1/*-
2 * Copyright (c) 2012 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Oleksandr Rybalko under sponsorship
6 * from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1.	Redistributions of source code must retain the above copyright
12 *	notice, this list of conditions and the following disclaimer.
13 * 2.	Redistributions in binary form must reproduce the above copyright
14 *	notice, this list of conditions and the following disclaimer in the
15 *	documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include "opt_ddb.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/conf.h>
39#include <sys/kdb.h>
40#include <machine/bus.h>
41#include <machine/fdt.h>
42
43#include <dev/uart/uart.h>
44#include <dev/uart/uart_cpu.h>
45#include <dev/uart/uart_cpu_fdt.h>
46#include <dev/uart/uart_bus.h>
47#include <dev/uart/uart_dev_imx.h>
48#include "uart_if.h"
49
50#include <arm/freescale/imx/imx_ccmvar.h>
51
52/*
53 * The hardare FIFOs are 32 bytes.  We want an interrupt when there are 24 bytes
54 * available to read or space for 24 more bytes to write.  While 8 bytes of
55 * slack before over/underrun might seem excessive, the hardware can run at
56 * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
57 * to get into the interrupt handler and service the fifo.
58 */
59#define	IMX_FIFOSZ		32
60#define	IMX_RXFIFO_LEVEL	24
61#define	IMX_TXFIFO_LEVEL	24
62
63/*
64 * Low-level UART interface.
65 */
66static int imx_uart_probe(struct uart_bas *bas);
67static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
68static void imx_uart_term(struct uart_bas *bas);
69static void imx_uart_putc(struct uart_bas *bas, int);
70static int imx_uart_rxready(struct uart_bas *bas);
71static int imx_uart_getc(struct uart_bas *bas, struct mtx *);
72
73static struct uart_ops uart_imx_uart_ops = {
74	.probe = imx_uart_probe,
75	.init = imx_uart_init,
76	.term = imx_uart_term,
77	.putc = imx_uart_putc,
78	.rxready = imx_uart_rxready,
79	.getc = imx_uart_getc,
80};
81
82#if 0 /* Handy when debugging. */
83static void
84dumpregs(struct uart_bas *bas, const char * msg)
85{
86
87	if (!bootverbose)
88		return;
89	printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
90		"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
91	    msg, bas->bsh,
92	    GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)),
93	    GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
94	    GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
95}
96#endif
97
98static int
99imx_uart_probe(struct uart_bas *bas)
100{
101
102	return (0);
103}
104
105static u_int
106imx_uart_getbaud(struct uart_bas *bas)
107{
108	uint32_t rate, ubir, ubmr;
109	u_int baud, blo, bhi, i;
110	static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
111	static const u_int std_rates[] = {
112		9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
113	};
114
115	/*
116	 * Get the baud rate the hardware is programmed for, then search the
117	 * table of standard baud rates for a number that's within 3% of the
118	 * actual rate the hardware is programmed for.  It's more comforting to
119	 * see that your console is running at 115200 than 114942.  Note that
120	 * here we cannot make a simplifying assumption that the predivider and
121	 * numerator are 1 (like we do when setting the baud rate), because we
122	 * don't know what u-boot might have set up.
123	 */
124	i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
125	    IMXUART_UFCR_RFDIV_SHIFT;
126	rate = imx_ccm_uart_hz() / predivs[i];
127	ubir = GETREG(bas, REG(UBIR)) + 1;
128	ubmr = GETREG(bas, REG(UBMR)) + 1;
129	baud = ((rate / 16 ) * ubir) / ubmr;
130
131	blo = (baud * 100) / 103;
132	bhi = (baud * 100) / 97;
133	for (i = 0; i < nitems(std_rates); i++) {
134		rate = std_rates[i];
135		if (rate >= blo && rate <= bhi) {
136			baud = rate;
137			break;
138		}
139	}
140
141	return (baud);
142}
143
144static void
145imx_uart_init(struct uart_bas *bas, int baudrate, int databits,
146    int stopbits, int parity)
147{
148	uint32_t baseclk, reg;
149
150        /* Enable the device and the RX/TX channels. */
151	SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
152	SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));
153
154	if (databits == 7)
155		DIS(bas, UCR2, WS);
156	else
157		ENA(bas, UCR2, WS);
158
159	if (stopbits == 2)
160		ENA(bas, UCR2, STPB);
161	else
162		DIS(bas, UCR2, STPB);
163
164	switch (parity) {
165	case UART_PARITY_ODD:
166		DIS(bas, UCR2, PROE);
167		ENA(bas, UCR2, PREN);
168		break;
169	case UART_PARITY_EVEN:
170		ENA(bas, UCR2, PROE);
171		ENA(bas, UCR2, PREN);
172		break;
173	case UART_PARITY_MARK:
174	case UART_PARITY_SPACE:
175                /* FALLTHROUGH: Hardware doesn't support mark/space. */
176	case UART_PARITY_NONE:
177	default:
178		DIS(bas, UCR2, PREN);
179		break;
180	}
181
182	/*
183	 * The hardware has an extremely flexible baud clock: it allows setting
184	 * both the numerator and denominator of the divider, as well as a
185	 * separate pre-divider.  We simplify the problem of coming up with a
186	 * workable pair of numbers by assuming a pre-divider and numerator of
187	 * one because our base clock is so fast we can reach virtually any
188	 * reasonable speed with a simple divisor.  The numerator value actually
189	 * includes the 16x over-sampling (so a value of 16 means divide by 1);
190	 * the register value is the numerator-1, so we have a hard-coded 15.
191	 * Note that a quirk of the hardware requires that both UBIR and UBMR be
192	 * set back to back in order for the change to take effect.
193	 */
194	if (baudrate > 0) {
195		baseclk = imx_ccm_uart_hz();
196		reg = GETREG(bas, REG(UFCR));
197		reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
198		SETREG(bas, REG(UFCR), reg);
199		SETREG(bas, REG(UBIR), 15);
200		SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
201	}
202
203	/*
204	 * Program the tx lowater and rx hiwater levels at which fifo-service
205	 * interrupts are signaled.  The tx value is interpetted as "when there
206	 * are only this many bytes remaining" (not "this many free").
207	 */
208	reg = GETREG(bas, REG(UFCR));
209	reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
210	reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
211	reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
212	SETREG(bas, REG(UFCR), reg);
213}
214
215static void
216imx_uart_term(struct uart_bas *bas)
217{
218
219}
220
221static void
222imx_uart_putc(struct uart_bas *bas, int c)
223{
224
225	while (!(IS(bas, USR1, TRDY)))
226		;
227	SETREG(bas, REG(UTXD), c);
228}
229
230static int
231imx_uart_rxready(struct uart_bas *bas)
232{
233
234	return ((IS(bas, USR2, RDR)) ? 1 : 0);
235}
236
237static int
238imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
239{
240	int c;
241
242	uart_lock(hwmtx);
243	while (!(IS(bas, USR2, RDR)))
244		;
245
246	c = GETREG(bas, REG(URXD));
247	uart_unlock(hwmtx);
248#if defined(KDB)
249	if (c & FLD(URXD, BRK)) {
250		if (kdb_break())
251			return (0);
252	}
253#endif
254	return (c & 0xff);
255}
256
257/*
258 * High-level UART interface.
259 */
260struct imx_uart_softc {
261	struct uart_softc base;
262};
263
264static int imx_uart_bus_attach(struct uart_softc *);
265static int imx_uart_bus_detach(struct uart_softc *);
266static int imx_uart_bus_flush(struct uart_softc *, int);
267static int imx_uart_bus_getsig(struct uart_softc *);
268static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
269static int imx_uart_bus_ipend(struct uart_softc *);
270static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
271static int imx_uart_bus_probe(struct uart_softc *);
272static int imx_uart_bus_receive(struct uart_softc *);
273static int imx_uart_bus_setsig(struct uart_softc *, int);
274static int imx_uart_bus_transmit(struct uart_softc *);
275static void imx_uart_bus_grab(struct uart_softc *);
276static void imx_uart_bus_ungrab(struct uart_softc *);
277
278static kobj_method_t imx_uart_methods[] = {
279	KOBJMETHOD(uart_attach,		imx_uart_bus_attach),
280	KOBJMETHOD(uart_detach,		imx_uart_bus_detach),
281	KOBJMETHOD(uart_flush,		imx_uart_bus_flush),
282	KOBJMETHOD(uart_getsig,		imx_uart_bus_getsig),
283	KOBJMETHOD(uart_ioctl,		imx_uart_bus_ioctl),
284	KOBJMETHOD(uart_ipend,		imx_uart_bus_ipend),
285	KOBJMETHOD(uart_param,		imx_uart_bus_param),
286	KOBJMETHOD(uart_probe,		imx_uart_bus_probe),
287	KOBJMETHOD(uart_receive,	imx_uart_bus_receive),
288	KOBJMETHOD(uart_setsig,		imx_uart_bus_setsig),
289	KOBJMETHOD(uart_transmit,	imx_uart_bus_transmit),
290	KOBJMETHOD(uart_grab,		imx_uart_bus_grab),
291	KOBJMETHOD(uart_ungrab,		imx_uart_bus_ungrab),
292	{ 0, 0 }
293};
294
295static struct uart_class uart_imx_class = {
296	"imx",
297	imx_uart_methods,
298	sizeof(struct imx_uart_softc),
299	.uc_ops = &uart_imx_uart_ops,
300	.uc_range = 0x100,
301	.uc_rclk = 24000000 /* TODO: get value from CCM */
302};
303
304static struct ofw_compat_data compat_data[] = {
305	{"fsl,imx6q-uart",	(uintptr_t)&uart_imx_class},
306	{"fsl,imx53-uart",	(uintptr_t)&uart_imx_class},
307	{"fsl,imx51-uart",	(uintptr_t)&uart_imx_class},
308	{"fsl,imx31-uart",	(uintptr_t)&uart_imx_class},
309	{"fsl,imx27-uart",	(uintptr_t)&uart_imx_class},
310	{"fsl,imx25-uart",	(uintptr_t)&uart_imx_class},
311	{"fsl,imx21-uart",	(uintptr_t)&uart_imx_class},
312	{NULL,			(uintptr_t)NULL},
313};
314UART_FDT_CLASS_AND_DEVICE(compat_data);
315
316#define	SIGCHG(c, i, s, d)				\
317	if (c) {					\
318		i |= (i & s) ? s : s | d;		\
319	} else {					\
320		i = (i & s) ? (i & ~s) | d : i;		\
321	}
322
323static int
324imx_uart_bus_attach(struct uart_softc *sc)
325{
326	struct uart_bas *bas;
327	struct uart_devinfo *di;
328
329	bas = &sc->sc_bas;
330	if (sc->sc_sysdev != NULL) {
331		di = sc->sc_sysdev;
332		imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
333		    di->parity);
334	} else {
335		imx_uart_init(bas, 115200, 8, 1, 0);
336	}
337
338	(void)imx_uart_bus_getsig(sc);
339
340	/* Clear all pending interrupts. */
341	SETREG(bas, REG(USR1), 0xffff);
342	SETREG(bas, REG(USR2), 0xffff);
343
344	DIS(bas, UCR4, DREN);
345	ENA(bas, UCR1, RRDYEN);
346	DIS(bas, UCR1, IDEN);
347	DIS(bas, UCR3, RXDSEN);
348	ENA(bas, UCR2, ATEN);
349	DIS(bas, UCR1, TXMPTYEN);
350	DIS(bas, UCR1, TRDYEN);
351	DIS(bas, UCR4, TCEN);
352	DIS(bas, UCR4, OREN);
353	ENA(bas, UCR4, BKEN);
354	DIS(bas, UCR4, WKEN);
355	DIS(bas, UCR1, ADEN);
356	DIS(bas, UCR3, ACIEN);
357	DIS(bas, UCR2, ESCI);
358	DIS(bas, UCR4, ENIRI);
359	DIS(bas, UCR3, AIRINTEN);
360	DIS(bas, UCR3, AWAKEN);
361	DIS(bas, UCR3, FRAERREN);
362	DIS(bas, UCR3, PARERREN);
363	DIS(bas, UCR1, RTSDEN);
364	DIS(bas, UCR2, RTSEN);
365	DIS(bas, UCR3, DTREN);
366	DIS(bas, UCR3, RI);
367	DIS(bas, UCR3, DCD);
368	DIS(bas, UCR3, DTRDEN);
369	ENA(bas, UCR2, IRTS);
370	ENA(bas, UCR3, RXDMUXSEL);
371
372	return (0);
373}
374
375static int
376imx_uart_bus_detach(struct uart_softc *sc)
377{
378
379	SETREG(&sc->sc_bas, REG(UCR4), 0);
380
381	return (0);
382}
383
384static int
385imx_uart_bus_flush(struct uart_softc *sc, int what)
386{
387
388	/* TODO */
389	return (0);
390}
391
392static int
393imx_uart_bus_getsig(struct uart_softc *sc)
394{
395	uint32_t new, old, sig;
396	uint8_t bes;
397
398	do {
399		old = sc->sc_hwsig;
400		sig = old;
401		uart_lock(sc->sc_hwmtx);
402		bes = GETREG(&sc->sc_bas, REG(USR2));
403		uart_unlock(sc->sc_hwmtx);
404		/* XXX: chip can show delta */
405		SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
406		new = sig & ~SER_MASK_DELTA;
407	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
408
409	return (sig);
410}
411
412static int
413imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
414{
415	struct uart_bas *bas;
416	int error;
417
418	bas = &sc->sc_bas;
419	error = 0;
420	uart_lock(sc->sc_hwmtx);
421	switch (request) {
422	case UART_IOCTL_BREAK:
423		/* TODO */
424		break;
425	case UART_IOCTL_BAUD:
426		*(u_int*)data = imx_uart_getbaud(bas);
427		break;
428	default:
429		error = EINVAL;
430		break;
431	}
432	uart_unlock(sc->sc_hwmtx);
433
434	return (error);
435}
436
437static int
438imx_uart_bus_ipend(struct uart_softc *sc)
439{
440	struct uart_bas *bas;
441	int ipend;
442	uint32_t usr1, usr2;
443	uint32_t ucr1, ucr2, ucr4;
444
445	bas = &sc->sc_bas;
446	ipend = 0;
447
448	uart_lock(sc->sc_hwmtx);
449
450	/* Read pending interrupts */
451	usr1 = GETREG(bas, REG(USR1));
452	usr2 = GETREG(bas, REG(USR2));
453	/* ACK interrupts */
454	SETREG(bas, REG(USR1), usr1);
455	SETREG(bas, REG(USR2), usr2);
456
457	ucr1 = GETREG(bas, REG(UCR1));
458	ucr2 = GETREG(bas, REG(UCR2));
459	ucr4 = GETREG(bas, REG(UCR4));
460
461	/* If we have reached tx low-water, we can tx some more now. */
462	if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
463		DIS(bas, UCR1, TRDYEN);
464		ipend |= SER_INT_TXIDLE;
465	}
466
467	/*
468	 * If we have reached the rx high-water, or if there are bytes in the rx
469	 * fifo and no new data has arrived for 8 character periods (aging
470	 * timer), we have input data to process.
471	 */
472	if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) ||
473	    ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
474		DIS(bas, UCR1, RRDYEN);
475		DIS(bas, UCR2, ATEN);
476		ipend |= SER_INT_RXREADY;
477	}
478
479	/* A break can come in at any time, it never gets disabled. */
480	if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
481		ipend |= SER_INT_BREAK;
482
483	uart_unlock(sc->sc_hwmtx);
484
485	return (ipend);
486}
487
488static int
489imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
490    int stopbits, int parity)
491{
492
493	uart_lock(sc->sc_hwmtx);
494	imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
495	uart_unlock(sc->sc_hwmtx);
496	return (0);
497}
498
499static int
500imx_uart_bus_probe(struct uart_softc *sc)
501{
502	int error;
503
504	error = imx_uart_probe(&sc->sc_bas);
505	if (error)
506		return (error);
507
508	/*
509	 * On input we can read up to the full fifo size at once.  On output, we
510	 * want to write only as much as the programmed tx low water level,
511	 * because that's all we can be certain we have room for in the fifo
512	 * when we get a tx-ready interrupt.
513	 */
514	sc->sc_rxfifosz = IMX_FIFOSZ;
515	sc->sc_txfifosz = IMX_TXFIFO_LEVEL;
516
517	device_set_desc(sc->sc_dev, "Freescale i.MX UART");
518	return (0);
519}
520
521static int
522imx_uart_bus_receive(struct uart_softc *sc)
523{
524	struct uart_bas *bas;
525	int xc, out;
526
527	bas = &sc->sc_bas;
528	uart_lock(sc->sc_hwmtx);
529
530	/*
531	 * Empty the rx fifo.  We get the RRDY interrupt when IMX_RXFIFO_LEVEL
532	 * (the rx high-water level) is reached, but we set sc_rxfifosz to the
533	 * full hardware fifo size, so we can safely process however much is
534	 * there, not just the highwater size.
535	 */
536	while (IS(bas, USR2, RDR)) {
537		if (uart_rx_full(sc)) {
538			/* No space left in input buffer */
539			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
540			break;
541		}
542		xc = GETREG(bas, REG(URXD));
543		out = xc & 0x000000ff;
544		if (xc & FLD(URXD, FRMERR))
545			out |= UART_STAT_FRAMERR;
546		if (xc & FLD(URXD, PRERR))
547			out |= UART_STAT_PARERR;
548		if (xc & FLD(URXD, OVRRUN))
549			out |= UART_STAT_OVERRUN;
550		if (xc & FLD(URXD, BRK))
551			out |= UART_STAT_BREAK;
552
553		uart_rx_put(sc, out);
554	}
555	ENA(bas, UCR1, RRDYEN);
556	ENA(bas, UCR2, ATEN);
557
558	uart_unlock(sc->sc_hwmtx);
559	return (0);
560}
561
562static int
563imx_uart_bus_setsig(struct uart_softc *sc, int sig)
564{
565
566	return (0);
567}
568
569static int
570imx_uart_bus_transmit(struct uart_softc *sc)
571{
572	struct uart_bas *bas = &sc->sc_bas;
573	int i;
574
575	bas = &sc->sc_bas;
576	uart_lock(sc->sc_hwmtx);
577
578	/*
579	 * Fill the tx fifo.  The uart core puts at most IMX_TXFIFO_LEVEL bytes
580	 * into the txbuf (because that's what sc_txfifosz is set to), and
581	 * because we got the TRDY (low-water reached) interrupt we know at
582	 * least that much space is available in the fifo.
583	 */
584	for (i = 0; i < sc->sc_txdatasz; i++) {
585		SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
586	}
587	sc->sc_txbusy = 1;
588	ENA(bas, UCR1, TRDYEN);
589
590	uart_unlock(sc->sc_hwmtx);
591
592	return (0);
593}
594
595static void
596imx_uart_bus_grab(struct uart_softc *sc)
597{
598	struct uart_bas *bas = &sc->sc_bas;
599
600	bas = &sc->sc_bas;
601	uart_lock(sc->sc_hwmtx);
602	DIS(bas, UCR1, RRDYEN);
603	DIS(bas, UCR2, ATEN);
604	uart_unlock(sc->sc_hwmtx);
605}
606
607static void
608imx_uart_bus_ungrab(struct uart_softc *sc)
609{
610	struct uart_bas *bas = &sc->sc_bas;
611
612	bas = &sc->sc_bas;
613	uart_lock(sc->sc_hwmtx);
614	ENA(bas, UCR1, RRDYEN);
615	ENA(bas, UCR2, ATEN);
616	uart_unlock(sc->sc_hwmtx);
617}
618