340				}
3341			}
3342		}
3343
3344		if (pdnxt > eva)
3345			pdnxt = eva;
3346
3347		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3348		    sva += PAGE_SIZE) {
3349			vm_page_t m;
3350
3351retry:
3352			/*
3353			 * Regardless of whether a pte is 32 or 64 bits in
3354			 * size, PG_RW, PG_A, and PG_M are among the least
3355			 * significant 32 bits.
3356			 */
3357			obits = pbits = *pte;
3358			if ((pbits & PG_V) == 0)
3359				continue;
3360
3361			if ((prot & VM_PROT_WRITE) == 0) {
3362				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3363				    (PG_MANAGED | PG_M | PG_RW)) {
3364					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3365					vm_page_dirty(m);
3366				}
3367				pbits &= ~(PG_RW | PG_M);
3368			}
3369#if defined(PAE) || defined(PAE_TABLES)
3370			if ((prot & VM_PROT_EXECUTE) == 0)
3371				pbits |= pg_nx;
3372#endif
3373
3374			if (pbits != obits) {
3375#if defined(PAE) || defined(PAE_TABLES)
3376				if (!atomic_cmpset_64(pte, obits, pbits))
3377					goto retry;
3378#else
3379				if (!atomic_cmpset_int((u_int *)pte, obits,
3380				    pbits))
3381					goto retry;
3382#endif
3383				if (obits & PG_G)
3384					pmap_invalidate_page(pmap, sva);
3385				else
3386					anychanged = TRUE;
3387			}
3388		}
3389	}
3390	if (anychanged)
3391		pmap_invalidate_all(pmap);
3392	if (pv_lists_locked) {
3393		sched_unpin();
3394		rw_wunlock(&pvh_global_lock);
3395	}
3396	PMAP_UNLOCK(pmap);
3397}
3398
3399/*
3400 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3401 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3402 * For promotion to occur, two conditions must be met: (1) the 4KB page
3403 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3404 * mappings must have identical characteristics.
3405 *
3406 * Managed (PG_MANAGED) mappings within the kernel address space are not
3407 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3408 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3409 * pmap.
3410 */
3411static void
3412pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3413{
3414	pd_entry_t newpde;
3415	pt_entry_t *firstpte, oldpte, pa, *pte;
3416	vm_offset_t oldpteva;
3417	vm_page_t mpte;
3418
3419	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3420
3421	/*
3422	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3423	 * either invalid, unused, or does not map the first 4KB physical page
3424	 * within a 2- or 4MB page.
3425	 */
3426	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3427setpde:
3428	newpde = *firstpte;
3429	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3430		pmap_pde_p_failures++;
3431		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3432		    " in pmap %p", va, pmap);
3433		return;
3434	}
3435	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3436		pmap_pde_p_failures++;
3437		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3438		    " in pmap %p", va, pmap);
3439		return;
3440	}
3441	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3442		/*
3443		 * When PG_M is already clear, PG_RW can be cleared without
3444		 * a TLB invalidation.
3445		 */
3446		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3447		    ~PG_RW))
3448			goto setpde;
3449		newpde &= ~PG_RW;
3450	}
3451
3452	/*
3453	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3454	 * PTE maps an unexpected 4KB physical page or does not have identical
3455	 * characteristics to the first PTE.
3456	 */
3457	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3458	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3459setpte:
3460		oldpte = *pte;
3461		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3462			pmap_pde_p_failures++;
3463			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3464			    " in pmap %p", va, pmap);
3465			return;
3466		}
3467		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3468			/*
3469			 * When PG_M is already clear, PG_RW can be cleared
3470			 * without a TLB invalidation.
3471			 */
3472			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3473			    oldpte & ~PG_RW))
3474				goto setpte;
3475			oldpte &= ~PG_RW;
3476			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3477			    (va & ~PDRMASK);
3478			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3479			    " in pmap %p", oldpteva, pmap);
3480		}
3481		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3482			pmap_pde_p_failures++;
3483			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3484			    " in pmap %p", va, pmap);
3485			return;
3486		}
3487		pa -= PAGE_SIZE;
3488	}
3489
3490	/*
3491	 * Save the page table page in its current state until the PDE
3492	 * mapping the superpage is demoted by pmap_demote_pde() or
3493	 * destroyed by pmap_remove_pde().
3494	 */
3495	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3496	KASSERT(mpte >= vm_page_array &&
3497	    mpte < &vm_page_array[vm_page_array_size],
3498	    ("pmap_promote_pde: page table page is out of range"));
3499	KASSERT(mpte->pindex == va >> PDRSHIFT,
3500	    ("pmap_promote_pde: page table page's pindex is wrong"));
3501	if (pmap_insert_pt_page(pmap, mpte)) {
3502		pmap_pde_p_failures++;
3503		CTR2(KTR_PMAP,
3504		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3505		    pmap);
3506		return;
3507	}
3508
3509	/*
3510	 * Promote the pv entries.
3511	 */
3512	if ((newpde & PG_MANAGED) != 0)
3513		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3514
3515	/*
3516	 * Propagate the PAT index to its proper position.
3517	 */
3518	if ((newpde & PG_PTE_PAT) != 0)
3519		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3520
3521	/*
3522	 * Map the superpage.
3523	 */
3524	if (workaround_erratum383)
3525		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3526	else if (pmap == kernel_pmap)
3527		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3528	else
3529		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3530
3531	pmap_pde_promotions++;
3532	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3533	    " in pmap %p", va, pmap);
3534}
3535
3536/*
3537 *	Insert the given physical page (p) at
3538 *	the specified virtual address (v) in the
3539 *	target physical map with the protection requested.
3540 *
3541 *	If specified, the page will be wired down, meaning
3542 *	that the related pte can not be reclaimed.
3543 *
3544 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3545 *	or lose information.  That is, this routine must actually
3546 *	insert this page into the given map NOW.
3547 */
3548int
3549pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3550    u_int flags, int8_t psind)
3551{
3552	pd_entry_t *pde;
3553	pt_entry_t *pte;
3554	pt_entry_t newpte, origpte;
3555	pv_entry_t pv;
3556	vm_paddr_t opa, pa;
3557	vm_page_t mpte, om;
3558	boolean_t invlva, wired;
3559
3560	va = trunc_page(va);
3561	mpte = NULL;
3562	wired = (flags & PMAP_ENTER_WIRED) != 0;
3563
3564	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3565	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3566	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3567	    va));
3568	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3569		VM_OBJECT_ASSERT_LOCKED(m->object);
3570
3571	rw_wlock(&pvh_global_lock);
3572	PMAP_LOCK(pmap);
3573	sched_pin();
3574
3575	/*
3576	 * In the case that a page table page is not
3577	 * resident, we are creating it here.
3578	 */
3579	if (va < VM_MAXUSER_ADDRESS) {
3580		mpte = pmap_allocpte(pmap, va, flags);
3581		if (mpte == NULL) {
3582			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3583			    ("pmap_allocpte failed with sleep allowed"));
3584			sched_unpin();
3585			rw_wunlock(&pvh_global_lock);
3586			PMAP_UNLOCK(pmap);
3587			return (KERN_RESOURCE_SHORTAGE);
3588		}
3589	}
3590
3591	pde = pmap_pde(pmap, va);
3592	if ((*pde & PG_PS) != 0)
3593		panic("pmap_enter: attempted pmap_enter on 4MB page");
3594	pte = pmap_pte_quick(pmap, va);
3595
3596	/*
3597	 * Page Directory table entry not valid, we need a new PT page
3598	 */
3599	if (pte == NULL) {
3600		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3601			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3602	}
3603
3604	pa = VM_PAGE_TO_PHYS(m);
3605	om = NULL;
3606	origpte = *pte;
3607	opa = origpte & PG_FRAME;
3608
3609	/*
3610	 * Mapping has not changed, must be protection or wiring change.
3611	 */
3612	if (origpte && (opa == pa)) {
3613		/*
3614		 * Wiring change, just update stats. We don't worry about
3615		 * wiring PT pages as they remain resident as long as there
3616		 * are valid mappings in them. Hence, if a user page is wired,
3617		 * the PT page will be also.
3618		 */
3619		if (wired && ((origpte & PG_W) == 0))
3620			pmap->pm_stats.wired_count++;
3621		else if (!wired && (origpte & PG_W))
3622			pmap->pm_stats.wired_count--;
3623
3624		/*
3625		 * Remove extra pte reference
3626		 */
3627		if (mpte)
3628			mpte->wire_count--;
3629
3630		if (origpte & PG_MANAGED) {
3631			om = m;
3632			pa |= PG_MANAGED;
3633		}
3634		goto validate;
3635	}
3636
3637	pv = NULL;
3638
3639	/*
3640	 * Mapping has changed, invalidate old range and fall through to
3641	 * handle validating new mapping.
3642	 */
3643	if (opa) {
3644		if (origpte & PG_W)
3645			pmap->pm_stats.wired_count--;
3646		if (origpte & PG_MANAGED) {
3647			om = PHYS_TO_VM_PAGE(opa);
3648			pv = pmap_pvh_remove(&om->md, pmap, va);
3649		}
3650		if (mpte != NULL) {
3651			mpte->wire_count--;
3652			KASSERT(mpte->wire_count > 0,
3653			    ("pmap_enter: missing reference to page table page,"
3654			     " va: 0x%x", va));
3655		}
3656	} else
3657		pmap->pm_stats.resident_count++;
3658
3659	/*
3660	 * Enter on the PV list if part of our managed memory.
3661	 */
3662	if ((m->oflags & VPO_UNMANAGED) == 0) {
3663		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3664		    ("pmap_enter: managed mapping within the clean submap"));
3665		if (pv == NULL)
3666			pv = get_pv_entry(pmap, FALSE);
3667		pv->pv_va = va;
3668		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3669		pa |= PG_MANAGED;
3670	} else if (pv != NULL)
3671		free_pv_entry(pmap, pv);
3672
3673	/*
3674	 * Increment counters
3675	 */
3676	if (wired)
3677		pmap->pm_stats.wired_count++;
3678
3679validate:
3680	/*
3681	 * Now validate mapping with desired protection/wiring.
3682	 */
3683	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3684	if ((prot & VM_PROT_WRITE) != 0) {
3685		newpte |= PG_RW;
3686		if ((newpte & PG_MANAGED) != 0)
3687			vm_page_aflag_set(m, PGA_WRITEABLE);
3688	}
3689#if defined(PAE) || defined(PAE_TABLES)
3690	if ((prot & VM_PROT_EXECUTE) == 0)
3691		newpte |= pg_nx;
3692#endif
3693	if (wired)
3694		newpte |= PG_W;
3695	if (va < VM_MAXUSER_ADDRESS)
3696		newpte |= PG_U;
3697	if (pmap == kernel_pmap)
3698		newpte |= pgeflag;
3699
3700	/*
3701	 * if the mapping or permission bits are different, we need
3702	 * to update the pte.
3703	 */
3704	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3705		newpte |= PG_A;
3706		if ((flags & VM_PROT_WRITE) != 0)
3707			newpte |= PG_M;
3708		if (origpte & PG_V) {
3709			invlva = FALSE;
3710			origpte = pte_load_store(pte, newpte);
3711			if (origpte & PG_A) {
3712				if (origpte & PG_MANAGED)
3713					vm_page_aflag_set(om, PGA_REFERENCED);
3714				if (opa != VM_PAGE_TO_PHYS(m))
3715					invlva = TRUE;
3716#if defined(PAE) || defined(PAE_TABLES)
3717				if ((origpte & PG_NX) == 0 &&
3718				    (newpte & PG_NX) != 0)
3719					invlva = TRUE;
3720#endif
3721			}
3722			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3723				if ((origpte & PG_MANAGED) != 0)
3724					vm_page_dirty(om);
3725				if ((prot & VM_PROT_WRITE) == 0)
3726					invlva = TRUE;
3727			}
3728			if ((origpte & PG_MANAGED) != 0 &&
3729			    TAILQ_EMPTY(&om->md.pv_list) &&
3730			    ((om->flags & PG_FICTITIOUS) != 0 ||
3731			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3732				vm_page_aflag_clear(om, PGA_WRITEABLE);
3733			if (invlva)
3734				pmap_invalidate_page(pmap, va);
3735		} else
3736			pte_store(pte, newpte);
3737	}
3738
3739	/*
3740	 * If both the page table page and the reservation are fully
3741	 * populated, then attempt promotion.
3742	 */
3743	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3744	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3745	    vm_reserv_level_iffullpop(m) == 0)
3746		pmap_promote_pde(pmap, pde, va);
3747
3748	sched_unpin();
3749	rw_wunlock(&pvh_global_lock);
3750	PMAP_UNLOCK(pmap);
3751	return (KERN_SUCCESS);
3752}
3753
3754/*
3755 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3756 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3757 * blocking, (2) a mapping already exists at the specified virtual address, or
3758 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3759 */
3760static boolean_t
3761pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3762{
3763	pd_entry_t *pde, newpde;
3764
3765	rw_assert(&pvh_global_lock, RA_WLOCKED);
3766	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3767	pde = pmap_pde(pmap, va);
3768	if (*pde != 0) {
3769		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3770		    " in pmap %p", va, pmap);
3771		return (FALSE);
3772	}
3773	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3774	    PG_PS | PG_V;
3775	if ((m->oflags & VPO_UNMANAGED) == 0) {
3776		newpde |= PG_MANAGED;
3777
3778		/*
3779		 * Abort this mapping if its PV entry could not be created.
3780		 */
3781		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3782			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3783			    " in pmap %p", va, pmap);
3784			return (FALSE);
3785		}
3786	}
3787#if defined(PAE) || defined(PAE_TABLES)
3788	if ((prot & VM_PROT_EXECUTE) == 0)
3789		newpde |= pg_nx;
3790#endif
3791	if (va < VM_MAXUSER_ADDRESS)
3792		newpde |= PG_U;
3793
3794	/*
3795	 * Increment counters.
3796	 */
3797	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3798
3799	/*
3800	 * Map the superpage.  (This is not a promoted mapping; there will not
3801	 * be any lingering 4KB page mappings in the TLB.)
3802	 */
3803	pde_store(pde, newpde);
3804
3805	pmap_pde_mappings++;
3806	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3807	    " in pmap %p", va, pmap);
3808	return (TRUE);
3809}
3810
3811/*
3812 * Maps a sequence of resident pages belonging to the same object.
3813 * The sequence begins with the given page m_start.  This page is
3814 * mapped at the given virtual address start.  Each subsequent page is
3815 * mapped at a virtual address that is offset from start by the same
3816 * amount as the page is offset from m_start within the object.  The
3817 * last page in the sequence is the page with the largest offset from
3818 * m_start that can be mapped at a virtual address less than the given
3819 * virtual address end.  Not every virtual page between start and end
3820 * is mapped; only those for which a resident page exists with the
3821 * corresponding offset from m_start are mapped.
3822 */
3823void
3824pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3825    vm_page_t m_start, vm_prot_t prot)
3826{
3827	vm_offset_t va;
3828	vm_page_t m, mpte;
3829	vm_pindex_t diff, psize;
3830
3831	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3832
3833	psize = atop(end - start);
3834	mpte = NULL;
3835	m = m_start;
3836	rw_wlock(&pvh_global_lock);
3837	PMAP_LOCK(pmap);
3838	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3839		va = start + ptoa(diff);
3840		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3841		    m->psind == 1 && pg_ps_enabled &&
3842		    pmap_enter_pde(pmap, va, m, prot))
3843			m = &m[NBPDR / PAGE_SIZE - 1];
3844		else
3845			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3846			    mpte);
3847		m = TAILQ_NEXT(m, listq);
3848	}
3849	rw_wunlock(&pvh_global_lock);
3850	PMAP_UNLOCK(pmap);
3851}
3852
3853/*
3854 * this code makes some *MAJOR* assumptions:
3855 * 1. Current pmap & pmap exists.
3856 * 2. Not wired.
3857 * 3. Read access.
3858 * 4. No page table pages.
3859 * but is *MUCH* faster than pmap_enter...
3860 */
3861
3862void
3863pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3864{
3865
3866	rw_wlock(&pvh_global_lock);
3867	PMAP_LOCK(pmap);
3868	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3869	rw_wunlock(&pvh_global_lock);
3870	PMAP_UNLOCK(pmap);
3871}
3872
3873static vm_page_t
3874pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3875    vm_prot_t prot, vm_page_t mpte)
3876{
3877	pt_entry_t *pte;
3878	vm_paddr_t pa;
3879	struct spglist free;
3880
3881	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3882	    (m->oflags & VPO_UNMANAGED) != 0,
3883	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3884	rw_assert(&pvh_global_lock, RA_WLOCKED);
3885	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3886
3887	/*
3888	 * In the case that a page table page is not
3889	 * resident, we are creating it here.
3890	 */
3891	if (va < VM_MAXUSER_ADDRESS) {
3892		u_int ptepindex;
3893		pd_entry_t ptepa;
3894
3895		/*
3896		 * Calculate pagetable page index
3897		 */
3898		ptepindex = va >> PDRSHIFT;
3899		if (mpte && (mpte->pindex == ptepindex)) {
3900			mpte->wire_count++;
3901		} else {
3902			/*
3903			 * Get the page directory entry
3904			 */
3905			ptepa = pmap->pm_pdir[ptepindex];
3906
3907			/*
3908			 * If the page table page is mapped, we just increment
3909			 * the hold count, and activate it.
3910			 */
3911			if (ptepa) {
3912				if (ptepa & PG_PS)
3913					return (NULL);
3914				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3915				mpte->wire_count++;
3916			} else {
3917				mpte = _pmap_allocpte(pmap, ptepindex,
3918				    PMAP_ENTER_NOSLEEP);
3919				if (mpte == NULL)
3920					return (mpte);
3921			}
3922		}
3923	} else {
3924		mpte = NULL;
3925	}
3926
3927	/*
3928	 * This call to vtopte makes the assumption that we are
3929	 * entering the page into the current pmap.  In order to support
3930	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3931	 * But that isn't as quick as vtopte.
3932	 */
3933	pte = vtopte(va);
3934	if (*pte) {
3935		if (mpte != NULL) {
3936			mpte->wire_count--;
3937			mpte = NULL;
3938		}
3939		return (mpte);
3940	}
3941
3942	/*
3943	 * Enter on the PV list if part of our managed memory.
3944	 */
3945	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3946	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3947		if (mpte != NULL) {
3948			SLIST_INIT(&free);
3949			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3950				pmap_invalidate_page(pmap, va);
3951				pmap_free_zero_pages(&free);
3952			}
3953
3954			mpte = NULL;
3955		}
3956		return (mpte);
3957	}
3958
3959	/*
3960	 * Increment counters
3961	 */
3962	pmap->pm_stats.resident_count++;
3963
3964	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3965#if defined(PAE) || defined(PAE_TABLES)
3966	if ((prot & VM_PROT_EXECUTE) == 0)
3967		pa |= pg_nx;
3968#endif
3969
3970	/*
3971	 * Now validate mapping with RO protection
3972	 */
3973	if ((m->oflags & VPO_UNMANAGED) != 0)
3974		pte_store(pte, pa | PG_V | PG_U);
3975	else
3976		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3977	return (mpte);
3978}
3979
3980/*
3981 * Make a temporary mapping for a physical address.  This is only intended
3982 * to be used for panic dumps.
3983 */
3984void *
3985pmap_kenter_temporary(vm_paddr_t pa, int i)
3986{
3987	vm_offset_t va;
3988
3989	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3990	pmap_kenter(va, pa);
3991	invlpg(va);
3992	return ((void *)crashdumpmap);
3993}
3994
3995/*
3996 * This code maps large physical mmap regions into the
3997 * processor address space.  Note that some shortcuts
3998 * are taken, but the code works.
3999 */
4000void
4001pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4002    vm_pindex_t pindex, vm_size_t size)
4003{
4004	pd_entry_t *pde;
4005	vm_paddr_t pa, ptepa;
4006	vm_page_t p;
4007	int pat_mode;
4008
4009	VM_OBJECT_ASSERT_WLOCKED(object);
4010	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4011	    ("pmap_object_init_pt: non-device object"));
4012	if (pseflag &&
4013	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4014		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4015			return;
4016		p = vm_page_lookup(object, pindex);
4017		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4018		    ("pmap_object_init_pt: invalid page %p", p));
4019		pat_mode = p->md.pat_mode;
4020
4021		/*
4022		 * Abort the mapping if the first page is not physically
4023		 * aligned to a 2/4MB page boundary.
4024		 */
4025		ptepa = VM_PAGE_TO_PHYS(p);
4026		if (ptepa & (NBPDR - 1))
4027			return;
4028
4029		/*
4030		 * Skip the first page.  Abort the mapping if the rest of
4031		 * the pages are not physically contiguous or have differing
4032		 * memory attributes.
4033		 */
4034		p = TAILQ_NEXT(p, listq);
4035		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4036		    pa += PAGE_SIZE) {
4037			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4038			    ("pmap_object_init_pt: invalid page %p", p));
4039			if (pa != VM_PAGE_TO_PHYS(p) ||
4040			    pat_mode != p->md.pat_mode)
4041				return;
4042			p = TAILQ_NEXT(p, listq);
4043		}
4044
4045		/*
4046		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
4047		 * "size" is a multiple of 2/4M, adding the PAT setting to
4048		 * "pa" will not affect the termination of this loop.
4049		 */
4050		PMAP_LOCK(pmap);
4051		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
4052		    size; pa += NBPDR) {
4053			pde = pmap_pde(pmap, addr);
4054			if (*pde == 0) {
4055				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4056				    PG_U | PG_RW | PG_V);
4057				pmap->pm_stats.resident_count += NBPDR /
4058				    PAGE_SIZE;
4059				pmap_pde_mappings++;
4060			}
4061			/* Else continue on if the PDE is already valid. */
4062			addr += NBPDR;
4063		}
4064		PMAP_UNLOCK(pmap);
4065	}
4066}
4067
4068/*
4069 *	Clear the wired attribute from the mappings for the specified range of
4070 *	addresses in the given pmap.  Every valid mapping within that range
4071 *	must have the wired attribute set.  In contrast, invalid mappings
4072 *	cannot have the wired attribute set, so they are ignored.
4073 *
4074 *	The wired attribute of the page table entry is not a hardware feature,
4075 *	so there is no need to invalidate any TLB entries.
4076 */
4077void
4078pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4079{
4080	vm_offset_t pdnxt;
4081	pd_entry_t *pde;
4082	pt_entry_t *pte;
4083	boolean_t pv_lists_locked;
4084
4085	if (pmap_is_current(pmap))
4086		pv_lists_locked = FALSE;
4087	else {
4088		pv_lists_locked = TRUE;
4089resume:
4090		rw_wlock(&pvh_global_lock);
4091		sched_pin();
4092	}
4093	PMAP_LOCK(pmap);
4094	for (; sva < eva; sva = pdnxt) {
4095		pdnxt = (sva + NBPDR) & ~PDRMASK;
4096		if (pdnxt < sva)
4097			pdnxt = eva;
4098		pde = pmap_pde(pmap, sva);
4099		if ((*pde & PG_V) == 0)
4100			continue;
4101		if ((*pde & PG_PS) != 0) {
4102			if ((*pde & PG_W) == 0)
4103				panic("pmap_unwire: pde %#jx is missing PG_W",
4104				    (uintmax_t)*pde);
4105
4106			/*
4107			 * Are we unwiring the entire large page?  If not,
4108			 * demote the mapping and fall through.
4109			 */
4110			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4111				/*
4112				 * Regardless of whether a pde (or pte) is 32
4113				 * or 64 bits in size, PG_W is among the least
4114				 * significant 32 bits.
4115				 */
4116				atomic_clear_int((u_int *)pde, PG_W);
4117				pmap->pm_stats.wired_count -= NBPDR /
4118				    PAGE_SIZE;
4119				continue;
4120			} else {
4121				if (!pv_lists_locked) {
4122					pv_lists_locked = TRUE;
4123					if (!rw_try_wlock(&pvh_global_lock)) {
4124						PMAP_UNLOCK(pmap);
4125						/* Repeat sva. */
4126						goto resume;
4127					}
4128					sched_pin();
4129				}
4130				if (!pmap_demote_pde(pmap, pde, sva))
4131					panic("pmap_unwire: demotion failed");
4132			}
4133		}
4134		if (pdnxt > eva)
4135			pdnxt = eva;
4136		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4137		    sva += PAGE_SIZE) {
4138			if ((*pte & PG_V) == 0)
4139				continue;
4140			if ((*pte & PG_W) == 0)
4141				panic("pmap_unwire: pte %#jx is missing PG_W",
4142				    (uintmax_t)*pte);
4143
4144			/*
4145			 * PG_W must be cleared atomically.  Although the pmap
4146			 * lock synchronizes access to PG_W, another processor
4147			 * could be setting PG_M and/or PG_A concurrently.
4148			 *
4149			 * PG_W is among the least significant 32 bits.
4150			 */
4151			atomic_clear_int((u_int *)pte, PG_W);
4152			pmap->pm_stats.wired_count--;
4153		}
4154	}
4155	if (pv_lists_locked) {
4156		sched_unpin();
4157		rw_wunlock(&pvh_global_lock);
4158	}
4159	PMAP_UNLOCK(pmap);
4160}
4161
4162
4163/*
4164 *	Copy the range specified by src_addr/len
4165 *	from the source map to the range dst_addr/len
4166 *	in the destination map.
4167 *
4168 *	This routine is only advisory and need not do anything.
4169 */
4170
4171void
4172pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4173    vm_offset_t src_addr)
4174{
4175	struct spglist free;
4176	vm_offset_t addr;
4177	vm_offset_t end_addr = src_addr + len;
4178	vm_offset_t pdnxt;
4179
4180	if (dst_addr != src_addr)
4181		return;
4182
4183	if (!pmap_is_current(src_pmap))
4184		return;
4185
4186	rw_wlock(&pvh_global_lock);
4187	if (dst_pmap < src_pmap) {
4188		PMAP_LOCK(dst_pmap);
4189		PMAP_LOCK(src_pmap);
4190	} else {
4191		PMAP_LOCK(src_pmap);
4192		PMAP_LOCK(dst_pmap);
4193	}
4194	sched_pin();
4195	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4196		pt_entry_t *src_pte, *dst_pte;
4197		vm_page_t dstmpte, srcmpte;
4198		pd_entry_t srcptepaddr;
4199		u_int ptepindex;
4200
4201		KASSERT(addr < UPT_MIN_ADDRESS,
4202		    ("pmap_copy: invalid to pmap_copy page tables"));
4203
4204		pdnxt = (addr + NBPDR) & ~PDRMASK;
4205		if (pdnxt < addr)
4206			pdnxt = end_addr;
4207		ptepindex = addr >> PDRSHIFT;
4208
4209		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4210		if (srcptepaddr == 0)
4211			continue;
4212
4213		if (srcptepaddr & PG_PS) {
4214			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4215				continue;
4216			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4217			    ((srcptepaddr & PG_MANAGED) == 0 ||
4218			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4219			    PG_PS_FRAME))) {
4220				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4221				    ~PG_W;
4222				dst_pmap->pm_stats.resident_count +=
4223				    NBPDR / PAGE_SIZE;
4224			}
4225			continue;
4226		}
4227
4228		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4229		KASSERT(srcmpte->wire_count > 0,
4230		    ("pmap_copy: source page table page is unused"));
4231
4232		if (pdnxt > end_addr)
4233			pdnxt = end_addr;
4234
4235		src_pte = vtopte(addr);
4236		while (addr < pdnxt) {
4237			pt_entry_t ptetemp;
4238			ptetemp = *src_pte;
4239			/*
4240			 * we only virtual copy managed pages
4241			 */
4242			if ((ptetemp & PG_MANAGED) != 0) {
4243				dstmpte = pmap_allocpte(dst_pmap, addr,
4244				    PMAP_ENTER_NOSLEEP);
4245				if (dstmpte == NULL)
4246					goto out;
4247				dst_pte = pmap_pte_quick(dst_pmap, addr);
4248				if (*dst_pte == 0 &&
4249				    pmap_try_insert_pv_entry(dst_pmap, addr,
4250				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4251					/*
4252					 * Clear the wired, modified, and
4253					 * accessed (referenced) bits
4254					 * during the copy.
4255					 */
4256					*dst_pte = ptetemp & ~(PG_W | PG_M |
4257					    PG_A);
4258					dst_pmap->pm_stats.resident_count++;
4259	 			} else {
4260					SLIST_INIT(&free);
4261					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4262					    &free)) {
4263						pmap_invalidate_page(dst_pmap,
4264						    addr);
4265						pmap_free_zero_pages(&free);
4266					}
4267					goto out;
4268				}
4269				if (dstmpte->wire_count >= srcmpte->wire_count)
4270					break;
4271			}
4272			addr += PAGE_SIZE;
4273			src_pte++;
4274		}
4275	}
4276out:
4277	sched_unpin();
4278	rw_wunlock(&pvh_global_lock);
4279	PMAP_UNLOCK(src_pmap);
4280	PMAP_UNLOCK(dst_pmap);
4281}
4282
4283static __inline void
4284pagezero(void *page)
4285{
4286#if defined(I686_CPU)
4287	if (cpu_class == CPUCLASS_686) {
4288#if defined(CPU_ENABLE_SSE)
4289		if (cpu_feature & CPUID_SSE2)
4290			sse2_pagezero(page);
4291		else
4292#endif
4293			i686_pagezero(page);
4294	} else
4295#endif
4296		bzero(page, PAGE_SIZE);
4297}
4298
4299/*
4300 *	pmap_zero_page zeros the specified hardware page by mapping
4301 *	the page into KVM and using bzero to clear its contents.
4302 */
4303void
4304pmap_zero_page(vm_page_t m)
4305{
4306	struct sysmaps *sysmaps;
4307
4308	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4309	mtx_lock(&sysmaps->lock);
4310	if (*sysmaps->CMAP2)
4311		panic("pmap_zero_page: CMAP2 busy");
4312	sched_pin();
4313	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4314	    pmap_cache_bits(m->md.pat_mode, 0);
4315	invlcaddr(sysmaps->CADDR2);
4316	pagezero(sysmaps->CADDR2);
4317	*sysmaps->CMAP2 = 0;
4318	sched_unpin();
4319	mtx_unlock(&sysmaps->lock);
4320}
4321
4322/*
4323 *	pmap_zero_page_area zeros the specified hardware page by mapping
4324 *	the page into KVM and using bzero to clear its contents.
4325 *
4326 *	off and size may not cover an area beyond a single hardware page.
4327 */
4328void
4329pmap_zero_page_area(vm_page_t m, int off, int size)
4330{
4331	struct sysmaps *sysmaps;
4332
4333	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4334	mtx_lock(&sysmaps->lock);
4335	if (*sysmaps->CMAP2)
4336		panic("pmap_zero_page_area: CMAP2 busy");
4337	sched_pin();
4338	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4339	    pmap_cache_bits(m->md.pat_mode, 0);
4340	invlcaddr(sysmaps->CADDR2);
4341	if (off == 0 && size == PAGE_SIZE)
4342		pagezero(sysmaps->CADDR2);
4343	else
4344		bzero((char *)sysmaps->CADDR2 + off, size);
4345	*sysmaps->CMAP2 = 0;
4346	sched_unpin();
4347	mtx_unlock(&sysmaps->lock);
4348}
4349
4350/*
4351 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4352 *	the page into KVM and using bzero to clear its contents.  This
4353 *	is intended to be called from the vm_pagezero process only and
4354 *	outside of Giant.
4355 */
4356void
4357pmap_zero_page_idle(vm_page_t m)
4358{
4359
4360	if (*CMAP3)
4361		panic("pmap_zero_page_idle: CMAP3 busy");
4362	sched_pin();
4363	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4364	    pmap_cache_bits(m->md.pat_mode, 0);
4365	invlcaddr(CADDR3);
4366	pagezero(CADDR3);
4367	*CMAP3 = 0;
4368	sched_unpin();
4369}
4370
4371/*
4372 *	pmap_copy_page copies the specified (machine independent)
4373 *	page by mapping the page into virtual memory and using
4374 *	bcopy to copy the page, one machine dependent page at a
4375 *	time.
4376 */
4377void
4378pmap_copy_page(vm_page_t src, vm_page_t dst)
4379{
4380	struct sysmaps *sysmaps;
4381
4382	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4383	mtx_lock(&sysmaps->lock);
4384	if (*sysmaps->CMAP1)
4385		panic("pmap_copy_page: CMAP1 busy");
4386	if (*sysmaps->CMAP2)
4387		panic("pmap_copy_page: CMAP2 busy");
4388	sched_pin();
4389	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4390	    pmap_cache_bits(src->md.pat_mode, 0);
4391	invlcaddr(sysmaps->CADDR1);
4392	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4393	    pmap_cache_bits(dst->md.pat_mode, 0);
4394	invlcaddr(sysmaps->CADDR2);
4395	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4396	*sysmaps->CMAP1 = 0;
4397	*sysmaps->CMAP2 = 0;
4398	sched_unpin();
4399	mtx_unlock(&sysmaps->lock);
4400}
4401
4402int unmapped_buf_allowed = 1;
4403
4404void
4405pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4406    vm_offset_t b_offset, int xfersize)
4407{
4408	struct sysmaps *sysmaps;
4409	vm_page_t a_pg, b_pg;
4410	char *a_cp, *b_cp;
4411	vm_offset_t a_pg_offset, b_pg_offset;
4412	int cnt;
4413
4414	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4415	mtx_lock(&sysmaps->lock);
4416	if (*sysmaps->CMAP1 != 0)
4417		panic("pmap_copy_pages: CMAP1 busy");
4418	if (*sysmaps->CMAP2 != 0)
4419		panic("pmap_copy_pages: CMAP2 busy");
4420	sched_pin();
4421	while (xfersize > 0) {
4422		a_pg = ma[a_offset >> PAGE_SHIFT];
4423		a_pg_offset = a_offset & PAGE_MASK;
4424		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4425		b_pg = mb[b_offset >> PAGE_SHIFT];
4426		b_pg_offset = b_offset & PAGE_MASK;
4427		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4428		*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4429		    pmap_cache_bits(a_pg->md.pat_mode, 0);
4430		invlcaddr(sysmaps->CADDR1);
4431		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4432		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4433		invlcaddr(sysmaps->CADDR2);
4434		a_cp = sysmaps->CADDR1 + a_pg_offset;
4435		b_cp = sysmaps->CADDR2 + b_pg_offset;
4436		bcopy(a_cp, b_cp, cnt);
4437		a_offset += cnt;
4438		b_offset += cnt;
4439		xfersize -= cnt;
4440	}
4441	*sysmaps->CMAP1 = 0;
4442	*sysmaps->CMAP2 = 0;
4443	sched_unpin();
4444	mtx_unlock(&sysmaps->lock);
4445}
4446
4447/*
4448 * Returns true if the pmap's pv is one of the first
4449 * 16 pvs linked to from this page.  This count may
4450 * be changed upwards or downwards in the future; it
4451 * is only necessary that true be returned for a small
4452 * subset of pmaps for proper page aging.
4453 */
4454boolean_t
4455pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4456{
4457	struct md_page *pvh;
4458	pv_entry_t pv;
4459	int loops = 0;
4460	boolean_t rv;
4461
4462	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4463	    ("pmap_page_exists_quick: page %p is not managed", m));
4464	rv = FALSE;
4465	rw_wlock(&pvh_global_lock);
4466	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4467		if (PV_PMAP(pv) == pmap) {
4468			rv = TRUE;
4469			break;
4470		}
4471		loops++;
4472		if (loops >= 16)
4473			break;
4474	}
4475	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4476		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4477		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4478			if (PV_PMAP(pv) == pmap) {
4479				rv = TRUE;
4480				break;
4481			}
4482			loops++;
4483			if (loops >= 16)
4484				break;
4485		}
4486	}
4487	rw_wunlock(&pvh_global_lock);
4488	return (rv);
4489}
4490
4491/*
4492 *	pmap_page_wired_mappings:
4493 *
4494 *	Return the number of managed mappings to the given physical page
4495 *	that are wired.
4496 */
4497int
4498pmap_page_wired_mappings(vm_page_t m)
4499{
4500	int count;
4501
4502	count = 0;
4503	if ((m->oflags & VPO_UNMANAGED) != 0)
4504		return (count);
4505	rw_wlock(&pvh_global_lock);
4506	count = pmap_pvh_wired_mappings(&m->md, count);
4507	if ((m->flags & PG_FICTITIOUS) == 0) {
4508	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4509	        count);
4510	}
4511	rw_wunlock(&pvh_global_lock);
4512	return (count);
4513}
4514
4515/*
4516 *	pmap_pvh_wired_mappings:
4517 *
4518 *	Return the updated number "count" of managed mappings that are wired.
4519 */
4520static int
4521pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4522{
4523	pmap_t pmap;
4524	pt_entry_t *pte;
4525	pv_entry_t pv;
4526
4527	rw_assert(&pvh_global_lock, RA_WLOCKED);
4528	sched_pin();
4529	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4530		pmap = PV_PMAP(pv);
4531		PMAP_LOCK(pmap);
4532		pte = pmap_pte_quick(pmap, pv->pv_va);
4533		if ((*pte & PG_W) != 0)
4534			count++;
4535		PMAP_UNLOCK(pmap);
4536	}
4537	sched_unpin();
4538	return (count);
4539}
4540
4541/*
4542 * Returns TRUE if the given page is mapped individually or as part of
4543 * a 4mpage.  Otherwise, returns FALSE.
4544 */
4545boolean_t
4546pmap_page_is_mapped(vm_page_t m)
4547{
4548	boolean_t rv;
4549
4550	if ((m->oflags & VPO_UNMANAGED) != 0)
4551		return (FALSE);
4552	rw_wlock(&pvh_global_lock);
4553	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4554	    ((m->flags & PG_FICTITIOUS) == 0 &&
4555	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4556	rw_wunlock(&pvh_global_lock);
4557	return (rv);
4558}
4559
4560/*
4561 * Remove all pages from specified address space
4562 * this aids process exit speeds.  Also, this code
4563 * is special cased for current process only, but
4564 * can have the more generic (and slightly slower)
4565 * mode enabled.  This is much faster than pmap_remove
4566 * in the case of running down an entire address space.
4567 */
4568void
4569pmap_remove_pages(pmap_t pmap)
4570{
4571	pt_entry_t *pte, tpte;
4572	vm_page_t m, mpte, mt;
4573	pv_entry_t pv;
4574	struct md_page *pvh;
4575	struct pv_chunk *pc, *npc;
4576	struct spglist free;
4577	int field, idx;
4578	int32_t bit;
4579	uint32_t inuse, bitmask;
4580	int allfree;
4581
4582	if (pmap != PCPU_GET(curpmap)) {
4583		printf("warning: pmap_remove_pages called with non-current pmap\n");
4584		return;
4585	}
4586	SLIST_INIT(&free);
4587	rw_wlock(&pvh_global_lock);
4588	PMAP_LOCK(pmap);
4589	sched_pin();
4590	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4591		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4592		    pc->pc_pmap));
4593		allfree = 1;
4594		for (field = 0; field < _NPCM; field++) {
4595			inuse = ~pc->pc_map[field] & pc_freemask[field];
4596			while (inuse != 0) {
4597				bit = bsfl(inuse);
4598				bitmask = 1UL << bit;
4599				idx = field * 32 + bit;
4600				pv = &pc->pc_pventry[idx];
4601				inuse &= ~bitmask;
4602
4603				pte = pmap_pde(pmap, pv->pv_va);
4604				tpte = *pte;
4605				if ((tpte & PG_PS) == 0) {
4606					pte = vtopte(pv->pv_va);
4607					tpte = *pte & ~PG_PTE_PAT;
4608				}
4609
4610				if (tpte == 0) {
4611					printf(
4612					    "TPTE at %p  IS ZERO @ VA %08x\n",
4613					    pte, pv->pv_va);
4614					panic("bad pte");
4615				}
4616
4617/*
4618 * We cannot remove wired pages from a process' mapping at this time
4619 */
4620				if (tpte & PG_W) {
4621					allfree = 0;
4622					continue;
4623				}
4624
4625				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4626				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4627				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4628				    m, (uintmax_t)m->phys_addr,
4629				    (uintmax_t)tpte));
4630
4631				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4632				    m < &vm_page_array[vm_page_array_size],
4633				    ("pmap_remove_pages: bad tpte %#jx",
4634				    (uintmax_t)tpte));
4635
4636				pte_clear(pte);
4637
4638				/*
4639				 * Update the vm_page_t clean/reference bits.
4640				 */
4641				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4642					if ((tpte & PG_PS) != 0) {
4643						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4644							vm_page_dirty(mt);
4645					} else
4646						vm_page_dirty(m);
4647				}
4648
4649				/* Mark free */
4650				PV_STAT(pv_entry_frees++);
4651				PV_STAT(pv_entry_spare++);
4652				pv_entry_count--;
4653				pc->pc_map[field] |= bitmask;
4654				if ((tpte & PG_PS) != 0) {
4655					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4656					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4657					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4658					if (TAILQ_EMPTY(&pvh->pv_list)) {
4659						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4660							if (TAILQ_EMPTY(&mt->md.pv_list))
4661								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4662					}
4663					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4664					if (mpte != NULL) {
4665						pmap_remove_pt_page(pmap, mpte);
4666						pmap->pm_stats.resident_count--;
4667						KASSERT(mpte->wire_count == NPTEPG,
4668						    ("pmap_remove_pages: pte page wire count error"));
4669						mpte->wire_count = 0;
4670						pmap_add_delayed_free_list(mpte, &free, FALSE);
4671						atomic_subtract_int(&cnt.v_wire_count, 1);
4672					}
4673				} else {
4674					pmap->pm_stats.resident_count--;
4675					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4676					if (TAILQ_EMPTY(&m->md.pv_list) &&
4677					    (m->flags & PG_FICTITIOUS) == 0) {
4678						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4679						if (TAILQ_EMPTY(&pvh->pv_list))
4680							vm_page_aflag_clear(m, PGA_WRITEABLE);
4681					}
4682					pmap_unuse_pt(pmap, pv->pv_va, &free);
4683				}
4684			}
4685		}
4686		if (allfree) {
4687			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4688			free_pv_chunk(pc);
4689		}
4690	}
4691	sched_unpin();
4692	pmap_invalidate_all(pmap);
4693	rw_wunlock(&pvh_global_lock);
4694	PMAP_UNLOCK(pmap);
4695	pmap_free_zero_pages(&free);
4696}
4697
4698/*
4699 *	pmap_is_modified:
4700 *
4701 *	Return whether or not the specified physical page was modified
4702 *	in any physical maps.
4703 */
4704boolean_t
4705pmap_is_modified(vm_page_t m)
4706{
4707	boolean_t rv;
4708
4709	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4710	    ("pmap_is_modified: page %p is not managed", m));
4711
4712	/*
4713	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4714	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4715	 * is clear, no PTEs can have PG_M set.
4716	 */
4717	VM_OBJECT_ASSERT_WLOCKED(m->object);
4718	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4719		return (FALSE);
4720	rw_wlock(&pvh_global_lock);
4721	rv = pmap_is_modified_pvh(&m->md) ||
4722	    ((m->flags & PG_FICTITIOUS) == 0 &&
4723	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4724	rw_wunlock(&pvh_global_lock);
4725	return (rv);
4726}
4727
4728/*
4729 * Returns TRUE if any of the given mappings were used to modify
4730 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4731 * mappings are supported.
4732 */
4733static boolean_t
4734pmap_is_modified_pvh(struct md_page *pvh)
4735{
4736	pv_entry_t pv;
4737	pt_entry_t *pte;
4738	pmap_t pmap;
4739	boolean_t rv;
4740
4741	rw_assert(&pvh_global_lock, RA_WLOCKED);
4742	rv = FALSE;
4743	sched_pin();
4744	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4745		pmap = PV_PMAP(pv);
4746		PMAP_LOCK(pmap);
4747		pte = pmap_pte_quick(pmap, pv->pv_va);
4748		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4749		PMAP_UNLOCK(pmap);
4750		if (rv)
4751			break;
4752	}
4753	sched_unpin();
4754	return (rv);
4755}
4756
4757/*
4758 *	pmap_is_prefaultable:
4759 *
4760 *	Return whether or not the specified virtual address is elgible
4761 *	for prefault.
4762 */
4763boolean_t
4764pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4765{
4766	pd_entry_t *pde;
4767	pt_entry_t *pte;
4768	boolean_t rv;
4769
4770	rv = FALSE;
4771	PMAP_LOCK(pmap);
4772	pde = pmap_pde(pmap, addr);
4773	if (*pde != 0 && (*pde & PG_PS) == 0) {
4774		pte = vtopte(addr);
4775		rv = *pte == 0;
4776	}
4777	PMAP_UNLOCK(pmap);
4778	return (rv);
4779}
4780
4781/*
4782 *	pmap_is_referenced:
4783 *
4784 *	Return whether or not the specified physical page was referenced
4785 *	in any physical maps.
4786 */
4787boolean_t
4788pmap_is_referenced(vm_page_t m)
4789{
4790	boolean_t rv;
4791
4792	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4793	    ("pmap_is_referenced: page %p is not managed", m));
4794	rw_wlock(&pvh_global_lock);
4795	rv = pmap_is_referenced_pvh(&m->md) ||
4796	    ((m->flags & PG_FICTITIOUS) == 0 &&
4797	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4798	rw_wunlock(&pvh_global_lock);
4799	return (rv);
4800}
4801
4802/*
4803 * Returns TRUE if any of the given mappings were referenced and FALSE
4804 * otherwise.  Both page and 4mpage mappings are supported.
4805 */
4806static boolean_t
4807pmap_is_referenced_pvh(struct md_page *pvh)
4808{
4809	pv_entry_t pv;
4810	pt_entry_t *pte;
4811	pmap_t pmap;
4812	boolean_t rv;
4813
4814	rw_assert(&pvh_global_lock, RA_WLOCKED);
4815	rv = FALSE;
4816	sched_pin();
4817	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4818		pmap = PV_PMAP(pv);
4819		PMAP_LOCK(pmap);
4820		pte = pmap_pte_quick(pmap, pv->pv_va);
4821		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4822		PMAP_UNLOCK(pmap);
4823		if (rv)
4824			break;
4825	}
4826	sched_unpin();
4827	return (rv);
4828}
4829
4830/*
4831 * Clear the write and modified bits in each of the given page's mappings.
4832 */
4833void
4834pmap_remove_write(vm_page_t m)
4835{
4836	struct md_page *pvh;
4837	pv_entry_t next_pv, pv;
4838	pmap_t pmap;
4839	pd_entry_t *pde;
4840	pt_entry_t oldpte, *pte;
4841	vm_offset_t va;
4842
4843	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4844	    ("pmap_remove_write: page %p is not managed", m));
4845
4846	/*
4847	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4848	 * set by another thread while the object is locked.  Thus,
4849	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4850	 */
4851	VM_OBJECT_ASSERT_WLOCKED(m->object);
4852	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4853		return;
4854	rw_wlock(&pvh_global_lock);
4855	sched_pin();
4856	if ((m->flags & PG_FICTITIOUS) != 0)
4857		goto small_mappings;
4858	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4859	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4860		va = pv->pv_va;
4861		pmap = PV_PMAP(pv);
4862		PMAP_LOCK(pmap);
4863		pde = pmap_pde(pmap, va);
4864		if ((*pde & PG_RW) != 0)
4865			(void)pmap_demote_pde(pmap, pde, va);
4866		PMAP_UNLOCK(pmap);
4867	}
4868small_mappings:
4869	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4870		pmap = PV_PMAP(pv);
4871		PMAP_LOCK(pmap);
4872		pde = pmap_pde(pmap, pv->pv_va);
4873		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4874		    " a 4mpage in page %p's pv list", m));
4875		pte = pmap_pte_quick(pmap, pv->pv_va);
4876retry:
4877		oldpte = *pte;
4878		if ((oldpte & PG_RW) != 0) {
4879			/*
4880			 * Regardless of whether a pte is 32 or 64 bits
4881			 * in size, PG_RW and PG_M are among the least
4882			 * significant 32 bits.
4883			 */
4884			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4885			    oldpte & ~(PG_RW | PG_M)))
4886				goto retry;
4887			if ((oldpte & PG_M) != 0)
4888				vm_page_dirty(m);
4889			pmap_invalidate_page(pmap, pv->pv_va);
4890		}
4891		PMAP_UNLOCK(pmap);
4892	}
4893	vm_page_aflag_clear(m, PGA_WRITEABLE);
4894	sched_unpin();
4895	rw_wunlock(&pvh_global_lock);
4896}
4897
4898#define	PMAP_TS_REFERENCED_MAX	5
4899
4900/*
4901 *	pmap_ts_referenced:
4902 *
4903 *	Return a count of reference bits for a page, clearing those bits.
4904 *	It is not necessary for every reference bit to be cleared, but it
4905 *	is necessary that 0 only be returned when there are truly no
4906 *	reference bits set.
4907 *
4908 *	XXX: The exact number of bits to check and clear is a matter that
4909 *	should be tested and standardized at some point in the future for
4910 *	optimal aging of shared pages.
4911 */
4912int
4913pmap_ts_referenced(vm_page_t m)
4914{
4915	struct md_page *pvh;
4916	pv_entry_t pv, pvf;
4917	pmap_t pmap;
4918	pd_entry_t *pde;
4919	pt_entry_t *pte;
4920	vm_paddr_t pa;
4921	int rtval = 0;
4922
4923	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4924	    ("pmap_ts_referenced: page %p is not managed", m));
4925	pa = VM_PAGE_TO_PHYS(m);
4926	pvh = pa_to_pvh(pa);
4927	rw_wlock(&pvh_global_lock);
4928	sched_pin();
4929	if ((m->flags & PG_FICTITIOUS) != 0 ||
4930	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4931		goto small_mappings;
4932	pv = pvf;
4933	do {
4934		pmap = PV_PMAP(pv);
4935		PMAP_LOCK(pmap);
4936		pde = pmap_pde(pmap, pv->pv_va);
4937		if ((*pde & PG_A) != 0) {
4938			/*
4939			 * Since this reference bit is shared by either 1024
4940			 * or 512 4KB pages, it should not be cleared every
4941			 * time it is tested.  Apply a simple "hash" function
4942			 * on the physical page number, the virtual superpage
4943			 * number, and the pmap address to select one 4KB page
4944			 * out of the 1024 or 512 on which testing the
4945			 * reference bit will result in clearing that bit.
4946			 * This function is designed to avoid the selection of
4947			 * the same 4KB page for every 2- or 4MB page mapping.
4948			 *
4949			 * On demotion, a mapping that hasn't been referenced
4950			 * is simply destroyed.  To avoid the possibility of a
4951			 * subsequent page fault on a demoted wired mapping,
4952			 * always leave its reference bit set.  Moreover,
4953			 * since the superpage is wired, the current state of
4954			 * its reference bit won't affect page replacement.
4955			 */
4956			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
4957			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
4958			    (*pde & PG_W) == 0) {
4959				atomic_clear_int((u_int *)pde, PG_A);
4960				pmap_invalidate_page(pmap, pv->pv_va);
4961			}
4962			rtval++;
4963		}
4964		PMAP_UNLOCK(pmap);
4965		/* Rotate the PV list if it has more than one entry. */
4966		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4967			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4968			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4969		}
4970		if (rtval >= PMAP_TS_REFERENCED_MAX)
4971			goto out;
4972	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4973small_mappings:
4974	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4975		goto out;
4976	pv = pvf;
4977	do {
4978		pmap = PV_PMAP(pv);
4979		PMAP_LOCK(pmap);
4980		pde = pmap_pde(pmap, pv->pv_va);
4981		KASSERT((*pde & PG_PS) == 0,
4982		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
4983		    m));
4984		pte = pmap_pte_quick(pmap, pv->pv_va);
4985		if ((*pte & PG_A) != 0) {
4986			atomic_clear_int((u_int *)pte, PG_A);
4987			pmap_invalidate_page(pmap, pv->pv_va);
4988			rtval++;
4989		}
4990		PMAP_UNLOCK(pmap);
4991		/* Rotate the PV list if it has more than one entry. */
4992		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4993			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4994			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4995		}
4996	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
4997	    PMAP_TS_REFERENCED_MAX);
4998out:
4999	sched_unpin();
5000	rw_wunlock(&pvh_global_lock);
5001	return (rtval);
5002}
5003
5004/*
5005 *	Apply the given advice to the specified range of addresses within the
5006 *	given pmap.  Depending on the advice, clear the referenced and/or
5007 *	modified flags in each mapping and set the mapped page's dirty field.
5008 */
5009void
5010pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5011{
5012	pd_entry_t oldpde, *pde;
5013	pt_entry_t *pte;
5014	vm_offset_t pdnxt;
5015	vm_page_t m;
5016	boolean_t anychanged, pv_lists_locked;
5017
5018	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5019		return;
5020	if (pmap_is_current(pmap))
5021		pv_lists_locked = FALSE;
5022	else {
5023		pv_lists_locked = TRUE;
5024resume:
5025		rw_wlock(&pvh_global_lock);
5026		sched_pin();
5027	}
5028	anychanged = FALSE;
5029	PMAP_LOCK(pmap);
5030	for (; sva < eva; sva = pdnxt) {
5031		pdnxt = (sva + NBPDR) & ~PDRMASK;
5032		if (pdnxt < sva)
5033			pdnxt = eva;
5034		pde = pmap_pde(pmap, sva);
5035		oldpde = *pde;
5036		if ((oldpde & PG_V) == 0)
5037			continue;
5038		else if ((oldpde & PG_PS) != 0) {
5039			if ((oldpde & PG_MANAGED) == 0)
5040				continue;
5041			if (!pv_lists_locked) {
5042				pv_lists_locked = TRUE;
5043				if (!rw_try_wlock(&pvh_global_lock)) {
5044					if (anychanged)
5045						pmap_invalidate_all(pmap);
5046					PMAP_UNLOCK(pmap);
5047					goto resume;
5048				}
5049				sched_pin();
5050			}
5051			if (!pmap_demote_pde(pmap, pde, sva)) {
5052				/*
5053				 * The large page mapping was destroyed.
5054				 */
5055				continue;
5056			}
5057
5058			/*
5059			 * Unless the page mappings are wired, remove the
5060			 * mapping to a single page so that a subsequent
5061			 * access may repromote.  Since the underlying page
5062			 * table page is fully populated, this removal never
5063			 * frees a page table page.
5064			 */
5065			if ((oldpde & PG_W) == 0) {
5066				pte = pmap_pte_quick(pmap, sva);
5067				KASSERT((*pte & PG_V) != 0,
5068				    ("pmap_advise: invalid PTE"));
5069				pmap_remove_pte(pmap, pte, sva, NULL);
5070				anychanged = TRUE;
5071			}
5072		}
5073		if (pdnxt > eva)
5074			pdnxt = eva;
5075		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5076		    sva += PAGE_SIZE) {
5077			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
5078			    PG_V))
5079				continue;
5080			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5081				if (advice == MADV_DONTNEED) {
5082					/*
5083					 * Future calls to pmap_is_modified()
5084					 * can be avoided by making the page
5085					 * dirty now.
5086					 */
5087					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5088					vm_page_dirty(m);
5089				}
5090				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5091			} else if ((*pte & PG_A) != 0)
5092				atomic_clear_int((u_int *)pte, PG_A);
5093			else
5094				continue;
5095			if ((*pte & PG_G) != 0)
5096				pmap_invalidate_page(pmap, sva);
5097			else
5098				anychanged = TRUE;
5099		}
5100	}
5101	if (anychanged)
5102		pmap_invalidate_all(pmap);
5103	if (pv_lists_locked) {
5104		sched_unpin();
5105		rw_wunlock(&pvh_global_lock);
5106	}
5107	PMAP_UNLOCK(pmap);
5108}
5109
5110/*
5111 *	Clear the modify bits on the specified physical page.
5112 */
5113void
5114pmap_clear_modify(vm_page_t m)
5115{
5116	struct md_page *pvh;
5117	pv_entry_t next_pv, pv;
5118	pmap_t pmap;
5119	pd_entry_t oldpde, *pde;
5120	pt_entry_t oldpte, *pte;
5121	vm_offset_t va;
5122
5123	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5124	    ("pmap_clear_modify: page %p is not managed", m));
5125	VM_OBJECT_ASSERT_WLOCKED(m->object);
5126	KASSERT(!vm_page_xbusied(m),
5127	    ("pmap_clear_modify: page %p is exclusive busied", m));
5128
5129	/*
5130	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
5131	 * If the object containing the page is locked and the page is not
5132	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
5133	 */
5134	if ((m->aflags & PGA_WRITEABLE) == 0)
5135		return;
5136	rw_wlock(&pvh_global_lock);
5137	sched_pin();
5138	if ((m->flags & PG_FICTITIOUS) != 0)
5139		goto small_mappings;
5140	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5141	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5142		va = pv->pv_va;
5143		pmap = PV_PMAP(pv);
5144		PMAP_LOCK(pmap);
5145		pde = pmap_pde(pmap, va);
5146		oldpde = *pde;
5147		if ((oldpde & PG_RW) != 0) {
5148			if (pmap_demote_pde(pmap, pde, va)) {
5149				if ((oldpde & PG_W) == 0) {
5150					/*
5151					 * Write protect the mapping to a
5152					 * single page so that a subsequent
5153					 * write access may repromote.
5154					 */
5155					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5156					    PG_PS_FRAME);
5157					pte = pmap_pte_quick(pmap, va);
5158					oldpte = *pte;
5159					if ((oldpte & PG_V) != 0) {
5160						/*
5161						 * Regardless of whether a pte is 32 or 64 bits
5162						 * in size, PG_RW and PG_M are among the least
5163						 * significant 32 bits.
5164						 */
5165						while (!atomic_cmpset_int((u_int *)pte,
5166						    oldpte,
5167						    oldpte & ~(PG_M | PG_RW)))
5168							oldpte = *pte;
5169						vm_page_dirty(m);
5170						pmap_invalidate_page(pmap, va);
5171					}
5172				}
5173			}
5174		}
5175		PMAP_UNLOCK(pmap);
5176	}
5177small_mappings:
5178	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5179		pmap = PV_PMAP(pv);
5180		PMAP_LOCK(pmap);
5181		pde = pmap_pde(pmap, pv->pv_va);
5182		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5183		    " a 4mpage in page %p's pv list", m));
5184		pte = pmap_pte_quick(pmap, pv->pv_va);
5185		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5186			/*
5187			 * Regardless of whether a pte is 32 or 64 bits
5188			 * in size, PG_M is among the least significant
5189			 * 32 bits.
5190			 */
5191			atomic_clear_int((u_int *)pte, PG_M);
5192			pmap_invalidate_page(pmap, pv->pv_va);
5193		}
5194		PMAP_UNLOCK(pmap);
5195	}
5196	sched_unpin();
5197	rw_wunlock(&pvh_global_lock);
5198}
5199
5200/*
5201 * Miscellaneous support routines follow
5202 */
5203
5204/* Adjust the cache mode for a 4KB page mapped via a PTE. */
5205static __inline void
5206pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5207{
5208	u_int opte, npte;
5209
5210	/*
5211	 * The cache mode bits are all in the low 32-bits of the
5212	 * PTE, so we can just spin on updating the low 32-bits.
5213	 */
5214	do {
5215		opte = *(u_int *)pte;
5216		npte = opte & ~PG_PTE_CACHE;
5217		npte |= cache_bits;
5218	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5219}
5220
5221/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5222static __inline void
5223pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5224{
5225	u_int opde, npde;
5226
5227	/*
5228	 * The cache mode bits are all in the low 32-bits of the
5229	 * PDE, so we can just spin on updating the low 32-bits.
5230	 */
5231	do {
5232		opde = *(u_int *)pde;
5233		npde = opde & ~PG_PDE_CACHE;
5234		npde |= cache_bits;
5235	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5236}
5237
5238/*
5239 * Map a set of physical memory pages into the kernel virtual
5240 * address space. Return a pointer to where it is mapped. This
5241 * routine is intended to be used for mapping device memory,
5242 * NOT real memory.
5243 */
5244void *
5245pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5246{
5247	struct pmap_preinit_mapping *ppim;
5248	vm_offset_t va, offset;
5249	vm_size_t tmpsize;
5250	int i;
5251
5252	offset = pa & PAGE_MASK;
5253	size = round_page(offset + size);
5254	pa = pa & PG_FRAME;
5255
5256	if (pa < KERNLOAD && pa + size <= KERNLOAD)
5257		va = KERNBASE + pa;
5258	else if (!pmap_initialized) {
5259		va = 0;
5260		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5261			ppim = pmap_preinit_mapping + i;
5262			if (ppim->va == 0) {
5263				ppim->pa = pa;
5264				ppim->sz = size;
5265				ppim->mode = mode;
5266				ppim->va = virtual_avail;
5267				virtual_avail += size;
5268				va = ppim->va;
5269				break;
5270			}
5271		}
5272		if (va == 0)
5273			panic("%s: too many preinit mappings", __func__);
5274	} else {
5275		/*
5276		 * If we have a preinit mapping, re-use it.
5277		 */
5278		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5279			ppim = pmap_preinit_mapping + i;
5280			if (ppim->pa == pa && ppim->sz == size &&
5281			    ppim->mode == mode)
5282				return ((void *)(ppim->va + offset));
5283		}
5284		va = kva_alloc(size);
5285		if (va == 0)
5286			panic("%s: Couldn't allocate KVA", __func__);
5287	}
5288	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5289		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5290	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5291	pmap_invalidate_cache_range(va, va + size, FALSE);
5292	return ((void *)(va + offset));
5293}
5294
5295void *
5296pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5297{
5298
5299	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5300}
5301
5302void *
5303pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5304{
5305
5306	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5307}
5308
5309void
5310pmap_unmapdev(vm_offset_t va, vm_size_t size)
5311{
5312	struct pmap_preinit_mapping *ppim;
5313	vm_offset_t offset;
5314	int i;
5315
5316	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5317		return;
5318	offset = va & PAGE_MASK;
5319	size = round_page(offset + size);
5320	va = trunc_page(va);
5321	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5322		ppim = pmap_preinit_mapping + i;
5323		if (ppim->va == va && ppim->sz == size) {
5324			if (pmap_initialized)
5325				return;
5326			ppim->pa = 0;
5327			ppim->va = 0;
5328			ppim->sz = 0;
5329			ppim->mode = 0;
5330			if (va + size == virtual_avail)
5331				virtual_avail = va;
5332			return;
5333		}
5334	}
5335	if (pmap_initialized)
5336		kva_free(va, size);
5337}
5338
5339/*
5340 * Sets the memory attribute for the specified page.
5341 */
5342void
5343pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5344{
5345
5346	m->md.pat_mode = ma;
5347	if ((m->flags & PG_FICTITIOUS) != 0)
5348		return;
5349
5350	/*
5351	 * If "m" is a normal page, flush it from the cache.
5352	 * See pmap_invalidate_cache_range().
5353	 *
5354	 * First, try to find an existing mapping of the page by sf
5355	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5356	 * flushes the cache.
5357	 */
5358	if (sf_buf_invalidate_cache(m))
5359		return;
5360
5361	/*
5362	 * If page is not mapped by sf buffer, but CPU does not
5363	 * support self snoop, map the page transient and do
5364	 * invalidation. In the worst case, whole cache is flushed by
5365	 * pmap_invalidate_cache_range().
5366	 */
5367	if ((cpu_feature & CPUID_SS) == 0)
5368		pmap_flush_page(m);
5369}
5370
5371static void
5372pmap_flush_page(vm_page_t m)
5373{
5374	struct sysmaps *sysmaps;
5375	vm_offset_t sva, eva;
5376	bool useclflushopt;
5377
5378	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5379	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5380		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
5381		mtx_lock(&sysmaps->lock);
5382		if (*sysmaps->CMAP2)
5383			panic("pmap_flush_page: CMAP2 busy");
5384		sched_pin();
5385		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5386		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5387		invlcaddr(sysmaps->CADDR2);
5388		sva = (vm_offset_t)sysmaps->CADDR2;
5389		eva = sva + PAGE_SIZE;
5390
5391		/*
5392		 * Use mfence or sfence despite the ordering implied by
5393		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5394		 * and clflushopt are not guaranteed to be ordered by
5395		 * any other instruction.
5396		 */
5397		if (useclflushopt)
5398			sfence();
5399		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5400			mfence();
5401		for (; sva < eva; sva += cpu_clflush_line_size) {
5402			if (useclflushopt)
5403				clflushopt(sva);
5404			else
5405				clflush(sva);
5406		}
5407		if (useclflushopt)
5408			sfence();
5409		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5410			mfence();
5411		*sysmaps->CMAP2 = 0;
5412		sched_unpin();
5413		mtx_unlock(&sysmaps->lock);
5414	} else
5415		pmap_invalidate_cache();
5416}
5417
5418/*
5419 * Changes the specified virtual address range's memory type to that given by
5420 * the parameter "mode".  The specified virtual address range must be
5421 * completely contained within either the kernel map.
5422 *
5423 * Returns zero if the change completed successfully, and either EINVAL or
5424 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5425 * of the virtual address range was not mapped, and ENOMEM is returned if
5426 * there was insufficient memory available to complete the change.
5427 */
5428int
5429pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5430{
5431	vm_offset_t base, offset, tmpva;
5432	pd_entry_t *pde;
5433	pt_entry_t *pte;
5434	int cache_bits_pte, cache_bits_pde;
5435	boolean_t changed;
5436
5437	base = trunc_page(va);
5438	offset = va & PAGE_MASK;
5439	size = round_page(offset + size);
5440
5441	/*
5442	 * Only supported on kernel virtual addresses above the recursive map.
5443	 */
5444	if (base < VM_MIN_KERNEL_ADDRESS)
5445		return (EINVAL);
5446
5447	cache_bits_pde = pmap_cache_bits(mode, 1);
5448	cache_bits_pte = pmap_cache_bits(mode, 0);
5449	changed = FALSE;
5450
5451	/*
5452	 * Pages that aren't mapped aren't supported.  Also break down
5453	 * 2/4MB pages into 4KB pages if required.
5454	 */
5455	PMAP_LOCK(kernel_pmap);
5456	for (tmpva = base; tmpva < base + size; ) {
5457		pde = pmap_pde(kernel_pmap, tmpva);
5458		if (*pde == 0) {
5459			PMAP_UNLOCK(kernel_pmap);
5460			return (EINVAL);
5461		}
5462		if (*pde & PG_PS) {
5463			/*
5464			 * If the current 2/4MB page already has
5465			 * the required memory type, then we need not
5466			 * demote this page.  Just increment tmpva to
5467			 * the next 2/4MB page frame.
5468			 */
5469			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5470				tmpva = trunc_4mpage(tmpva) + NBPDR;
5471				continue;
5472			}
5473
5474			/*
5475			 * If the current offset aligns with a 2/4MB
5476			 * page frame and there is at least 2/4MB left
5477			 * within the range, then we need not break
5478			 * down this page into 4KB pages.
5479			 */
5480			if ((tmpva & PDRMASK) == 0 &&
5481			    tmpva + PDRMASK < base + size) {
5482				tmpva += NBPDR;
5483				continue;
5484			}
5485			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5486				PMAP_UNLOCK(kernel_pmap);
5487				return (ENOMEM);
5488			}
5489		}
5490		pte = vtopte(tmpva);
5491		if (*pte == 0) {
5492			PMAP_UNLOCK(kernel_pmap);
5493			return (EINVAL);
5494		}
5495		tmpva += PAGE_SIZE;
5496	}
5497	PMAP_UNLOCK(kernel_pmap);
5498
5499	/*
5500	 * Ok, all the pages exist, so run through them updating their
5501	 * cache mode if required.
5502	 */
5503	for (tmpva = base; tmpva < base + size; ) {
5504		pde = pmap_pde(kernel_pmap, tmpva);
5505		if (*pde & PG_PS) {
5506			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5507				pmap_pde_attr(pde, cache_bits_pde);
5508				changed = TRUE;
5509			}
5510			tmpva = trunc_4mpage(tmpva) + NBPDR;
5511		} else {
5512			pte = vtopte(tmpva);
5513			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5514				pmap_pte_attr(pte, cache_bits_pte);
5515				changed = TRUE;
5516			}
5517			tmpva += PAGE_SIZE;
5518		}
5519	}
5520
5521	/*
5522	 * Flush CPU caches to make sure any data isn't cached that
5523	 * shouldn't be, etc.
5524	 */
5525	if (changed) {
5526		pmap_invalidate_range(kernel_pmap, base, tmpva);
5527		pmap_invalidate_cache_range(base, tmpva, FALSE);
5528	}
5529	return (0);
5530}
5531
5532/*
5533 * perform the pmap work for mincore
5534 */
5535int
5536pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5537{
5538	pd_entry_t *pdep;
5539	pt_entry_t *ptep, pte;
5540	vm_paddr_t pa;
5541	int val;
5542
5543	PMAP_LOCK(pmap);
5544retry:
5545	pdep = pmap_pde(pmap, addr);
5546	if (*pdep != 0) {
5547		if (*pdep & PG_PS) {
5548			pte = *pdep;
5549			/* Compute the physical address of the 4KB page. */
5550			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5551			    PG_FRAME;
5552			val = MINCORE_SUPER;
5553		} else {
5554			ptep = pmap_pte(pmap, addr);
5555			pte = *ptep;
5556			pmap_pte_release(ptep);
5557			pa = pte & PG_FRAME;
5558			val = 0;
5559		}
5560	} else {
5561		pte = 0;
5562		pa = 0;
5563		val = 0;
5564	}
5565	if ((pte & PG_V) != 0) {
5566		val |= MINCORE_INCORE;
5567		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5568			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5569		if ((pte & PG_A) != 0)
5570			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5571	}
5572	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5573	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5574	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5575		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5576		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5577			goto retry;
5578	} else
5579		PA_UNLOCK_COND(*locked_pa);
5580	PMAP_UNLOCK(pmap);
5581	return (val);
5582}
5583
5584void
5585pmap_activate(struct thread *td)
5586{
5587	pmap_t	pmap, oldpmap;
5588	u_int	cpuid;
5589	u_int32_t  cr3;
5590
5591	critical_enter();
5592	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5593	oldpmap = PCPU_GET(curpmap);
5594	cpuid = PCPU_GET(cpuid);
5595#if defined(SMP)
5596	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5597	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5598#else
5599	CPU_CLR(cpuid, &oldpmap->pm_active);
5600	CPU_SET(cpuid, &pmap->pm_active);
5601#endif
5602#if defined(PAE) || defined(PAE_TABLES)
5603	cr3 = vtophys(pmap->pm_pdpt);
5604#else
5605	cr3 = vtophys(pmap->pm_pdir);
5606#endif
5607	/*
5608	 * pmap_activate is for the current thread on the current cpu
5609	 */
5610	td->td_pcb->pcb_cr3 = cr3;
5611	load_cr3(cr3);
5612	PCPU_SET(curpmap, pmap);
5613	critical_exit();
5614}
5615
5616void
5617pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5618{
5619}
5620
5621/*
5622 *	Increase the starting virtual address of the given mapping if a
5623 *	different alignment might result in more superpage mappings.
5624 */
5625void
5626pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5627    vm_offset_t *addr, vm_size_t size)
5628{
5629	vm_offset_t superpage_offset;
5630
5631	if (size < NBPDR)
5632		return;
5633	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5634		offset += ptoa(object->pg_color);
5635	superpage_offset = offset & PDRMASK;
5636	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5637	    (*addr & PDRMASK) == superpage_offset)
5638		return;
5639	if ((*addr & PDRMASK) < superpage_offset)
5640		*addr = (*addr & ~PDRMASK) + superpage_offset;
5641	else
5642		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5643}
5644
5645
5646#if defined(PMAP_DEBUG)
5647pmap_pid_dump(int pid)
5648{
5649	pmap_t pmap;
5650	struct proc *p;
5651	int npte = 0;
5652	int index;
5653
5654	sx_slock(&allproc_lock);
5655	FOREACH_PROC_IN_SYSTEM(p) {
5656		if (p->p_pid != pid)
5657			continue;
5658
5659		if (p->p_vmspace) {
5660			int i,j;
5661			index = 0;
5662			pmap = vmspace_pmap(p->p_vmspace);
5663			for (i = 0; i < NPDEPTD; i++) {
5664				pd_entry_t *pde;
5665				pt_entry_t *pte;
5666				vm_offset_t base = i << PDRSHIFT;
5667
5668				pde = &pmap->pm_pdir[i];
5669				if (pde && pmap_pde_v(pde)) {
5670					for (j = 0; j < NPTEPG; j++) {
5671						vm_offset_t va = base + (j << PAGE_SHIFT);
5672						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5673							if (index) {
5674								index = 0;
5675								printf("\n");
5676							}
5677							sx_sunlock(&allproc_lock);
5678							return (npte);
5679						}
5680						pte = pmap_pte(pmap, va);
5681						if (pte && pmap_pte_v(pte)) {
5682							pt_entry_t pa;
5683							vm_page_t m;
5684							pa = *pte;
5685							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5686							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5687								va, pa, m->hold_count, m->wire_count, m->flags);
5688							npte++;
5689							index++;
5690							if (index >= 2) {
5691								index = 0;
5692								printf("\n");
5693							} else {
5694								printf(" ");
5695							}
5696						}
5697					}
5698				}
5699			}
5700		}
5701	}
5702	sx_sunlock(&allproc_lock);
5703	return (npte);
5704}
5705#endif
5706
5707#if defined(DEBUG)
5708
5709static void	pads(pmap_t pm);
5710void		pmap_pvdump(vm_paddr_t pa);
5711
5712/* print address space of pmap*/
5713static void
5714pads(pmap_t pm)
5715{
5716	int i, j;
5717	vm_paddr_t va;
5718	pt_entry_t *ptep;
5719
5720	if (pm == kernel_pmap)
5721		return;
5722	for (i = 0; i < NPDEPTD; i++)
5723		if (pm->pm_pdir[i])
5724			for (j = 0; j < NPTEPG; j++) {
5725				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5726				if (pm == kernel_pmap && va < KERNBASE)
5727					continue;
5728				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5729					continue;
5730				ptep = pmap_pte(pm, va);
5731				if (pmap_pte_v(ptep))
5732					printf("%x:%x ", va, *ptep);
5733			};
5734
5735}
5736
5737void
5738pmap_pvdump(vm_paddr_t pa)
5739{
5740	pv_entry_t pv;
5741	pmap_t pmap;
5742	vm_page_t m;
5743
5744	printf("pa %x", pa);
5745	m = PHYS_TO_VM_PAGE(pa);
5746	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5747		pmap = PV_PMAP(pv);
5748		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5749		pads(pmap);
5750	}
5751	printf(" ");
5752}
5753#endif
5754