1/*
2 * Copyright (c) 2011-2012 Qlogic Corporation
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27
28/*
29 * File: qla_hw.c
30 * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31 * Content: Contains Hardware dependant functions
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "qla_os.h"
38#include "qla_reg.h"
39#include "qla_hw.h"
40#include "qla_def.h"
41#include "qla_inline.h"
42#include "qla_ver.h"
43#include "qla_glbl.h"
44#include "qla_dbg.h"
45
46static uint32_t sysctl_num_rds_rings = 2;
47static uint32_t sysctl_num_sds_rings = 4;
48
49/*
50 * Static Functions
51 */
52
53static void qla_init_cntxt_regions(qla_host_t *ha);
54static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
55static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
56static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
57		uint16_t cntxt_id, uint32_t add_multi);
58static void qla_del_rcv_cntxt(qla_host_t *ha);
59static int qla_init_rcv_cntxt(qla_host_t *ha);
60static void qla_del_xmt_cntxt(qla_host_t *ha);
61static int qla_init_xmt_cntxt(qla_host_t *ha);
62static int qla_get_max_rds(qla_host_t *ha);
63static int qla_get_max_sds(qla_host_t *ha);
64static int qla_get_max_rules(qla_host_t *ha);
65static int qla_get_max_rcv_cntxts(qla_host_t *ha);
66static int qla_get_max_tx_cntxts(qla_host_t *ha);
67static int qla_get_max_mtu(qla_host_t *ha);
68static int qla_get_max_lro(qla_host_t *ha);
69static int qla_get_flow_control(qla_host_t *ha);
70static void qla_hw_tx_done_locked(qla_host_t *ha);
71
72int
73qla_get_msix_count(qla_host_t *ha)
74{
75	return (sysctl_num_sds_rings);
76}
77
78/*
79 * Name: qla_hw_add_sysctls
80 * Function: Add P3Plus specific sysctls
81 */
82void
83qla_hw_add_sysctls(qla_host_t *ha)
84{
85        device_t	dev;
86
87        dev = ha->pci_dev;
88
89        SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
90                SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
91                OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
92		sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
93
94        SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
95                SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
96                OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
97		sysctl_num_sds_rings, "Number of Status Descriptor Rings");
98}
99
100/*
101 * Name: qla_free_dma
102 * Function: Frees the DMA'able memory allocated in qla_alloc_dma()
103 */
104void
105qla_free_dma(qla_host_t *ha)
106{
107	uint32_t i;
108
109        if (ha->hw.dma_buf.flags.context) {
110		qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
111        	ha->hw.dma_buf.flags.context = 0;
112	}
113
114        if (ha->hw.dma_buf.flags.sds_ring) {
115		for (i = 0; i < ha->hw.num_sds_rings; i++)
116			qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
117        	ha->hw.dma_buf.flags.sds_ring = 0;
118	}
119
120        if (ha->hw.dma_buf.flags.rds_ring) {
121		for (i = 0; i < ha->hw.num_rds_rings; i++)
122			qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
123        	ha->hw.dma_buf.flags.rds_ring = 0;
124	}
125
126        if (ha->hw.dma_buf.flags.tx_ring) {
127		qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
128        	ha->hw.dma_buf.flags.tx_ring = 0;
129	}
130}
131
132/*
133 * Name: qla_alloc_dma
134 * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
135 */
136int
137qla_alloc_dma(qla_host_t *ha)
138{
139        device_t                dev;
140	uint32_t		i, j, size;
141
142        dev = ha->pci_dev;
143
144        QL_DPRINT2((dev, "%s: enter\n", __func__));
145
146	ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
147	ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
148
149	/*
150	 * Allocate Transmit Ring
151	 */
152
153	ha->hw.dma_buf.tx_ring.alignment = 8;
154	ha->hw.dma_buf.tx_ring.size =
155		(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
156
157        if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
158                device_printf(dev, "%s: tx ring alloc failed\n", __func__);
159                goto qla_alloc_dma_exit;
160        }
161        ha->hw.dma_buf.flags.tx_ring = 1;
162
163	QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
164		__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
165		ha->hw.dma_buf.tx_ring.dma_b));
166	/*
167	 * Allocate Receive Descriptor Rings
168	 */
169
170	for (i = 0; i < ha->hw.num_rds_rings; i++) {
171		ha->hw.dma_buf.rds_ring[i].alignment = 8;
172
173		if (i == RDS_RING_INDEX_NORMAL) {
174			ha->hw.dma_buf.rds_ring[i].size =
175				(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
176		} else if (i == RDS_RING_INDEX_JUMBO) {
177			ha->hw.dma_buf.rds_ring[i].size =
178				(sizeof(q80_recv_desc_t)) *
179					NUM_RX_JUMBO_DESCRIPTORS;
180		} else
181			break;
182
183		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
184			QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
185				__func__));
186
187			for (j = 0; j < i; j++)
188				qla_free_dmabuf(ha,
189					&ha->hw.dma_buf.rds_ring[j]);
190
191			goto qla_alloc_dma_exit;
192		}
193		QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
194			__func__, i,
195			(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
196			ha->hw.dma_buf.rds_ring[i].dma_b));
197	}
198	ha->hw.dma_buf.flags.rds_ring = 1;
199
200	/*
201	 * Allocate Status Descriptor Rings
202	 */
203
204	for (i = 0; i < ha->hw.num_sds_rings; i++) {
205		ha->hw.dma_buf.sds_ring[i].alignment = 8;
206		ha->hw.dma_buf.sds_ring[i].size =
207			(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
208
209		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
210			device_printf(dev, "%s: sds ring alloc failed\n",
211				__func__);
212
213			for (j = 0; j < i; j++)
214				qla_free_dmabuf(ha,
215					&ha->hw.dma_buf.sds_ring[j]);
216
217			goto qla_alloc_dma_exit;
218		}
219		QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
220			__func__, i,
221			(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
222			ha->hw.dma_buf.sds_ring[i].dma_b));
223	}
224	ha->hw.dma_buf.flags.sds_ring = 1;
225
226	/*
227	 * Allocate Context Area
228	 */
229	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
230
231	size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
232
233	size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
234
235	size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
236
237	size += sizeof (uint32_t); /* for tx consumer index */
238
239	size = QL_ALIGN(size, PAGE_SIZE);
240
241	ha->hw.dma_buf.context.alignment = 8;
242	ha->hw.dma_buf.context.size = size;
243
244        if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
245                device_printf(dev, "%s: context alloc failed\n", __func__);
246                goto qla_alloc_dma_exit;
247        }
248        ha->hw.dma_buf.flags.context = 1;
249	QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
250		__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
251		ha->hw.dma_buf.context.dma_b));
252
253	qla_init_cntxt_regions(ha);
254
255	return 0;
256
257qla_alloc_dma_exit:
258	qla_free_dma(ha);
259	return -1;
260}
261
262/*
263 * Name: qla_init_cntxt_regions
264 * Function: Initializes Tx/Rx Contexts.
265 */
266static void
267qla_init_cntxt_regions(qla_host_t *ha)
268{
269	qla_hw_t		*hw;
270	q80_tx_cntxt_req_t	*tx_cntxt_req;
271	q80_rcv_cntxt_req_t	*rx_cntxt_req;
272	bus_addr_t		phys_addr;
273	uint32_t		i;
274        device_t                dev;
275	uint32_t		size;
276
277        dev = ha->pci_dev;
278
279	hw = &ha->hw;
280
281	hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
282
283	for (i = 0; i < ha->hw.num_sds_rings; i++)
284		hw->sds[i].sds_ring_base =
285			(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
286
287
288	phys_addr = hw->dma_buf.context.dma_addr;
289
290	memset((void *)hw->dma_buf.context.dma_b, 0,
291		ha->hw.dma_buf.context.size);
292
293	hw->tx_cntxt_req	=
294		(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
295	hw->tx_cntxt_req_paddr	= phys_addr;
296
297	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
298
299	hw->tx_cntxt_rsp	=
300		(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
301	hw->tx_cntxt_rsp_paddr	= hw->tx_cntxt_req_paddr + size;
302
303	size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
304
305	hw->rx_cntxt_req =
306		(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
307	hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
308
309	size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
310
311	hw->rx_cntxt_rsp =
312		(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
313	hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
314
315	size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
316
317	hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
318	hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
319
320	/*
321	 * Initialize the Transmit Context Request so that we don't need to
322	 * do it everytime we need to create a context
323	 */
324	tx_cntxt_req = hw->tx_cntxt_req;
325
326	tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
327
328	tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
329
330	tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
331					CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
332
333	tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
334
335	tx_cntxt_req->phys_addr =
336		qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
337
338	tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
339
340	/*
341	 * Initialize the Receive Context Request
342	 */
343
344	rx_cntxt_req = hw->rx_cntxt_req;
345
346	rx_cntxt_req->rx_req.rsp_dma_addr =
347		qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
348
349	rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
350						CNTXT_CAP0_LEGACY_MN |
351						CNTXT_CAP0_JUMBO |
352						CNTXT_CAP0_LRO|
353						CNTXT_CAP0_HW_LRO);
354
355	rx_cntxt_req->rx_req.intr_mode =
356		qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
357
358	rx_cntxt_req->rx_req.rds_intr_mode =
359		qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
360
361	rx_cntxt_req->rx_req.rds_ring_offset = 0;
362	rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
363		(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
364	rx_cntxt_req->rx_req.num_rds_rings =
365		qla_host_to_le16(hw->num_rds_rings);
366	rx_cntxt_req->rx_req.num_sds_rings =
367		qla_host_to_le16(hw->num_sds_rings);
368
369	for (i = 0; i < hw->num_rds_rings; i++) {
370		rx_cntxt_req->rds_req[i].phys_addr =
371			qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
372
373		if (i == RDS_RING_INDEX_NORMAL) {
374			rx_cntxt_req->rds_req[i].buf_size =
375				qla_host_to_le64(MCLBYTES);
376			rx_cntxt_req->rds_req[i].size =
377				qla_host_to_le32(NUM_RX_DESCRIPTORS);
378		} else {
379			rx_cntxt_req->rds_req[i].buf_size =
380				qla_host_to_le64(MJUM9BYTES);
381			rx_cntxt_req->rds_req[i].size =
382				qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
383		}
384	}
385
386	for (i = 0; i < hw->num_sds_rings; i++) {
387		rx_cntxt_req->sds_req[i].phys_addr =
388			qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
389		rx_cntxt_req->sds_req[i].size =
390			qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
391		rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
392	}
393
394	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
395		__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
396	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
397		__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
398	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
399		__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
400	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
401		__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
402	QL_DPRINT2((ha->pci_dev, "%s: tx_cons      = %p paddr %p\n",
403		__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
404}
405
406/*
407 * Name: qla_issue_cmd
408 * Function: Issues commands on the CDRP interface and returns responses.
409 */
410static int
411qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
412{
413	int	ret = 0;
414	uint32_t signature;
415	uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
416	uint32_t data;
417	device_t dev;
418
419	dev = ha->pci_dev;
420
421	signature = 0xcafe0000 | 0x0100 | ha->pci_func;
422
423	ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
424
425	if (ret) {
426		device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
427		return (ret);
428	}
429
430	WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
431
432	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
433	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
434	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
435
436	WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
437
438	while (count) {
439		qla_mdelay(__func__, 10);
440
441		data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
442
443		if ((!(data & 0x80000000)))
444			break;
445		count--;
446	}
447	if ((!count) || (data != 1))
448		ret = -1;
449
450	cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
451	cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
452	cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
453	cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
454
455	qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
456
457	if (ret) {
458		device_printf(dev, "%s: "
459			"cmd[0x%08x] = 0x%08x\n"
460			"\tsig[0x%08x] = 0x%08x\n"
461			"\targ1[0x%08x] = 0x%08x\n"
462			"\targ2[0x%08x] = 0x%08x\n"
463			"\targ3[0x%08x] = 0x%08x\n",
464			__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
465			Q8_NX_CDRP_SIGNATURE, signature,
466			Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
467			Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
468			Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
469
470		device_printf(dev, "%s: exit (ret = 0x%x)\n"
471			"\t\t rsp = 0x%08x\n"
472			"\t\t arg1 = 0x%08x\n"
473			"\t\t arg2 = 0x%08x\n"
474			"\t\t arg3 = 0x%08x\n",
475			__func__, ret, cdrp->rsp,
476			cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
477	}
478
479	return (ret);
480}
481
482#define QLA_TX_MIN_FREE	2
483
484/*
485 * Name: qla_fw_cmd
486 * Function: Issues firmware control commands on the Tx Ring.
487 */
488static int
489qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
490{
491	device_t dev;
492        q80_tx_cmd_t *tx_cmd;
493        qla_hw_t *hw = &ha->hw;
494	int count = 100;
495
496	dev = ha->pci_dev;
497
498	QLA_TX_LOCK(ha);
499
500        if (hw->txr_free <= QLA_TX_MIN_FREE) {
501		while (count--) {
502			qla_hw_tx_done_locked(ha);
503			if (hw->txr_free > QLA_TX_MIN_FREE)
504				break;
505
506			QLA_TX_UNLOCK(ha);
507			qla_mdelay(__func__, 10);
508			QLA_TX_LOCK(ha);
509		}
510        	if (hw->txr_free <= QLA_TX_MIN_FREE) {
511			QLA_TX_UNLOCK(ha);
512			device_printf(dev, "%s: xmit queue full\n", __func__);
513                	return (-1);
514		}
515        }
516        tx_cmd = &hw->tx_ring_base[hw->txr_next];
517
518        bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
519
520	bcopy(fw_cmd, tx_cmd, size);
521
522	hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
523	hw->txr_free--;
524
525	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
526
527	QLA_TX_UNLOCK(ha);
528
529	return (0);
530}
531
532/*
533 * Name: qla_config_rss
534 * Function: Configure RSS for the context/interface.
535 */
536const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
537			0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
538			0x255b0ec26d5a56daULL };
539
540static int
541qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
542{
543	qla_fw_cds_config_rss_t rss_config;
544	int ret, i;
545
546	bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
547
548	rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
549	rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
550	rss_config.hdr.cntxt_id = cntxt_id;
551
552	rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
553					Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
554	rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
555
556	rss_config.ind_tbl_mask = 0x7;
557
558	for (i = 0; i < 5; i++)
559		rss_config.rss_key[i] = rss_key[i];
560
561	ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
562
563	return ret;
564}
565
566/*
567 * Name: qla_config_intr_coalesce
568 * Function: Configure Interrupt Coalescing.
569 */
570static int
571qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
572{
573	qla_fw_cds_config_intr_coalesc_t intr_coalesce;
574	int ret;
575
576	bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
577
578	intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
579	intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
580	intr_coalesce.hdr.cntxt_id = cntxt_id;
581
582	intr_coalesce.flags = 0x04;
583	intr_coalesce.max_rcv_pkts = 256;
584	intr_coalesce.max_rcv_usecs = 3;
585	intr_coalesce.max_snd_pkts = 64;
586	intr_coalesce.max_snd_usecs = 4;
587
588	if (tenable) {
589		intr_coalesce.usecs_to = 1000; /* 1 millisecond */
590		intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
591		intr_coalesce.sds_ring_bitmask =
592			Q8_FWCMD_INTR_COALESC_SDS_RING_0;
593	}
594
595	ret = qla_fw_cmd(ha, &intr_coalesce,
596			sizeof(qla_fw_cds_config_intr_coalesc_t));
597
598	return ret;
599}
600
601
602/*
603 * Name: qla_config_mac_addr
604 * Function: binds a MAC address to the context/interface.
605 *	Can be unicast, multicast or broadcast.
606 */
607static int
608qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
609	uint32_t add_multi)
610{
611	qla_fw_cds_config_mac_addr_t mac_config;
612	int ret;
613
614//	device_printf(ha->pci_dev,
615//		"%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
616//		mac_addr[0], mac_addr[1], mac_addr[2],
617//		mac_addr[3], mac_addr[4], mac_addr[5]);
618
619	bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
620
621	mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
622	mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
623	mac_config.hdr.cntxt_id = cntxt_id;
624
625	if (add_multi)
626		mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
627	else
628		mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
629	bcopy(mac_addr, mac_config.mac_addr,6);
630
631	ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
632
633	return ret;
634}
635
636
637/*
638 * Name: qla_set_mac_rcv_mode
639 * Function: Enable/Disable AllMulticast and Promiscous Modes.
640 */
641static int
642qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
643{
644	qla_set_mac_rcv_mode_t rcv_mode;
645	int ret;
646
647	bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
648
649	rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
650	rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
651	rcv_mode.hdr.cntxt_id = cntxt_id;
652
653	rcv_mode.mode = mode;
654
655	ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
656
657	return ret;
658}
659
660void
661qla_set_promisc(qla_host_t *ha)
662{
663	(void)qla_set_mac_rcv_mode(ha,
664		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
665		Q8_MAC_RCV_ENABLE_PROMISCUOUS);
666}
667
668void
669qla_set_allmulti(qla_host_t *ha)
670{
671	(void)qla_set_mac_rcv_mode(ha,
672		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
673		Q8_MAC_RCV_ENABLE_ALLMULTI);
674}
675
676void
677qla_reset_promisc_allmulti(qla_host_t *ha)
678{
679	(void)qla_set_mac_rcv_mode(ha,
680		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
681		Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
682}
683
684/*
685 * Name: qla_config_ipv4_addr
686 * Function: Configures the Destination IP Addr for LRO.
687 */
688void
689qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
690{
691	qla_config_ipv4_t ip_conf;
692
693	bzero(&ip_conf, sizeof(qla_config_ipv4_t));
694
695	ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
696	ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
697	ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
698
699	ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
700	ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
701
702	(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
703
704	return;
705}
706
707/*
708 * Name: qla_tx_tso
709 * Function: Checks if the packet to be transmitted is a candidate for
710 *	Large TCP Segment Offload. If yes, the appropriate fields in the Tx
711 *	Ring Structure are plugged in.
712 */
713static int
714qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd, uint8_t *hdr)
715{
716	struct ether_vlan_header *eh;
717	struct ip *ip = NULL;
718	struct tcphdr *th = NULL;
719	uint32_t ehdrlen,  hdrlen = 0, ip_hlen, tcp_hlen, tcp_opt_off;
720	uint16_t etype, opcode, offload = 1;
721	uint8_t *tcp_opt;
722	device_t dev;
723
724	dev = ha->pci_dev;
725
726	eh = mtod(mp, struct ether_vlan_header *);
727
728	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
729		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
730		etype = ntohs(eh->evl_proto);
731	} else {
732		ehdrlen = ETHER_HDR_LEN;
733		etype = ntohs(eh->evl_encap_proto);
734	}
735
736	switch (etype) {
737		case ETHERTYPE_IP:
738
739			tcp_opt_off = ehdrlen + sizeof(struct ip) +
740					sizeof(struct tcphdr);
741
742			if (mp->m_len < tcp_opt_off) {
743				m_copydata(mp, 0, tcp_opt_off, hdr);
744				ip = (struct ip *)hdr;
745			} else {
746				ip = (struct ip *)(mp->m_data + ehdrlen);
747			}
748
749			ip_hlen = ip->ip_hl << 2;
750			opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
751
752			if ((ip->ip_p != IPPROTO_TCP) ||
753				(ip_hlen != sizeof (struct ip))) {
754				offload = 0;
755			} else {
756				th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
757			}
758		break;
759
760		default:
761			QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
762			offload = 0;
763		break;
764	}
765
766	if (!offload)
767		return (-1);
768
769	tcp_hlen = th->th_off << 2;
770
771
772	hdrlen = ehdrlen + ip_hlen + tcp_hlen;
773
774	if (mp->m_len < hdrlen) {
775		if (mp->m_len < tcp_opt_off) {
776			if (tcp_hlen > sizeof(struct tcphdr)) {
777				m_copydata(mp, tcp_opt_off,
778					(tcp_hlen - sizeof(struct tcphdr)),
779					&hdr[tcp_opt_off]);
780			}
781		} else {
782			m_copydata(mp, 0, hdrlen, hdr);
783		}
784	}
785
786	if ((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
787
788		/* If TCP options are preset only time stamp option is supported */
789		if ((tcp_hlen - sizeof(struct tcphdr)) != 10)
790			return -1;
791		else {
792
793			if (mp->m_len < hdrlen) {
794				tcp_opt = &hdr[tcp_opt_off];
795			} else {
796				tcp_opt = (uint8_t *)(mp->m_data + tcp_opt_off);
797			}
798
799			if ((*tcp_opt != 0x01) || (*(tcp_opt + 1) != 0x01) ||
800				(*(tcp_opt + 2) != 0x08) ||
801				(*(tcp_opt + 3) != 10)) {
802				return -1;
803			}
804		}
805
806		tx_cmd->mss = ha->max_frame_size - ETHER_CRC_LEN - hdrlen;
807	} else {
808		tx_cmd->mss = mp->m_pkthdr.tso_segsz;
809	}
810
811	tx_cmd->flags_opcode = opcode ;
812	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
813	tx_cmd->ip_hdr_off = ehdrlen;
814	tx_cmd->mss = mp->m_pkthdr.tso_segsz;
815	tx_cmd->total_hdr_len = hdrlen;
816
817	/* Check for Multicast least significant bit of MSB == 1 */
818	if (eh->evl_dhost[0] & 0x01) {
819		tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
820	}
821
822	if (mp->m_len < hdrlen) {
823		return (1);
824	}
825
826	return (0);
827}
828
829/*
830 * Name: qla_tx_chksum
831 * Function: Checks if the packet to be transmitted is a candidate for
832 *	TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
833 *	Ring Structure are plugged in.
834 */
835static int
836qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
837{
838	struct ether_vlan_header *eh;
839	struct ip *ip;
840	struct ip6_hdr *ip6;
841	uint32_t ehdrlen, ip_hlen;
842	uint16_t etype, opcode, offload = 1;
843	device_t dev;
844
845	dev = ha->pci_dev;
846
847	if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
848		return (-1);
849
850	eh = mtod(mp, struct ether_vlan_header *);
851
852	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
853		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
854		etype = ntohs(eh->evl_proto);
855	} else {
856		ehdrlen = ETHER_HDR_LEN;
857		etype = ntohs(eh->evl_encap_proto);
858	}
859
860
861	switch (etype) {
862		case ETHERTYPE_IP:
863			ip = (struct ip *)(mp->m_data + ehdrlen);
864
865			ip_hlen = sizeof (struct ip);
866
867			if (mp->m_len < (ehdrlen + ip_hlen)) {
868				device_printf(dev, "%s: ipv4 mlen\n", __func__);
869				offload = 0;
870				break;
871			}
872
873			if (ip->ip_p == IPPROTO_TCP)
874				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
875			else if (ip->ip_p == IPPROTO_UDP)
876				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
877			else {
878				device_printf(dev, "%s: ipv4\n", __func__);
879				offload = 0;
880			}
881		break;
882
883		case ETHERTYPE_IPV6:
884			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
885
886			ip_hlen = sizeof(struct ip6_hdr);
887
888			if (mp->m_len < (ehdrlen + ip_hlen)) {
889				device_printf(dev, "%s: ipv6 mlen\n", __func__);
890				offload = 0;
891				break;
892			}
893
894			if (ip6->ip6_nxt == IPPROTO_TCP)
895				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
896			else if (ip6->ip6_nxt == IPPROTO_UDP)
897				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
898			else {
899				device_printf(dev, "%s: ipv6\n", __func__);
900				offload = 0;
901			}
902		break;
903
904		default:
905			offload = 0;
906		break;
907	}
908	if (!offload)
909		return (-1);
910
911	tx_cmd->flags_opcode = opcode;
912
913	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
914
915	return (0);
916}
917
918/*
919 * Name: qla_hw_send
920 * Function: Transmits a packet. It first checks if the packet is a
921 *	candidate for Large TCP Segment Offload and then for UDP/TCP checksum
922 *	offload. If either of these creteria are not met, it is transmitted
923 *	as a regular ethernet frame.
924 */
925int
926qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
927	uint32_t *tx_idx,  struct mbuf *mp)
928{
929	struct ether_vlan_header *eh;
930	qla_hw_t *hw = &ha->hw;
931	q80_tx_cmd_t *tx_cmd, tso_cmd;
932	bus_dma_segment_t *c_seg;
933	uint32_t num_tx_cmds, hdr_len = 0;
934	uint32_t total_length = 0, bytes, tx_cmd_count = 0;
935	device_t dev;
936	int i, ret;
937	uint8_t *src = NULL, *dst = NULL;
938
939	dev = ha->pci_dev;
940
941	/*
942	 * Always make sure there is atleast one empty slot in the tx_ring
943	 * tx_ring is considered full when there only one entry available
944	 */
945        num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
946
947	total_length = mp->m_pkthdr.len;
948	if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
949		device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
950			__func__, total_length);
951		return (-1);
952	}
953	eh = mtod(mp, struct ether_vlan_header *);
954
955	if ((mp->m_pkthdr.len > ha->max_frame_size)||(nsegs > Q8_TX_MAX_SEGMENTS)) {
956
957		bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
958
959		src = ha->hw.frame_hdr;
960		ret = qla_tx_tso(ha, mp, &tso_cmd, src);
961
962		if (!(ret & ~1)) {
963			/* find the additional tx_cmd descriptors required */
964
965			hdr_len = tso_cmd.total_hdr_len;
966
967			bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
968			bytes = QL_MIN(bytes, hdr_len);
969
970			num_tx_cmds++;
971			hdr_len -= bytes;
972
973			while (hdr_len) {
974				bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
975				hdr_len -= bytes;
976				num_tx_cmds++;
977			}
978			hdr_len = tso_cmd.total_hdr_len;
979
980			if (ret == 0)
981				src = (uint8_t *)eh;
982		}
983	}
984
985	if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
986		qla_hw_tx_done_locked(ha);
987		if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
988        		QL_DPRINT8((dev, "%s: (hw->txr_free <= "
989				"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
990				__func__));
991			return (-1);
992		}
993	}
994
995	*tx_idx = hw->txr_next;
996
997        tx_cmd = &hw->tx_ring_base[hw->txr_next];
998
999	if (hdr_len == 0) {
1000		if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
1001			(mp->m_pkthdr.len > ha->max_frame_size)){
1002        		device_printf(dev,
1003				"%s: (nsegs[%d, %d, 0x%b] > Q8_TX_MAX_SEGMENTS)\n",
1004				__func__, nsegs, mp->m_pkthdr.len,
1005				(int)mp->m_pkthdr.csum_flags, CSUM_BITS);
1006			qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
1007				mtod(mp, char *), mp->m_len);
1008			return (EINVAL);
1009		}
1010		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1011		if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
1012        		tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
1013	} else {
1014		bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
1015	}
1016
1017	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
1018        	tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
1019	else if (mp->m_flags & M_VLANTAG) {
1020        	tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
1021						Q8_TX_CMD_FLAGS_HW_VLAN_ID);
1022		tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
1023	}
1024
1025
1026        tx_cmd->n_bufs = (uint8_t)nsegs;
1027        tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
1028        tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
1029	tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
1030
1031	c_seg = segs;
1032
1033	while (1) {
1034		for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
1035
1036			switch (i) {
1037			case 0:
1038				tx_cmd->buf1_addr = c_seg->ds_addr;
1039				tx_cmd->buf1_len = c_seg->ds_len;
1040				break;
1041
1042			case 1:
1043				tx_cmd->buf2_addr = c_seg->ds_addr;
1044				tx_cmd->buf2_len = c_seg->ds_len;
1045				break;
1046
1047			case 2:
1048				tx_cmd->buf3_addr = c_seg->ds_addr;
1049				tx_cmd->buf3_len = c_seg->ds_len;
1050				break;
1051
1052			case 3:
1053				tx_cmd->buf4_addr = c_seg->ds_addr;
1054				tx_cmd->buf4_len = c_seg->ds_len;
1055				break;
1056			}
1057
1058			c_seg++;
1059			nsegs--;
1060		}
1061
1062		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1063		tx_cmd_count++;
1064
1065		if (!nsegs)
1066			break;
1067
1068        	tx_cmd = &hw->tx_ring_base[hw->txr_next];
1069		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1070	}
1071
1072	if (hdr_len) {
1073		/* TSO : Copy the header in the following tx cmd descriptors */
1074
1075		tx_cmd = &hw->tx_ring_base[hw->txr_next];
1076		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1077
1078		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
1079		bytes = QL_MIN(bytes, hdr_len);
1080
1081		dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
1082
1083		if (mp->m_flags & M_VLANTAG) {
1084			/* first copy the src/dst MAC addresses */
1085			bcopy(src, dst, (ETHER_ADDR_LEN * 2));
1086			dst += (ETHER_ADDR_LEN * 2);
1087			src += (ETHER_ADDR_LEN * 2);
1088
1089			hdr_len -= (ETHER_ADDR_LEN * 2);
1090
1091			*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
1092			dst += 2;
1093			*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
1094			dst += 2;
1095
1096			bytes -= ((ETHER_ADDR_LEN * 2) + 4);
1097
1098			bcopy(src, dst, bytes);
1099			src += bytes;
1100			hdr_len -= bytes;
1101		} else {
1102			bcopy(src, dst, bytes);
1103			src += bytes;
1104			hdr_len -= bytes;
1105		}
1106
1107		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1108		tx_cmd_count++;
1109
1110		while (hdr_len) {
1111			tx_cmd = &hw->tx_ring_base[hw->txr_next];
1112			bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1113
1114			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
1115
1116			bcopy(src, tx_cmd, bytes);
1117			src += bytes;
1118			hdr_len -= bytes;
1119			hw->txr_next =
1120				(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1121			tx_cmd_count++;
1122		}
1123	}
1124
1125	hw->txr_free = hw->txr_free - tx_cmd_count;
1126
1127	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
1128       	QL_DPRINT8((dev, "%s: return\n", __func__));
1129	return (0);
1130}
1131
1132/*
1133 * Name: qla_del_hw_if
1134 * Function: Destroys the hardware specific entities corresponding to an
1135 *	Ethernet Interface
1136 */
1137void
1138qla_del_hw_if(qla_host_t *ha)
1139{
1140	int	i;
1141
1142	for (i = 0; i < ha->hw.num_sds_rings; i++)
1143		QL_DISABLE_INTERRUPTS(ha, i);
1144
1145	qla_del_rcv_cntxt(ha);
1146	qla_del_xmt_cntxt(ha);
1147
1148	ha->hw.flags.lro = 0;
1149}
1150
1151/*
1152 * Name: qla_init_hw_if
1153 * Function: Creates the hardware specific entities corresponding to an
1154 *	Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
1155 *	corresponding to the interface. Enables LRO if allowed.
1156 */
1157int
1158qla_init_hw_if(qla_host_t *ha)
1159{
1160	device_t	dev;
1161	int		i;
1162	uint8_t		bcast_mac[6];
1163
1164	qla_get_hw_caps(ha);
1165
1166	dev = ha->pci_dev;
1167
1168	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1169		bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
1170			ha->hw.dma_buf.sds_ring[i].size);
1171	}
1172	/*
1173	 * Create Receive Context
1174	 */
1175	if (qla_init_rcv_cntxt(ha)) {
1176		return (-1);
1177	}
1178
1179	ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
1180	ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
1181	ha->hw.rx_in = ha->hw.rxj_in = 0;
1182
1183	/* Update the RDS Producer Indices */
1184	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
1185	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
1186
1187	/*
1188	 * Create Transmit Context
1189	 */
1190	if (qla_init_xmt_cntxt(ha)) {
1191		qla_del_rcv_cntxt(ha);
1192		return (-1);
1193	}
1194
1195	qla_config_mac_addr(ha, ha->hw.mac_addr,
1196		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1197
1198	bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
1199	bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
1200	qla_config_mac_addr(ha, bcast_mac,
1201		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1202
1203	qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
1204
1205	qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
1206
1207	for (i = 0; i < ha->hw.num_sds_rings; i++)
1208		QL_ENABLE_INTERRUPTS(ha, i);
1209
1210	return (0);
1211}
1212
1213/*
1214 * Name: qla_init_rcv_cntxt
1215 * Function: Creates the Receive Context.
1216 */
1217static int
1218qla_init_rcv_cntxt(qla_host_t *ha)
1219{
1220	device_t		dev;
1221	qla_cdrp_t		cdrp;
1222	q80_rcv_cntxt_rsp_t	*rsp;
1223	q80_stat_desc_t		*sdesc;
1224	bus_addr_t		phys_addr;
1225	int			i, j;
1226        qla_hw_t		*hw = &ha->hw;
1227
1228	dev = ha->pci_dev;
1229
1230	/*
1231	 * Create Receive Context
1232	 */
1233
1234	for (i = 0; i < hw->num_sds_rings; i++) {
1235		sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
1236		for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
1237			sdesc->data[0] =
1238				Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
1239		}
1240	}
1241
1242	phys_addr = ha->hw.rx_cntxt_req_paddr;
1243
1244	bzero(&cdrp, sizeof(qla_cdrp_t));
1245
1246	cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
1247	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1248	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1249	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
1250
1251	if (qla_issue_cmd(ha, &cdrp)) {
1252		device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
1253			__func__);
1254		return (-1);
1255	} else {
1256		rsp = ha->hw.rx_cntxt_rsp;
1257
1258		QL_DPRINT2((dev, "%s: rcv cntxt successful"
1259			" rds_ring_offset = 0x%08x"
1260			" sds_ring_offset = 0x%08x"
1261			" cntxt_state = 0x%08x"
1262			" funcs_per_port = 0x%08x"
1263			" num_rds_rings = 0x%04x"
1264			" num_sds_rings = 0x%04x"
1265			" cntxt_id = 0x%04x"
1266			" phys_port = 0x%02x"
1267			" virt_port = 0x%02x\n",
1268			__func__,
1269			rsp->rx_rsp.rds_ring_offset,
1270			rsp->rx_rsp.sds_ring_offset,
1271			rsp->rx_rsp.cntxt_state,
1272			rsp->rx_rsp.funcs_per_port,
1273			rsp->rx_rsp.num_rds_rings,
1274			rsp->rx_rsp.num_sds_rings,
1275			rsp->rx_rsp.cntxt_id,
1276			rsp->rx_rsp.phys_port,
1277			rsp->rx_rsp.virt_port));
1278
1279		for (i = 0; i < ha->hw.num_rds_rings; i++) {
1280			QL_DPRINT2((dev,
1281				"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
1282				__func__, i, rsp->rds_rsp[i].producer_reg));
1283		}
1284		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1285			QL_DPRINT2((dev,
1286				"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
1287				" sds[%i].intr_mask_reg = 0x%08x\n",
1288				__func__, i, rsp->sds_rsp[i].consumer_reg,
1289				i, rsp->sds_rsp[i].intr_mask_reg));
1290		}
1291	}
1292	ha->hw.flags.init_rx_cnxt = 1;
1293	return (0);
1294}
1295
1296/*
1297 * Name: qla_del_rcv_cntxt
1298 * Function: Destroys the Receive Context.
1299 */
1300void
1301qla_del_rcv_cntxt(qla_host_t *ha)
1302{
1303	qla_cdrp_t	cdrp;
1304	device_t	dev = ha->pci_dev;
1305
1306	if (!ha->hw.flags.init_rx_cnxt)
1307		return;
1308
1309	bzero(&cdrp, sizeof(qla_cdrp_t));
1310
1311	cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
1312	cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
1313
1314	if (qla_issue_cmd(ha, &cdrp)) {
1315		device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
1316			__func__);
1317	}
1318	ha->hw.flags.init_rx_cnxt = 0;
1319}
1320
1321/*
1322 * Name: qla_init_xmt_cntxt
1323 * Function: Creates the Transmit Context.
1324 */
1325static int
1326qla_init_xmt_cntxt(qla_host_t *ha)
1327{
1328	bus_addr_t		phys_addr;
1329	device_t		dev;
1330	q80_tx_cntxt_rsp_t	*tx_rsp;
1331	qla_cdrp_t		cdrp;
1332        qla_hw_t		*hw = &ha->hw;
1333
1334	dev = ha->pci_dev;
1335
1336	/*
1337	 * Create Transmit Context
1338	 */
1339	phys_addr = ha->hw.tx_cntxt_req_paddr;
1340	tx_rsp = ha->hw.tx_cntxt_rsp;
1341
1342	hw->txr_comp = hw->txr_next = 0;
1343	*(hw->tx_cons) = 0;
1344
1345	bzero(&cdrp, sizeof(qla_cdrp_t));
1346
1347	cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
1348	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1349	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1350	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
1351
1352	if (qla_issue_cmd(ha, &cdrp)) {
1353		device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
1354			__func__);
1355		return (-1);
1356	} else {
1357		ha->hw.tx_prod_reg = tx_rsp->producer_reg;
1358
1359		QL_DPRINT2((dev, "%s: tx cntxt successful"
1360			" cntxt_state = 0x%08x "
1361			" cntxt_id = 0x%04x "
1362			" phys_port_id = 0x%02x "
1363			" virt_port_id = 0x%02x "
1364			" producer_reg = 0x%08x "
1365			" intr_mask_reg = 0x%08x\n",
1366			__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
1367			tx_rsp->phys_port_id, tx_rsp->virt_port_id,
1368			tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
1369	}
1370	ha->hw.txr_free = NUM_TX_DESCRIPTORS;
1371
1372	ha->hw.flags.init_tx_cnxt = 1;
1373	return (0);
1374}
1375
1376/*
1377 * Name: qla_del_xmt_cntxt
1378 * Function: Destroys the Transmit Context.
1379 */
1380static void
1381qla_del_xmt_cntxt(qla_host_t *ha)
1382{
1383	qla_cdrp_t	cdrp;
1384	device_t	dev = ha->pci_dev;
1385
1386	if (!ha->hw.flags.init_tx_cnxt)
1387		return;
1388
1389	bzero(&cdrp, sizeof(qla_cdrp_t));
1390
1391	cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
1392	cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
1393
1394	if (qla_issue_cmd(ha, &cdrp)) {
1395		device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
1396			__func__);
1397	}
1398	ha->hw.flags.init_tx_cnxt = 0;
1399}
1400
1401/*
1402 * Name: qla_get_max_rds
1403 * Function: Returns the maximum number of Receive Descriptor Rings per context.
1404 */
1405static int
1406qla_get_max_rds(qla_host_t *ha)
1407{
1408	qla_cdrp_t	cdrp;
1409	device_t	dev;
1410
1411	dev = ha->pci_dev;
1412
1413	bzero(&cdrp, sizeof(qla_cdrp_t));
1414
1415	cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
1416
1417	if (qla_issue_cmd(ha, &cdrp)) {
1418		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1419			__func__);
1420		return (-1);
1421	} else {
1422		ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
1423		QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
1424			__func__, ha->hw.max_rds_per_cntxt));
1425	}
1426	return 0;
1427}
1428
1429/*
1430 * Name: qla_get_max_sds
1431 * Function: Returns the maximum number of Status Descriptor Rings per context.
1432 */
1433static int
1434qla_get_max_sds(qla_host_t *ha)
1435{
1436	qla_cdrp_t	cdrp;
1437	device_t	dev;
1438
1439	dev = ha->pci_dev;
1440
1441	bzero(&cdrp, sizeof(qla_cdrp_t));
1442
1443	cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
1444
1445	if (qla_issue_cmd(ha, &cdrp)) {
1446		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1447			__func__);
1448		return (-1);
1449	} else {
1450		ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
1451		QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
1452			__func__, ha->hw.max_sds_per_cntxt));
1453	}
1454	return 0;
1455}
1456
1457/*
1458 * Name: qla_get_max_rules
1459 * Function: Returns the maximum number of Rules per context.
1460 */
1461static int
1462qla_get_max_rules(qla_host_t *ha)
1463{
1464	qla_cdrp_t	cdrp;
1465	device_t	dev;
1466
1467	dev = ha->pci_dev;
1468
1469	bzero(&cdrp, sizeof(qla_cdrp_t));
1470
1471	cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
1472
1473	if (qla_issue_cmd(ha, &cdrp)) {
1474		device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
1475			__func__);
1476		return (-1);
1477	} else {
1478		ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
1479		QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
1480			__func__, ha->hw.max_rules_per_cntxt));
1481	}
1482	return 0;
1483}
1484
1485/*
1486 * Name: qla_get_max_rcv_cntxts
1487 * Function: Returns the maximum number of Receive Contexts supported.
1488 */
1489static int
1490qla_get_max_rcv_cntxts(qla_host_t *ha)
1491{
1492	qla_cdrp_t	cdrp;
1493	device_t	dev;
1494
1495	dev = ha->pci_dev;
1496
1497	bzero(&cdrp, sizeof(qla_cdrp_t));
1498
1499	cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
1500
1501	if (qla_issue_cmd(ha, &cdrp)) {
1502		device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
1503			__func__);
1504		return (-1);
1505	} else {
1506		ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
1507		QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
1508			__func__, ha->hw.max_rcv_cntxts));
1509	}
1510	return 0;
1511}
1512
1513/*
1514 * Name: qla_get_max_tx_cntxts
1515 * Function: Returns the maximum number of Transmit Contexts supported.
1516 */
1517static int
1518qla_get_max_tx_cntxts(qla_host_t *ha)
1519{
1520	qla_cdrp_t	cdrp;
1521	device_t	dev;
1522
1523	dev = ha->pci_dev;
1524
1525	bzero(&cdrp, sizeof(qla_cdrp_t));
1526
1527	cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
1528
1529	if (qla_issue_cmd(ha, &cdrp)) {
1530		device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
1531			__func__);
1532		return (-1);
1533	} else {
1534		ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
1535		QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
1536			__func__, ha->hw.max_xmt_cntxts));
1537	}
1538	return 0;
1539}
1540
1541/*
1542 * Name: qla_get_max_mtu
1543 * Function: Returns the MTU supported for a context.
1544 */
1545static int
1546qla_get_max_mtu(qla_host_t *ha)
1547{
1548	qla_cdrp_t	cdrp;
1549	device_t	dev;
1550
1551	dev = ha->pci_dev;
1552
1553	bzero(&cdrp, sizeof(qla_cdrp_t));
1554
1555	cdrp.cmd = Q8_CMD_RD_MAX_MTU;
1556
1557	if (qla_issue_cmd(ha, &cdrp)) {
1558		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1559		return (-1);
1560	} else {
1561		ha->hw.max_mtu = cdrp.rsp_arg1;
1562		QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
1563			ha->hw.max_mtu));
1564	}
1565	return 0;
1566}
1567
1568/*
1569 * Name: qla_set_max_mtu
1570 * Function:
1571 *	Sets the maximum transfer unit size for the specified rcv context.
1572 */
1573int
1574qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
1575{
1576	qla_cdrp_t	cdrp;
1577	device_t	dev;
1578
1579	dev = ha->pci_dev;
1580
1581	bzero(&cdrp, sizeof(qla_cdrp_t));
1582
1583	cdrp.cmd = Q8_CMD_SET_MTU;
1584	cdrp.cmd_arg1 = (uint32_t)cntxt_id;
1585	cdrp.cmd_arg2 = mtu;
1586
1587	if (qla_issue_cmd(ha, &cdrp)) {
1588		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1589		return (-1);
1590	} else {
1591		ha->hw.max_mtu = cdrp.rsp_arg1;
1592	}
1593	return 0;
1594}
1595
1596/*
1597 * Name: qla_get_max_lro
1598 * Function: Returns the maximum number of TCP Connection which can be supported
1599 *	with LRO.
1600 */
1601static int
1602qla_get_max_lro(qla_host_t *ha)
1603{
1604	qla_cdrp_t	cdrp;
1605	device_t	dev;
1606
1607	dev = ha->pci_dev;
1608
1609	bzero(&cdrp, sizeof(qla_cdrp_t));
1610
1611	cdrp.cmd = Q8_CMD_RD_MAX_LRO;
1612
1613	if (qla_issue_cmd(ha, &cdrp)) {
1614		device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
1615		return (-1);
1616	} else {
1617		ha->hw.max_lro = cdrp.rsp_arg1;
1618		QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
1619			ha->hw.max_lro));
1620	}
1621	return 0;
1622}
1623
1624/*
1625 * Name: qla_get_flow_control
1626 * Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
1627 *	PCI function.
1628 */
1629static int
1630qla_get_flow_control(qla_host_t *ha)
1631{
1632	qla_cdrp_t	cdrp;
1633	device_t	dev;
1634
1635	dev = ha->pci_dev;
1636
1637	bzero(&cdrp, sizeof(qla_cdrp_t));
1638
1639	cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
1640
1641	if (qla_issue_cmd(ha, &cdrp)) {
1642		device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
1643			__func__);
1644		return (-1);
1645	} else {
1646		QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
1647			cdrp.rsp_arg1));
1648	}
1649	return 0;
1650}
1651
1652/*
1653 * Name: qla_get_flow_control
1654 * Function: Retrieves hardware capabilities
1655 */
1656void
1657qla_get_hw_caps(qla_host_t *ha)
1658{
1659	//qla_read_mac_addr(ha);
1660	qla_get_max_rds(ha);
1661	qla_get_max_sds(ha);
1662	qla_get_max_rules(ha);
1663	qla_get_max_rcv_cntxts(ha);
1664	qla_get_max_tx_cntxts(ha);
1665	qla_get_max_mtu(ha);
1666	qla_get_max_lro(ha);
1667	qla_get_flow_control(ha);
1668	return;
1669}
1670
1671/*
1672 * Name: qla_hw_set_multi
1673 * Function: Sets the Multicast Addresses provided the host O.S into the
1674 *	hardware (for the given interface)
1675 */
1676void
1677qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
1678	uint32_t add_multi)
1679{
1680	q80_rcv_cntxt_rsp_t	*rsp;
1681	int i;
1682
1683	rsp = ha->hw.rx_cntxt_rsp;
1684	for (i = 0; i < mcnt; i++) {
1685		qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
1686		mta += Q8_MAC_ADDR_LEN;
1687	}
1688	return;
1689}
1690
1691/*
1692 * Name: qla_hw_tx_done_locked
1693 * Function: Handle Transmit Completions
1694 */
1695static void
1696qla_hw_tx_done_locked(qla_host_t *ha)
1697{
1698	qla_tx_buf_t *txb;
1699        qla_hw_t *hw = &ha->hw;
1700	uint32_t comp_idx, comp_count = 0;
1701
1702	/* retrieve index of last entry in tx ring completed */
1703	comp_idx = qla_le32_to_host(*(hw->tx_cons));
1704
1705	while (comp_idx != hw->txr_comp) {
1706
1707		txb = &ha->tx_buf[hw->txr_comp];
1708
1709		hw->txr_comp++;
1710		if (hw->txr_comp == NUM_TX_DESCRIPTORS)
1711			hw->txr_comp = 0;
1712
1713		comp_count++;
1714
1715		if (txb->m_head) {
1716			bus_dmamap_sync(ha->tx_tag, txb->map,
1717				BUS_DMASYNC_POSTWRITE);
1718			bus_dmamap_unload(ha->tx_tag, txb->map);
1719			bus_dmamap_destroy(ha->tx_tag, txb->map);
1720			m_freem(txb->m_head);
1721
1722			txb->map = (bus_dmamap_t)0;
1723			txb->m_head = NULL;
1724		}
1725	}
1726
1727	hw->txr_free += comp_count;
1728
1729       	QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
1730		hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
1731
1732	return;
1733}
1734
1735/*
1736 * Name: qla_hw_tx_done
1737 * Function: Handle Transmit Completions
1738 */
1739void
1740qla_hw_tx_done(qla_host_t *ha)
1741{
1742	if (!mtx_trylock(&ha->tx_lock)) {
1743       		QL_DPRINT8((ha->pci_dev,
1744			"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
1745		return;
1746	}
1747	qla_hw_tx_done_locked(ha);
1748
1749	if (ha->hw.txr_free > free_pkt_thres)
1750		ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1751
1752	mtx_unlock(&ha->tx_lock);
1753	return;
1754}
1755
1756void
1757qla_update_link_state(qla_host_t *ha)
1758{
1759	uint32_t link_state;
1760	uint32_t prev_link_state;
1761
1762	if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1763		ha->hw.flags.link_up = 0;
1764		return;
1765	}
1766	link_state = READ_REG32(ha, Q8_LINK_STATE);
1767
1768	prev_link_state =  ha->hw.flags.link_up;
1769
1770	if (ha->pci_func == 0)
1771		ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
1772	else
1773		ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
1774
1775	if (prev_link_state !=  ha->hw.flags.link_up) {
1776		if (ha->hw.flags.link_up) {
1777			if_link_state_change(ha->ifp, LINK_STATE_UP);
1778		} else {
1779			if_link_state_change(ha->ifp, LINK_STATE_DOWN);
1780		}
1781	}
1782}
1783
1784int
1785qla_config_lro(qla_host_t *ha)
1786{
1787	int i;
1788        qla_hw_t *hw = &ha->hw;
1789	struct lro_ctrl *lro;
1790
1791	for (i = 0; i < hw->num_sds_rings; i++) {
1792		lro = &hw->sds[i].lro;
1793		if (tcp_lro_init(lro)) {
1794			device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1795				__func__);
1796			return (-1);
1797		}
1798		lro->ifp = ha->ifp;
1799	}
1800	ha->flags.lro_init = 1;
1801
1802	QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1803	return (0);
1804}
1805
1806void
1807qla_free_lro(qla_host_t *ha)
1808{
1809	int i;
1810        qla_hw_t *hw = &ha->hw;
1811	struct lro_ctrl *lro;
1812
1813	if (!ha->flags.lro_init)
1814		return;
1815
1816	for (i = 0; i < hw->num_sds_rings; i++) {
1817		lro = &hw->sds[i].lro;
1818		tcp_lro_free(lro);
1819	}
1820	ha->flags.lro_init = 0;
1821}
1822
1823void
1824qla_hw_stop_rcv(qla_host_t *ha)
1825{
1826	int i, done, count = 100;
1827
1828	while (count--) {
1829		done = 1;
1830		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1831			if (ha->hw.sds[i].rcv_active)
1832				done = 0;
1833		}
1834		if (done)
1835			break;
1836		else
1837			qla_mdelay(__func__, 10);
1838	}
1839}
1840
1841