1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD$");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include "opt_wlan.h"
63
64#include <sys/param.h>
65#include <sys/sysctl.h>
66#include <sys/sockio.h>
67#include <sys/mbuf.h>
68#include <sys/kernel.h>
69#include <sys/socket.h>
70#include <sys/systm.h>
71#include <sys/malloc.h>
72#include <sys/queue.h>
73#include <sys/taskqueue.h>
74#include <sys/module.h>
75#include <sys/bus.h>
76#include <sys/endian.h>
77#include <sys/linker.h>
78#include <sys/firmware.h>
79
80#include <machine/bus.h>
81#include <machine/resource.h>
82#include <sys/rman.h>
83
84#include <dev/pci/pcireg.h>
85#include <dev/pci/pcivar.h>
86
87#include <net/bpf.h>
88#include <net/if.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <net80211/ieee80211_var.h>
96#include <net80211/ieee80211_radiotap.h>
97#include <net80211/ieee80211_regdomain.h>
98#include <net80211/ieee80211_ratectl.h>
99
100#include <netinet/in.h>
101#include <netinet/in_systm.h>
102#include <netinet/in_var.h>
103#include <netinet/ip.h>
104#include <netinet/if_ether.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108
109#define WPI_DEBUG
110
111#ifdef WPI_DEBUG
112#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
113#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
114#define	WPI_DEBUG_SET	(wpi_debug != 0)
115
116enum {
117	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
118	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
119	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
120	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
121	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
122	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
123	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
124	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
125	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
126	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
127	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
128	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
129	WPI_DEBUG_ANY		= 0xffffffff
130};
131
132static int wpi_debug = 0;
133SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
134TUNABLE_INT("debug.wpi", &wpi_debug);
135
136#else
137#define DPRINTF(x)
138#define DPRINTFN(n, x)
139#define WPI_DEBUG_SET	0
140#endif
141
142struct wpi_ident {
143	uint16_t	vendor;
144	uint16_t	device;
145	uint16_t	subdevice;
146	const char	*name;
147};
148
149static const struct wpi_ident wpi_ident_table[] = {
150	/* The below entries support ABG regardless of the subid */
151	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
152	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153	/* The below entries only support BG */
154	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
157	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
158	{ 0, 0, 0, NULL }
159};
160
161static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
162		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
163		    const uint8_t [IEEE80211_ADDR_LEN],
164		    const uint8_t [IEEE80211_ADDR_LEN]);
165static void	wpi_vap_delete(struct ieee80211vap *);
166static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
167		    void **, bus_size_t, bus_size_t, int);
168static void	wpi_dma_contig_free(struct wpi_dma_info *);
169static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
170static int	wpi_alloc_shared(struct wpi_softc *);
171static void	wpi_free_shared(struct wpi_softc *);
172static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176		    int, int);
177static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
180static void	wpi_mem_lock(struct wpi_softc *);
181static void	wpi_mem_unlock(struct wpi_softc *);
182static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
183static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
184static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
185		    const uint32_t *, int);
186static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
187static int	wpi_alloc_fwmem(struct wpi_softc *);
188static void	wpi_free_fwmem(struct wpi_softc *);
189static int	wpi_load_firmware(struct wpi_softc *);
190static void	wpi_unload_firmware(struct wpi_softc *);
191static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
192static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
193		    struct wpi_rx_data *);
194static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
196static void	wpi_notif_intr(struct wpi_softc *);
197static void	wpi_intr(void *);
198static uint8_t	wpi_plcp_signal(int);
199static void	wpi_watchdog(void *);
200static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
201		    struct ieee80211_node *, int);
202static void	wpi_start(struct ifnet *);
203static void	wpi_start_locked(struct ifnet *);
204static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
205		    const struct ieee80211_bpf_params *);
206static void	wpi_scan_start(struct ieee80211com *);
207static void	wpi_scan_end(struct ieee80211com *);
208static void	wpi_set_channel(struct ieee80211com *);
209static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
210static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
211static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
212static void	wpi_read_eeprom(struct wpi_softc *,
213		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
214static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
215static void	wpi_read_eeprom_group(struct wpi_softc *, int);
216static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
217static int	wpi_wme_update(struct ieee80211com *);
218static int	wpi_mrr_setup(struct wpi_softc *);
219static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
220static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
221#if 0
222static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
223#endif
224static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
226static int	wpi_scan(struct wpi_softc *);
227static int	wpi_config(struct wpi_softc *);
228static void	wpi_stop_master(struct wpi_softc *);
229static int	wpi_power_up(struct wpi_softc *);
230static int	wpi_reset(struct wpi_softc *);
231static void	wpi_hwreset(void *, int);
232static void	wpi_rfreset(void *, int);
233static void	wpi_hw_config(struct wpi_softc *);
234static void	wpi_init(void *);
235static void	wpi_init_locked(struct wpi_softc *, int);
236static void	wpi_stop(struct wpi_softc *);
237static void	wpi_stop_locked(struct wpi_softc *);
238
239static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240		    int);
241static void	wpi_calib_timeout(void *);
242static void	wpi_power_calibration(struct wpi_softc *, int);
243static int	wpi_get_power_index(struct wpi_softc *,
244		    struct wpi_power_group *, struct ieee80211_channel *, int);
245#ifdef WPI_DEBUG
246static const char *wpi_cmd_str(int);
247#endif
248static int wpi_probe(device_t);
249static int wpi_attach(device_t);
250static int wpi_detach(device_t);
251static int wpi_shutdown(device_t);
252static int wpi_suspend(device_t);
253static int wpi_resume(device_t);
254
255static device_method_t wpi_methods[] = {
256	/* Device interface */
257	DEVMETHOD(device_probe,		wpi_probe),
258	DEVMETHOD(device_attach,	wpi_attach),
259	DEVMETHOD(device_detach,	wpi_detach),
260	DEVMETHOD(device_shutdown,	wpi_shutdown),
261	DEVMETHOD(device_suspend,	wpi_suspend),
262	DEVMETHOD(device_resume,	wpi_resume),
263
264	DEVMETHOD_END
265};
266
267static driver_t wpi_driver = {
268	"wpi",
269	wpi_methods,
270	sizeof (struct wpi_softc)
271};
272
273static devclass_t wpi_devclass;
274
275DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
276
277MODULE_VERSION(wpi, 1);
278
279static const uint8_t wpi_ridx_to_plcp[] = {
280	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
281	/* R1-R4 (ral/ural is R4-R1) */
282	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
283	/* CCK: device-dependent */
284	10, 20, 55, 110
285};
286
287static const uint8_t wpi_ridx_to_rate[] = {
288	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289	2, 4, 11, 22 /*CCK */
290};
291
292static int
293wpi_probe(device_t dev)
294{
295	const struct wpi_ident *ident;
296
297	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
298		if (pci_get_vendor(dev) == ident->vendor &&
299		    pci_get_device(dev) == ident->device) {
300			device_set_desc(dev, ident->name);
301			return (BUS_PROBE_DEFAULT);
302		}
303	}
304	return ENXIO;
305}
306
307/**
308 * Load the firmare image from disk to the allocated dma buffer.
309 * we also maintain the reference to the firmware pointer as there
310 * is times where we may need to reload the firmware but we are not
311 * in a context that can access the filesystem (ie taskq cause by restart)
312 *
313 * @return 0 on success, an errno on failure
314 */
315static int
316wpi_load_firmware(struct wpi_softc *sc)
317{
318	const struct firmware *fp;
319	struct wpi_dma_info *dma = &sc->fw_dma;
320	const struct wpi_firmware_hdr *hdr;
321	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
322	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
323	int error;
324
325	DPRINTFN(WPI_DEBUG_FIRMWARE,
326	    ("Attempting Loading Firmware from wpi_fw module\n"));
327
328	WPI_UNLOCK(sc);
329
330	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
331		device_printf(sc->sc_dev,
332		    "could not load firmware image 'wpifw'\n");
333		error = ENOENT;
334		WPI_LOCK(sc);
335		goto fail;
336	}
337
338	fp = sc->fw_fp;
339
340	WPI_LOCK(sc);
341
342	/* Validate the firmware is minimum a particular version */
343	if (fp->version < WPI_FW_MINVERSION) {
344	    device_printf(sc->sc_dev,
345			   "firmware version is too old. Need %d, got %d\n",
346			   WPI_FW_MINVERSION,
347			   fp->version);
348	    error = ENXIO;
349	    goto fail;
350	}
351
352	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
353		device_printf(sc->sc_dev,
354		    "firmware file too short: %zu bytes\n", fp->datasize);
355		error = ENXIO;
356		goto fail;
357	}
358
359	hdr = (const struct wpi_firmware_hdr *)fp->data;
360
361	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
362	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
363
364	rtextsz = le32toh(hdr->rtextsz);
365	rdatasz = le32toh(hdr->rdatasz);
366	itextsz = le32toh(hdr->itextsz);
367	idatasz = le32toh(hdr->idatasz);
368	btextsz = le32toh(hdr->btextsz);
369
370	/* check that all firmware segments are present */
371	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
372		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
373		device_printf(sc->sc_dev,
374		    "firmware file too short: %zu bytes\n", fp->datasize);
375		error = ENXIO; /* XXX appropriate error code? */
376		goto fail;
377	}
378
379	/* get pointers to firmware segments */
380	rtext = (const uint8_t *)(hdr + 1);
381	rdata = rtext + rtextsz;
382	itext = rdata + rdatasz;
383	idata = itext + itextsz;
384	btext = idata + idatasz;
385
386	DPRINTFN(WPI_DEBUG_FIRMWARE,
387	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
388	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
389	     (le32toh(hdr->version) & 0xff000000) >> 24,
390	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
391	     (le32toh(hdr->version) & 0x0000ffff),
392	     rtextsz, rdatasz,
393	     itextsz, idatasz, btextsz));
394
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
399	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
400
401	/* sanity checks */
402	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
403	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
404	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
405	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
406	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
407	    (btextsz & 3) != 0) {
408		device_printf(sc->sc_dev, "firmware invalid\n");
409		error = EINVAL;
410		goto fail;
411	}
412
413	/* copy initialization images into pre-allocated DMA-safe memory */
414	memcpy(dma->vaddr, idata, idatasz);
415	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
416
417	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
418
419	/* tell adapter where to find initialization images */
420	wpi_mem_lock(sc);
421	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
422	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
423	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
424	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
425	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
426	wpi_mem_unlock(sc);
427
428	/* load firmware boot code */
429	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
430	    device_printf(sc->sc_dev, "Failed to load microcode\n");
431	    goto fail;
432	}
433
434	/* now press "execute" */
435	WPI_WRITE(sc, WPI_RESET, 0);
436
437	/* wait at most one second for the first alive notification */
438	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
439		device_printf(sc->sc_dev,
440		    "timeout waiting for adapter to initialize\n");
441		goto fail;
442	}
443
444	/* copy runtime images into pre-allocated DMA-sage memory */
445	memcpy(dma->vaddr, rdata, rdatasz);
446	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
447	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
448
449	/* tell adapter where to find runtime images */
450	wpi_mem_lock(sc);
451	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
452	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
453	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
454	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
455	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
456	wpi_mem_unlock(sc);
457
458	/* wait at most one second for the first alive notification */
459	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
460		device_printf(sc->sc_dev,
461		    "timeout waiting for adapter to initialize2\n");
462		goto fail;
463	}
464
465	DPRINTFN(WPI_DEBUG_FIRMWARE,
466	    ("Firmware loaded to driver successfully\n"));
467	return error;
468fail:
469	wpi_unload_firmware(sc);
470	return error;
471}
472
473/**
474 * Free the referenced firmware image
475 */
476static void
477wpi_unload_firmware(struct wpi_softc *sc)
478{
479
480	if (sc->fw_fp) {
481		WPI_UNLOCK(sc);
482		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
483		WPI_LOCK(sc);
484		sc->fw_fp = NULL;
485	}
486}
487
488static int
489wpi_attach(device_t dev)
490{
491	struct wpi_softc *sc = device_get_softc(dev);
492	struct ifnet *ifp;
493	struct ieee80211com *ic;
494	int ac, error, rid, supportsa = 1;
495	uint32_t tmp;
496	const struct wpi_ident *ident;
497	uint8_t macaddr[IEEE80211_ADDR_LEN];
498
499	sc->sc_dev = dev;
500
501	if (bootverbose || WPI_DEBUG_SET)
502	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
503
504	/*
505	 * Some card's only support 802.11b/g not a, check to see if
506	 * this is one such card. A 0x0 in the subdevice table indicates
507	 * the entire subdevice range is to be ignored.
508	 */
509	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
510		if (ident->subdevice &&
511		    pci_get_subdevice(dev) == ident->subdevice) {
512		    supportsa = 0;
513		    break;
514		}
515	}
516
517	/* Create the tasks that can be queued */
518	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
519	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
520
521	WPI_LOCK_INIT(sc);
522
523	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
524	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
525
526	/* disable the retry timeout register */
527	pci_write_config(dev, 0x41, 0, 1);
528
529	/* enable bus-mastering */
530	pci_enable_busmaster(dev);
531
532	rid = PCIR_BAR(0);
533	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
534	    RF_ACTIVE);
535	if (sc->mem == NULL) {
536		device_printf(dev, "could not allocate memory resource\n");
537		error = ENOMEM;
538		goto fail;
539	}
540
541	sc->sc_st = rman_get_bustag(sc->mem);
542	sc->sc_sh = rman_get_bushandle(sc->mem);
543
544	rid = 0;
545	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
546	    RF_ACTIVE | RF_SHAREABLE);
547	if (sc->irq == NULL) {
548		device_printf(dev, "could not allocate interrupt resource\n");
549		error = ENOMEM;
550		goto fail;
551	}
552
553	/*
554	 * Allocate DMA memory for firmware transfers.
555	 */
556	if ((error = wpi_alloc_fwmem(sc)) != 0) {
557		printf(": could not allocate firmware memory\n");
558		error = ENOMEM;
559		goto fail;
560	}
561
562	/*
563	 * Put adapter into a known state.
564	 */
565	if ((error = wpi_reset(sc)) != 0) {
566		device_printf(dev, "could not reset adapter\n");
567		goto fail;
568	}
569
570	wpi_mem_lock(sc);
571	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
572	if (bootverbose || WPI_DEBUG_SET)
573	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
574
575	wpi_mem_unlock(sc);
576
577	/* Allocate shared page */
578	if ((error = wpi_alloc_shared(sc)) != 0) {
579		device_printf(dev, "could not allocate shared page\n");
580		goto fail;
581	}
582
583	/* tx data queues  - 4 for QoS purposes */
584	for (ac = 0; ac < WME_NUM_AC; ac++) {
585		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
586		if (error != 0) {
587		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
588		    goto fail;
589		}
590	}
591
592	/* command queue to talk to the card's firmware */
593	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
594	if (error != 0) {
595		device_printf(dev, "could not allocate command ring\n");
596		goto fail;
597	}
598
599	/* receive data queue */
600	error = wpi_alloc_rx_ring(sc, &sc->rxq);
601	if (error != 0) {
602		device_printf(dev, "could not allocate Rx ring\n");
603		goto fail;
604	}
605
606	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
607	if (ifp == NULL) {
608		device_printf(dev, "can not if_alloc()\n");
609		error = ENOMEM;
610		goto fail;
611	}
612	ic = ifp->if_l2com;
613
614	ic->ic_ifp = ifp;
615	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
616	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
617
618	/* set device capabilities */
619	ic->ic_caps =
620		  IEEE80211_C_STA		/* station mode supported */
621		| IEEE80211_C_MONITOR		/* monitor mode supported */
622		| IEEE80211_C_TXPMGT		/* tx power management */
623		| IEEE80211_C_SHSLOT		/* short slot time supported */
624		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
625		| IEEE80211_C_WPA		/* 802.11i */
626/* XXX looks like WME is partly supported? */
627#if 0
628		| IEEE80211_C_IBSS		/* IBSS mode support */
629		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
630		| IEEE80211_C_WME		/* 802.11e */
631		| IEEE80211_C_HOSTAP		/* Host access point mode */
632#endif
633		;
634
635	/*
636	 * Read in the eeprom and also setup the channels for
637	 * net80211. We don't set the rates as net80211 does this for us
638	 */
639	wpi_read_eeprom(sc, macaddr);
640
641	if (bootverbose || WPI_DEBUG_SET) {
642	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
643	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
644			  sc->type > 1 ? 'B': '?');
645	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
646			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
647	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
648			  supportsa ? "does" : "does not");
649
650	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
651	       what sc->rev really represents - benjsc 20070615 */
652	}
653
654	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
655	ifp->if_softc = sc;
656	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
657	ifp->if_init = wpi_init;
658	ifp->if_ioctl = wpi_ioctl;
659	ifp->if_start = wpi_start;
660	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
661	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
662	IFQ_SET_READY(&ifp->if_snd);
663
664	ieee80211_ifattach(ic, macaddr);
665	/* override default methods */
666	ic->ic_raw_xmit = wpi_raw_xmit;
667	ic->ic_wme.wme_update = wpi_wme_update;
668	ic->ic_scan_start = wpi_scan_start;
669	ic->ic_scan_end = wpi_scan_end;
670	ic->ic_set_channel = wpi_set_channel;
671	ic->ic_scan_curchan = wpi_scan_curchan;
672	ic->ic_scan_mindwell = wpi_scan_mindwell;
673
674	ic->ic_vap_create = wpi_vap_create;
675	ic->ic_vap_delete = wpi_vap_delete;
676
677	ieee80211_radiotap_attach(ic,
678	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
679		WPI_TX_RADIOTAP_PRESENT,
680	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
681		WPI_RX_RADIOTAP_PRESENT);
682
683	/*
684	 * Hook our interrupt after all initialization is complete.
685	 */
686	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
687	    NULL, wpi_intr, sc, &sc->sc_ih);
688	if (error != 0) {
689		device_printf(dev, "could not set up interrupt\n");
690		goto fail;
691	}
692
693	if (bootverbose)
694		ieee80211_announce(ic);
695#ifdef XXX_DEBUG
696	ieee80211_announce_channels(ic);
697#endif
698	return 0;
699
700fail:	wpi_detach(dev);
701	return ENXIO;
702}
703
704static int
705wpi_detach(device_t dev)
706{
707	struct wpi_softc *sc = device_get_softc(dev);
708	struct ifnet *ifp = sc->sc_ifp;
709	struct ieee80211com *ic;
710	int ac;
711
712	if (sc->irq != NULL)
713		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
714
715	if (ifp != NULL) {
716		ic = ifp->if_l2com;
717
718		ieee80211_draintask(ic, &sc->sc_restarttask);
719		ieee80211_draintask(ic, &sc->sc_radiotask);
720		wpi_stop(sc);
721		callout_drain(&sc->watchdog_to);
722		callout_drain(&sc->calib_to);
723		ieee80211_ifdetach(ic);
724	}
725
726	WPI_LOCK(sc);
727	if (sc->txq[0].data_dmat) {
728		for (ac = 0; ac < WME_NUM_AC; ac++)
729			wpi_free_tx_ring(sc, &sc->txq[ac]);
730
731		wpi_free_tx_ring(sc, &sc->cmdq);
732		wpi_free_rx_ring(sc, &sc->rxq);
733		wpi_free_shared(sc);
734	}
735
736	if (sc->fw_fp != NULL) {
737		wpi_unload_firmware(sc);
738	}
739
740	if (sc->fw_dma.tag)
741		wpi_free_fwmem(sc);
742	WPI_UNLOCK(sc);
743
744	if (sc->irq != NULL)
745		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
746		    sc->irq);
747	if (sc->mem != NULL)
748		bus_release_resource(dev, SYS_RES_MEMORY,
749		    rman_get_rid(sc->mem), sc->mem);
750
751	if (ifp != NULL)
752		if_free(ifp);
753
754	WPI_LOCK_DESTROY(sc);
755
756	return 0;
757}
758
759static struct ieee80211vap *
760wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
761    enum ieee80211_opmode opmode, int flags,
762    const uint8_t bssid[IEEE80211_ADDR_LEN],
763    const uint8_t mac[IEEE80211_ADDR_LEN])
764{
765	struct wpi_vap *wvp;
766	struct ieee80211vap *vap;
767
768	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
769		return NULL;
770	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
771	    M_80211_VAP, M_NOWAIT | M_ZERO);
772	if (wvp == NULL)
773		return NULL;
774	vap = &wvp->vap;
775	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
776	/* override with driver methods */
777	wvp->newstate = vap->iv_newstate;
778	vap->iv_newstate = wpi_newstate;
779
780	ieee80211_ratectl_init(vap);
781	/* complete setup */
782	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
783	ic->ic_opmode = opmode;
784	return vap;
785}
786
787static void
788wpi_vap_delete(struct ieee80211vap *vap)
789{
790	struct wpi_vap *wvp = WPI_VAP(vap);
791
792	ieee80211_ratectl_deinit(vap);
793	ieee80211_vap_detach(vap);
794	free(wvp, M_80211_VAP);
795}
796
797static void
798wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
799{
800	if (error != 0)
801		return;
802
803	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
804
805	*(bus_addr_t *)arg = segs[0].ds_addr;
806}
807
808/*
809 * Allocates a contiguous block of dma memory of the requested size and
810 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
811 * allocations greater than 4096 may fail. Hence if the requested alignment is
812 * greater we allocate 'alignment' size extra memory and shift the vaddr and
813 * paddr after the dma load. This bypasses the problem at the cost of a little
814 * more memory.
815 */
816static int
817wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
818    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
819{
820	int error;
821	bus_size_t align;
822	bus_size_t reqsize;
823
824	DPRINTFN(WPI_DEBUG_DMA,
825	    ("Size: %zd - alignment %zd\n", size, alignment));
826
827	dma->size = size;
828	dma->tag = NULL;
829
830	if (alignment > 4096) {
831		align = PAGE_SIZE;
832		reqsize = size + alignment;
833	} else {
834		align = alignment;
835		reqsize = size;
836	}
837	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
838	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
839	    NULL, NULL, reqsize,
840	    1, reqsize, flags,
841	    NULL, NULL, &dma->tag);
842	if (error != 0) {
843		device_printf(sc->sc_dev,
844		    "could not create shared page DMA tag\n");
845		goto fail;
846	}
847	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
848	    flags | BUS_DMA_ZERO, &dma->map);
849	if (error != 0) {
850		device_printf(sc->sc_dev,
851		    "could not allocate shared page DMA memory\n");
852		goto fail;
853	}
854
855	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
856	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
857
858	/* Save the original pointers so we can free all the memory */
859	dma->paddr = dma->paddr_start;
860	dma->vaddr = dma->vaddr_start;
861
862	/*
863	 * Check the alignment and increment by 4096 until we get the
864	 * requested alignment. Fail if can't obtain the alignment
865	 * we requested.
866	 */
867	if ((dma->paddr & (alignment -1 )) != 0) {
868		int i;
869
870		for (i = 0; i < alignment / 4096; i++) {
871			if ((dma->paddr & (alignment - 1 )) == 0)
872				break;
873			dma->paddr += 4096;
874			dma->vaddr += 4096;
875		}
876		if (i == alignment / 4096) {
877			device_printf(sc->sc_dev,
878			    "alignment requirement was not satisfied\n");
879			goto fail;
880		}
881	}
882
883	if (error != 0) {
884		device_printf(sc->sc_dev,
885		    "could not load shared page DMA map\n");
886		goto fail;
887	}
888
889	if (kvap != NULL)
890		*kvap = dma->vaddr;
891
892	return 0;
893
894fail:
895	wpi_dma_contig_free(dma);
896	return error;
897}
898
899static void
900wpi_dma_contig_free(struct wpi_dma_info *dma)
901{
902	if (dma->tag) {
903		if (dma->map != NULL) {
904			if (dma->paddr_start != 0) {
905				bus_dmamap_sync(dma->tag, dma->map,
906				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
907				bus_dmamap_unload(dma->tag, dma->map);
908			}
909			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
910		}
911		bus_dma_tag_destroy(dma->tag);
912	}
913}
914
915/*
916 * Allocate a shared page between host and NIC.
917 */
918static int
919wpi_alloc_shared(struct wpi_softc *sc)
920{
921	int error;
922
923	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
924	    (void **)&sc->shared, sizeof (struct wpi_shared),
925	    PAGE_SIZE,
926	    BUS_DMA_NOWAIT);
927
928	if (error != 0) {
929		device_printf(sc->sc_dev,
930		    "could not allocate shared area DMA memory\n");
931	}
932
933	return error;
934}
935
936static void
937wpi_free_shared(struct wpi_softc *sc)
938{
939	wpi_dma_contig_free(&sc->shared_dma);
940}
941
942static int
943wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
944{
945
946	int i, error;
947
948	ring->cur = 0;
949
950	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
951	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
952	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
953
954	if (error != 0) {
955		device_printf(sc->sc_dev,
956		    "%s: could not allocate rx ring DMA memory, error %d\n",
957		    __func__, error);
958		goto fail;
959	}
960
961        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
962	    BUS_SPACE_MAXADDR_32BIT,
963            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
964            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
965        if (error != 0) {
966                device_printf(sc->sc_dev,
967		    "%s: bus_dma_tag_create_failed, error %d\n",
968		    __func__, error);
969                goto fail;
970        }
971
972	/*
973	 * Setup Rx buffers.
974	 */
975	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
976		struct wpi_rx_data *data = &ring->data[i];
977		struct mbuf *m;
978		bus_addr_t paddr;
979
980		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981		if (error != 0) {
982			device_printf(sc->sc_dev,
983			    "%s: bus_dmamap_create failed, error %d\n",
984			    __func__, error);
985			goto fail;
986		}
987		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
988		if (m == NULL) {
989			device_printf(sc->sc_dev,
990			   "%s: could not allocate rx mbuf\n", __func__);
991			error = ENOMEM;
992			goto fail;
993		}
994		/* map page */
995		error = bus_dmamap_load(ring->data_dmat, data->map,
996		    mtod(m, caddr_t), MJUMPAGESIZE,
997		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
998		if (error != 0 && error != EFBIG) {
999			device_printf(sc->sc_dev,
1000			    "%s: bus_dmamap_load failed, error %d\n",
1001			    __func__, error);
1002			m_freem(m);
1003			error = ENOMEM;	/* XXX unique code */
1004			goto fail;
1005		}
1006		bus_dmamap_sync(ring->data_dmat, data->map,
1007		    BUS_DMASYNC_PREWRITE);
1008
1009		data->m = m;
1010		ring->desc[i] = htole32(paddr);
1011	}
1012	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1013	    BUS_DMASYNC_PREWRITE);
1014	return 0;
1015fail:
1016	wpi_free_rx_ring(sc, ring);
1017	return error;
1018}
1019
1020static void
1021wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1022{
1023	int ntries;
1024
1025	wpi_mem_lock(sc);
1026
1027	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1028
1029	for (ntries = 0; ntries < 100; ntries++) {
1030		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1031			break;
1032		DELAY(10);
1033	}
1034
1035	wpi_mem_unlock(sc);
1036
1037#ifdef WPI_DEBUG
1038	if (ntries == 100 && wpi_debug > 0)
1039		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1040#endif
1041
1042	ring->cur = 0;
1043}
1044
1045static void
1046wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1047{
1048	int i;
1049
1050	wpi_dma_contig_free(&ring->desc_dma);
1051
1052	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1053		struct wpi_rx_data *data = &ring->data[i];
1054
1055		if (data->m != NULL) {
1056			bus_dmamap_sync(ring->data_dmat, data->map,
1057			    BUS_DMASYNC_POSTREAD);
1058			bus_dmamap_unload(ring->data_dmat, data->map);
1059			m_freem(data->m);
1060		}
1061		if (data->map != NULL)
1062			bus_dmamap_destroy(ring->data_dmat, data->map);
1063	}
1064}
1065
1066static int
1067wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1068	int qid)
1069{
1070	struct wpi_tx_data *data;
1071	int i, error;
1072
1073	ring->qid = qid;
1074	ring->count = count;
1075	ring->queued = 0;
1076	ring->cur = 0;
1077	ring->data = NULL;
1078
1079	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1080		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1081		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1082
1083	if (error != 0) {
1084	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1085	    goto fail;
1086	}
1087
1088	/* update shared page with ring's base address */
1089	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1090
1091	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1092		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1093		BUS_DMA_NOWAIT);
1094
1095	if (error != 0) {
1096		device_printf(sc->sc_dev,
1097		    "could not allocate tx command DMA memory\n");
1098		goto fail;
1099	}
1100
1101	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1102	    M_NOWAIT | M_ZERO);
1103	if (ring->data == NULL) {
1104		device_printf(sc->sc_dev,
1105		    "could not allocate tx data slots\n");
1106		goto fail;
1107	}
1108
1109	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1110	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1111	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1112	    &ring->data_dmat);
1113	if (error != 0) {
1114		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1115		goto fail;
1116	}
1117
1118	for (i = 0; i < count; i++) {
1119		data = &ring->data[i];
1120
1121		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1122		if (error != 0) {
1123			device_printf(sc->sc_dev,
1124			    "could not create tx buf DMA map\n");
1125			goto fail;
1126		}
1127		bus_dmamap_sync(ring->data_dmat, data->map,
1128		    BUS_DMASYNC_PREWRITE);
1129	}
1130
1131	return 0;
1132
1133fail:
1134	wpi_free_tx_ring(sc, ring);
1135	return error;
1136}
1137
1138static void
1139wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1140{
1141	struct wpi_tx_data *data;
1142	int i, ntries;
1143
1144	wpi_mem_lock(sc);
1145
1146	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1147	for (ntries = 0; ntries < 100; ntries++) {
1148		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1149			break;
1150		DELAY(10);
1151	}
1152#ifdef WPI_DEBUG
1153	if (ntries == 100 && wpi_debug > 0)
1154		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1155		    ring->qid);
1156#endif
1157	wpi_mem_unlock(sc);
1158
1159	for (i = 0; i < ring->count; i++) {
1160		data = &ring->data[i];
1161
1162		if (data->m != NULL) {
1163			bus_dmamap_unload(ring->data_dmat, data->map);
1164			m_freem(data->m);
1165			data->m = NULL;
1166		}
1167	}
1168
1169	ring->queued = 0;
1170	ring->cur = 0;
1171}
1172
1173static void
1174wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1175{
1176	struct wpi_tx_data *data;
1177	int i;
1178
1179	wpi_dma_contig_free(&ring->desc_dma);
1180	wpi_dma_contig_free(&ring->cmd_dma);
1181
1182	if (ring->data != NULL) {
1183		for (i = 0; i < ring->count; i++) {
1184			data = &ring->data[i];
1185
1186			if (data->m != NULL) {
1187				bus_dmamap_sync(ring->data_dmat, data->map,
1188				    BUS_DMASYNC_POSTWRITE);
1189				bus_dmamap_unload(ring->data_dmat, data->map);
1190				m_freem(data->m);
1191				data->m = NULL;
1192			}
1193		}
1194		free(ring->data, M_DEVBUF);
1195	}
1196
1197	if (ring->data_dmat != NULL)
1198		bus_dma_tag_destroy(ring->data_dmat);
1199}
1200
1201static int
1202wpi_shutdown(device_t dev)
1203{
1204	struct wpi_softc *sc = device_get_softc(dev);
1205
1206	WPI_LOCK(sc);
1207	wpi_stop_locked(sc);
1208	wpi_unload_firmware(sc);
1209	WPI_UNLOCK(sc);
1210
1211	return 0;
1212}
1213
1214static int
1215wpi_suspend(device_t dev)
1216{
1217	struct wpi_softc *sc = device_get_softc(dev);
1218	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1219
1220	ieee80211_suspend_all(ic);
1221	return 0;
1222}
1223
1224static int
1225wpi_resume(device_t dev)
1226{
1227	struct wpi_softc *sc = device_get_softc(dev);
1228	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1229
1230	pci_write_config(dev, 0x41, 0, 1);
1231
1232	ieee80211_resume_all(ic);
1233	return 0;
1234}
1235
1236/**
1237 * Called by net80211 when ever there is a change to 80211 state machine
1238 */
1239static int
1240wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1241{
1242	struct wpi_vap *wvp = WPI_VAP(vap);
1243	struct ieee80211com *ic = vap->iv_ic;
1244	struct ifnet *ifp = ic->ic_ifp;
1245	struct wpi_softc *sc = ifp->if_softc;
1246	int error;
1247
1248	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1249		ieee80211_state_name[vap->iv_state],
1250		ieee80211_state_name[nstate], sc->flags));
1251
1252	IEEE80211_UNLOCK(ic);
1253	WPI_LOCK(sc);
1254	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1255		/*
1256		 * On !INIT -> SCAN transitions, we need to clear any possible
1257		 * knowledge about associations.
1258		 */
1259		error = wpi_config(sc);
1260		if (error != 0) {
1261			device_printf(sc->sc_dev,
1262			    "%s: device config failed, error %d\n",
1263			    __func__, error);
1264		}
1265	}
1266	if (nstate == IEEE80211_S_AUTH ||
1267	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1268		/*
1269		 * The node must be registered in the firmware before auth.
1270		 * Also the associd must be cleared on RUN -> ASSOC
1271		 * transitions.
1272		 */
1273		error = wpi_auth(sc, vap);
1274		if (error != 0) {
1275			device_printf(sc->sc_dev,
1276			    "%s: could not move to auth state, error %d\n",
1277			    __func__, error);
1278		}
1279	}
1280	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1281		error = wpi_run(sc, vap);
1282		if (error != 0) {
1283			device_printf(sc->sc_dev,
1284			    "%s: could not move to run state, error %d\n",
1285			    __func__, error);
1286		}
1287	}
1288	if (nstate == IEEE80211_S_RUN) {
1289		/* RUN -> RUN transition; just restart the timers */
1290		wpi_calib_timeout(sc);
1291		/* XXX split out rate control timer */
1292	}
1293	WPI_UNLOCK(sc);
1294	IEEE80211_LOCK(ic);
1295	return wvp->newstate(vap, nstate, arg);
1296}
1297
1298/*
1299 * Grab exclusive access to NIC memory.
1300 */
1301static void
1302wpi_mem_lock(struct wpi_softc *sc)
1303{
1304	int ntries;
1305	uint32_t tmp;
1306
1307	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1308	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1309
1310	/* spin until we actually get the lock */
1311	for (ntries = 0; ntries < 100; ntries++) {
1312		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1313			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1314			break;
1315		DELAY(10);
1316	}
1317	if (ntries == 100)
1318		device_printf(sc->sc_dev, "could not lock memory\n");
1319}
1320
1321/*
1322 * Release lock on NIC memory.
1323 */
1324static void
1325wpi_mem_unlock(struct wpi_softc *sc)
1326{
1327	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1328	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1329}
1330
1331static uint32_t
1332wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1333{
1334	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1335	return WPI_READ(sc, WPI_READ_MEM_DATA);
1336}
1337
1338static void
1339wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1340{
1341	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1342	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1343}
1344
1345static void
1346wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1347    const uint32_t *data, int wlen)
1348{
1349	for (; wlen > 0; wlen--, data++, addr+=4)
1350		wpi_mem_write(sc, addr, *data);
1351}
1352
1353/*
1354 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1355 * using the traditional bit-bang method. Data is read up until len bytes have
1356 * been obtained.
1357 */
1358static uint16_t
1359wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1360{
1361	int ntries;
1362	uint32_t val;
1363	uint8_t *out = data;
1364
1365	wpi_mem_lock(sc);
1366
1367	for (; len > 0; len -= 2, addr++) {
1368		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1369
1370		for (ntries = 0; ntries < 10; ntries++) {
1371			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1372				break;
1373			DELAY(5);
1374		}
1375
1376		if (ntries == 10) {
1377			device_printf(sc->sc_dev, "could not read EEPROM\n");
1378			return ETIMEDOUT;
1379		}
1380
1381		*out++= val >> 16;
1382		if (len > 1)
1383			*out ++= val >> 24;
1384	}
1385
1386	wpi_mem_unlock(sc);
1387
1388	return 0;
1389}
1390
1391/*
1392 * The firmware text and data segments are transferred to the NIC using DMA.
1393 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1394 * where to find it.  Once the NIC has copied the firmware into its internal
1395 * memory, we can free our local copy in the driver.
1396 */
1397static int
1398wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1399{
1400	int error, ntries;
1401
1402	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1403
1404	size /= sizeof(uint32_t);
1405
1406	wpi_mem_lock(sc);
1407
1408	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1409	    (const uint32_t *)fw, size);
1410
1411	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1412	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1413	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1414
1415	/* run microcode */
1416	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1417
1418	/* wait while the adapter is busy copying the firmware */
1419	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1420		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1421		DPRINTFN(WPI_DEBUG_HW,
1422		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1423		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1424		if (status & WPI_TX_IDLE(6)) {
1425			DPRINTFN(WPI_DEBUG_HW,
1426			    ("Status Match! - ntries = %d\n", ntries));
1427			break;
1428		}
1429		DELAY(10);
1430	}
1431	if (ntries == 1000) {
1432		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1433		error = ETIMEDOUT;
1434	}
1435
1436	/* start the microcode executing */
1437	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1438
1439	wpi_mem_unlock(sc);
1440
1441	return (error);
1442}
1443
1444static void
1445wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1446	struct wpi_rx_data *data)
1447{
1448	struct ifnet *ifp = sc->sc_ifp;
1449	struct ieee80211com *ic = ifp->if_l2com;
1450	struct wpi_rx_ring *ring = &sc->rxq;
1451	struct wpi_rx_stat *stat;
1452	struct wpi_rx_head *head;
1453	struct wpi_rx_tail *tail;
1454	struct ieee80211_node *ni;
1455	struct mbuf *m, *mnew;
1456	bus_addr_t paddr;
1457	int error;
1458
1459	stat = (struct wpi_rx_stat *)(desc + 1);
1460
1461	if (stat->len > WPI_STAT_MAXLEN) {
1462		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1463		ifp->if_ierrors++;
1464		return;
1465	}
1466
1467	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1468	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470
1471	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474	    (uintmax_t)le64toh(tail->tstamp)));
1475
1476	/* discard Rx frames with bad CRC early */
1477	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1478		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1479		    le32toh(tail->flags)));
1480		ifp->if_ierrors++;
1481		return;
1482	}
1483	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1484		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1485		    le16toh(head->len)));
1486		ifp->if_ierrors++;
1487		return;
1488	}
1489
1490	/* XXX don't need mbuf, just dma buffer */
1491	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1492	if (mnew == NULL) {
1493		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1494		    __func__));
1495		ifp->if_ierrors++;
1496		return;
1497	}
1498	bus_dmamap_unload(ring->data_dmat, data->map);
1499
1500	error = bus_dmamap_load(ring->data_dmat, data->map,
1501	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1502	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1503	if (error != 0 && error != EFBIG) {
1504		device_printf(sc->sc_dev,
1505		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1506		m_freem(mnew);
1507		ifp->if_ierrors++;
1508		return;
1509	}
1510	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1511
1512	/* finalize mbuf and swap in new one */
1513	m = data->m;
1514	m->m_pkthdr.rcvif = ifp;
1515	m->m_data = (caddr_t)(head + 1);
1516	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1517
1518	data->m = mnew;
1519	/* update Rx descriptor */
1520	ring->desc[ring->cur] = htole32(paddr);
1521
1522	if (ieee80211_radiotap_active(ic)) {
1523		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1524
1525		tap->wr_flags = 0;
1526		tap->wr_chan_freq =
1527			htole16(ic->ic_channels[head->chan].ic_freq);
1528		tap->wr_chan_flags =
1529			htole16(ic->ic_channels[head->chan].ic_flags);
1530		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1531		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1532		tap->wr_tsft = tail->tstamp;
1533		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1534		switch (head->rate) {
1535		/* CCK rates */
1536		case  10: tap->wr_rate =   2; break;
1537		case  20: tap->wr_rate =   4; break;
1538		case  55: tap->wr_rate =  11; break;
1539		case 110: tap->wr_rate =  22; break;
1540		/* OFDM rates */
1541		case 0xd: tap->wr_rate =  12; break;
1542		case 0xf: tap->wr_rate =  18; break;
1543		case 0x5: tap->wr_rate =  24; break;
1544		case 0x7: tap->wr_rate =  36; break;
1545		case 0x9: tap->wr_rate =  48; break;
1546		case 0xb: tap->wr_rate =  72; break;
1547		case 0x1: tap->wr_rate =  96; break;
1548		case 0x3: tap->wr_rate = 108; break;
1549		/* unknown rate: should not happen */
1550		default:  tap->wr_rate =   0;
1551		}
1552		if (le16toh(head->flags) & 0x4)
1553			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1554	}
1555
1556	WPI_UNLOCK(sc);
1557
1558	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1559	if (ni != NULL) {
1560		(void) ieee80211_input(ni, m, stat->rssi, 0);
1561		ieee80211_free_node(ni);
1562	} else
1563		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1564
1565	WPI_LOCK(sc);
1566}
1567
1568static void
1569wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1570{
1571	struct ifnet *ifp = sc->sc_ifp;
1572	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1573	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1574	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1575	struct ieee80211_node *ni = txdata->ni;
1576	struct ieee80211vap *vap = ni->ni_vap;
1577	int retrycnt = 0;
1578
1579	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582	    le32toh(stat->status)));
1583
1584	/*
1585	 * Update rate control statistics for the node.
1586	 * XXX we should not count mgmt frames since they're always sent at
1587	 * the lowest available bit-rate.
1588	 * XXX frames w/o ACK shouldn't be used either
1589	 */
1590	if (stat->ntries > 0) {
1591		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1592		retrycnt = 1;
1593	}
1594	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1595	    &retrycnt, NULL);
1596
1597	/* XXX oerrors should only count errors !maxtries */
1598	if ((le32toh(stat->status) & 0xff) != 1)
1599		ifp->if_oerrors++;
1600	else
1601		ifp->if_opackets++;
1602
1603	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1604	bus_dmamap_unload(ring->data_dmat, txdata->map);
1605	/* XXX handle M_TXCB? */
1606	m_freem(txdata->m);
1607	txdata->m = NULL;
1608	ieee80211_free_node(txdata->ni);
1609	txdata->ni = NULL;
1610
1611	ring->queued--;
1612
1613	sc->sc_tx_timer = 0;
1614	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1615	wpi_start_locked(ifp);
1616}
1617
1618static void
1619wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1620{
1621	struct wpi_tx_ring *ring = &sc->cmdq;
1622	struct wpi_tx_data *data;
1623
1624	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1625				 "type=%s len=%d\n", desc->qid, desc->idx,
1626				 desc->flags, wpi_cmd_str(desc->type),
1627				 le32toh(desc->len)));
1628
1629	if ((desc->qid & 7) != 4)
1630		return;	/* not a command ack */
1631
1632	data = &ring->data[desc->idx];
1633
1634	/* if the command was mapped in a mbuf, free it */
1635	if (data->m != NULL) {
1636		bus_dmamap_unload(ring->data_dmat, data->map);
1637		m_freem(data->m);
1638		data->m = NULL;
1639	}
1640
1641	sc->flags &= ~WPI_FLAG_BUSY;
1642	wakeup(&ring->cmd[desc->idx]);
1643}
1644
1645static void
1646wpi_notif_intr(struct wpi_softc *sc)
1647{
1648	struct ifnet *ifp = sc->sc_ifp;
1649	struct ieee80211com *ic = ifp->if_l2com;
1650	struct wpi_rx_desc *desc;
1651	struct wpi_rx_data *data;
1652	uint32_t hw;
1653
1654	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1655	    BUS_DMASYNC_POSTREAD);
1656
1657	hw = le32toh(sc->shared->next);
1658	while (sc->rxq.cur != hw) {
1659		data = &sc->rxq.data[sc->rxq.cur];
1660
1661		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1662		    BUS_DMASYNC_POSTREAD);
1663		desc = (void *)data->m->m_ext.ext_buf;
1664
1665		DPRINTFN(WPI_DEBUG_NOTIFY,
1666			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1667			  desc->qid,
1668			  desc->idx,
1669			  desc->flags,
1670			  desc->type,
1671			  le32toh(desc->len)));
1672
1673		if (!(desc->qid & 0x80))	/* reply to a command */
1674			wpi_cmd_intr(sc, desc);
1675
1676		switch (desc->type) {
1677		case WPI_RX_DONE:
1678			/* a 802.11 frame was received */
1679			wpi_rx_intr(sc, desc, data);
1680			break;
1681
1682		case WPI_TX_DONE:
1683			/* a 802.11 frame has been transmitted */
1684			wpi_tx_intr(sc, desc);
1685			break;
1686
1687		case WPI_UC_READY:
1688		{
1689			struct wpi_ucode_info *uc =
1690				(struct wpi_ucode_info *)(desc + 1);
1691
1692			/* the microcontroller is ready */
1693			DPRINTF(("microcode alive notification version %x "
1694				"alive %x\n", le32toh(uc->version),
1695				le32toh(uc->valid)));
1696
1697			if (le32toh(uc->valid) != 1) {
1698				device_printf(sc->sc_dev,
1699				    "microcontroller initialization failed\n");
1700				wpi_stop_locked(sc);
1701			}
1702			break;
1703		}
1704		case WPI_STATE_CHANGED:
1705		{
1706			uint32_t *status = (uint32_t *)(desc + 1);
1707
1708			/* enabled/disabled notification */
1709			DPRINTF(("state changed to %x\n", le32toh(*status)));
1710
1711			if (le32toh(*status) & 1) {
1712				device_printf(sc->sc_dev,
1713				    "Radio transmitter is switched off\n");
1714				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1715				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1716				/* Disable firmware commands */
1717				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1718			}
1719			break;
1720		}
1721		case WPI_START_SCAN:
1722		{
1723#ifdef WPI_DEBUG
1724			struct wpi_start_scan *scan =
1725				(struct wpi_start_scan *)(desc + 1);
1726#endif
1727
1728			DPRINTFN(WPI_DEBUG_SCANNING,
1729				 ("scanning channel %d status %x\n",
1730			    scan->chan, le32toh(scan->status)));
1731			break;
1732		}
1733		case WPI_STOP_SCAN:
1734		{
1735#ifdef WPI_DEBUG
1736			struct wpi_stop_scan *scan =
1737				(struct wpi_stop_scan *)(desc + 1);
1738#endif
1739			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1740
1741			DPRINTFN(WPI_DEBUG_SCANNING,
1742			    ("scan finished nchan=%d status=%d chan=%d\n",
1743			     scan->nchan, scan->status, scan->chan));
1744
1745			sc->sc_scan_timer = 0;
1746			ieee80211_scan_next(vap);
1747			break;
1748		}
1749		case WPI_MISSED_BEACON:
1750		{
1751			struct wpi_missed_beacon *beacon =
1752				(struct wpi_missed_beacon *)(desc + 1);
1753			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1754
1755			if (le32toh(beacon->consecutive) >=
1756			    vap->iv_bmissthreshold) {
1757				DPRINTF(("Beacon miss: %u >= %u\n",
1758					 le32toh(beacon->consecutive),
1759					 vap->iv_bmissthreshold));
1760				ieee80211_beacon_miss(ic);
1761			}
1762			break;
1763		}
1764		}
1765
1766		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1767	}
1768
1769	/* tell the firmware what we have processed */
1770	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1771	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1772}
1773
1774static void
1775wpi_intr(void *arg)
1776{
1777	struct wpi_softc *sc = arg;
1778	uint32_t r;
1779
1780	WPI_LOCK(sc);
1781
1782	r = WPI_READ(sc, WPI_INTR);
1783	if (r == 0 || r == 0xffffffff) {
1784		WPI_UNLOCK(sc);
1785		return;
1786	}
1787
1788	/* disable interrupts */
1789	WPI_WRITE(sc, WPI_MASK, 0);
1790	/* ack interrupts */
1791	WPI_WRITE(sc, WPI_INTR, r);
1792
1793	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1794		struct ifnet *ifp = sc->sc_ifp;
1795		struct ieee80211com *ic = ifp->if_l2com;
1796		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1797
1798		device_printf(sc->sc_dev, "fatal firmware error\n");
1799		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1800				"(Hardware Error)"));
1801		if (vap != NULL)
1802			ieee80211_cancel_scan(vap);
1803		ieee80211_runtask(ic, &sc->sc_restarttask);
1804		sc->flags &= ~WPI_FLAG_BUSY;
1805		WPI_UNLOCK(sc);
1806		return;
1807	}
1808
1809	if (r & WPI_RX_INTR)
1810		wpi_notif_intr(sc);
1811
1812	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1813		wakeup(sc);
1814
1815	/* re-enable interrupts */
1816	if (sc->sc_ifp->if_flags & IFF_UP)
1817		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1818
1819	WPI_UNLOCK(sc);
1820}
1821
1822static uint8_t
1823wpi_plcp_signal(int rate)
1824{
1825	switch (rate) {
1826	/* CCK rates (returned values are device-dependent) */
1827	case 2:		return 10;
1828	case 4:		return 20;
1829	case 11:	return 55;
1830	case 22:	return 110;
1831
1832	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1833	/* R1-R4 (ral/ural is R4-R1) */
1834	case 12:	return 0xd;
1835	case 18:	return 0xf;
1836	case 24:	return 0x5;
1837	case 36:	return 0x7;
1838	case 48:	return 0x9;
1839	case 72:	return 0xb;
1840	case 96:	return 0x1;
1841	case 108:	return 0x3;
1842
1843	/* unsupported rates (should not get there) */
1844	default:	return 0;
1845	}
1846}
1847
1848/* quickly determine if a given rate is CCK or OFDM */
1849#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1850
1851/*
1852 * Construct the data packet for a transmit buffer and acutally put
1853 * the buffer onto the transmit ring, kicking the card to process the
1854 * the buffer.
1855 */
1856static int
1857wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1858	int ac)
1859{
1860	struct ieee80211vap *vap = ni->ni_vap;
1861	struct ifnet *ifp = sc->sc_ifp;
1862	struct ieee80211com *ic = ifp->if_l2com;
1863	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1864	struct wpi_tx_ring *ring = &sc->txq[ac];
1865	struct wpi_tx_desc *desc;
1866	struct wpi_tx_data *data;
1867	struct wpi_tx_cmd *cmd;
1868	struct wpi_cmd_data *tx;
1869	struct ieee80211_frame *wh;
1870	const struct ieee80211_txparam *tp;
1871	struct ieee80211_key *k;
1872	struct mbuf *mnew;
1873	int i, error, nsegs, rate, hdrlen, ismcast;
1874	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1875
1876	desc = &ring->desc[ring->cur];
1877	data = &ring->data[ring->cur];
1878
1879	wh = mtod(m0, struct ieee80211_frame *);
1880
1881	hdrlen = ieee80211_hdrsize(wh);
1882	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1883
1884	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1885		k = ieee80211_crypto_encap(ni, m0);
1886		if (k == NULL) {
1887			m_freem(m0);
1888			return ENOBUFS;
1889		}
1890		/* packet header may have moved, reset our local pointer */
1891		wh = mtod(m0, struct ieee80211_frame *);
1892	}
1893
1894	cmd = &ring->cmd[ring->cur];
1895	cmd->code = WPI_CMD_TX_DATA;
1896	cmd->flags = 0;
1897	cmd->qid = ring->qid;
1898	cmd->idx = ring->cur;
1899
1900	tx = (struct wpi_cmd_data *)cmd->data;
1901	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1902	tx->timeout = htole16(0);
1903	tx->ofdm_mask = 0xff;
1904	tx->cck_mask = 0x0f;
1905	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1906	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1907	tx->len = htole16(m0->m_pkthdr.len);
1908
1909	if (!ismcast) {
1910		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1911		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1912			tx->flags |= htole32(WPI_TX_NEED_ACK);
1913		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1914			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1915			tx->rts_ntries = 7;
1916		}
1917	}
1918	/* pick a rate */
1919	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1920	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1921		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1922		/* tell h/w to set timestamp in probe responses */
1923		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1924			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1925		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1926		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1927			tx->timeout = htole16(3);
1928		else
1929			tx->timeout = htole16(2);
1930		rate = tp->mgmtrate;
1931	} else if (ismcast) {
1932		rate = tp->mcastrate;
1933	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1934		rate = tp->ucastrate;
1935	} else {
1936		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1937		rate = ni->ni_txrate;
1938	}
1939	tx->rate = wpi_plcp_signal(rate);
1940
1941	/* be very persistant at sending frames out */
1942#if 0
1943	tx->data_ntries = tp->maxretry;
1944#else
1945	tx->data_ntries = 15;		/* XXX way too high */
1946#endif
1947
1948	if (ieee80211_radiotap_active_vap(vap)) {
1949		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1950		tap->wt_flags = 0;
1951		tap->wt_rate = rate;
1952		tap->wt_hwqueue = ac;
1953		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
1954			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1955
1956		ieee80211_radiotap_tx(vap, m0);
1957	}
1958
1959	/* save and trim IEEE802.11 header */
1960	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1961	m_adj(m0, hdrlen);
1962
1963	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1964	    &nsegs, BUS_DMA_NOWAIT);
1965	if (error != 0 && error != EFBIG) {
1966		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1967		    error);
1968		m_freem(m0);
1969		return error;
1970	}
1971	if (error != 0) {
1972		/* XXX use m_collapse */
1973		mnew = m_defrag(m0, M_NOWAIT);
1974		if (mnew == NULL) {
1975			device_printf(sc->sc_dev,
1976			    "could not defragment mbuf\n");
1977			m_freem(m0);
1978			return ENOBUFS;
1979		}
1980		m0 = mnew;
1981
1982		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1983		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1984		if (error != 0) {
1985			device_printf(sc->sc_dev,
1986			    "could not map mbuf (error %d)\n", error);
1987			m_freem(m0);
1988			return error;
1989		}
1990	}
1991
1992	data->m = m0;
1993	data->ni = ni;
1994
1995	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1996	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1997
1998	/* first scatter/gather segment is used by the tx data command */
1999	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2000	    (1 + nsegs) << 24);
2001	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2002	    ring->cur * sizeof (struct wpi_tx_cmd));
2003	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2004	for (i = 1; i <= nsegs; i++) {
2005		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2006		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2007	}
2008
2009	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2010	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2011	    BUS_DMASYNC_PREWRITE);
2012
2013	ring->queued++;
2014
2015	/* kick ring */
2016	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2017	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2018
2019	return 0;
2020}
2021
2022/**
2023 * Process data waiting to be sent on the IFNET output queue
2024 */
2025static void
2026wpi_start(struct ifnet *ifp)
2027{
2028	struct wpi_softc *sc = ifp->if_softc;
2029
2030	WPI_LOCK(sc);
2031	wpi_start_locked(ifp);
2032	WPI_UNLOCK(sc);
2033}
2034
2035static void
2036wpi_start_locked(struct ifnet *ifp)
2037{
2038	struct wpi_softc *sc = ifp->if_softc;
2039	struct ieee80211_node *ni;
2040	struct mbuf *m;
2041	int ac;
2042
2043	WPI_LOCK_ASSERT(sc);
2044
2045	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2046		return;
2047
2048	for (;;) {
2049		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2050		if (m == NULL)
2051			break;
2052		ac = M_WME_GETAC(m);
2053		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2054			/* there is no place left in this ring */
2055			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2056			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2057			break;
2058		}
2059		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2060		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2061			ieee80211_free_node(ni);
2062			ifp->if_oerrors++;
2063			break;
2064		}
2065		sc->sc_tx_timer = 5;
2066	}
2067}
2068
2069static int
2070wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2071	const struct ieee80211_bpf_params *params)
2072{
2073	struct ieee80211com *ic = ni->ni_ic;
2074	struct ifnet *ifp = ic->ic_ifp;
2075	struct wpi_softc *sc = ifp->if_softc;
2076
2077	/* prevent management frames from being sent if we're not ready */
2078	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2079		m_freem(m);
2080		ieee80211_free_node(ni);
2081		return ENETDOWN;
2082	}
2083	WPI_LOCK(sc);
2084
2085	/* management frames go into ring 0 */
2086	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2087		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2088		m_freem(m);
2089		WPI_UNLOCK(sc);
2090		ieee80211_free_node(ni);
2091		return ENOBUFS;		/* XXX */
2092	}
2093
2094	ifp->if_opackets++;
2095	if (wpi_tx_data(sc, m, ni, 0) != 0)
2096		goto bad;
2097	sc->sc_tx_timer = 5;
2098	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2099
2100	WPI_UNLOCK(sc);
2101	return 0;
2102bad:
2103	ifp->if_oerrors++;
2104	WPI_UNLOCK(sc);
2105	ieee80211_free_node(ni);
2106	return EIO;		/* XXX */
2107}
2108
2109static int
2110wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2111{
2112	struct wpi_softc *sc = ifp->if_softc;
2113	struct ieee80211com *ic = ifp->if_l2com;
2114	struct ifreq *ifr = (struct ifreq *) data;
2115	int error = 0, startall = 0;
2116
2117	switch (cmd) {
2118	case SIOCSIFFLAGS:
2119		WPI_LOCK(sc);
2120		if ((ifp->if_flags & IFF_UP)) {
2121			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2122				wpi_init_locked(sc, 0);
2123				startall = 1;
2124			}
2125		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2126			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2127			wpi_stop_locked(sc);
2128		WPI_UNLOCK(sc);
2129		if (startall)
2130			ieee80211_start_all(ic);
2131		break;
2132	case SIOCGIFMEDIA:
2133		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2134		break;
2135	case SIOCGIFADDR:
2136		error = ether_ioctl(ifp, cmd, data);
2137		break;
2138	default:
2139		error = EINVAL;
2140		break;
2141	}
2142	return error;
2143}
2144
2145/*
2146 * Extract various information from EEPROM.
2147 */
2148static void
2149wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2150{
2151	int i;
2152
2153	/* read the hardware capabilities, revision and SKU type */
2154	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2155	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2156	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2157
2158	/* read the regulatory domain */
2159	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2160
2161	/* read in the hw MAC address */
2162	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2163
2164	/* read the list of authorized channels */
2165	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2166		wpi_read_eeprom_channels(sc,i);
2167
2168	/* read the power level calibration info for each group */
2169	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2170		wpi_read_eeprom_group(sc,i);
2171}
2172
2173/*
2174 * Send a command to the firmware.
2175 */
2176static int
2177wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2178{
2179	struct wpi_tx_ring *ring = &sc->cmdq;
2180	struct wpi_tx_desc *desc;
2181	struct wpi_tx_cmd *cmd;
2182
2183#ifdef WPI_DEBUG
2184	if (!async) {
2185		WPI_LOCK_ASSERT(sc);
2186	}
2187#endif
2188
2189	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2190		    async));
2191
2192	if (sc->flags & WPI_FLAG_BUSY) {
2193		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2194		    __func__, code);
2195		return EAGAIN;
2196	}
2197	sc->flags|= WPI_FLAG_BUSY;
2198
2199	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2200	    code, size));
2201
2202	desc = &ring->desc[ring->cur];
2203	cmd = &ring->cmd[ring->cur];
2204
2205	cmd->code = code;
2206	cmd->flags = 0;
2207	cmd->qid = ring->qid;
2208	cmd->idx = ring->cur;
2209	memcpy(cmd->data, buf, size);
2210
2211	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2212	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2213		ring->cur * sizeof (struct wpi_tx_cmd));
2214	desc->segs[0].len  = htole32(4 + size);
2215
2216	/* kick cmd ring */
2217	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2218	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2219
2220	if (async) {
2221		sc->flags &= ~ WPI_FLAG_BUSY;
2222		return 0;
2223	}
2224
2225	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2226}
2227
2228static int
2229wpi_wme_update(struct ieee80211com *ic)
2230{
2231#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2232#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2233	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2234	const struct wmeParams *wmep;
2235	struct wpi_wme_setup wme;
2236	int ac;
2237
2238	/* don't override default WME values if WME is not actually enabled */
2239	if (!(ic->ic_flags & IEEE80211_F_WME))
2240		return 0;
2241
2242	wme.flags = 0;
2243	for (ac = 0; ac < WME_NUM_AC; ac++) {
2244		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2245		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2246		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2247		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2248		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2249
2250		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2251		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2252		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2253	}
2254	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2255#undef WPI_USEC
2256#undef WPI_EXP2
2257}
2258
2259/*
2260 * Configure h/w multi-rate retries.
2261 */
2262static int
2263wpi_mrr_setup(struct wpi_softc *sc)
2264{
2265	struct ifnet *ifp = sc->sc_ifp;
2266	struct ieee80211com *ic = ifp->if_l2com;
2267	struct wpi_mrr_setup mrr;
2268	int i, error;
2269
2270	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2271
2272	/* CCK rates (not used with 802.11a) */
2273	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2274		mrr.rates[i].flags = 0;
2275		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2276		/* fallback to the immediate lower CCK rate (if any) */
2277		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2278		/* try one time at this rate before falling back to "next" */
2279		mrr.rates[i].ntries = 1;
2280	}
2281
2282	/* OFDM rates (not used with 802.11b) */
2283	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2284		mrr.rates[i].flags = 0;
2285		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2286		/* fallback to the immediate lower OFDM rate (if any) */
2287		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2288		mrr.rates[i].next = (i == WPI_OFDM6) ?
2289		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2290			WPI_OFDM6 : WPI_CCK2) :
2291		    i - 1;
2292		/* try one time at this rate before falling back to "next" */
2293		mrr.rates[i].ntries = 1;
2294	}
2295
2296	/* setup MRR for control frames */
2297	mrr.which = WPI_MRR_CTL;
2298	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2299	if (error != 0) {
2300		device_printf(sc->sc_dev,
2301		    "could not setup MRR for control frames\n");
2302		return error;
2303	}
2304
2305	/* setup MRR for data frames */
2306	mrr.which = WPI_MRR_DATA;
2307	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2308	if (error != 0) {
2309		device_printf(sc->sc_dev,
2310		    "could not setup MRR for data frames\n");
2311		return error;
2312	}
2313
2314	return 0;
2315}
2316
2317static void
2318wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2319{
2320	struct wpi_cmd_led led;
2321
2322	led.which = which;
2323	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2324	led.off = off;
2325	led.on = on;
2326
2327	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2328}
2329
2330static void
2331wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2332{
2333	struct wpi_cmd_tsf tsf;
2334	uint64_t val, mod;
2335
2336	memset(&tsf, 0, sizeof tsf);
2337	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2338	tsf.bintval = htole16(ni->ni_intval);
2339	tsf.lintval = htole16(10);
2340
2341	/* compute remaining time until next beacon */
2342	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2343	mod = le64toh(tsf.tstamp) % val;
2344	tsf.binitval = htole32((uint32_t)(val - mod));
2345
2346	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2347		device_printf(sc->sc_dev, "could not enable TSF\n");
2348}
2349
2350#if 0
2351/*
2352 * Build a beacon frame that the firmware will broadcast periodically in
2353 * IBSS or HostAP modes.
2354 */
2355static int
2356wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2357{
2358	struct ifnet *ifp = sc->sc_ifp;
2359	struct ieee80211com *ic = ifp->if_l2com;
2360	struct wpi_tx_ring *ring = &sc->cmdq;
2361	struct wpi_tx_desc *desc;
2362	struct wpi_tx_data *data;
2363	struct wpi_tx_cmd *cmd;
2364	struct wpi_cmd_beacon *bcn;
2365	struct ieee80211_beacon_offsets bo;
2366	struct mbuf *m0;
2367	bus_addr_t physaddr;
2368	int error;
2369
2370	desc = &ring->desc[ring->cur];
2371	data = &ring->data[ring->cur];
2372
2373	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2374	if (m0 == NULL) {
2375		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2376		return ENOMEM;
2377	}
2378
2379	cmd = &ring->cmd[ring->cur];
2380	cmd->code = WPI_CMD_SET_BEACON;
2381	cmd->flags = 0;
2382	cmd->qid = ring->qid;
2383	cmd->idx = ring->cur;
2384
2385	bcn = (struct wpi_cmd_beacon *)cmd->data;
2386	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2387	bcn->id = WPI_ID_BROADCAST;
2388	bcn->ofdm_mask = 0xff;
2389	bcn->cck_mask = 0x0f;
2390	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2391	bcn->len = htole16(m0->m_pkthdr.len);
2392	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2393		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2394	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2395
2396	/* save and trim IEEE802.11 header */
2397	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2398	m_adj(m0, sizeof (struct ieee80211_frame));
2399
2400	/* assume beacon frame is contiguous */
2401	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2402	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2403	if (error != 0) {
2404		device_printf(sc->sc_dev, "could not map beacon\n");
2405		m_freem(m0);
2406		return error;
2407	}
2408
2409	data->m = m0;
2410
2411	/* first scatter/gather segment is used by the beacon command */
2412	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2413	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2414		ring->cur * sizeof (struct wpi_tx_cmd));
2415	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2416	desc->segs[1].addr = htole32(physaddr);
2417	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2418
2419	/* kick cmd ring */
2420	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2421	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2422
2423	return 0;
2424}
2425#endif
2426
2427static int
2428wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2429{
2430	struct ieee80211com *ic = vap->iv_ic;
2431	struct ieee80211_node *ni = vap->iv_bss;
2432	struct wpi_node_info node;
2433	int error;
2434
2435
2436	/* update adapter's configuration */
2437	sc->config.associd = 0;
2438	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2439	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2440	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2441	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2442		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2443		    WPI_CONFIG_24GHZ);
2444	} else {
2445		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2446		    WPI_CONFIG_24GHZ);
2447	}
2448	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2449		sc->config.cck_mask  = 0;
2450		sc->config.ofdm_mask = 0x15;
2451	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2452		sc->config.cck_mask  = 0x03;
2453		sc->config.ofdm_mask = 0;
2454	} else {
2455		/* XXX assume 802.11b/g */
2456		sc->config.cck_mask  = 0x0f;
2457		sc->config.ofdm_mask = 0x15;
2458	}
2459
2460	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2461		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2462	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2463		sizeof (struct wpi_config), 1);
2464	if (error != 0) {
2465		device_printf(sc->sc_dev, "could not configure\n");
2466		return error;
2467	}
2468
2469	/* configuration has changed, set Tx power accordingly */
2470	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2471		device_printf(sc->sc_dev, "could not set Tx power\n");
2472		return error;
2473	}
2474
2475	/* add default node */
2476	memset(&node, 0, sizeof node);
2477	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2478	node.id = WPI_ID_BSS;
2479	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2480	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2481	node.action = htole32(WPI_ACTION_SET_RATE);
2482	node.antenna = WPI_ANTENNA_BOTH;
2483	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2484	if (error != 0)
2485		device_printf(sc->sc_dev, "could not add BSS node\n");
2486
2487	return (error);
2488}
2489
2490static int
2491wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2492{
2493	struct ieee80211com *ic = vap->iv_ic;
2494	struct ieee80211_node *ni = vap->iv_bss;
2495	int error;
2496
2497	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2498		/* link LED blinks while monitoring */
2499		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2500		return 0;
2501	}
2502
2503	wpi_enable_tsf(sc, ni);
2504
2505	/* update adapter's configuration */
2506	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2507	/* short preamble/slot time are negotiated when associating */
2508	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2509	    WPI_CONFIG_SHSLOT);
2510	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2511		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2512	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2513		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2514	sc->config.filter |= htole32(WPI_FILTER_BSS);
2515
2516	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2517
2518	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2519		    sc->config.flags));
2520	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2521		    wpi_config), 1);
2522	if (error != 0) {
2523		device_printf(sc->sc_dev, "could not update configuration\n");
2524		return error;
2525	}
2526
2527	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2528	if (error != 0) {
2529		device_printf(sc->sc_dev, "could set txpower\n");
2530		return error;
2531	}
2532
2533	/* link LED always on while associated */
2534	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2535
2536	/* start automatic rate control timer */
2537	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2538
2539	return (error);
2540}
2541
2542/*
2543 * Send a scan request to the firmware.  Since this command is huge, we map it
2544 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2545 * much of this code is similar to that in wpi_cmd but because we must manually
2546 * construct the probe & channels, we duplicate what's needed here. XXX In the
2547 * future, this function should be modified to use wpi_cmd to help cleanup the
2548 * code base.
2549 */
2550static int
2551wpi_scan(struct wpi_softc *sc)
2552{
2553	struct ifnet *ifp = sc->sc_ifp;
2554	struct ieee80211com *ic = ifp->if_l2com;
2555	struct ieee80211_scan_state *ss = ic->ic_scan;
2556	struct wpi_tx_ring *ring = &sc->cmdq;
2557	struct wpi_tx_desc *desc;
2558	struct wpi_tx_data *data;
2559	struct wpi_tx_cmd *cmd;
2560	struct wpi_scan_hdr *hdr;
2561	struct wpi_scan_chan *chan;
2562	struct ieee80211_frame *wh;
2563	struct ieee80211_rateset *rs;
2564	struct ieee80211_channel *c;
2565	enum ieee80211_phymode mode;
2566	uint8_t *frm;
2567	int nrates, pktlen, error, i, nssid;
2568	bus_addr_t physaddr;
2569
2570	desc = &ring->desc[ring->cur];
2571	data = &ring->data[ring->cur];
2572
2573	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2574	if (data->m == NULL) {
2575		device_printf(sc->sc_dev,
2576		    "could not allocate mbuf for scan command\n");
2577		return ENOMEM;
2578	}
2579
2580	cmd = mtod(data->m, struct wpi_tx_cmd *);
2581	cmd->code = WPI_CMD_SCAN;
2582	cmd->flags = 0;
2583	cmd->qid = ring->qid;
2584	cmd->idx = ring->cur;
2585
2586	hdr = (struct wpi_scan_hdr *)cmd->data;
2587	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2588
2589	/*
2590	 * Move to the next channel if no packets are received within 5 msecs
2591	 * after sending the probe request (this helps to reduce the duration
2592	 * of active scans).
2593	 */
2594	hdr->quiet = htole16(5);
2595	hdr->threshold = htole16(1);
2596
2597	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2598		/* send probe requests at 6Mbps */
2599		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2600
2601		/* Enable crc checking */
2602		hdr->promotion = htole16(1);
2603	} else {
2604		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2605		/* send probe requests at 1Mbps */
2606		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2607	}
2608	hdr->tx.id = WPI_ID_BROADCAST;
2609	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2610	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2611
2612	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2613	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2614	for (i = 0; i < nssid; i++) {
2615		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2616		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2617		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2618		    hdr->scan_essids[i].esslen);
2619#ifdef WPI_DEBUG
2620		if (wpi_debug & WPI_DEBUG_SCANNING) {
2621			printf("Scanning Essid: ");
2622			ieee80211_print_essid(hdr->scan_essids[i].essid,
2623			    hdr->scan_essids[i].esslen);
2624			printf("\n");
2625		}
2626#endif
2627	}
2628
2629	/*
2630	 * Build a probe request frame.  Most of the following code is a
2631	 * copy & paste of what is done in net80211.
2632	 */
2633	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2634	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2635		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2636	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2637	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2638	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2639	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2640	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2641	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2642
2643	frm = (uint8_t *)(wh + 1);
2644
2645	/* add essid IE, the hardware will fill this in for us */
2646	*frm++ = IEEE80211_ELEMID_SSID;
2647	*frm++ = 0;
2648
2649	mode = ieee80211_chan2mode(ic->ic_curchan);
2650	rs = &ic->ic_sup_rates[mode];
2651
2652	/* add supported rates IE */
2653	*frm++ = IEEE80211_ELEMID_RATES;
2654	nrates = rs->rs_nrates;
2655	if (nrates > IEEE80211_RATE_SIZE)
2656		nrates = IEEE80211_RATE_SIZE;
2657	*frm++ = nrates;
2658	memcpy(frm, rs->rs_rates, nrates);
2659	frm += nrates;
2660
2661	/* add supported xrates IE */
2662	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2663		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2664		*frm++ = IEEE80211_ELEMID_XRATES;
2665		*frm++ = nrates;
2666		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2667		frm += nrates;
2668	}
2669
2670	/* setup length of probe request */
2671	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2672
2673	/*
2674	 * Construct information about the channel that we
2675	 * want to scan. The firmware expects this to be directly
2676	 * after the scan probe request
2677	 */
2678	c = ic->ic_curchan;
2679	chan = (struct wpi_scan_chan *)frm;
2680	chan->chan = ieee80211_chan2ieee(ic, c);
2681	chan->flags = 0;
2682	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2683		chan->flags |= WPI_CHAN_ACTIVE;
2684		if (nssid != 0)
2685			chan->flags |= WPI_CHAN_DIRECT;
2686	}
2687	chan->gain_dsp = 0x6e; /* Default level */
2688	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2689		chan->active = htole16(10);
2690		chan->passive = htole16(ss->ss_maxdwell);
2691		chan->gain_radio = 0x3b;
2692	} else {
2693		chan->active = htole16(20);
2694		chan->passive = htole16(ss->ss_maxdwell);
2695		chan->gain_radio = 0x28;
2696	}
2697
2698	DPRINTFN(WPI_DEBUG_SCANNING,
2699	    ("Scanning %u Passive: %d\n",
2700	     chan->chan,
2701	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2702
2703	hdr->nchan++;
2704	chan++;
2705
2706	frm += sizeof (struct wpi_scan_chan);
2707#if 0
2708	// XXX All Channels....
2709	for (c  = &ic->ic_channels[1];
2710	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2711		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2712			continue;
2713
2714		chan->chan = ieee80211_chan2ieee(ic, c);
2715		chan->flags = 0;
2716		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2717		    chan->flags |= WPI_CHAN_ACTIVE;
2718		    if (ic->ic_des_ssid[0].len != 0)
2719			chan->flags |= WPI_CHAN_DIRECT;
2720		}
2721		chan->gain_dsp = 0x6e; /* Default level */
2722		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2723			chan->active = htole16(10);
2724			chan->passive = htole16(110);
2725			chan->gain_radio = 0x3b;
2726		} else {
2727			chan->active = htole16(20);
2728			chan->passive = htole16(120);
2729			chan->gain_radio = 0x28;
2730		}
2731
2732		DPRINTFN(WPI_DEBUG_SCANNING,
2733			 ("Scanning %u Passive: %d\n",
2734			  chan->chan,
2735			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2736
2737		hdr->nchan++;
2738		chan++;
2739
2740		frm += sizeof (struct wpi_scan_chan);
2741	}
2742#endif
2743
2744	hdr->len = htole16(frm - (uint8_t *)hdr);
2745	pktlen = frm - (uint8_t *)cmd;
2746
2747	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2748	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2749	if (error != 0) {
2750		device_printf(sc->sc_dev, "could not map scan command\n");
2751		m_freem(data->m);
2752		data->m = NULL;
2753		return error;
2754	}
2755
2756	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2757	desc->segs[0].addr = htole32(physaddr);
2758	desc->segs[0].len  = htole32(pktlen);
2759
2760	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2761	    BUS_DMASYNC_PREWRITE);
2762	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2763
2764	/* kick cmd ring */
2765	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2766	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2767
2768	sc->sc_scan_timer = 5;
2769	return 0;	/* will be notified async. of failure/success */
2770}
2771
2772/**
2773 * Configure the card to listen to a particular channel, this transisions the
2774 * card in to being able to receive frames from remote devices.
2775 */
2776static int
2777wpi_config(struct wpi_softc *sc)
2778{
2779	struct ifnet *ifp = sc->sc_ifp;
2780	struct ieee80211com *ic = ifp->if_l2com;
2781	struct wpi_power power;
2782	struct wpi_bluetooth bluetooth;
2783	struct wpi_node_info node;
2784	int error;
2785
2786	/* set power mode */
2787	memset(&power, 0, sizeof power);
2788	power.flags = htole32(WPI_POWER_CAM|0x8);
2789	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2790	if (error != 0) {
2791		device_printf(sc->sc_dev, "could not set power mode\n");
2792		return error;
2793	}
2794
2795	/* configure bluetooth coexistence */
2796	memset(&bluetooth, 0, sizeof bluetooth);
2797	bluetooth.flags = 3;
2798	bluetooth.lead = 0xaa;
2799	bluetooth.kill = 1;
2800	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2801	    0);
2802	if (error != 0) {
2803		device_printf(sc->sc_dev,
2804		    "could not configure bluetooth coexistence\n");
2805		return error;
2806	}
2807
2808	/* configure adapter */
2809	memset(&sc->config, 0, sizeof (struct wpi_config));
2810	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2811	/*set default channel*/
2812	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2813	sc->config.flags = htole32(WPI_CONFIG_TSF);
2814	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2815		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2816		    WPI_CONFIG_24GHZ);
2817	}
2818	sc->config.filter = 0;
2819	switch (ic->ic_opmode) {
2820	case IEEE80211_M_STA:
2821	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2822		sc->config.mode = WPI_MODE_STA;
2823		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2824		break;
2825	case IEEE80211_M_IBSS:
2826	case IEEE80211_M_AHDEMO:
2827		sc->config.mode = WPI_MODE_IBSS;
2828		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2829					     WPI_FILTER_MULTICAST);
2830		break;
2831	case IEEE80211_M_HOSTAP:
2832		sc->config.mode = WPI_MODE_HOSTAP;
2833		break;
2834	case IEEE80211_M_MONITOR:
2835		sc->config.mode = WPI_MODE_MONITOR;
2836		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2837			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2838		break;
2839	default:
2840		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2841		return EINVAL;
2842	}
2843	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2844	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2845	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2846		sizeof (struct wpi_config), 0);
2847	if (error != 0) {
2848		device_printf(sc->sc_dev, "configure command failed\n");
2849		return error;
2850	}
2851
2852	/* configuration has changed, set Tx power accordingly */
2853	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2854	    device_printf(sc->sc_dev, "could not set Tx power\n");
2855	    return error;
2856	}
2857
2858	/* add broadcast node */
2859	memset(&node, 0, sizeof node);
2860	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2861	node.id = WPI_ID_BROADCAST;
2862	node.rate = wpi_plcp_signal(2);
2863	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2864	if (error != 0) {
2865		device_printf(sc->sc_dev, "could not add broadcast node\n");
2866		return error;
2867	}
2868
2869	/* Setup rate scalling */
2870	error = wpi_mrr_setup(sc);
2871	if (error != 0) {
2872		device_printf(sc->sc_dev, "could not setup MRR\n");
2873		return error;
2874	}
2875
2876	return 0;
2877}
2878
2879static void
2880wpi_stop_master(struct wpi_softc *sc)
2881{
2882	uint32_t tmp;
2883	int ntries;
2884
2885	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2886
2887	tmp = WPI_READ(sc, WPI_RESET);
2888	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2889
2890	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2891	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2892		return;	/* already asleep */
2893
2894	for (ntries = 0; ntries < 100; ntries++) {
2895		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2896			break;
2897		DELAY(10);
2898	}
2899	if (ntries == 100) {
2900		device_printf(sc->sc_dev, "timeout waiting for master\n");
2901	}
2902}
2903
2904static int
2905wpi_power_up(struct wpi_softc *sc)
2906{
2907	uint32_t tmp;
2908	int ntries;
2909
2910	wpi_mem_lock(sc);
2911	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2912	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2913	wpi_mem_unlock(sc);
2914
2915	for (ntries = 0; ntries < 5000; ntries++) {
2916		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2917			break;
2918		DELAY(10);
2919	}
2920	if (ntries == 5000) {
2921		device_printf(sc->sc_dev,
2922		    "timeout waiting for NIC to power up\n");
2923		return ETIMEDOUT;
2924	}
2925	return 0;
2926}
2927
2928static int
2929wpi_reset(struct wpi_softc *sc)
2930{
2931	uint32_t tmp;
2932	int ntries;
2933
2934	DPRINTFN(WPI_DEBUG_HW,
2935	    ("Resetting the card - clearing any uploaded firmware\n"));
2936
2937	/* clear any pending interrupts */
2938	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2939
2940	tmp = WPI_READ(sc, WPI_PLL_CTL);
2941	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2942
2943	tmp = WPI_READ(sc, WPI_CHICKEN);
2944	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2945
2946	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2947	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2948
2949	/* wait for clock stabilization */
2950	for (ntries = 0; ntries < 25000; ntries++) {
2951		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2952			break;
2953		DELAY(10);
2954	}
2955	if (ntries == 25000) {
2956		device_printf(sc->sc_dev,
2957		    "timeout waiting for clock stabilization\n");
2958		return ETIMEDOUT;
2959	}
2960
2961	/* initialize EEPROM */
2962	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2963
2964	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2965		device_printf(sc->sc_dev, "EEPROM not found\n");
2966		return EIO;
2967	}
2968	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2969
2970	return 0;
2971}
2972
2973static void
2974wpi_hw_config(struct wpi_softc *sc)
2975{
2976	uint32_t rev, hw;
2977
2978	/* voodoo from the Linux "driver".. */
2979	hw = WPI_READ(sc, WPI_HWCONFIG);
2980
2981	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2982	if ((rev & 0xc0) == 0x40)
2983		hw |= WPI_HW_ALM_MB;
2984	else if (!(rev & 0x80))
2985		hw |= WPI_HW_ALM_MM;
2986
2987	if (sc->cap == 0x80)
2988		hw |= WPI_HW_SKU_MRC;
2989
2990	hw &= ~WPI_HW_REV_D;
2991	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2992		hw |= WPI_HW_REV_D;
2993
2994	if (sc->type > 1)
2995		hw |= WPI_HW_TYPE_B;
2996
2997	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2998}
2999
3000static void
3001wpi_rfkill_resume(struct wpi_softc *sc)
3002{
3003	struct ifnet *ifp = sc->sc_ifp;
3004	struct ieee80211com *ic = ifp->if_l2com;
3005	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3006	int ntries;
3007
3008	/* enable firmware again */
3009	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3010	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3011
3012	/* wait for thermal sensors to calibrate */
3013	for (ntries = 0; ntries < 1000; ntries++) {
3014		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3015			break;
3016		DELAY(10);
3017	}
3018
3019	if (ntries == 1000) {
3020		device_printf(sc->sc_dev,
3021		    "timeout waiting for thermal calibration\n");
3022		return;
3023	}
3024	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3025
3026	if (wpi_config(sc) != 0) {
3027		device_printf(sc->sc_dev, "device config failed\n");
3028		return;
3029	}
3030
3031	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3032	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3033	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3034
3035	if (vap != NULL) {
3036		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3037			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3038				ieee80211_beacon_miss(ic);
3039				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3040			} else
3041				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3042		} else {
3043			ieee80211_scan_next(vap);
3044			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3045		}
3046	}
3047
3048	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3049}
3050
3051static void
3052wpi_init_locked(struct wpi_softc *sc, int force)
3053{
3054	struct ifnet *ifp = sc->sc_ifp;
3055	uint32_t tmp;
3056	int ntries, qid;
3057
3058	wpi_stop_locked(sc);
3059	(void)wpi_reset(sc);
3060
3061	wpi_mem_lock(sc);
3062	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3063	DELAY(20);
3064	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3065	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3066	wpi_mem_unlock(sc);
3067
3068	(void)wpi_power_up(sc);
3069	wpi_hw_config(sc);
3070
3071	/* init Rx ring */
3072	wpi_mem_lock(sc);
3073	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3074	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3075	    offsetof(struct wpi_shared, next));
3076	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3077	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3078	wpi_mem_unlock(sc);
3079
3080	/* init Tx rings */
3081	wpi_mem_lock(sc);
3082	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3083	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3084	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3085	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3086	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3087	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3088	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3089
3090	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3091	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3092
3093	for (qid = 0; qid < 6; qid++) {
3094		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3095		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3096		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3097	}
3098	wpi_mem_unlock(sc);
3099
3100	/* clear "radio off" and "disable command" bits (reversed logic) */
3101	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3103	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3104
3105	/* clear any pending interrupts */
3106	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3107
3108	/* enable interrupts */
3109	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3110
3111	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3112	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3113
3114	if ((wpi_load_firmware(sc)) != 0) {
3115	    device_printf(sc->sc_dev,
3116		"A problem occurred loading the firmware to the driver\n");
3117	    return;
3118	}
3119
3120	/* At this point the firmware is up and running. If the hardware
3121	 * RF switch is turned off thermal calibration will fail, though
3122	 * the card is still happy to continue to accept commands, catch
3123	 * this case and schedule a task to watch for it to be turned on.
3124	 */
3125	wpi_mem_lock(sc);
3126	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3127	wpi_mem_unlock(sc);
3128
3129	if (!(tmp & 0x1)) {
3130		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3131		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3132		goto out;
3133	}
3134
3135	/* wait for thermal sensors to calibrate */
3136	for (ntries = 0; ntries < 1000; ntries++) {
3137		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3138			break;
3139		DELAY(10);
3140	}
3141
3142	if (ntries == 1000) {
3143		device_printf(sc->sc_dev,
3144		    "timeout waiting for thermal sensors calibration\n");
3145		return;
3146	}
3147	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3148
3149	if (wpi_config(sc) != 0) {
3150		device_printf(sc->sc_dev, "device config failed\n");
3151		return;
3152	}
3153
3154	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3155	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3156out:
3157	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3158}
3159
3160static void
3161wpi_init(void *arg)
3162{
3163	struct wpi_softc *sc = arg;
3164	struct ifnet *ifp = sc->sc_ifp;
3165	struct ieee80211com *ic = ifp->if_l2com;
3166
3167	WPI_LOCK(sc);
3168	wpi_init_locked(sc, 0);
3169	WPI_UNLOCK(sc);
3170
3171	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3172		ieee80211_start_all(ic);		/* start all vaps */
3173}
3174
3175static void
3176wpi_stop_locked(struct wpi_softc *sc)
3177{
3178	struct ifnet *ifp = sc->sc_ifp;
3179	uint32_t tmp;
3180	int ac;
3181
3182	sc->sc_tx_timer = 0;
3183	sc->sc_scan_timer = 0;
3184	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3185	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3186	callout_stop(&sc->watchdog_to);
3187	callout_stop(&sc->calib_to);
3188
3189	/* disable interrupts */
3190	WPI_WRITE(sc, WPI_MASK, 0);
3191	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3192	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3193	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3194
3195	wpi_mem_lock(sc);
3196	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3197	wpi_mem_unlock(sc);
3198
3199	/* reset all Tx rings */
3200	for (ac = 0; ac < 4; ac++)
3201		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3202	wpi_reset_tx_ring(sc, &sc->cmdq);
3203
3204	/* reset Rx ring */
3205	wpi_reset_rx_ring(sc, &sc->rxq);
3206
3207	wpi_mem_lock(sc);
3208	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3209	wpi_mem_unlock(sc);
3210
3211	DELAY(5);
3212
3213	wpi_stop_master(sc);
3214
3215	tmp = WPI_READ(sc, WPI_RESET);
3216	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3217	sc->flags &= ~WPI_FLAG_BUSY;
3218}
3219
3220static void
3221wpi_stop(struct wpi_softc *sc)
3222{
3223	WPI_LOCK(sc);
3224	wpi_stop_locked(sc);
3225	WPI_UNLOCK(sc);
3226}
3227
3228static void
3229wpi_calib_timeout(void *arg)
3230{
3231	struct wpi_softc *sc = arg;
3232	struct ifnet *ifp = sc->sc_ifp;
3233	struct ieee80211com *ic = ifp->if_l2com;
3234	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3235	int temp;
3236
3237	if (vap->iv_state != IEEE80211_S_RUN)
3238		return;
3239
3240	/* update sensor data */
3241	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3242	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3243
3244	wpi_power_calibration(sc, temp);
3245
3246	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3247}
3248
3249/*
3250 * This function is called periodically (every 60 seconds) to adjust output
3251 * power to temperature changes.
3252 */
3253static void
3254wpi_power_calibration(struct wpi_softc *sc, int temp)
3255{
3256	struct ifnet *ifp = sc->sc_ifp;
3257	struct ieee80211com *ic = ifp->if_l2com;
3258	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3259
3260	/* sanity-check read value */
3261	if (temp < -260 || temp > 25) {
3262		/* this can't be correct, ignore */
3263		DPRINTFN(WPI_DEBUG_TEMP,
3264		    ("out-of-range temperature reported: %d\n", temp));
3265		return;
3266	}
3267
3268	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3269
3270	/* adjust Tx power if need be */
3271	if (abs(temp - sc->temp) <= 6)
3272		return;
3273
3274	sc->temp = temp;
3275
3276	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3277		/* just warn, too bad for the automatic calibration... */
3278		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3279	}
3280}
3281
3282/**
3283 * Read the eeprom to find out what channels are valid for the given
3284 * band and update net80211 with what we find.
3285 */
3286static void
3287wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3288{
3289	struct ifnet *ifp = sc->sc_ifp;
3290	struct ieee80211com *ic = ifp->if_l2com;
3291	const struct wpi_chan_band *band = &wpi_bands[n];
3292	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3293	struct ieee80211_channel *c;
3294	int chan, i, passive;
3295
3296	wpi_read_prom_data(sc, band->addr, channels,
3297	    band->nchan * sizeof (struct wpi_eeprom_chan));
3298
3299	for (i = 0; i < band->nchan; i++) {
3300		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3301			DPRINTFN(WPI_DEBUG_HW,
3302			    ("Channel Not Valid: %d, band %d\n",
3303			     band->chan[i],n));
3304			continue;
3305		}
3306
3307		passive = 0;
3308		chan = band->chan[i];
3309		c = &ic->ic_channels[ic->ic_nchans++];
3310
3311		/* is active scan allowed on this channel? */
3312		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3313			passive = IEEE80211_CHAN_PASSIVE;
3314		}
3315
3316		if (n == 0) {	/* 2GHz band */
3317			c->ic_ieee = chan;
3318			c->ic_freq = ieee80211_ieee2mhz(chan,
3319			    IEEE80211_CHAN_2GHZ);
3320			c->ic_flags = IEEE80211_CHAN_B | passive;
3321
3322			c = &ic->ic_channels[ic->ic_nchans++];
3323			c->ic_ieee = chan;
3324			c->ic_freq = ieee80211_ieee2mhz(chan,
3325			    IEEE80211_CHAN_2GHZ);
3326			c->ic_flags = IEEE80211_CHAN_G | passive;
3327
3328		} else {	/* 5GHz band */
3329			/*
3330			 * Some 3945ABG adapters support channels 7, 8, 11
3331			 * and 12 in the 2GHz *and* 5GHz bands.
3332			 * Because of limitations in our net80211(9) stack,
3333			 * we can't support these channels in 5GHz band.
3334			 * XXX not true; just need to map to proper frequency
3335			 */
3336			if (chan <= 14)
3337				continue;
3338
3339			c->ic_ieee = chan;
3340			c->ic_freq = ieee80211_ieee2mhz(chan,
3341			    IEEE80211_CHAN_5GHZ);
3342			c->ic_flags = IEEE80211_CHAN_A | passive;
3343		}
3344
3345		/* save maximum allowed power for this channel */
3346		sc->maxpwr[chan] = channels[i].maxpwr;
3347
3348#if 0
3349		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3350		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3351		//ic->ic_channels[chan].ic_minpower...
3352		//ic->ic_channels[chan].ic_maxregtxpower...
3353#endif
3354
3355		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3356		    " passive=%d, offset %d\n", chan, c->ic_freq,
3357		    channels[i].flags, sc->maxpwr[chan],
3358		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3359		    ic->ic_nchans));
3360	}
3361}
3362
3363static void
3364wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3365{
3366	struct wpi_power_group *group = &sc->groups[n];
3367	struct wpi_eeprom_group rgroup;
3368	int i;
3369
3370	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3371	    sizeof rgroup);
3372
3373	/* save power group information */
3374	group->chan   = rgroup.chan;
3375	group->maxpwr = rgroup.maxpwr;
3376	/* temperature at which the samples were taken */
3377	group->temp   = (int16_t)le16toh(rgroup.temp);
3378
3379	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3380		    group->chan, group->maxpwr, group->temp));
3381
3382	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3383		group->samples[i].index = rgroup.samples[i].index;
3384		group->samples[i].power = rgroup.samples[i].power;
3385
3386		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3387			    group->samples[i].index, group->samples[i].power));
3388	}
3389}
3390
3391/*
3392 * Update Tx power to match what is defined for channel `c'.
3393 */
3394static int
3395wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3396{
3397	struct ifnet *ifp = sc->sc_ifp;
3398	struct ieee80211com *ic = ifp->if_l2com;
3399	struct wpi_power_group *group;
3400	struct wpi_cmd_txpower txpower;
3401	u_int chan;
3402	int i;
3403
3404	/* get channel number */
3405	chan = ieee80211_chan2ieee(ic, c);
3406
3407	/* find the power group to which this channel belongs */
3408	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3409		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3410			if (chan <= group->chan)
3411				break;
3412	} else
3413		group = &sc->groups[0];
3414
3415	memset(&txpower, 0, sizeof txpower);
3416	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3417	txpower.channel = htole16(chan);
3418
3419	/* set Tx power for all OFDM and CCK rates */
3420	for (i = 0; i <= 11 ; i++) {
3421		/* retrieve Tx power for this channel/rate combination */
3422		int idx = wpi_get_power_index(sc, group, c,
3423		    wpi_ridx_to_rate[i]);
3424
3425		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3426
3427		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3428			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3429			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3430		} else {
3431			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3432			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3433		}
3434		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3435			    chan, wpi_ridx_to_rate[i], idx));
3436	}
3437
3438	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3439}
3440
3441/*
3442 * Determine Tx power index for a given channel/rate combination.
3443 * This takes into account the regulatory information from EEPROM and the
3444 * current temperature.
3445 */
3446static int
3447wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3448    struct ieee80211_channel *c, int rate)
3449{
3450/* fixed-point arithmetic division using a n-bit fractional part */
3451#define fdivround(a, b, n)      \
3452	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3453
3454/* linear interpolation */
3455#define interpolate(x, x1, y1, x2, y2, n)       \
3456	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3457
3458	struct ifnet *ifp = sc->sc_ifp;
3459	struct ieee80211com *ic = ifp->if_l2com;
3460	struct wpi_power_sample *sample;
3461	int pwr, idx;
3462	u_int chan;
3463
3464	/* get channel number */
3465	chan = ieee80211_chan2ieee(ic, c);
3466
3467	/* default power is group's maximum power - 3dB */
3468	pwr = group->maxpwr / 2;
3469
3470	/* decrease power for highest OFDM rates to reduce distortion */
3471	switch (rate) {
3472		case 72:	/* 36Mb/s */
3473			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3474			break;
3475		case 96:	/* 48Mb/s */
3476			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3477			break;
3478		case 108:	/* 54Mb/s */
3479			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3480			break;
3481	}
3482
3483	/* never exceed channel's maximum allowed Tx power */
3484	pwr = min(pwr, sc->maxpwr[chan]);
3485
3486	/* retrieve power index into gain tables from samples */
3487	for (sample = group->samples; sample < &group->samples[3]; sample++)
3488		if (pwr > sample[1].power)
3489			break;
3490	/* fixed-point linear interpolation using a 19-bit fractional part */
3491	idx = interpolate(pwr, sample[0].power, sample[0].index,
3492	    sample[1].power, sample[1].index, 19);
3493
3494	/*
3495	 *  Adjust power index based on current temperature
3496	 *	- if colder than factory-calibrated: decreate output power
3497	 *	- if warmer than factory-calibrated: increase output power
3498	 */
3499	idx -= (sc->temp - group->temp) * 11 / 100;
3500
3501	/* decrease power for CCK rates (-5dB) */
3502	if (!WPI_RATE_IS_OFDM(rate))
3503		idx += 10;
3504
3505	/* keep power index in a valid range */
3506	if (idx < 0)
3507		return 0;
3508	if (idx > WPI_MAX_PWR_INDEX)
3509		return WPI_MAX_PWR_INDEX;
3510	return idx;
3511
3512#undef interpolate
3513#undef fdivround
3514}
3515
3516/**
3517 * Called by net80211 framework to indicate that a scan
3518 * is starting. This function doesn't actually do the scan,
3519 * wpi_scan_curchan starts things off. This function is more
3520 * of an early warning from the framework we should get ready
3521 * for the scan.
3522 */
3523static void
3524wpi_scan_start(struct ieee80211com *ic)
3525{
3526	struct ifnet *ifp = ic->ic_ifp;
3527	struct wpi_softc *sc = ifp->if_softc;
3528
3529	WPI_LOCK(sc);
3530	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3531	WPI_UNLOCK(sc);
3532}
3533
3534/**
3535 * Called by the net80211 framework, indicates that the
3536 * scan has ended. If there is a scan in progress on the card
3537 * then it should be aborted.
3538 */
3539static void
3540wpi_scan_end(struct ieee80211com *ic)
3541{
3542	/* XXX ignore */
3543}
3544
3545/**
3546 * Called by the net80211 framework to indicate to the driver
3547 * that the channel should be changed
3548 */
3549static void
3550wpi_set_channel(struct ieee80211com *ic)
3551{
3552	struct ifnet *ifp = ic->ic_ifp;
3553	struct wpi_softc *sc = ifp->if_softc;
3554	int error;
3555
3556	/*
3557	 * Only need to set the channel in Monitor mode. AP scanning and auth
3558	 * are already taken care of by their respective firmware commands.
3559	 */
3560	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3561		WPI_LOCK(sc);
3562		error = wpi_config(sc);
3563		WPI_UNLOCK(sc);
3564		if (error != 0)
3565			device_printf(sc->sc_dev,
3566			    "error %d settting channel\n", error);
3567	}
3568}
3569
3570/**
3571 * Called by net80211 to indicate that we need to scan the current
3572 * channel. The channel is previously be set via the wpi_set_channel
3573 * callback.
3574 */
3575static void
3576wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3577{
3578	struct ieee80211vap *vap = ss->ss_vap;
3579	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3580	struct wpi_softc *sc = ifp->if_softc;
3581
3582	WPI_LOCK(sc);
3583	if (wpi_scan(sc))
3584		ieee80211_cancel_scan(vap);
3585	WPI_UNLOCK(sc);
3586}
3587
3588/**
3589 * Called by the net80211 framework to indicate
3590 * the minimum dwell time has been met, terminate the scan.
3591 * We don't actually terminate the scan as the firmware will notify
3592 * us when it's finished and we have no way to interrupt it.
3593 */
3594static void
3595wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3596{
3597	/* NB: don't try to abort scan; wait for firmware to finish */
3598}
3599
3600static void
3601wpi_hwreset(void *arg, int pending)
3602{
3603	struct wpi_softc *sc = arg;
3604
3605	WPI_LOCK(sc);
3606	wpi_init_locked(sc, 0);
3607	WPI_UNLOCK(sc);
3608}
3609
3610static void
3611wpi_rfreset(void *arg, int pending)
3612{
3613	struct wpi_softc *sc = arg;
3614
3615	WPI_LOCK(sc);
3616	wpi_rfkill_resume(sc);
3617	WPI_UNLOCK(sc);
3618}
3619
3620/*
3621 * Allocate DMA-safe memory for firmware transfer.
3622 */
3623static int
3624wpi_alloc_fwmem(struct wpi_softc *sc)
3625{
3626	/* allocate enough contiguous space to store text and data */
3627	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3628	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3629	    BUS_DMA_NOWAIT);
3630}
3631
3632static void
3633wpi_free_fwmem(struct wpi_softc *sc)
3634{
3635	wpi_dma_contig_free(&sc->fw_dma);
3636}
3637
3638/**
3639 * Called every second, wpi_watchdog used by the watch dog timer
3640 * to check that the card is still alive
3641 */
3642static void
3643wpi_watchdog(void *arg)
3644{
3645	struct wpi_softc *sc = arg;
3646	struct ifnet *ifp = sc->sc_ifp;
3647	struct ieee80211com *ic = ifp->if_l2com;
3648	uint32_t tmp;
3649
3650	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3651
3652	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3653		/* No need to lock firmware memory */
3654		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3655
3656		if ((tmp & 0x1) == 0) {
3657			/* Radio kill switch is still off */
3658			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3659			return;
3660		}
3661
3662		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3663		ieee80211_runtask(ic, &sc->sc_radiotask);
3664		return;
3665	}
3666
3667	if (sc->sc_tx_timer > 0) {
3668		if (--sc->sc_tx_timer == 0) {
3669			device_printf(sc->sc_dev,"device timeout\n");
3670			ifp->if_oerrors++;
3671			ieee80211_runtask(ic, &sc->sc_restarttask);
3672		}
3673	}
3674	if (sc->sc_scan_timer > 0) {
3675		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3676		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3677			device_printf(sc->sc_dev,"scan timeout\n");
3678			ieee80211_cancel_scan(vap);
3679			ieee80211_runtask(ic, &sc->sc_restarttask);
3680		}
3681	}
3682
3683	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3684		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3685}
3686
3687#ifdef WPI_DEBUG
3688static const char *wpi_cmd_str(int cmd)
3689{
3690	switch (cmd) {
3691	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3692	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3693	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3694	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3695	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3696	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3697	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3698	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3699	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3700	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3701	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3702	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3703	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3704	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3705
3706	default:
3707		KASSERT(1, ("Unknown Command: %d\n", cmd));
3708		return "UNKNOWN CMD";	/* Make the compiler happy */
3709	}
3710}
3711#endif
3712
3713MODULE_DEPEND(wpi, pci,  1, 1, 1);
3714MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3715MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3716