if_wpi.c revision 262007
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: stable/10/sys/dev/wpi/if_wpi.c 262007 2014-02-17 01:36:53Z kevlo $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include "opt_wlan.h"
63
64#include <sys/param.h>
65#include <sys/sysctl.h>
66#include <sys/sockio.h>
67#include <sys/mbuf.h>
68#include <sys/kernel.h>
69#include <sys/socket.h>
70#include <sys/systm.h>
71#include <sys/malloc.h>
72#include <sys/queue.h>
73#include <sys/taskqueue.h>
74#include <sys/module.h>
75#include <sys/bus.h>
76#include <sys/endian.h>
77#include <sys/linker.h>
78#include <sys/firmware.h>
79
80#include <machine/bus.h>
81#include <machine/resource.h>
82#include <sys/rman.h>
83
84#include <dev/pci/pcireg.h>
85#include <dev/pci/pcivar.h>
86
87#include <net/bpf.h>
88#include <net/if.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <net80211/ieee80211_var.h>
96#include <net80211/ieee80211_radiotap.h>
97#include <net80211/ieee80211_regdomain.h>
98#include <net80211/ieee80211_ratectl.h>
99
100#include <netinet/in.h>
101#include <netinet/in_systm.h>
102#include <netinet/in_var.h>
103#include <netinet/ip.h>
104#include <netinet/if_ether.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108
109#define WPI_DEBUG
110
111#ifdef WPI_DEBUG
112#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
113#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
114#define	WPI_DEBUG_SET	(wpi_debug != 0)
115
116enum {
117	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
118	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
119	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
120	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
121	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
122	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
123	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
124	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
125	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
126	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
127	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
128	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
129	WPI_DEBUG_ANY		= 0xffffffff
130};
131
132static int wpi_debug = 0;
133SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
134TUNABLE_INT("debug.wpi", &wpi_debug);
135
136#else
137#define DPRINTF(x)
138#define DPRINTFN(n, x)
139#define WPI_DEBUG_SET	0
140#endif
141
142struct wpi_ident {
143	uint16_t	vendor;
144	uint16_t	device;
145	uint16_t	subdevice;
146	const char	*name;
147};
148
149static const struct wpi_ident wpi_ident_table[] = {
150	/* The below entries support ABG regardless of the subid */
151	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
152	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153	/* The below entries only support BG */
154	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
157	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
158	{ 0, 0, 0, NULL }
159};
160
161static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
162		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
163		    const uint8_t [IEEE80211_ADDR_LEN],
164		    const uint8_t [IEEE80211_ADDR_LEN]);
165static void	wpi_vap_delete(struct ieee80211vap *);
166static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
167		    void **, bus_size_t, bus_size_t, int);
168static void	wpi_dma_contig_free(struct wpi_dma_info *);
169static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
170static int	wpi_alloc_shared(struct wpi_softc *);
171static void	wpi_free_shared(struct wpi_softc *);
172static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176		    int, int);
177static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
180static void	wpi_mem_lock(struct wpi_softc *);
181static void	wpi_mem_unlock(struct wpi_softc *);
182static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
183static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
184static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
185		    const uint32_t *, int);
186static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
187static int	wpi_alloc_fwmem(struct wpi_softc *);
188static void	wpi_free_fwmem(struct wpi_softc *);
189static int	wpi_load_firmware(struct wpi_softc *);
190static void	wpi_unload_firmware(struct wpi_softc *);
191static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
192static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
193		    struct wpi_rx_data *);
194static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
196static void	wpi_notif_intr(struct wpi_softc *);
197static void	wpi_intr(void *);
198static uint8_t	wpi_plcp_signal(int);
199static void	wpi_watchdog(void *);
200static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
201		    struct ieee80211_node *, int);
202static void	wpi_start(struct ifnet *);
203static void	wpi_start_locked(struct ifnet *);
204static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
205		    const struct ieee80211_bpf_params *);
206static void	wpi_scan_start(struct ieee80211com *);
207static void	wpi_scan_end(struct ieee80211com *);
208static void	wpi_set_channel(struct ieee80211com *);
209static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
210static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
211static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
212static void	wpi_read_eeprom(struct wpi_softc *,
213		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
214static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
215static void	wpi_read_eeprom_group(struct wpi_softc *, int);
216static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
217static int	wpi_wme_update(struct ieee80211com *);
218static int	wpi_mrr_setup(struct wpi_softc *);
219static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
220static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
221#if 0
222static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
223#endif
224static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
226static int	wpi_scan(struct wpi_softc *);
227static int	wpi_config(struct wpi_softc *);
228static void	wpi_stop_master(struct wpi_softc *);
229static int	wpi_power_up(struct wpi_softc *);
230static int	wpi_reset(struct wpi_softc *);
231static void	wpi_hwreset(void *, int);
232static void	wpi_rfreset(void *, int);
233static void	wpi_hw_config(struct wpi_softc *);
234static void	wpi_init(void *);
235static void	wpi_init_locked(struct wpi_softc *, int);
236static void	wpi_stop(struct wpi_softc *);
237static void	wpi_stop_locked(struct wpi_softc *);
238
239static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240		    int);
241static void	wpi_calib_timeout(void *);
242static void	wpi_power_calibration(struct wpi_softc *, int);
243static int	wpi_get_power_index(struct wpi_softc *,
244		    struct wpi_power_group *, struct ieee80211_channel *, int);
245#ifdef WPI_DEBUG
246static const char *wpi_cmd_str(int);
247#endif
248static int wpi_probe(device_t);
249static int wpi_attach(device_t);
250static int wpi_detach(device_t);
251static int wpi_shutdown(device_t);
252static int wpi_suspend(device_t);
253static int wpi_resume(device_t);
254
255
256static device_method_t wpi_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		wpi_probe),
259	DEVMETHOD(device_attach,	wpi_attach),
260	DEVMETHOD(device_detach,	wpi_detach),
261	DEVMETHOD(device_shutdown,	wpi_shutdown),
262	DEVMETHOD(device_suspend,	wpi_suspend),
263	DEVMETHOD(device_resume,	wpi_resume),
264
265	{ 0, 0 }
266};
267
268static driver_t wpi_driver = {
269	"wpi",
270	wpi_methods,
271	sizeof (struct wpi_softc)
272};
273
274static devclass_t wpi_devclass;
275
276DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278MODULE_VERSION(wpi, 1);
279
280static const uint8_t wpi_ridx_to_plcp[] = {
281	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282	/* R1-R4 (ral/ural is R4-R1) */
283	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284	/* CCK: device-dependent */
285	10, 20, 55, 110
286};
287static const uint8_t wpi_ridx_to_rate[] = {
288	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289	2, 4, 11, 22 /*CCK */
290};
291
292
293static int
294wpi_probe(device_t dev)
295{
296	const struct wpi_ident *ident;
297
298	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299		if (pci_get_vendor(dev) == ident->vendor &&
300		    pci_get_device(dev) == ident->device) {
301			device_set_desc(dev, ident->name);
302			return 0;
303		}
304	}
305	return ENXIO;
306}
307
308/**
309 * Load the firmare image from disk to the allocated dma buffer.
310 * we also maintain the reference to the firmware pointer as there
311 * is times where we may need to reload the firmware but we are not
312 * in a context that can access the filesystem (ie taskq cause by restart)
313 *
314 * @return 0 on success, an errno on failure
315 */
316static int
317wpi_load_firmware(struct wpi_softc *sc)
318{
319	const struct firmware *fp;
320	struct wpi_dma_info *dma = &sc->fw_dma;
321	const struct wpi_firmware_hdr *hdr;
322	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
323	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
324	int error;
325
326	DPRINTFN(WPI_DEBUG_FIRMWARE,
327	    ("Attempting Loading Firmware from wpi_fw module\n"));
328
329	WPI_UNLOCK(sc);
330
331	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
332		device_printf(sc->sc_dev,
333		    "could not load firmware image 'wpifw'\n");
334		error = ENOENT;
335		WPI_LOCK(sc);
336		goto fail;
337	}
338
339	fp = sc->fw_fp;
340
341	WPI_LOCK(sc);
342
343	/* Validate the firmware is minimum a particular version */
344	if (fp->version < WPI_FW_MINVERSION) {
345	    device_printf(sc->sc_dev,
346			   "firmware version is too old. Need %d, got %d\n",
347			   WPI_FW_MINVERSION,
348			   fp->version);
349	    error = ENXIO;
350	    goto fail;
351	}
352
353	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
354		device_printf(sc->sc_dev,
355		    "firmware file too short: %zu bytes\n", fp->datasize);
356		error = ENXIO;
357		goto fail;
358	}
359
360	hdr = (const struct wpi_firmware_hdr *)fp->data;
361
362	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
363	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
364
365	rtextsz = le32toh(hdr->rtextsz);
366	rdatasz = le32toh(hdr->rdatasz);
367	itextsz = le32toh(hdr->itextsz);
368	idatasz = le32toh(hdr->idatasz);
369	btextsz = le32toh(hdr->btextsz);
370
371	/* check that all firmware segments are present */
372	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
373		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
374		device_printf(sc->sc_dev,
375		    "firmware file too short: %zu bytes\n", fp->datasize);
376		error = ENXIO; /* XXX appropriate error code? */
377		goto fail;
378	}
379
380	/* get pointers to firmware segments */
381	rtext = (const uint8_t *)(hdr + 1);
382	rdata = rtext + rtextsz;
383	itext = rdata + rdatasz;
384	idata = itext + itextsz;
385	btext = idata + idatasz;
386
387	DPRINTFN(WPI_DEBUG_FIRMWARE,
388	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
389	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
390	     (le32toh(hdr->version) & 0xff000000) >> 24,
391	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
392	     (le32toh(hdr->version) & 0x0000ffff),
393	     rtextsz, rdatasz,
394	     itextsz, idatasz, btextsz));
395
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
399	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
400	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
401
402	/* sanity checks */
403	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
404	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
405	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
406	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
407	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
408	    (btextsz & 3) != 0) {
409		device_printf(sc->sc_dev, "firmware invalid\n");
410		error = EINVAL;
411		goto fail;
412	}
413
414	/* copy initialization images into pre-allocated DMA-safe memory */
415	memcpy(dma->vaddr, idata, idatasz);
416	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
417
418	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
419
420	/* tell adapter where to find initialization images */
421	wpi_mem_lock(sc);
422	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
423	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
424	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
425	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
426	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
427	wpi_mem_unlock(sc);
428
429	/* load firmware boot code */
430	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
431	    device_printf(sc->sc_dev, "Failed to load microcode\n");
432	    goto fail;
433	}
434
435	/* now press "execute" */
436	WPI_WRITE(sc, WPI_RESET, 0);
437
438	/* wait at most one second for the first alive notification */
439	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
440		device_printf(sc->sc_dev,
441		    "timeout waiting for adapter to initialize\n");
442		goto fail;
443	}
444
445	/* copy runtime images into pre-allocated DMA-sage memory */
446	memcpy(dma->vaddr, rdata, rdatasz);
447	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
448	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
449
450	/* tell adapter where to find runtime images */
451	wpi_mem_lock(sc);
452	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
453	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
454	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
455	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
456	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
457	wpi_mem_unlock(sc);
458
459	/* wait at most one second for the first alive notification */
460	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
461		device_printf(sc->sc_dev,
462		    "timeout waiting for adapter to initialize2\n");
463		goto fail;
464	}
465
466	DPRINTFN(WPI_DEBUG_FIRMWARE,
467	    ("Firmware loaded to driver successfully\n"));
468	return error;
469fail:
470	wpi_unload_firmware(sc);
471	return error;
472}
473
474/**
475 * Free the referenced firmware image
476 */
477static void
478wpi_unload_firmware(struct wpi_softc *sc)
479{
480
481	if (sc->fw_fp) {
482		WPI_UNLOCK(sc);
483		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
484		WPI_LOCK(sc);
485		sc->fw_fp = NULL;
486	}
487}
488
489static int
490wpi_attach(device_t dev)
491{
492	struct wpi_softc *sc = device_get_softc(dev);
493	struct ifnet *ifp;
494	struct ieee80211com *ic;
495	int ac, error, supportsa = 1;
496	uint32_t tmp;
497	const struct wpi_ident *ident;
498	uint8_t macaddr[IEEE80211_ADDR_LEN];
499
500	sc->sc_dev = dev;
501
502	if (bootverbose || WPI_DEBUG_SET)
503	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
504
505	/*
506	 * Some card's only support 802.11b/g not a, check to see if
507	 * this is one such card. A 0x0 in the subdevice table indicates
508	 * the entire subdevice range is to be ignored.
509	 */
510	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
511		if (ident->subdevice &&
512		    pci_get_subdevice(dev) == ident->subdevice) {
513		    supportsa = 0;
514		    break;
515		}
516	}
517
518	/* Create the tasks that can be queued */
519	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
520	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
521
522	WPI_LOCK_INIT(sc);
523
524	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
525	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
526
527	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
528		device_printf(dev, "chip is in D%d power mode "
529		    "-- setting to D0\n", pci_get_powerstate(dev));
530		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
531	}
532
533	/* disable the retry timeout register */
534	pci_write_config(dev, 0x41, 0, 1);
535
536	/* enable bus-mastering */
537	pci_enable_busmaster(dev);
538
539	sc->mem_rid = PCIR_BAR(0);
540	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
541	    RF_ACTIVE);
542	if (sc->mem == NULL) {
543		device_printf(dev, "could not allocate memory resource\n");
544		error = ENOMEM;
545		goto fail;
546	}
547
548	sc->sc_st = rman_get_bustag(sc->mem);
549	sc->sc_sh = rman_get_bushandle(sc->mem);
550
551	sc->irq_rid = 0;
552	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
553	    RF_ACTIVE | RF_SHAREABLE);
554	if (sc->irq == NULL) {
555		device_printf(dev, "could not allocate interrupt resource\n");
556		error = ENOMEM;
557		goto fail;
558	}
559
560	/*
561	 * Allocate DMA memory for firmware transfers.
562	 */
563	if ((error = wpi_alloc_fwmem(sc)) != 0) {
564		printf(": could not allocate firmware memory\n");
565		error = ENOMEM;
566		goto fail;
567	}
568
569	/*
570	 * Put adapter into a known state.
571	 */
572	if ((error = wpi_reset(sc)) != 0) {
573		device_printf(dev, "could not reset adapter\n");
574		goto fail;
575	}
576
577	wpi_mem_lock(sc);
578	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
579	if (bootverbose || WPI_DEBUG_SET)
580	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
581
582	wpi_mem_unlock(sc);
583
584	/* Allocate shared page */
585	if ((error = wpi_alloc_shared(sc)) != 0) {
586		device_printf(dev, "could not allocate shared page\n");
587		goto fail;
588	}
589
590	/* tx data queues  - 4 for QoS purposes */
591	for (ac = 0; ac < WME_NUM_AC; ac++) {
592		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
593		if (error != 0) {
594		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
595		    goto fail;
596		}
597	}
598
599	/* command queue to talk to the card's firmware */
600	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
601	if (error != 0) {
602		device_printf(dev, "could not allocate command ring\n");
603		goto fail;
604	}
605
606	/* receive data queue */
607	error = wpi_alloc_rx_ring(sc, &sc->rxq);
608	if (error != 0) {
609		device_printf(dev, "could not allocate Rx ring\n");
610		goto fail;
611	}
612
613	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
614	if (ifp == NULL) {
615		device_printf(dev, "can not if_alloc()\n");
616		error = ENOMEM;
617		goto fail;
618	}
619	ic = ifp->if_l2com;
620
621	ic->ic_ifp = ifp;
622	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
623	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
624
625	/* set device capabilities */
626	ic->ic_caps =
627		  IEEE80211_C_STA		/* station mode supported */
628		| IEEE80211_C_MONITOR		/* monitor mode supported */
629		| IEEE80211_C_TXPMGT		/* tx power management */
630		| IEEE80211_C_SHSLOT		/* short slot time supported */
631		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
632		| IEEE80211_C_WPA		/* 802.11i */
633/* XXX looks like WME is partly supported? */
634#if 0
635		| IEEE80211_C_IBSS		/* IBSS mode support */
636		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
637		| IEEE80211_C_WME		/* 802.11e */
638		| IEEE80211_C_HOSTAP		/* Host access point mode */
639#endif
640		;
641
642	/*
643	 * Read in the eeprom and also setup the channels for
644	 * net80211. We don't set the rates as net80211 does this for us
645	 */
646	wpi_read_eeprom(sc, macaddr);
647
648	if (bootverbose || WPI_DEBUG_SET) {
649	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
650	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
651			  sc->type > 1 ? 'B': '?');
652	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
653			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
654	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
655			  supportsa ? "does" : "does not");
656
657	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
658	       what sc->rev really represents - benjsc 20070615 */
659	}
660
661	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
662	ifp->if_softc = sc;
663	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
664	ifp->if_init = wpi_init;
665	ifp->if_ioctl = wpi_ioctl;
666	ifp->if_start = wpi_start;
667	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
668	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
669	IFQ_SET_READY(&ifp->if_snd);
670
671	ieee80211_ifattach(ic, macaddr);
672	/* override default methods */
673	ic->ic_raw_xmit = wpi_raw_xmit;
674	ic->ic_wme.wme_update = wpi_wme_update;
675	ic->ic_scan_start = wpi_scan_start;
676	ic->ic_scan_end = wpi_scan_end;
677	ic->ic_set_channel = wpi_set_channel;
678	ic->ic_scan_curchan = wpi_scan_curchan;
679	ic->ic_scan_mindwell = wpi_scan_mindwell;
680
681	ic->ic_vap_create = wpi_vap_create;
682	ic->ic_vap_delete = wpi_vap_delete;
683
684	ieee80211_radiotap_attach(ic,
685	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
686		WPI_TX_RADIOTAP_PRESENT,
687	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
688		WPI_RX_RADIOTAP_PRESENT);
689
690	/*
691	 * Hook our interrupt after all initialization is complete.
692	 */
693	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
694	    NULL, wpi_intr, sc, &sc->sc_ih);
695	if (error != 0) {
696		device_printf(dev, "could not set up interrupt\n");
697		goto fail;
698	}
699
700	if (bootverbose)
701		ieee80211_announce(ic);
702#ifdef XXX_DEBUG
703	ieee80211_announce_channels(ic);
704#endif
705	return 0;
706
707fail:	wpi_detach(dev);
708	return ENXIO;
709}
710
711static int
712wpi_detach(device_t dev)
713{
714	struct wpi_softc *sc = device_get_softc(dev);
715	struct ifnet *ifp = sc->sc_ifp;
716	struct ieee80211com *ic;
717	int ac;
718
719	if (ifp != NULL) {
720		ic = ifp->if_l2com;
721
722		ieee80211_draintask(ic, &sc->sc_restarttask);
723		ieee80211_draintask(ic, &sc->sc_radiotask);
724		wpi_stop(sc);
725		callout_drain(&sc->watchdog_to);
726		callout_drain(&sc->calib_to);
727		ieee80211_ifdetach(ic);
728	}
729
730	WPI_LOCK(sc);
731	if (sc->txq[0].data_dmat) {
732		for (ac = 0; ac < WME_NUM_AC; ac++)
733			wpi_free_tx_ring(sc, &sc->txq[ac]);
734
735		wpi_free_tx_ring(sc, &sc->cmdq);
736		wpi_free_rx_ring(sc, &sc->rxq);
737		wpi_free_shared(sc);
738	}
739
740	if (sc->fw_fp != NULL) {
741		wpi_unload_firmware(sc);
742	}
743
744	if (sc->fw_dma.tag)
745		wpi_free_fwmem(sc);
746	WPI_UNLOCK(sc);
747
748	if (sc->irq != NULL) {
749		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
750		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
751	}
752
753	if (sc->mem != NULL)
754		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
755
756	if (ifp != NULL)
757		if_free(ifp);
758
759	WPI_LOCK_DESTROY(sc);
760
761	return 0;
762}
763
764static struct ieee80211vap *
765wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
766    enum ieee80211_opmode opmode, int flags,
767    const uint8_t bssid[IEEE80211_ADDR_LEN],
768    const uint8_t mac[IEEE80211_ADDR_LEN])
769{
770	struct wpi_vap *wvp;
771	struct ieee80211vap *vap;
772
773	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
774		return NULL;
775	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
776	    M_80211_VAP, M_NOWAIT | M_ZERO);
777	if (wvp == NULL)
778		return NULL;
779	vap = &wvp->vap;
780	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
781	/* override with driver methods */
782	wvp->newstate = vap->iv_newstate;
783	vap->iv_newstate = wpi_newstate;
784
785	ieee80211_ratectl_init(vap);
786	/* complete setup */
787	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
788	ic->ic_opmode = opmode;
789	return vap;
790}
791
792static void
793wpi_vap_delete(struct ieee80211vap *vap)
794{
795	struct wpi_vap *wvp = WPI_VAP(vap);
796
797	ieee80211_ratectl_deinit(vap);
798	ieee80211_vap_detach(vap);
799	free(wvp, M_80211_VAP);
800}
801
802static void
803wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
804{
805	if (error != 0)
806		return;
807
808	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
809
810	*(bus_addr_t *)arg = segs[0].ds_addr;
811}
812
813/*
814 * Allocates a contiguous block of dma memory of the requested size and
815 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
816 * allocations greater than 4096 may fail. Hence if the requested alignment is
817 * greater we allocate 'alignment' size extra memory and shift the vaddr and
818 * paddr after the dma load. This bypasses the problem at the cost of a little
819 * more memory.
820 */
821static int
822wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
823    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
824{
825	int error;
826	bus_size_t align;
827	bus_size_t reqsize;
828
829	DPRINTFN(WPI_DEBUG_DMA,
830	    ("Size: %zd - alignment %zd\n", size, alignment));
831
832	dma->size = size;
833	dma->tag = NULL;
834
835	if (alignment > 4096) {
836		align = PAGE_SIZE;
837		reqsize = size + alignment;
838	} else {
839		align = alignment;
840		reqsize = size;
841	}
842	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
843	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
844	    NULL, NULL, reqsize,
845	    1, reqsize, flags,
846	    NULL, NULL, &dma->tag);
847	if (error != 0) {
848		device_printf(sc->sc_dev,
849		    "could not create shared page DMA tag\n");
850		goto fail;
851	}
852	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
853	    flags | BUS_DMA_ZERO, &dma->map);
854	if (error != 0) {
855		device_printf(sc->sc_dev,
856		    "could not allocate shared page DMA memory\n");
857		goto fail;
858	}
859
860	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
861	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
862
863	/* Save the original pointers so we can free all the memory */
864	dma->paddr = dma->paddr_start;
865	dma->vaddr = dma->vaddr_start;
866
867	/*
868	 * Check the alignment and increment by 4096 until we get the
869	 * requested alignment. Fail if can't obtain the alignment
870	 * we requested.
871	 */
872	if ((dma->paddr & (alignment -1 )) != 0) {
873		int i;
874
875		for (i = 0; i < alignment / 4096; i++) {
876			if ((dma->paddr & (alignment - 1 )) == 0)
877				break;
878			dma->paddr += 4096;
879			dma->vaddr += 4096;
880		}
881		if (i == alignment / 4096) {
882			device_printf(sc->sc_dev,
883			    "alignment requirement was not satisfied\n");
884			goto fail;
885		}
886	}
887
888	if (error != 0) {
889		device_printf(sc->sc_dev,
890		    "could not load shared page DMA map\n");
891		goto fail;
892	}
893
894	if (kvap != NULL)
895		*kvap = dma->vaddr;
896
897	return 0;
898
899fail:
900	wpi_dma_contig_free(dma);
901	return error;
902}
903
904static void
905wpi_dma_contig_free(struct wpi_dma_info *dma)
906{
907	if (dma->tag) {
908		if (dma->map != NULL) {
909			if (dma->paddr_start != 0) {
910				bus_dmamap_sync(dma->tag, dma->map,
911				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
912				bus_dmamap_unload(dma->tag, dma->map);
913			}
914			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
915		}
916		bus_dma_tag_destroy(dma->tag);
917	}
918}
919
920/*
921 * Allocate a shared page between host and NIC.
922 */
923static int
924wpi_alloc_shared(struct wpi_softc *sc)
925{
926	int error;
927
928	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
929	    (void **)&sc->shared, sizeof (struct wpi_shared),
930	    PAGE_SIZE,
931	    BUS_DMA_NOWAIT);
932
933	if (error != 0) {
934		device_printf(sc->sc_dev,
935		    "could not allocate shared area DMA memory\n");
936	}
937
938	return error;
939}
940
941static void
942wpi_free_shared(struct wpi_softc *sc)
943{
944	wpi_dma_contig_free(&sc->shared_dma);
945}
946
947static int
948wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
949{
950
951	int i, error;
952
953	ring->cur = 0;
954
955	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
956	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
957	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
958
959	if (error != 0) {
960		device_printf(sc->sc_dev,
961		    "%s: could not allocate rx ring DMA memory, error %d\n",
962		    __func__, error);
963		goto fail;
964	}
965
966        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
967	    BUS_SPACE_MAXADDR_32BIT,
968            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
969            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
970        if (error != 0) {
971                device_printf(sc->sc_dev,
972		    "%s: bus_dma_tag_create_failed, error %d\n",
973		    __func__, error);
974                goto fail;
975        }
976
977	/*
978	 * Setup Rx buffers.
979	 */
980	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
981		struct wpi_rx_data *data = &ring->data[i];
982		struct mbuf *m;
983		bus_addr_t paddr;
984
985		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
986		if (error != 0) {
987			device_printf(sc->sc_dev,
988			    "%s: bus_dmamap_create failed, error %d\n",
989			    __func__, error);
990			goto fail;
991		}
992		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
993		if (m == NULL) {
994			device_printf(sc->sc_dev,
995			   "%s: could not allocate rx mbuf\n", __func__);
996			error = ENOMEM;
997			goto fail;
998		}
999		/* map page */
1000		error = bus_dmamap_load(ring->data_dmat, data->map,
1001		    mtod(m, caddr_t), MJUMPAGESIZE,
1002		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1003		if (error != 0 && error != EFBIG) {
1004			device_printf(sc->sc_dev,
1005			    "%s: bus_dmamap_load failed, error %d\n",
1006			    __func__, error);
1007			m_freem(m);
1008			error = ENOMEM;	/* XXX unique code */
1009			goto fail;
1010		}
1011		bus_dmamap_sync(ring->data_dmat, data->map,
1012		    BUS_DMASYNC_PREWRITE);
1013
1014		data->m = m;
1015		ring->desc[i] = htole32(paddr);
1016	}
1017	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1018	    BUS_DMASYNC_PREWRITE);
1019	return 0;
1020fail:
1021	wpi_free_rx_ring(sc, ring);
1022	return error;
1023}
1024
1025static void
1026wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1027{
1028	int ntries;
1029
1030	wpi_mem_lock(sc);
1031
1032	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1033
1034	for (ntries = 0; ntries < 100; ntries++) {
1035		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1036			break;
1037		DELAY(10);
1038	}
1039
1040	wpi_mem_unlock(sc);
1041
1042#ifdef WPI_DEBUG
1043	if (ntries == 100 && wpi_debug > 0)
1044		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1045#endif
1046
1047	ring->cur = 0;
1048}
1049
1050static void
1051wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1052{
1053	int i;
1054
1055	wpi_dma_contig_free(&ring->desc_dma);
1056
1057	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1058		struct wpi_rx_data *data = &ring->data[i];
1059
1060		if (data->m != NULL) {
1061			bus_dmamap_sync(ring->data_dmat, data->map,
1062			    BUS_DMASYNC_POSTREAD);
1063			bus_dmamap_unload(ring->data_dmat, data->map);
1064			m_freem(data->m);
1065		}
1066		if (data->map != NULL)
1067			bus_dmamap_destroy(ring->data_dmat, data->map);
1068	}
1069}
1070
1071static int
1072wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073	int qid)
1074{
1075	struct wpi_tx_data *data;
1076	int i, error;
1077
1078	ring->qid = qid;
1079	ring->count = count;
1080	ring->queued = 0;
1081	ring->cur = 0;
1082	ring->data = NULL;
1083
1084	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087
1088	if (error != 0) {
1089	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090	    goto fail;
1091	}
1092
1093	/* update shared page with ring's base address */
1094	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095
1096	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098		BUS_DMA_NOWAIT);
1099
1100	if (error != 0) {
1101		device_printf(sc->sc_dev,
1102		    "could not allocate tx command DMA memory\n");
1103		goto fail;
1104	}
1105
1106	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107	    M_NOWAIT | M_ZERO);
1108	if (ring->data == NULL) {
1109		device_printf(sc->sc_dev,
1110		    "could not allocate tx data slots\n");
1111		goto fail;
1112	}
1113
1114	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117	    &ring->data_dmat);
1118	if (error != 0) {
1119		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120		goto fail;
1121	}
1122
1123	for (i = 0; i < count; i++) {
1124		data = &ring->data[i];
1125
1126		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127		if (error != 0) {
1128			device_printf(sc->sc_dev,
1129			    "could not create tx buf DMA map\n");
1130			goto fail;
1131		}
1132		bus_dmamap_sync(ring->data_dmat, data->map,
1133		    BUS_DMASYNC_PREWRITE);
1134	}
1135
1136	return 0;
1137
1138fail:
1139	wpi_free_tx_ring(sc, ring);
1140	return error;
1141}
1142
1143static void
1144wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145{
1146	struct wpi_tx_data *data;
1147	int i, ntries;
1148
1149	wpi_mem_lock(sc);
1150
1151	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152	for (ntries = 0; ntries < 100; ntries++) {
1153		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154			break;
1155		DELAY(10);
1156	}
1157#ifdef WPI_DEBUG
1158	if (ntries == 100 && wpi_debug > 0)
1159		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160		    ring->qid);
1161#endif
1162	wpi_mem_unlock(sc);
1163
1164	for (i = 0; i < ring->count; i++) {
1165		data = &ring->data[i];
1166
1167		if (data->m != NULL) {
1168			bus_dmamap_unload(ring->data_dmat, data->map);
1169			m_freem(data->m);
1170			data->m = NULL;
1171		}
1172	}
1173
1174	ring->queued = 0;
1175	ring->cur = 0;
1176}
1177
1178static void
1179wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180{
1181	struct wpi_tx_data *data;
1182	int i;
1183
1184	wpi_dma_contig_free(&ring->desc_dma);
1185	wpi_dma_contig_free(&ring->cmd_dma);
1186
1187	if (ring->data != NULL) {
1188		for (i = 0; i < ring->count; i++) {
1189			data = &ring->data[i];
1190
1191			if (data->m != NULL) {
1192				bus_dmamap_sync(ring->data_dmat, data->map,
1193				    BUS_DMASYNC_POSTWRITE);
1194				bus_dmamap_unload(ring->data_dmat, data->map);
1195				m_freem(data->m);
1196				data->m = NULL;
1197			}
1198		}
1199		free(ring->data, M_DEVBUF);
1200	}
1201
1202	if (ring->data_dmat != NULL)
1203		bus_dma_tag_destroy(ring->data_dmat);
1204}
1205
1206static int
1207wpi_shutdown(device_t dev)
1208{
1209	struct wpi_softc *sc = device_get_softc(dev);
1210
1211	WPI_LOCK(sc);
1212	wpi_stop_locked(sc);
1213	wpi_unload_firmware(sc);
1214	WPI_UNLOCK(sc);
1215
1216	return 0;
1217}
1218
1219static int
1220wpi_suspend(device_t dev)
1221{
1222	struct wpi_softc *sc = device_get_softc(dev);
1223	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1224
1225	ieee80211_suspend_all(ic);
1226	return 0;
1227}
1228
1229static int
1230wpi_resume(device_t dev)
1231{
1232	struct wpi_softc *sc = device_get_softc(dev);
1233	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1234
1235	pci_write_config(dev, 0x41, 0, 1);
1236
1237	ieee80211_resume_all(ic);
1238	return 0;
1239}
1240
1241/**
1242 * Called by net80211 when ever there is a change to 80211 state machine
1243 */
1244static int
1245wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1246{
1247	struct wpi_vap *wvp = WPI_VAP(vap);
1248	struct ieee80211com *ic = vap->iv_ic;
1249	struct ifnet *ifp = ic->ic_ifp;
1250	struct wpi_softc *sc = ifp->if_softc;
1251	int error;
1252
1253	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1254		ieee80211_state_name[vap->iv_state],
1255		ieee80211_state_name[nstate], sc->flags));
1256
1257	IEEE80211_UNLOCK(ic);
1258	WPI_LOCK(sc);
1259	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1260		/*
1261		 * On !INIT -> SCAN transitions, we need to clear any possible
1262		 * knowledge about associations.
1263		 */
1264		error = wpi_config(sc);
1265		if (error != 0) {
1266			device_printf(sc->sc_dev,
1267			    "%s: device config failed, error %d\n",
1268			    __func__, error);
1269		}
1270	}
1271	if (nstate == IEEE80211_S_AUTH ||
1272	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1273		/*
1274		 * The node must be registered in the firmware before auth.
1275		 * Also the associd must be cleared on RUN -> ASSOC
1276		 * transitions.
1277		 */
1278		error = wpi_auth(sc, vap);
1279		if (error != 0) {
1280			device_printf(sc->sc_dev,
1281			    "%s: could not move to auth state, error %d\n",
1282			    __func__, error);
1283		}
1284	}
1285	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1286		error = wpi_run(sc, vap);
1287		if (error != 0) {
1288			device_printf(sc->sc_dev,
1289			    "%s: could not move to run state, error %d\n",
1290			    __func__, error);
1291		}
1292	}
1293	if (nstate == IEEE80211_S_RUN) {
1294		/* RUN -> RUN transition; just restart the timers */
1295		wpi_calib_timeout(sc);
1296		/* XXX split out rate control timer */
1297	}
1298	WPI_UNLOCK(sc);
1299	IEEE80211_LOCK(ic);
1300	return wvp->newstate(vap, nstate, arg);
1301}
1302
1303/*
1304 * Grab exclusive access to NIC memory.
1305 */
1306static void
1307wpi_mem_lock(struct wpi_softc *sc)
1308{
1309	int ntries;
1310	uint32_t tmp;
1311
1312	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1313	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1314
1315	/* spin until we actually get the lock */
1316	for (ntries = 0; ntries < 100; ntries++) {
1317		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1318			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1319			break;
1320		DELAY(10);
1321	}
1322	if (ntries == 100)
1323		device_printf(sc->sc_dev, "could not lock memory\n");
1324}
1325
1326/*
1327 * Release lock on NIC memory.
1328 */
1329static void
1330wpi_mem_unlock(struct wpi_softc *sc)
1331{
1332	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1333	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1334}
1335
1336static uint32_t
1337wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1338{
1339	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1340	return WPI_READ(sc, WPI_READ_MEM_DATA);
1341}
1342
1343static void
1344wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1345{
1346	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1347	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1348}
1349
1350static void
1351wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1352    const uint32_t *data, int wlen)
1353{
1354	for (; wlen > 0; wlen--, data++, addr+=4)
1355		wpi_mem_write(sc, addr, *data);
1356}
1357
1358/*
1359 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1360 * using the traditional bit-bang method. Data is read up until len bytes have
1361 * been obtained.
1362 */
1363static uint16_t
1364wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1365{
1366	int ntries;
1367	uint32_t val;
1368	uint8_t *out = data;
1369
1370	wpi_mem_lock(sc);
1371
1372	for (; len > 0; len -= 2, addr++) {
1373		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1374
1375		for (ntries = 0; ntries < 10; ntries++) {
1376			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1377				break;
1378			DELAY(5);
1379		}
1380
1381		if (ntries == 10) {
1382			device_printf(sc->sc_dev, "could not read EEPROM\n");
1383			return ETIMEDOUT;
1384		}
1385
1386		*out++= val >> 16;
1387		if (len > 1)
1388			*out ++= val >> 24;
1389	}
1390
1391	wpi_mem_unlock(sc);
1392
1393	return 0;
1394}
1395
1396/*
1397 * The firmware text and data segments are transferred to the NIC using DMA.
1398 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1399 * where to find it.  Once the NIC has copied the firmware into its internal
1400 * memory, we can free our local copy in the driver.
1401 */
1402static int
1403wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1404{
1405	int error, ntries;
1406
1407	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1408
1409	size /= sizeof(uint32_t);
1410
1411	wpi_mem_lock(sc);
1412
1413	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1414	    (const uint32_t *)fw, size);
1415
1416	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1417	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1418	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1419
1420	/* run microcode */
1421	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1422
1423	/* wait while the adapter is busy copying the firmware */
1424	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1425		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1426		DPRINTFN(WPI_DEBUG_HW,
1427		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1428		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1429		if (status & WPI_TX_IDLE(6)) {
1430			DPRINTFN(WPI_DEBUG_HW,
1431			    ("Status Match! - ntries = %d\n", ntries));
1432			break;
1433		}
1434		DELAY(10);
1435	}
1436	if (ntries == 1000) {
1437		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1438		error = ETIMEDOUT;
1439	}
1440
1441	/* start the microcode executing */
1442	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1443
1444	wpi_mem_unlock(sc);
1445
1446	return (error);
1447}
1448
1449static void
1450wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1451	struct wpi_rx_data *data)
1452{
1453	struct ifnet *ifp = sc->sc_ifp;
1454	struct ieee80211com *ic = ifp->if_l2com;
1455	struct wpi_rx_ring *ring = &sc->rxq;
1456	struct wpi_rx_stat *stat;
1457	struct wpi_rx_head *head;
1458	struct wpi_rx_tail *tail;
1459	struct ieee80211_node *ni;
1460	struct mbuf *m, *mnew;
1461	bus_addr_t paddr;
1462	int error;
1463
1464	stat = (struct wpi_rx_stat *)(desc + 1);
1465
1466	if (stat->len > WPI_STAT_MAXLEN) {
1467		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1468		ifp->if_ierrors++;
1469		return;
1470	}
1471
1472	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1473	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1474	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1475
1476	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1477	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1478	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1479	    (uintmax_t)le64toh(tail->tstamp)));
1480
1481	/* discard Rx frames with bad CRC early */
1482	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1483		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1484		    le32toh(tail->flags)));
1485		ifp->if_ierrors++;
1486		return;
1487	}
1488	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1489		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1490		    le16toh(head->len)));
1491		ifp->if_ierrors++;
1492		return;
1493	}
1494
1495	/* XXX don't need mbuf, just dma buffer */
1496	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1497	if (mnew == NULL) {
1498		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1499		    __func__));
1500		ifp->if_ierrors++;
1501		return;
1502	}
1503	bus_dmamap_unload(ring->data_dmat, data->map);
1504
1505	error = bus_dmamap_load(ring->data_dmat, data->map,
1506	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1507	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1508	if (error != 0 && error != EFBIG) {
1509		device_printf(sc->sc_dev,
1510		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1511		m_freem(mnew);
1512		ifp->if_ierrors++;
1513		return;
1514	}
1515	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1516
1517	/* finalize mbuf and swap in new one */
1518	m = data->m;
1519	m->m_pkthdr.rcvif = ifp;
1520	m->m_data = (caddr_t)(head + 1);
1521	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1522
1523	data->m = mnew;
1524	/* update Rx descriptor */
1525	ring->desc[ring->cur] = htole32(paddr);
1526
1527	if (ieee80211_radiotap_active(ic)) {
1528		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1529
1530		tap->wr_flags = 0;
1531		tap->wr_chan_freq =
1532			htole16(ic->ic_channels[head->chan].ic_freq);
1533		tap->wr_chan_flags =
1534			htole16(ic->ic_channels[head->chan].ic_flags);
1535		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1536		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1537		tap->wr_tsft = tail->tstamp;
1538		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1539		switch (head->rate) {
1540		/* CCK rates */
1541		case  10: tap->wr_rate =   2; break;
1542		case  20: tap->wr_rate =   4; break;
1543		case  55: tap->wr_rate =  11; break;
1544		case 110: tap->wr_rate =  22; break;
1545		/* OFDM rates */
1546		case 0xd: tap->wr_rate =  12; break;
1547		case 0xf: tap->wr_rate =  18; break;
1548		case 0x5: tap->wr_rate =  24; break;
1549		case 0x7: tap->wr_rate =  36; break;
1550		case 0x9: tap->wr_rate =  48; break;
1551		case 0xb: tap->wr_rate =  72; break;
1552		case 0x1: tap->wr_rate =  96; break;
1553		case 0x3: tap->wr_rate = 108; break;
1554		/* unknown rate: should not happen */
1555		default:  tap->wr_rate =   0;
1556		}
1557		if (le16toh(head->flags) & 0x4)
1558			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1559	}
1560
1561	WPI_UNLOCK(sc);
1562
1563	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1564	if (ni != NULL) {
1565		(void) ieee80211_input(ni, m, stat->rssi, 0);
1566		ieee80211_free_node(ni);
1567	} else
1568		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1569
1570	WPI_LOCK(sc);
1571}
1572
1573static void
1574wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1575{
1576	struct ifnet *ifp = sc->sc_ifp;
1577	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1578	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1579	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1580	struct ieee80211_node *ni = txdata->ni;
1581	struct ieee80211vap *vap = ni->ni_vap;
1582	int retrycnt = 0;
1583
1584	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1585	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1586	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1587	    le32toh(stat->status)));
1588
1589	/*
1590	 * Update rate control statistics for the node.
1591	 * XXX we should not count mgmt frames since they're always sent at
1592	 * the lowest available bit-rate.
1593	 * XXX frames w/o ACK shouldn't be used either
1594	 */
1595	if (stat->ntries > 0) {
1596		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1597		retrycnt = 1;
1598	}
1599	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1600	    &retrycnt, NULL);
1601
1602	/* XXX oerrors should only count errors !maxtries */
1603	if ((le32toh(stat->status) & 0xff) != 1)
1604		ifp->if_oerrors++;
1605	else
1606		ifp->if_opackets++;
1607
1608	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1609	bus_dmamap_unload(ring->data_dmat, txdata->map);
1610	/* XXX handle M_TXCB? */
1611	m_freem(txdata->m);
1612	txdata->m = NULL;
1613	ieee80211_free_node(txdata->ni);
1614	txdata->ni = NULL;
1615
1616	ring->queued--;
1617
1618	sc->sc_tx_timer = 0;
1619	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1620	wpi_start_locked(ifp);
1621}
1622
1623static void
1624wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1625{
1626	struct wpi_tx_ring *ring = &sc->cmdq;
1627	struct wpi_tx_data *data;
1628
1629	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1630				 "type=%s len=%d\n", desc->qid, desc->idx,
1631				 desc->flags, wpi_cmd_str(desc->type),
1632				 le32toh(desc->len)));
1633
1634	if ((desc->qid & 7) != 4)
1635		return;	/* not a command ack */
1636
1637	data = &ring->data[desc->idx];
1638
1639	/* if the command was mapped in a mbuf, free it */
1640	if (data->m != NULL) {
1641		bus_dmamap_unload(ring->data_dmat, data->map);
1642		m_freem(data->m);
1643		data->m = NULL;
1644	}
1645
1646	sc->flags &= ~WPI_FLAG_BUSY;
1647	wakeup(&ring->cmd[desc->idx]);
1648}
1649
1650static void
1651wpi_notif_intr(struct wpi_softc *sc)
1652{
1653	struct ifnet *ifp = sc->sc_ifp;
1654	struct ieee80211com *ic = ifp->if_l2com;
1655	struct wpi_rx_desc *desc;
1656	struct wpi_rx_data *data;
1657	uint32_t hw;
1658
1659	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1660	    BUS_DMASYNC_POSTREAD);
1661
1662	hw = le32toh(sc->shared->next);
1663	while (sc->rxq.cur != hw) {
1664		data = &sc->rxq.data[sc->rxq.cur];
1665
1666		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1667		    BUS_DMASYNC_POSTREAD);
1668		desc = (void *)data->m->m_ext.ext_buf;
1669
1670		DPRINTFN(WPI_DEBUG_NOTIFY,
1671			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1672			  desc->qid,
1673			  desc->idx,
1674			  desc->flags,
1675			  desc->type,
1676			  le32toh(desc->len)));
1677
1678		if (!(desc->qid & 0x80))	/* reply to a command */
1679			wpi_cmd_intr(sc, desc);
1680
1681		switch (desc->type) {
1682		case WPI_RX_DONE:
1683			/* a 802.11 frame was received */
1684			wpi_rx_intr(sc, desc, data);
1685			break;
1686
1687		case WPI_TX_DONE:
1688			/* a 802.11 frame has been transmitted */
1689			wpi_tx_intr(sc, desc);
1690			break;
1691
1692		case WPI_UC_READY:
1693		{
1694			struct wpi_ucode_info *uc =
1695				(struct wpi_ucode_info *)(desc + 1);
1696
1697			/* the microcontroller is ready */
1698			DPRINTF(("microcode alive notification version %x "
1699				"alive %x\n", le32toh(uc->version),
1700				le32toh(uc->valid)));
1701
1702			if (le32toh(uc->valid) != 1) {
1703				device_printf(sc->sc_dev,
1704				    "microcontroller initialization failed\n");
1705				wpi_stop_locked(sc);
1706			}
1707			break;
1708		}
1709		case WPI_STATE_CHANGED:
1710		{
1711			uint32_t *status = (uint32_t *)(desc + 1);
1712
1713			/* enabled/disabled notification */
1714			DPRINTF(("state changed to %x\n", le32toh(*status)));
1715
1716			if (le32toh(*status) & 1) {
1717				device_printf(sc->sc_dev,
1718				    "Radio transmitter is switched off\n");
1719				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1720				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1721				/* Disable firmware commands */
1722				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1723			}
1724			break;
1725		}
1726		case WPI_START_SCAN:
1727		{
1728#ifdef WPI_DEBUG
1729			struct wpi_start_scan *scan =
1730				(struct wpi_start_scan *)(desc + 1);
1731#endif
1732
1733			DPRINTFN(WPI_DEBUG_SCANNING,
1734				 ("scanning channel %d status %x\n",
1735			    scan->chan, le32toh(scan->status)));
1736			break;
1737		}
1738		case WPI_STOP_SCAN:
1739		{
1740#ifdef WPI_DEBUG
1741			struct wpi_stop_scan *scan =
1742				(struct wpi_stop_scan *)(desc + 1);
1743#endif
1744			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1745
1746			DPRINTFN(WPI_DEBUG_SCANNING,
1747			    ("scan finished nchan=%d status=%d chan=%d\n",
1748			     scan->nchan, scan->status, scan->chan));
1749
1750			sc->sc_scan_timer = 0;
1751			ieee80211_scan_next(vap);
1752			break;
1753		}
1754		case WPI_MISSED_BEACON:
1755		{
1756			struct wpi_missed_beacon *beacon =
1757				(struct wpi_missed_beacon *)(desc + 1);
1758			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1759
1760			if (le32toh(beacon->consecutive) >=
1761			    vap->iv_bmissthreshold) {
1762				DPRINTF(("Beacon miss: %u >= %u\n",
1763					 le32toh(beacon->consecutive),
1764					 vap->iv_bmissthreshold));
1765				ieee80211_beacon_miss(ic);
1766			}
1767			break;
1768		}
1769		}
1770
1771		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1772	}
1773
1774	/* tell the firmware what we have processed */
1775	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1776	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1777}
1778
1779static void
1780wpi_intr(void *arg)
1781{
1782	struct wpi_softc *sc = arg;
1783	uint32_t r;
1784
1785	WPI_LOCK(sc);
1786
1787	r = WPI_READ(sc, WPI_INTR);
1788	if (r == 0 || r == 0xffffffff) {
1789		WPI_UNLOCK(sc);
1790		return;
1791	}
1792
1793	/* disable interrupts */
1794	WPI_WRITE(sc, WPI_MASK, 0);
1795	/* ack interrupts */
1796	WPI_WRITE(sc, WPI_INTR, r);
1797
1798	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1799		struct ifnet *ifp = sc->sc_ifp;
1800		struct ieee80211com *ic = ifp->if_l2com;
1801		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1802
1803		device_printf(sc->sc_dev, "fatal firmware error\n");
1804		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1805				"(Hardware Error)"));
1806		if (vap != NULL)
1807			ieee80211_cancel_scan(vap);
1808		ieee80211_runtask(ic, &sc->sc_restarttask);
1809		sc->flags &= ~WPI_FLAG_BUSY;
1810		WPI_UNLOCK(sc);
1811		return;
1812	}
1813
1814	if (r & WPI_RX_INTR)
1815		wpi_notif_intr(sc);
1816
1817	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1818		wakeup(sc);
1819
1820	/* re-enable interrupts */
1821	if (sc->sc_ifp->if_flags & IFF_UP)
1822		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1823
1824	WPI_UNLOCK(sc);
1825}
1826
1827static uint8_t
1828wpi_plcp_signal(int rate)
1829{
1830	switch (rate) {
1831	/* CCK rates (returned values are device-dependent) */
1832	case 2:		return 10;
1833	case 4:		return 20;
1834	case 11:	return 55;
1835	case 22:	return 110;
1836
1837	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1838	/* R1-R4 (ral/ural is R4-R1) */
1839	case 12:	return 0xd;
1840	case 18:	return 0xf;
1841	case 24:	return 0x5;
1842	case 36:	return 0x7;
1843	case 48:	return 0x9;
1844	case 72:	return 0xb;
1845	case 96:	return 0x1;
1846	case 108:	return 0x3;
1847
1848	/* unsupported rates (should not get there) */
1849	default:	return 0;
1850	}
1851}
1852
1853/* quickly determine if a given rate is CCK or OFDM */
1854#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1855
1856/*
1857 * Construct the data packet for a transmit buffer and acutally put
1858 * the buffer onto the transmit ring, kicking the card to process the
1859 * the buffer.
1860 */
1861static int
1862wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1863	int ac)
1864{
1865	struct ieee80211vap *vap = ni->ni_vap;
1866	struct ifnet *ifp = sc->sc_ifp;
1867	struct ieee80211com *ic = ifp->if_l2com;
1868	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1869	struct wpi_tx_ring *ring = &sc->txq[ac];
1870	struct wpi_tx_desc *desc;
1871	struct wpi_tx_data *data;
1872	struct wpi_tx_cmd *cmd;
1873	struct wpi_cmd_data *tx;
1874	struct ieee80211_frame *wh;
1875	const struct ieee80211_txparam *tp;
1876	struct ieee80211_key *k;
1877	struct mbuf *mnew;
1878	int i, error, nsegs, rate, hdrlen, ismcast;
1879	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1880
1881	desc = &ring->desc[ring->cur];
1882	data = &ring->data[ring->cur];
1883
1884	wh = mtod(m0, struct ieee80211_frame *);
1885
1886	hdrlen = ieee80211_hdrsize(wh);
1887	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1888
1889	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1890		k = ieee80211_crypto_encap(ni, m0);
1891		if (k == NULL) {
1892			m_freem(m0);
1893			return ENOBUFS;
1894		}
1895		/* packet header may have moved, reset our local pointer */
1896		wh = mtod(m0, struct ieee80211_frame *);
1897	}
1898
1899	cmd = &ring->cmd[ring->cur];
1900	cmd->code = WPI_CMD_TX_DATA;
1901	cmd->flags = 0;
1902	cmd->qid = ring->qid;
1903	cmd->idx = ring->cur;
1904
1905	tx = (struct wpi_cmd_data *)cmd->data;
1906	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1907	tx->timeout = htole16(0);
1908	tx->ofdm_mask = 0xff;
1909	tx->cck_mask = 0x0f;
1910	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1911	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1912	tx->len = htole16(m0->m_pkthdr.len);
1913
1914	if (!ismcast) {
1915		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1916		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1917			tx->flags |= htole32(WPI_TX_NEED_ACK);
1918		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1919			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1920			tx->rts_ntries = 7;
1921		}
1922	}
1923	/* pick a rate */
1924	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1925	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1926		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1927		/* tell h/w to set timestamp in probe responses */
1928		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1929			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1930		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1931		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1932			tx->timeout = htole16(3);
1933		else
1934			tx->timeout = htole16(2);
1935		rate = tp->mgmtrate;
1936	} else if (ismcast) {
1937		rate = tp->mcastrate;
1938	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1939		rate = tp->ucastrate;
1940	} else {
1941		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1942		rate = ni->ni_txrate;
1943	}
1944	tx->rate = wpi_plcp_signal(rate);
1945
1946	/* be very persistant at sending frames out */
1947#if 0
1948	tx->data_ntries = tp->maxretry;
1949#else
1950	tx->data_ntries = 15;		/* XXX way too high */
1951#endif
1952
1953	if (ieee80211_radiotap_active_vap(vap)) {
1954		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1955		tap->wt_flags = 0;
1956		tap->wt_rate = rate;
1957		tap->wt_hwqueue = ac;
1958		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
1959			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1960
1961		ieee80211_radiotap_tx(vap, m0);
1962	}
1963
1964	/* save and trim IEEE802.11 header */
1965	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1966	m_adj(m0, hdrlen);
1967
1968	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1969	    &nsegs, BUS_DMA_NOWAIT);
1970	if (error != 0 && error != EFBIG) {
1971		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1972		    error);
1973		m_freem(m0);
1974		return error;
1975	}
1976	if (error != 0) {
1977		/* XXX use m_collapse */
1978		mnew = m_defrag(m0, M_NOWAIT);
1979		if (mnew == NULL) {
1980			device_printf(sc->sc_dev,
1981			    "could not defragment mbuf\n");
1982			m_freem(m0);
1983			return ENOBUFS;
1984		}
1985		m0 = mnew;
1986
1987		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1988		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1989		if (error != 0) {
1990			device_printf(sc->sc_dev,
1991			    "could not map mbuf (error %d)\n", error);
1992			m_freem(m0);
1993			return error;
1994		}
1995	}
1996
1997	data->m = m0;
1998	data->ni = ni;
1999
2000	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2001	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2002
2003	/* first scatter/gather segment is used by the tx data command */
2004	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2005	    (1 + nsegs) << 24);
2006	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2007	    ring->cur * sizeof (struct wpi_tx_cmd));
2008	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2009	for (i = 1; i <= nsegs; i++) {
2010		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2011		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2012	}
2013
2014	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2015	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2016	    BUS_DMASYNC_PREWRITE);
2017
2018	ring->queued++;
2019
2020	/* kick ring */
2021	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2022	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2023
2024	return 0;
2025}
2026
2027/**
2028 * Process data waiting to be sent on the IFNET output queue
2029 */
2030static void
2031wpi_start(struct ifnet *ifp)
2032{
2033	struct wpi_softc *sc = ifp->if_softc;
2034
2035	WPI_LOCK(sc);
2036	wpi_start_locked(ifp);
2037	WPI_UNLOCK(sc);
2038}
2039
2040static void
2041wpi_start_locked(struct ifnet *ifp)
2042{
2043	struct wpi_softc *sc = ifp->if_softc;
2044	struct ieee80211_node *ni;
2045	struct mbuf *m;
2046	int ac;
2047
2048	WPI_LOCK_ASSERT(sc);
2049
2050	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2051		return;
2052
2053	for (;;) {
2054		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2055		if (m == NULL)
2056			break;
2057		ac = M_WME_GETAC(m);
2058		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2059			/* there is no place left in this ring */
2060			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2061			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2062			break;
2063		}
2064		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2065		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2066			ieee80211_free_node(ni);
2067			ifp->if_oerrors++;
2068			break;
2069		}
2070		sc->sc_tx_timer = 5;
2071	}
2072}
2073
2074static int
2075wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2076	const struct ieee80211_bpf_params *params)
2077{
2078	struct ieee80211com *ic = ni->ni_ic;
2079	struct ifnet *ifp = ic->ic_ifp;
2080	struct wpi_softc *sc = ifp->if_softc;
2081
2082	/* prevent management frames from being sent if we're not ready */
2083	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2084		m_freem(m);
2085		ieee80211_free_node(ni);
2086		return ENETDOWN;
2087	}
2088	WPI_LOCK(sc);
2089
2090	/* management frames go into ring 0 */
2091	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2092		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2093		m_freem(m);
2094		WPI_UNLOCK(sc);
2095		ieee80211_free_node(ni);
2096		return ENOBUFS;		/* XXX */
2097	}
2098
2099	ifp->if_opackets++;
2100	if (wpi_tx_data(sc, m, ni, 0) != 0)
2101		goto bad;
2102	sc->sc_tx_timer = 5;
2103	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2104
2105	WPI_UNLOCK(sc);
2106	return 0;
2107bad:
2108	ifp->if_oerrors++;
2109	WPI_UNLOCK(sc);
2110	ieee80211_free_node(ni);
2111	return EIO;		/* XXX */
2112}
2113
2114static int
2115wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2116{
2117	struct wpi_softc *sc = ifp->if_softc;
2118	struct ieee80211com *ic = ifp->if_l2com;
2119	struct ifreq *ifr = (struct ifreq *) data;
2120	int error = 0, startall = 0;
2121
2122	switch (cmd) {
2123	case SIOCSIFFLAGS:
2124		WPI_LOCK(sc);
2125		if ((ifp->if_flags & IFF_UP)) {
2126			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2127				wpi_init_locked(sc, 0);
2128				startall = 1;
2129			}
2130		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2131			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2132			wpi_stop_locked(sc);
2133		WPI_UNLOCK(sc);
2134		if (startall)
2135			ieee80211_start_all(ic);
2136		break;
2137	case SIOCGIFMEDIA:
2138		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2139		break;
2140	case SIOCGIFADDR:
2141		error = ether_ioctl(ifp, cmd, data);
2142		break;
2143	default:
2144		error = EINVAL;
2145		break;
2146	}
2147	return error;
2148}
2149
2150/*
2151 * Extract various information from EEPROM.
2152 */
2153static void
2154wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2155{
2156	int i;
2157
2158	/* read the hardware capabilities, revision and SKU type */
2159	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2160	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2161	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2162
2163	/* read the regulatory domain */
2164	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2165
2166	/* read in the hw MAC address */
2167	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2168
2169	/* read the list of authorized channels */
2170	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2171		wpi_read_eeprom_channels(sc,i);
2172
2173	/* read the power level calibration info for each group */
2174	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2175		wpi_read_eeprom_group(sc,i);
2176}
2177
2178/*
2179 * Send a command to the firmware.
2180 */
2181static int
2182wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2183{
2184	struct wpi_tx_ring *ring = &sc->cmdq;
2185	struct wpi_tx_desc *desc;
2186	struct wpi_tx_cmd *cmd;
2187
2188#ifdef WPI_DEBUG
2189	if (!async) {
2190		WPI_LOCK_ASSERT(sc);
2191	}
2192#endif
2193
2194	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2195		    async));
2196
2197	if (sc->flags & WPI_FLAG_BUSY) {
2198		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2199		    __func__, code);
2200		return EAGAIN;
2201	}
2202	sc->flags|= WPI_FLAG_BUSY;
2203
2204	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2205	    code, size));
2206
2207	desc = &ring->desc[ring->cur];
2208	cmd = &ring->cmd[ring->cur];
2209
2210	cmd->code = code;
2211	cmd->flags = 0;
2212	cmd->qid = ring->qid;
2213	cmd->idx = ring->cur;
2214	memcpy(cmd->data, buf, size);
2215
2216	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2217	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2218		ring->cur * sizeof (struct wpi_tx_cmd));
2219	desc->segs[0].len  = htole32(4 + size);
2220
2221	/* kick cmd ring */
2222	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2223	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2224
2225	if (async) {
2226		sc->flags &= ~ WPI_FLAG_BUSY;
2227		return 0;
2228	}
2229
2230	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2231}
2232
2233static int
2234wpi_wme_update(struct ieee80211com *ic)
2235{
2236#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2237#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2238	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2239	const struct wmeParams *wmep;
2240	struct wpi_wme_setup wme;
2241	int ac;
2242
2243	/* don't override default WME values if WME is not actually enabled */
2244	if (!(ic->ic_flags & IEEE80211_F_WME))
2245		return 0;
2246
2247	wme.flags = 0;
2248	for (ac = 0; ac < WME_NUM_AC; ac++) {
2249		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2250		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2251		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2252		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2253		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2254
2255		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2256		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2257		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2258	}
2259	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2260#undef WPI_USEC
2261#undef WPI_EXP2
2262}
2263
2264/*
2265 * Configure h/w multi-rate retries.
2266 */
2267static int
2268wpi_mrr_setup(struct wpi_softc *sc)
2269{
2270	struct ifnet *ifp = sc->sc_ifp;
2271	struct ieee80211com *ic = ifp->if_l2com;
2272	struct wpi_mrr_setup mrr;
2273	int i, error;
2274
2275	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2276
2277	/* CCK rates (not used with 802.11a) */
2278	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2279		mrr.rates[i].flags = 0;
2280		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2281		/* fallback to the immediate lower CCK rate (if any) */
2282		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2283		/* try one time at this rate before falling back to "next" */
2284		mrr.rates[i].ntries = 1;
2285	}
2286
2287	/* OFDM rates (not used with 802.11b) */
2288	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2289		mrr.rates[i].flags = 0;
2290		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2291		/* fallback to the immediate lower OFDM rate (if any) */
2292		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2293		mrr.rates[i].next = (i == WPI_OFDM6) ?
2294		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2295			WPI_OFDM6 : WPI_CCK2) :
2296		    i - 1;
2297		/* try one time at this rate before falling back to "next" */
2298		mrr.rates[i].ntries = 1;
2299	}
2300
2301	/* setup MRR for control frames */
2302	mrr.which = WPI_MRR_CTL;
2303	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2304	if (error != 0) {
2305		device_printf(sc->sc_dev,
2306		    "could not setup MRR for control frames\n");
2307		return error;
2308	}
2309
2310	/* setup MRR for data frames */
2311	mrr.which = WPI_MRR_DATA;
2312	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2313	if (error != 0) {
2314		device_printf(sc->sc_dev,
2315		    "could not setup MRR for data frames\n");
2316		return error;
2317	}
2318
2319	return 0;
2320}
2321
2322static void
2323wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2324{
2325	struct wpi_cmd_led led;
2326
2327	led.which = which;
2328	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2329	led.off = off;
2330	led.on = on;
2331
2332	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2333}
2334
2335static void
2336wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2337{
2338	struct wpi_cmd_tsf tsf;
2339	uint64_t val, mod;
2340
2341	memset(&tsf, 0, sizeof tsf);
2342	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2343	tsf.bintval = htole16(ni->ni_intval);
2344	tsf.lintval = htole16(10);
2345
2346	/* compute remaining time until next beacon */
2347	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2348	mod = le64toh(tsf.tstamp) % val;
2349	tsf.binitval = htole32((uint32_t)(val - mod));
2350
2351	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2352		device_printf(sc->sc_dev, "could not enable TSF\n");
2353}
2354
2355#if 0
2356/*
2357 * Build a beacon frame that the firmware will broadcast periodically in
2358 * IBSS or HostAP modes.
2359 */
2360static int
2361wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2362{
2363	struct ifnet *ifp = sc->sc_ifp;
2364	struct ieee80211com *ic = ifp->if_l2com;
2365	struct wpi_tx_ring *ring = &sc->cmdq;
2366	struct wpi_tx_desc *desc;
2367	struct wpi_tx_data *data;
2368	struct wpi_tx_cmd *cmd;
2369	struct wpi_cmd_beacon *bcn;
2370	struct ieee80211_beacon_offsets bo;
2371	struct mbuf *m0;
2372	bus_addr_t physaddr;
2373	int error;
2374
2375	desc = &ring->desc[ring->cur];
2376	data = &ring->data[ring->cur];
2377
2378	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2379	if (m0 == NULL) {
2380		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2381		return ENOMEM;
2382	}
2383
2384	cmd = &ring->cmd[ring->cur];
2385	cmd->code = WPI_CMD_SET_BEACON;
2386	cmd->flags = 0;
2387	cmd->qid = ring->qid;
2388	cmd->idx = ring->cur;
2389
2390	bcn = (struct wpi_cmd_beacon *)cmd->data;
2391	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2392	bcn->id = WPI_ID_BROADCAST;
2393	bcn->ofdm_mask = 0xff;
2394	bcn->cck_mask = 0x0f;
2395	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2396	bcn->len = htole16(m0->m_pkthdr.len);
2397	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2398		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2399	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2400
2401	/* save and trim IEEE802.11 header */
2402	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2403	m_adj(m0, sizeof (struct ieee80211_frame));
2404
2405	/* assume beacon frame is contiguous */
2406	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2407	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2408	if (error != 0) {
2409		device_printf(sc->sc_dev, "could not map beacon\n");
2410		m_freem(m0);
2411		return error;
2412	}
2413
2414	data->m = m0;
2415
2416	/* first scatter/gather segment is used by the beacon command */
2417	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2418	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2419		ring->cur * sizeof (struct wpi_tx_cmd));
2420	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2421	desc->segs[1].addr = htole32(physaddr);
2422	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2423
2424	/* kick cmd ring */
2425	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2426	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2427
2428	return 0;
2429}
2430#endif
2431
2432static int
2433wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2434{
2435	struct ieee80211com *ic = vap->iv_ic;
2436	struct ieee80211_node *ni = vap->iv_bss;
2437	struct wpi_node_info node;
2438	int error;
2439
2440
2441	/* update adapter's configuration */
2442	sc->config.associd = 0;
2443	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2444	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2445	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2446	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2447		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2448		    WPI_CONFIG_24GHZ);
2449	} else {
2450		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2451		    WPI_CONFIG_24GHZ);
2452	}
2453	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2454		sc->config.cck_mask  = 0;
2455		sc->config.ofdm_mask = 0x15;
2456	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2457		sc->config.cck_mask  = 0x03;
2458		sc->config.ofdm_mask = 0;
2459	} else {
2460		/* XXX assume 802.11b/g */
2461		sc->config.cck_mask  = 0x0f;
2462		sc->config.ofdm_mask = 0x15;
2463	}
2464
2465	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2466		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2467	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2468		sizeof (struct wpi_config), 1);
2469	if (error != 0) {
2470		device_printf(sc->sc_dev, "could not configure\n");
2471		return error;
2472	}
2473
2474	/* configuration has changed, set Tx power accordingly */
2475	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2476		device_printf(sc->sc_dev, "could not set Tx power\n");
2477		return error;
2478	}
2479
2480	/* add default node */
2481	memset(&node, 0, sizeof node);
2482	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2483	node.id = WPI_ID_BSS;
2484	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2485	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2486	node.action = htole32(WPI_ACTION_SET_RATE);
2487	node.antenna = WPI_ANTENNA_BOTH;
2488	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2489	if (error != 0)
2490		device_printf(sc->sc_dev, "could not add BSS node\n");
2491
2492	return (error);
2493}
2494
2495static int
2496wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2497{
2498	struct ieee80211com *ic = vap->iv_ic;
2499	struct ieee80211_node *ni = vap->iv_bss;
2500	int error;
2501
2502	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2503		/* link LED blinks while monitoring */
2504		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2505		return 0;
2506	}
2507
2508	wpi_enable_tsf(sc, ni);
2509
2510	/* update adapter's configuration */
2511	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2512	/* short preamble/slot time are negotiated when associating */
2513	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2514	    WPI_CONFIG_SHSLOT);
2515	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2516		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2517	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2518		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2519	sc->config.filter |= htole32(WPI_FILTER_BSS);
2520
2521	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2522
2523	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2524		    sc->config.flags));
2525	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2526		    wpi_config), 1);
2527	if (error != 0) {
2528		device_printf(sc->sc_dev, "could not update configuration\n");
2529		return error;
2530	}
2531
2532	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2533	if (error != 0) {
2534		device_printf(sc->sc_dev, "could set txpower\n");
2535		return error;
2536	}
2537
2538	/* link LED always on while associated */
2539	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2540
2541	/* start automatic rate control timer */
2542	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2543
2544	return (error);
2545}
2546
2547/*
2548 * Send a scan request to the firmware.  Since this command is huge, we map it
2549 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2550 * much of this code is similar to that in wpi_cmd but because we must manually
2551 * construct the probe & channels, we duplicate what's needed here. XXX In the
2552 * future, this function should be modified to use wpi_cmd to help cleanup the
2553 * code base.
2554 */
2555static int
2556wpi_scan(struct wpi_softc *sc)
2557{
2558	struct ifnet *ifp = sc->sc_ifp;
2559	struct ieee80211com *ic = ifp->if_l2com;
2560	struct ieee80211_scan_state *ss = ic->ic_scan;
2561	struct wpi_tx_ring *ring = &sc->cmdq;
2562	struct wpi_tx_desc *desc;
2563	struct wpi_tx_data *data;
2564	struct wpi_tx_cmd *cmd;
2565	struct wpi_scan_hdr *hdr;
2566	struct wpi_scan_chan *chan;
2567	struct ieee80211_frame *wh;
2568	struct ieee80211_rateset *rs;
2569	struct ieee80211_channel *c;
2570	enum ieee80211_phymode mode;
2571	uint8_t *frm;
2572	int nrates, pktlen, error, i, nssid;
2573	bus_addr_t physaddr;
2574
2575	desc = &ring->desc[ring->cur];
2576	data = &ring->data[ring->cur];
2577
2578	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2579	if (data->m == NULL) {
2580		device_printf(sc->sc_dev,
2581		    "could not allocate mbuf for scan command\n");
2582		return ENOMEM;
2583	}
2584
2585	cmd = mtod(data->m, struct wpi_tx_cmd *);
2586	cmd->code = WPI_CMD_SCAN;
2587	cmd->flags = 0;
2588	cmd->qid = ring->qid;
2589	cmd->idx = ring->cur;
2590
2591	hdr = (struct wpi_scan_hdr *)cmd->data;
2592	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2593
2594	/*
2595	 * Move to the next channel if no packets are received within 5 msecs
2596	 * after sending the probe request (this helps to reduce the duration
2597	 * of active scans).
2598	 */
2599	hdr->quiet = htole16(5);
2600	hdr->threshold = htole16(1);
2601
2602	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2603		/* send probe requests at 6Mbps */
2604		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2605
2606		/* Enable crc checking */
2607		hdr->promotion = htole16(1);
2608	} else {
2609		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2610		/* send probe requests at 1Mbps */
2611		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2612	}
2613	hdr->tx.id = WPI_ID_BROADCAST;
2614	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2615	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2616
2617	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2618	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2619	for (i = 0; i < nssid; i++) {
2620		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2621		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2622		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2623		    hdr->scan_essids[i].esslen);
2624#ifdef WPI_DEBUG
2625		if (wpi_debug & WPI_DEBUG_SCANNING) {
2626			printf("Scanning Essid: ");
2627			ieee80211_print_essid(hdr->scan_essids[i].essid,
2628			    hdr->scan_essids[i].esslen);
2629			printf("\n");
2630		}
2631#endif
2632	}
2633
2634	/*
2635	 * Build a probe request frame.  Most of the following code is a
2636	 * copy & paste of what is done in net80211.
2637	 */
2638	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2639	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2640		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2641	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2642	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2643	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2644	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2645	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2646	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2647
2648	frm = (uint8_t *)(wh + 1);
2649
2650	/* add essid IE, the hardware will fill this in for us */
2651	*frm++ = IEEE80211_ELEMID_SSID;
2652	*frm++ = 0;
2653
2654	mode = ieee80211_chan2mode(ic->ic_curchan);
2655	rs = &ic->ic_sup_rates[mode];
2656
2657	/* add supported rates IE */
2658	*frm++ = IEEE80211_ELEMID_RATES;
2659	nrates = rs->rs_nrates;
2660	if (nrates > IEEE80211_RATE_SIZE)
2661		nrates = IEEE80211_RATE_SIZE;
2662	*frm++ = nrates;
2663	memcpy(frm, rs->rs_rates, nrates);
2664	frm += nrates;
2665
2666	/* add supported xrates IE */
2667	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2668		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2669		*frm++ = IEEE80211_ELEMID_XRATES;
2670		*frm++ = nrates;
2671		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2672		frm += nrates;
2673	}
2674
2675	/* setup length of probe request */
2676	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2677
2678	/*
2679	 * Construct information about the channel that we
2680	 * want to scan. The firmware expects this to be directly
2681	 * after the scan probe request
2682	 */
2683	c = ic->ic_curchan;
2684	chan = (struct wpi_scan_chan *)frm;
2685	chan->chan = ieee80211_chan2ieee(ic, c);
2686	chan->flags = 0;
2687	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2688		chan->flags |= WPI_CHAN_ACTIVE;
2689		if (nssid != 0)
2690			chan->flags |= WPI_CHAN_DIRECT;
2691	}
2692	chan->gain_dsp = 0x6e; /* Default level */
2693	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2694		chan->active = htole16(10);
2695		chan->passive = htole16(ss->ss_maxdwell);
2696		chan->gain_radio = 0x3b;
2697	} else {
2698		chan->active = htole16(20);
2699		chan->passive = htole16(ss->ss_maxdwell);
2700		chan->gain_radio = 0x28;
2701	}
2702
2703	DPRINTFN(WPI_DEBUG_SCANNING,
2704	    ("Scanning %u Passive: %d\n",
2705	     chan->chan,
2706	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2707
2708	hdr->nchan++;
2709	chan++;
2710
2711	frm += sizeof (struct wpi_scan_chan);
2712#if 0
2713	// XXX All Channels....
2714	for (c  = &ic->ic_channels[1];
2715	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2716		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2717			continue;
2718
2719		chan->chan = ieee80211_chan2ieee(ic, c);
2720		chan->flags = 0;
2721		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2722		    chan->flags |= WPI_CHAN_ACTIVE;
2723		    if (ic->ic_des_ssid[0].len != 0)
2724			chan->flags |= WPI_CHAN_DIRECT;
2725		}
2726		chan->gain_dsp = 0x6e; /* Default level */
2727		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2728			chan->active = htole16(10);
2729			chan->passive = htole16(110);
2730			chan->gain_radio = 0x3b;
2731		} else {
2732			chan->active = htole16(20);
2733			chan->passive = htole16(120);
2734			chan->gain_radio = 0x28;
2735		}
2736
2737		DPRINTFN(WPI_DEBUG_SCANNING,
2738			 ("Scanning %u Passive: %d\n",
2739			  chan->chan,
2740			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2741
2742		hdr->nchan++;
2743		chan++;
2744
2745		frm += sizeof (struct wpi_scan_chan);
2746	}
2747#endif
2748
2749	hdr->len = htole16(frm - (uint8_t *)hdr);
2750	pktlen = frm - (uint8_t *)cmd;
2751
2752	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2753	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2754	if (error != 0) {
2755		device_printf(sc->sc_dev, "could not map scan command\n");
2756		m_freem(data->m);
2757		data->m = NULL;
2758		return error;
2759	}
2760
2761	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2762	desc->segs[0].addr = htole32(physaddr);
2763	desc->segs[0].len  = htole32(pktlen);
2764
2765	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2766	    BUS_DMASYNC_PREWRITE);
2767	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2768
2769	/* kick cmd ring */
2770	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2771	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2772
2773	sc->sc_scan_timer = 5;
2774	return 0;	/* will be notified async. of failure/success */
2775}
2776
2777/**
2778 * Configure the card to listen to a particular channel, this transisions the
2779 * card in to being able to receive frames from remote devices.
2780 */
2781static int
2782wpi_config(struct wpi_softc *sc)
2783{
2784	struct ifnet *ifp = sc->sc_ifp;
2785	struct ieee80211com *ic = ifp->if_l2com;
2786	struct wpi_power power;
2787	struct wpi_bluetooth bluetooth;
2788	struct wpi_node_info node;
2789	int error;
2790
2791	/* set power mode */
2792	memset(&power, 0, sizeof power);
2793	power.flags = htole32(WPI_POWER_CAM|0x8);
2794	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2795	if (error != 0) {
2796		device_printf(sc->sc_dev, "could not set power mode\n");
2797		return error;
2798	}
2799
2800	/* configure bluetooth coexistence */
2801	memset(&bluetooth, 0, sizeof bluetooth);
2802	bluetooth.flags = 3;
2803	bluetooth.lead = 0xaa;
2804	bluetooth.kill = 1;
2805	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2806	    0);
2807	if (error != 0) {
2808		device_printf(sc->sc_dev,
2809		    "could not configure bluetooth coexistence\n");
2810		return error;
2811	}
2812
2813	/* configure adapter */
2814	memset(&sc->config, 0, sizeof (struct wpi_config));
2815	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2816	/*set default channel*/
2817	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2818	sc->config.flags = htole32(WPI_CONFIG_TSF);
2819	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2820		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2821		    WPI_CONFIG_24GHZ);
2822	}
2823	sc->config.filter = 0;
2824	switch (ic->ic_opmode) {
2825	case IEEE80211_M_STA:
2826	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2827		sc->config.mode = WPI_MODE_STA;
2828		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2829		break;
2830	case IEEE80211_M_IBSS:
2831	case IEEE80211_M_AHDEMO:
2832		sc->config.mode = WPI_MODE_IBSS;
2833		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2834					     WPI_FILTER_MULTICAST);
2835		break;
2836	case IEEE80211_M_HOSTAP:
2837		sc->config.mode = WPI_MODE_HOSTAP;
2838		break;
2839	case IEEE80211_M_MONITOR:
2840		sc->config.mode = WPI_MODE_MONITOR;
2841		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2842			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2843		break;
2844	default:
2845		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2846		return EINVAL;
2847	}
2848	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2849	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2850	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2851		sizeof (struct wpi_config), 0);
2852	if (error != 0) {
2853		device_printf(sc->sc_dev, "configure command failed\n");
2854		return error;
2855	}
2856
2857	/* configuration has changed, set Tx power accordingly */
2858	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2859	    device_printf(sc->sc_dev, "could not set Tx power\n");
2860	    return error;
2861	}
2862
2863	/* add broadcast node */
2864	memset(&node, 0, sizeof node);
2865	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2866	node.id = WPI_ID_BROADCAST;
2867	node.rate = wpi_plcp_signal(2);
2868	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2869	if (error != 0) {
2870		device_printf(sc->sc_dev, "could not add broadcast node\n");
2871		return error;
2872	}
2873
2874	/* Setup rate scalling */
2875	error = wpi_mrr_setup(sc);
2876	if (error != 0) {
2877		device_printf(sc->sc_dev, "could not setup MRR\n");
2878		return error;
2879	}
2880
2881	return 0;
2882}
2883
2884static void
2885wpi_stop_master(struct wpi_softc *sc)
2886{
2887	uint32_t tmp;
2888	int ntries;
2889
2890	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2891
2892	tmp = WPI_READ(sc, WPI_RESET);
2893	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2894
2895	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2896	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2897		return;	/* already asleep */
2898
2899	for (ntries = 0; ntries < 100; ntries++) {
2900		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2901			break;
2902		DELAY(10);
2903	}
2904	if (ntries == 100) {
2905		device_printf(sc->sc_dev, "timeout waiting for master\n");
2906	}
2907}
2908
2909static int
2910wpi_power_up(struct wpi_softc *sc)
2911{
2912	uint32_t tmp;
2913	int ntries;
2914
2915	wpi_mem_lock(sc);
2916	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2917	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2918	wpi_mem_unlock(sc);
2919
2920	for (ntries = 0; ntries < 5000; ntries++) {
2921		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2922			break;
2923		DELAY(10);
2924	}
2925	if (ntries == 5000) {
2926		device_printf(sc->sc_dev,
2927		    "timeout waiting for NIC to power up\n");
2928		return ETIMEDOUT;
2929	}
2930	return 0;
2931}
2932
2933static int
2934wpi_reset(struct wpi_softc *sc)
2935{
2936	uint32_t tmp;
2937	int ntries;
2938
2939	DPRINTFN(WPI_DEBUG_HW,
2940	    ("Resetting the card - clearing any uploaded firmware\n"));
2941
2942	/* clear any pending interrupts */
2943	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2944
2945	tmp = WPI_READ(sc, WPI_PLL_CTL);
2946	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2947
2948	tmp = WPI_READ(sc, WPI_CHICKEN);
2949	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2950
2951	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2952	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2953
2954	/* wait for clock stabilization */
2955	for (ntries = 0; ntries < 25000; ntries++) {
2956		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2957			break;
2958		DELAY(10);
2959	}
2960	if (ntries == 25000) {
2961		device_printf(sc->sc_dev,
2962		    "timeout waiting for clock stabilization\n");
2963		return ETIMEDOUT;
2964	}
2965
2966	/* initialize EEPROM */
2967	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2968
2969	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2970		device_printf(sc->sc_dev, "EEPROM not found\n");
2971		return EIO;
2972	}
2973	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2974
2975	return 0;
2976}
2977
2978static void
2979wpi_hw_config(struct wpi_softc *sc)
2980{
2981	uint32_t rev, hw;
2982
2983	/* voodoo from the Linux "driver".. */
2984	hw = WPI_READ(sc, WPI_HWCONFIG);
2985
2986	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2987	if ((rev & 0xc0) == 0x40)
2988		hw |= WPI_HW_ALM_MB;
2989	else if (!(rev & 0x80))
2990		hw |= WPI_HW_ALM_MM;
2991
2992	if (sc->cap == 0x80)
2993		hw |= WPI_HW_SKU_MRC;
2994
2995	hw &= ~WPI_HW_REV_D;
2996	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2997		hw |= WPI_HW_REV_D;
2998
2999	if (sc->type > 1)
3000		hw |= WPI_HW_TYPE_B;
3001
3002	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3003}
3004
3005static void
3006wpi_rfkill_resume(struct wpi_softc *sc)
3007{
3008	struct ifnet *ifp = sc->sc_ifp;
3009	struct ieee80211com *ic = ifp->if_l2com;
3010	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3011	int ntries;
3012
3013	/* enable firmware again */
3014	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3015	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3016
3017	/* wait for thermal sensors to calibrate */
3018	for (ntries = 0; ntries < 1000; ntries++) {
3019		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3020			break;
3021		DELAY(10);
3022	}
3023
3024	if (ntries == 1000) {
3025		device_printf(sc->sc_dev,
3026		    "timeout waiting for thermal calibration\n");
3027		return;
3028	}
3029	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3030
3031	if (wpi_config(sc) != 0) {
3032		device_printf(sc->sc_dev, "device config failed\n");
3033		return;
3034	}
3035
3036	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3037	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3038	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3039
3040	if (vap != NULL) {
3041		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3042			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3043				ieee80211_beacon_miss(ic);
3044				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3045			} else
3046				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3047		} else {
3048			ieee80211_scan_next(vap);
3049			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3050		}
3051	}
3052
3053	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3054}
3055
3056static void
3057wpi_init_locked(struct wpi_softc *sc, int force)
3058{
3059	struct ifnet *ifp = sc->sc_ifp;
3060	uint32_t tmp;
3061	int ntries, qid;
3062
3063	wpi_stop_locked(sc);
3064	(void)wpi_reset(sc);
3065
3066	wpi_mem_lock(sc);
3067	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3068	DELAY(20);
3069	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3070	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3071	wpi_mem_unlock(sc);
3072
3073	(void)wpi_power_up(sc);
3074	wpi_hw_config(sc);
3075
3076	/* init Rx ring */
3077	wpi_mem_lock(sc);
3078	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3079	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3080	    offsetof(struct wpi_shared, next));
3081	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3082	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3083	wpi_mem_unlock(sc);
3084
3085	/* init Tx rings */
3086	wpi_mem_lock(sc);
3087	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3088	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3089	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3090	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3091	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3092	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3093	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3094
3095	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3096	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3097
3098	for (qid = 0; qid < 6; qid++) {
3099		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3100		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3101		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3102	}
3103	wpi_mem_unlock(sc);
3104
3105	/* clear "radio off" and "disable command" bits (reversed logic) */
3106	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3107	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3108	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3109
3110	/* clear any pending interrupts */
3111	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3112
3113	/* enable interrupts */
3114	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3115
3116	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3117	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3118
3119	if ((wpi_load_firmware(sc)) != 0) {
3120	    device_printf(sc->sc_dev,
3121		"A problem occurred loading the firmware to the driver\n");
3122	    return;
3123	}
3124
3125	/* At this point the firmware is up and running. If the hardware
3126	 * RF switch is turned off thermal calibration will fail, though
3127	 * the card is still happy to continue to accept commands, catch
3128	 * this case and schedule a task to watch for it to be turned on.
3129	 */
3130	wpi_mem_lock(sc);
3131	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3132	wpi_mem_unlock(sc);
3133
3134	if (!(tmp & 0x1)) {
3135		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3136		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3137		goto out;
3138	}
3139
3140	/* wait for thermal sensors to calibrate */
3141	for (ntries = 0; ntries < 1000; ntries++) {
3142		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3143			break;
3144		DELAY(10);
3145	}
3146
3147	if (ntries == 1000) {
3148		device_printf(sc->sc_dev,
3149		    "timeout waiting for thermal sensors calibration\n");
3150		return;
3151	}
3152	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3153
3154	if (wpi_config(sc) != 0) {
3155		device_printf(sc->sc_dev, "device config failed\n");
3156		return;
3157	}
3158
3159	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3160	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3161out:
3162	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3163}
3164
3165static void
3166wpi_init(void *arg)
3167{
3168	struct wpi_softc *sc = arg;
3169	struct ifnet *ifp = sc->sc_ifp;
3170	struct ieee80211com *ic = ifp->if_l2com;
3171
3172	WPI_LOCK(sc);
3173	wpi_init_locked(sc, 0);
3174	WPI_UNLOCK(sc);
3175
3176	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3177		ieee80211_start_all(ic);		/* start all vaps */
3178}
3179
3180static void
3181wpi_stop_locked(struct wpi_softc *sc)
3182{
3183	struct ifnet *ifp = sc->sc_ifp;
3184	uint32_t tmp;
3185	int ac;
3186
3187	sc->sc_tx_timer = 0;
3188	sc->sc_scan_timer = 0;
3189	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3190	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3191	callout_stop(&sc->watchdog_to);
3192	callout_stop(&sc->calib_to);
3193
3194
3195	/* disable interrupts */
3196	WPI_WRITE(sc, WPI_MASK, 0);
3197	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3198	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3199	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3200
3201	wpi_mem_lock(sc);
3202	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3203	wpi_mem_unlock(sc);
3204
3205	/* reset all Tx rings */
3206	for (ac = 0; ac < 4; ac++)
3207		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3208	wpi_reset_tx_ring(sc, &sc->cmdq);
3209
3210	/* reset Rx ring */
3211	wpi_reset_rx_ring(sc, &sc->rxq);
3212
3213	wpi_mem_lock(sc);
3214	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3215	wpi_mem_unlock(sc);
3216
3217	DELAY(5);
3218
3219	wpi_stop_master(sc);
3220
3221	tmp = WPI_READ(sc, WPI_RESET);
3222	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3223	sc->flags &= ~WPI_FLAG_BUSY;
3224}
3225
3226static void
3227wpi_stop(struct wpi_softc *sc)
3228{
3229	WPI_LOCK(sc);
3230	wpi_stop_locked(sc);
3231	WPI_UNLOCK(sc);
3232}
3233
3234static void
3235wpi_calib_timeout(void *arg)
3236{
3237	struct wpi_softc *sc = arg;
3238	struct ifnet *ifp = sc->sc_ifp;
3239	struct ieee80211com *ic = ifp->if_l2com;
3240	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3241	int temp;
3242
3243	if (vap->iv_state != IEEE80211_S_RUN)
3244		return;
3245
3246	/* update sensor data */
3247	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3248	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3249
3250	wpi_power_calibration(sc, temp);
3251
3252	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3253}
3254
3255/*
3256 * This function is called periodically (every 60 seconds) to adjust output
3257 * power to temperature changes.
3258 */
3259static void
3260wpi_power_calibration(struct wpi_softc *sc, int temp)
3261{
3262	struct ifnet *ifp = sc->sc_ifp;
3263	struct ieee80211com *ic = ifp->if_l2com;
3264	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265
3266	/* sanity-check read value */
3267	if (temp < -260 || temp > 25) {
3268		/* this can't be correct, ignore */
3269		DPRINTFN(WPI_DEBUG_TEMP,
3270		    ("out-of-range temperature reported: %d\n", temp));
3271		return;
3272	}
3273
3274	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3275
3276	/* adjust Tx power if need be */
3277	if (abs(temp - sc->temp) <= 6)
3278		return;
3279
3280	sc->temp = temp;
3281
3282	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3283		/* just warn, too bad for the automatic calibration... */
3284		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3285	}
3286}
3287
3288/**
3289 * Read the eeprom to find out what channels are valid for the given
3290 * band and update net80211 with what we find.
3291 */
3292static void
3293wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3294{
3295	struct ifnet *ifp = sc->sc_ifp;
3296	struct ieee80211com *ic = ifp->if_l2com;
3297	const struct wpi_chan_band *band = &wpi_bands[n];
3298	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3299	struct ieee80211_channel *c;
3300	int chan, i, passive;
3301
3302	wpi_read_prom_data(sc, band->addr, channels,
3303	    band->nchan * sizeof (struct wpi_eeprom_chan));
3304
3305	for (i = 0; i < band->nchan; i++) {
3306		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3307			DPRINTFN(WPI_DEBUG_HW,
3308			    ("Channel Not Valid: %d, band %d\n",
3309			     band->chan[i],n));
3310			continue;
3311		}
3312
3313		passive = 0;
3314		chan = band->chan[i];
3315		c = &ic->ic_channels[ic->ic_nchans++];
3316
3317		/* is active scan allowed on this channel? */
3318		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3319			passive = IEEE80211_CHAN_PASSIVE;
3320		}
3321
3322		if (n == 0) {	/* 2GHz band */
3323			c->ic_ieee = chan;
3324			c->ic_freq = ieee80211_ieee2mhz(chan,
3325			    IEEE80211_CHAN_2GHZ);
3326			c->ic_flags = IEEE80211_CHAN_B | passive;
3327
3328			c = &ic->ic_channels[ic->ic_nchans++];
3329			c->ic_ieee = chan;
3330			c->ic_freq = ieee80211_ieee2mhz(chan,
3331			    IEEE80211_CHAN_2GHZ);
3332			c->ic_flags = IEEE80211_CHAN_G | passive;
3333
3334		} else {	/* 5GHz band */
3335			/*
3336			 * Some 3945ABG adapters support channels 7, 8, 11
3337			 * and 12 in the 2GHz *and* 5GHz bands.
3338			 * Because of limitations in our net80211(9) stack,
3339			 * we can't support these channels in 5GHz band.
3340			 * XXX not true; just need to map to proper frequency
3341			 */
3342			if (chan <= 14)
3343				continue;
3344
3345			c->ic_ieee = chan;
3346			c->ic_freq = ieee80211_ieee2mhz(chan,
3347			    IEEE80211_CHAN_5GHZ);
3348			c->ic_flags = IEEE80211_CHAN_A | passive;
3349		}
3350
3351		/* save maximum allowed power for this channel */
3352		sc->maxpwr[chan] = channels[i].maxpwr;
3353
3354#if 0
3355		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3356		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3357		//ic->ic_channels[chan].ic_minpower...
3358		//ic->ic_channels[chan].ic_maxregtxpower...
3359#endif
3360
3361		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3362		    " passive=%d, offset %d\n", chan, c->ic_freq,
3363		    channels[i].flags, sc->maxpwr[chan],
3364		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3365		    ic->ic_nchans));
3366	}
3367}
3368
3369static void
3370wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3371{
3372	struct wpi_power_group *group = &sc->groups[n];
3373	struct wpi_eeprom_group rgroup;
3374	int i;
3375
3376	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3377	    sizeof rgroup);
3378
3379	/* save power group information */
3380	group->chan   = rgroup.chan;
3381	group->maxpwr = rgroup.maxpwr;
3382	/* temperature at which the samples were taken */
3383	group->temp   = (int16_t)le16toh(rgroup.temp);
3384
3385	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3386		    group->chan, group->maxpwr, group->temp));
3387
3388	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3389		group->samples[i].index = rgroup.samples[i].index;
3390		group->samples[i].power = rgroup.samples[i].power;
3391
3392		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3393			    group->samples[i].index, group->samples[i].power));
3394	}
3395}
3396
3397/*
3398 * Update Tx power to match what is defined for channel `c'.
3399 */
3400static int
3401wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3402{
3403	struct ifnet *ifp = sc->sc_ifp;
3404	struct ieee80211com *ic = ifp->if_l2com;
3405	struct wpi_power_group *group;
3406	struct wpi_cmd_txpower txpower;
3407	u_int chan;
3408	int i;
3409
3410	/* get channel number */
3411	chan = ieee80211_chan2ieee(ic, c);
3412
3413	/* find the power group to which this channel belongs */
3414	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3416			if (chan <= group->chan)
3417				break;
3418	} else
3419		group = &sc->groups[0];
3420
3421	memset(&txpower, 0, sizeof txpower);
3422	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3423	txpower.channel = htole16(chan);
3424
3425	/* set Tx power for all OFDM and CCK rates */
3426	for (i = 0; i <= 11 ; i++) {
3427		/* retrieve Tx power for this channel/rate combination */
3428		int idx = wpi_get_power_index(sc, group, c,
3429		    wpi_ridx_to_rate[i]);
3430
3431		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3432
3433		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3434			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3435			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3436		} else {
3437			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3438			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3439		}
3440		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3441			    chan, wpi_ridx_to_rate[i], idx));
3442	}
3443
3444	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3445}
3446
3447/*
3448 * Determine Tx power index for a given channel/rate combination.
3449 * This takes into account the regulatory information from EEPROM and the
3450 * current temperature.
3451 */
3452static int
3453wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3454    struct ieee80211_channel *c, int rate)
3455{
3456/* fixed-point arithmetic division using a n-bit fractional part */
3457#define fdivround(a, b, n)      \
3458	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3459
3460/* linear interpolation */
3461#define interpolate(x, x1, y1, x2, y2, n)       \
3462	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3463
3464	struct ifnet *ifp = sc->sc_ifp;
3465	struct ieee80211com *ic = ifp->if_l2com;
3466	struct wpi_power_sample *sample;
3467	int pwr, idx;
3468	u_int chan;
3469
3470	/* get channel number */
3471	chan = ieee80211_chan2ieee(ic, c);
3472
3473	/* default power is group's maximum power - 3dB */
3474	pwr = group->maxpwr / 2;
3475
3476	/* decrease power for highest OFDM rates to reduce distortion */
3477	switch (rate) {
3478		case 72:	/* 36Mb/s */
3479			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3480			break;
3481		case 96:	/* 48Mb/s */
3482			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3483			break;
3484		case 108:	/* 54Mb/s */
3485			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3486			break;
3487	}
3488
3489	/* never exceed channel's maximum allowed Tx power */
3490	pwr = min(pwr, sc->maxpwr[chan]);
3491
3492	/* retrieve power index into gain tables from samples */
3493	for (sample = group->samples; sample < &group->samples[3]; sample++)
3494		if (pwr > sample[1].power)
3495			break;
3496	/* fixed-point linear interpolation using a 19-bit fractional part */
3497	idx = interpolate(pwr, sample[0].power, sample[0].index,
3498	    sample[1].power, sample[1].index, 19);
3499
3500	/*
3501	 *  Adjust power index based on current temperature
3502	 *	- if colder than factory-calibrated: decreate output power
3503	 *	- if warmer than factory-calibrated: increase output power
3504	 */
3505	idx -= (sc->temp - group->temp) * 11 / 100;
3506
3507	/* decrease power for CCK rates (-5dB) */
3508	if (!WPI_RATE_IS_OFDM(rate))
3509		idx += 10;
3510
3511	/* keep power index in a valid range */
3512	if (idx < 0)
3513		return 0;
3514	if (idx > WPI_MAX_PWR_INDEX)
3515		return WPI_MAX_PWR_INDEX;
3516	return idx;
3517
3518#undef interpolate
3519#undef fdivround
3520}
3521
3522/**
3523 * Called by net80211 framework to indicate that a scan
3524 * is starting. This function doesn't actually do the scan,
3525 * wpi_scan_curchan starts things off. This function is more
3526 * of an early warning from the framework we should get ready
3527 * for the scan.
3528 */
3529static void
3530wpi_scan_start(struct ieee80211com *ic)
3531{
3532	struct ifnet *ifp = ic->ic_ifp;
3533	struct wpi_softc *sc = ifp->if_softc;
3534
3535	WPI_LOCK(sc);
3536	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3537	WPI_UNLOCK(sc);
3538}
3539
3540/**
3541 * Called by the net80211 framework, indicates that the
3542 * scan has ended. If there is a scan in progress on the card
3543 * then it should be aborted.
3544 */
3545static void
3546wpi_scan_end(struct ieee80211com *ic)
3547{
3548	/* XXX ignore */
3549}
3550
3551/**
3552 * Called by the net80211 framework to indicate to the driver
3553 * that the channel should be changed
3554 */
3555static void
3556wpi_set_channel(struct ieee80211com *ic)
3557{
3558	struct ifnet *ifp = ic->ic_ifp;
3559	struct wpi_softc *sc = ifp->if_softc;
3560	int error;
3561
3562	/*
3563	 * Only need to set the channel in Monitor mode. AP scanning and auth
3564	 * are already taken care of by their respective firmware commands.
3565	 */
3566	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3567		WPI_LOCK(sc);
3568		error = wpi_config(sc);
3569		WPI_UNLOCK(sc);
3570		if (error != 0)
3571			device_printf(sc->sc_dev,
3572			    "error %d settting channel\n", error);
3573	}
3574}
3575
3576/**
3577 * Called by net80211 to indicate that we need to scan the current
3578 * channel. The channel is previously be set via the wpi_set_channel
3579 * callback.
3580 */
3581static void
3582wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3583{
3584	struct ieee80211vap *vap = ss->ss_vap;
3585	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3586	struct wpi_softc *sc = ifp->if_softc;
3587
3588	WPI_LOCK(sc);
3589	if (wpi_scan(sc))
3590		ieee80211_cancel_scan(vap);
3591	WPI_UNLOCK(sc);
3592}
3593
3594/**
3595 * Called by the net80211 framework to indicate
3596 * the minimum dwell time has been met, terminate the scan.
3597 * We don't actually terminate the scan as the firmware will notify
3598 * us when it's finished and we have no way to interrupt it.
3599 */
3600static void
3601wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3602{
3603	/* NB: don't try to abort scan; wait for firmware to finish */
3604}
3605
3606static void
3607wpi_hwreset(void *arg, int pending)
3608{
3609	struct wpi_softc *sc = arg;
3610
3611	WPI_LOCK(sc);
3612	wpi_init_locked(sc, 0);
3613	WPI_UNLOCK(sc);
3614}
3615
3616static void
3617wpi_rfreset(void *arg, int pending)
3618{
3619	struct wpi_softc *sc = arg;
3620
3621	WPI_LOCK(sc);
3622	wpi_rfkill_resume(sc);
3623	WPI_UNLOCK(sc);
3624}
3625
3626/*
3627 * Allocate DMA-safe memory for firmware transfer.
3628 */
3629static int
3630wpi_alloc_fwmem(struct wpi_softc *sc)
3631{
3632	/* allocate enough contiguous space to store text and data */
3633	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3634	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3635	    BUS_DMA_NOWAIT);
3636}
3637
3638static void
3639wpi_free_fwmem(struct wpi_softc *sc)
3640{
3641	wpi_dma_contig_free(&sc->fw_dma);
3642}
3643
3644/**
3645 * Called every second, wpi_watchdog used by the watch dog timer
3646 * to check that the card is still alive
3647 */
3648static void
3649wpi_watchdog(void *arg)
3650{
3651	struct wpi_softc *sc = arg;
3652	struct ifnet *ifp = sc->sc_ifp;
3653	struct ieee80211com *ic = ifp->if_l2com;
3654	uint32_t tmp;
3655
3656	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3657
3658	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3659		/* No need to lock firmware memory */
3660		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3661
3662		if ((tmp & 0x1) == 0) {
3663			/* Radio kill switch is still off */
3664			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3665			return;
3666		}
3667
3668		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3669		ieee80211_runtask(ic, &sc->sc_radiotask);
3670		return;
3671	}
3672
3673	if (sc->sc_tx_timer > 0) {
3674		if (--sc->sc_tx_timer == 0) {
3675			device_printf(sc->sc_dev,"device timeout\n");
3676			ifp->if_oerrors++;
3677			ieee80211_runtask(ic, &sc->sc_restarttask);
3678		}
3679	}
3680	if (sc->sc_scan_timer > 0) {
3681		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3682		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3683			device_printf(sc->sc_dev,"scan timeout\n");
3684			ieee80211_cancel_scan(vap);
3685			ieee80211_runtask(ic, &sc->sc_restarttask);
3686		}
3687	}
3688
3689	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3690		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3691}
3692
3693#ifdef WPI_DEBUG
3694static const char *wpi_cmd_str(int cmd)
3695{
3696	switch (cmd) {
3697	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3698	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3699	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3700	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3701	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3702	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3703	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3704	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3705	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3706	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3707	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3708	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3709	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3710	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3711
3712	default:
3713		KASSERT(1, ("Unknown Command: %d\n", cmd));
3714		return "UNKNOWN CMD";	/* Make the compiler happy */
3715	}
3716}
3717#endif
3718
3719MODULE_DEPEND(wpi, pci,  1, 1, 1);
3720MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3721MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3722