1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * Copyright (c) 2000, 2001 by Greg Ansley
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice immediately at the beginning of the file, without modification,
12 *    this list of conditions, and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28/*-
29 * Copyright (c) 2002, 2006 by Matthew Jacob
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are
34 * met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38 *    substantially similar to the "NO WARRANTY" disclaimer below
39 *    ("Disclaimer") and any redistribution must be conditioned upon including
40 *    a substantially similar Disclaimer requirement for further binary
41 *    redistribution.
42 * 3. Neither the names of the above listed copyright holders nor the names
43 *    of any contributors may be used to endorse or promote products derived
44 *    from this software without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *
58 * Support from Chris Ellsworth in order to make SAS adapters work
59 * is gratefully acknowledged.
60 *
61 *
62 * Support from LSI-Logic has also gone a great deal toward making this a
63 * workable subsystem and is gratefully acknowledged.
64 */
65/*-
66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67 * Copyright (c) 2005, WHEEL Sp. z o.o.
68 * Copyright (c) 2004, 2005 Justin T. Gibbs
69 * All rights reserved.
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions are
73 * met:
74 * 1. Redistributions of source code must retain the above copyright
75 *    notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77 *    substantially similar to the "NO WARRANTY" disclaimer below
78 *    ("Disclaimer") and any redistribution must be conditioned upon including
79 *    a substantially similar Disclaimer requirement for further binary
80 *    redistribution.
81 * 3. Neither the names of the above listed copyright holders nor the names
82 *    of any contributors may be used to endorse or promote products derived
83 *    from this software without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96 */
97
98#include <sys/cdefs.h>
99__FBSDID("$FreeBSD: stable/10/sys/dev/mpt/mpt.c 315811 2017-03-23 06:37:23Z mav $");
100
101#include <dev/mpt/mpt.h>
102#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104
105#include <dev/mpt/mpilib/mpi.h>
106#include <dev/mpt/mpilib/mpi_ioc.h>
107#include <dev/mpt/mpilib/mpi_fc.h>
108#include <dev/mpt/mpilib/mpi_targ.h>
109
110#include <sys/sysctl.h>
111
112#define MPT_MAX_TRYS 3
113#define MPT_MAX_WAIT 300000
114
115static int maxwait_ack = 0;
116static int maxwait_int = 0;
117static int maxwait_state = 0;
118
119static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121
122static mpt_reply_handler_t mpt_default_reply_handler;
123static mpt_reply_handler_t mpt_config_reply_handler;
124static mpt_reply_handler_t mpt_handshake_reply_handler;
125static mpt_reply_handler_t mpt_event_reply_handler;
126static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129static int mpt_soft_reset(struct mpt_softc *mpt);
130static void mpt_hard_reset(struct mpt_softc *mpt);
131static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132static void mpt_dma_buf_free(struct mpt_softc *mpt);
133static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135
136/************************* Personality Module Support *************************/
137/*
138 * We include one extra entry that is guaranteed to be NULL
139 * to simplify our itterator.
140 */
141static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142static __inline struct mpt_personality*
143	mpt_pers_find(struct mpt_softc *, u_int);
144static __inline struct mpt_personality*
145	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146
147static __inline struct mpt_personality *
148mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149{
150	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151		("mpt_pers_find: starting position out of range"));
152
153	while (start_at < MPT_MAX_PERSONALITIES
154	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155		start_at++;
156	}
157	return (mpt_personalities[start_at]);
158}
159
160/*
161 * Used infrequently, so no need to optimize like a forward
162 * traversal where we use the MAX+1 is guaranteed to be NULL
163 * trick.
164 */
165static __inline struct mpt_personality *
166mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167{
168	while (start_at < MPT_MAX_PERSONALITIES
169	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170		start_at--;
171	}
172	if (start_at < MPT_MAX_PERSONALITIES)
173		return (mpt_personalities[start_at]);
174	return (NULL);
175}
176
177#define MPT_PERS_FOREACH(mpt, pers)				\
178	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179	     pers != NULL;					\
180	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181
182#define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184	     pers != NULL;						\
185	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186
187static mpt_load_handler_t      mpt_stdload;
188static mpt_probe_handler_t     mpt_stdprobe;
189static mpt_attach_handler_t    mpt_stdattach;
190static mpt_enable_handler_t    mpt_stdenable;
191static mpt_ready_handler_t     mpt_stdready;
192static mpt_event_handler_t     mpt_stdevent;
193static mpt_reset_handler_t     mpt_stdreset;
194static mpt_shutdown_handler_t  mpt_stdshutdown;
195static mpt_detach_handler_t    mpt_stddetach;
196static mpt_unload_handler_t    mpt_stdunload;
197static struct mpt_personality mpt_default_personality =
198{
199	.load		= mpt_stdload,
200	.probe		= mpt_stdprobe,
201	.attach		= mpt_stdattach,
202	.enable		= mpt_stdenable,
203	.ready		= mpt_stdready,
204	.event		= mpt_stdevent,
205	.reset		= mpt_stdreset,
206	.shutdown	= mpt_stdshutdown,
207	.detach		= mpt_stddetach,
208	.unload		= mpt_stdunload
209};
210
211static mpt_load_handler_t      mpt_core_load;
212static mpt_attach_handler_t    mpt_core_attach;
213static mpt_enable_handler_t    mpt_core_enable;
214static mpt_reset_handler_t     mpt_core_ioc_reset;
215static mpt_event_handler_t     mpt_core_event;
216static mpt_shutdown_handler_t  mpt_core_shutdown;
217static mpt_shutdown_handler_t  mpt_core_detach;
218static mpt_unload_handler_t    mpt_core_unload;
219static struct mpt_personality mpt_core_personality =
220{
221	.name		= "mpt_core",
222	.load		= mpt_core_load,
223//	.attach		= mpt_core_attach,
224//	.enable		= mpt_core_enable,
225	.event		= mpt_core_event,
226	.reset		= mpt_core_ioc_reset,
227	.shutdown	= mpt_core_shutdown,
228	.detach		= mpt_core_detach,
229	.unload		= mpt_core_unload,
230};
231
232/*
233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234 * ordering information.  We want the core to always register FIRST.
235 * other modules are set to SI_ORDER_SECOND.
236 */
237static moduledata_t mpt_core_mod = {
238	"mpt_core", mpt_modevent, &mpt_core_personality
239};
240DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241MODULE_VERSION(mpt_core, 1);
242
243#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244
245int
246mpt_modevent(module_t mod, int type, void *data)
247{
248	struct mpt_personality *pers;
249	int error;
250
251	pers = (struct mpt_personality *)data;
252
253	error = 0;
254	switch (type) {
255	case MOD_LOAD:
256	{
257		mpt_load_handler_t **def_handler;
258		mpt_load_handler_t **pers_handler;
259		int i;
260
261		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262			if (mpt_personalities[i] == NULL)
263				break;
264		}
265		if (i >= MPT_MAX_PERSONALITIES) {
266			error = ENOMEM;
267			break;
268		}
269		pers->id = i;
270		mpt_personalities[i] = pers;
271
272		/* Install standard/noop handlers for any NULL entries. */
273		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276			if (*pers_handler == NULL)
277				*pers_handler = *def_handler;
278			pers_handler++;
279			def_handler++;
280		}
281
282		error = (pers->load(pers));
283		if (error != 0)
284			mpt_personalities[i] = NULL;
285		break;
286	}
287	case MOD_SHUTDOWN:
288		break;
289	case MOD_QUIESCE:
290		break;
291	case MOD_UNLOAD:
292		error = pers->unload(pers);
293		mpt_personalities[pers->id] = NULL;
294		break;
295	default:
296		error = EINVAL;
297		break;
298	}
299	return (error);
300}
301
302static int
303mpt_stdload(struct mpt_personality *pers)
304{
305
306	/* Load is always successful. */
307	return (0);
308}
309
310static int
311mpt_stdprobe(struct mpt_softc *mpt)
312{
313
314	/* Probe is always successful. */
315	return (0);
316}
317
318static int
319mpt_stdattach(struct mpt_softc *mpt)
320{
321
322	/* Attach is always successful. */
323	return (0);
324}
325
326static int
327mpt_stdenable(struct mpt_softc *mpt)
328{
329
330	/* Enable is always successful. */
331	return (0);
332}
333
334static void
335mpt_stdready(struct mpt_softc *mpt)
336{
337
338}
339
340static int
341mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
342{
343
344	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
345	/* Event was not for us. */
346	return (0);
347}
348
349static void
350mpt_stdreset(struct mpt_softc *mpt, int type)
351{
352
353}
354
355static void
356mpt_stdshutdown(struct mpt_softc *mpt)
357{
358
359}
360
361static void
362mpt_stddetach(struct mpt_softc *mpt)
363{
364
365}
366
367static int
368mpt_stdunload(struct mpt_personality *pers)
369{
370
371	/* Unload is always successful. */
372	return (0);
373}
374
375/*
376 * Post driver attachment, we may want to perform some global actions.
377 * Here is the hook to do so.
378 */
379
380static void
381mpt_postattach(void *unused)
382{
383	struct mpt_softc *mpt;
384	struct mpt_personality *pers;
385
386	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
387		MPT_PERS_FOREACH(mpt, pers)
388			pers->ready(mpt);
389	}
390}
391SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
392
393/******************************* Bus DMA Support ******************************/
394void
395mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
396{
397	struct mpt_map_info *map_info;
398
399	map_info = (struct mpt_map_info *)arg;
400	map_info->error = error;
401	map_info->phys = segs->ds_addr;
402}
403
404/**************************** Reply/Event Handling ****************************/
405int
406mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
407		     mpt_handler_t handler, uint32_t *phandler_id)
408{
409
410	switch (type) {
411	case MPT_HANDLER_REPLY:
412	{
413		u_int cbi;
414		u_int free_cbi;
415
416		if (phandler_id == NULL)
417			return (EINVAL);
418
419		free_cbi = MPT_HANDLER_ID_NONE;
420		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
421			/*
422			 * If the same handler is registered multiple
423			 * times, don't error out.  Just return the
424			 * index of the original registration.
425			 */
426			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
427				*phandler_id = MPT_CBI_TO_HID(cbi);
428				return (0);
429			}
430
431			/*
432			 * Fill from the front in the hope that
433			 * all registered handlers consume only a
434			 * single cache line.
435			 *
436			 * We don't break on the first empty slot so
437			 * that the full table is checked to see if
438			 * this handler was previously registered.
439			 */
440			if (free_cbi == MPT_HANDLER_ID_NONE &&
441			    (mpt_reply_handlers[cbi]
442			  == mpt_default_reply_handler))
443				free_cbi = cbi;
444		}
445		if (free_cbi == MPT_HANDLER_ID_NONE) {
446			return (ENOMEM);
447		}
448		mpt_reply_handlers[free_cbi] = handler.reply_handler;
449		*phandler_id = MPT_CBI_TO_HID(free_cbi);
450		break;
451	}
452	default:
453		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
454		return (EINVAL);
455	}
456	return (0);
457}
458
459int
460mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
461		       mpt_handler_t handler, uint32_t handler_id)
462{
463
464	switch (type) {
465	case MPT_HANDLER_REPLY:
466	{
467		u_int cbi;
468
469		cbi = MPT_CBI(handler_id);
470		if (cbi >= MPT_NUM_REPLY_HANDLERS
471		 || mpt_reply_handlers[cbi] != handler.reply_handler)
472			return (ENOENT);
473		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
474		break;
475	}
476	default:
477		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
478		return (EINVAL);
479	}
480	return (0);
481}
482
483static int
484mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
485	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
486{
487
488	mpt_prt(mpt,
489	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
490	    req, req->serno, reply_desc, reply_frame);
491
492	if (reply_frame != NULL)
493		mpt_dump_reply_frame(mpt, reply_frame);
494
495	mpt_prt(mpt, "Reply Frame Ignored\n");
496
497	return (/*free_reply*/TRUE);
498}
499
500static int
501mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
502 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
503{
504
505	if (req != NULL) {
506		if (reply_frame != NULL) {
507			MSG_CONFIG *cfgp;
508			MSG_CONFIG_REPLY *reply;
509
510			cfgp = (MSG_CONFIG *)req->req_vbuf;
511			reply = (MSG_CONFIG_REPLY *)reply_frame;
512			req->IOCStatus = le16toh(reply_frame->IOCStatus);
513			bcopy(&reply->Header, &cfgp->Header,
514			      sizeof(cfgp->Header));
515			cfgp->ExtPageLength = reply->ExtPageLength;
516			cfgp->ExtPageType = reply->ExtPageType;
517		}
518		req->state &= ~REQ_STATE_QUEUED;
519		req->state |= REQ_STATE_DONE;
520		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
521		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
522			wakeup(req);
523		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
524			/*
525			 * Whew- we can free this request (late completion)
526			 */
527			mpt_free_request(mpt, req);
528		}
529	}
530
531	return (TRUE);
532}
533
534static int
535mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
536 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
537{
538
539	/* Nothing to be done. */
540	return (TRUE);
541}
542
543static int
544mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
545    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
546{
547	int free_reply;
548
549	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
550	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
551
552	free_reply = TRUE;
553	switch (reply_frame->Function) {
554	case MPI_FUNCTION_EVENT_NOTIFICATION:
555	{
556		MSG_EVENT_NOTIFY_REPLY *msg;
557		struct mpt_personality *pers;
558		u_int handled;
559
560		handled = 0;
561		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
562		msg->EventDataLength = le16toh(msg->EventDataLength);
563		msg->IOCStatus = le16toh(msg->IOCStatus);
564		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
565		msg->Event = le32toh(msg->Event);
566		MPT_PERS_FOREACH(mpt, pers)
567			handled += pers->event(mpt, req, msg);
568
569		if (handled == 0 && mpt->mpt_pers_mask == 0) {
570			mpt_lprt(mpt, MPT_PRT_INFO,
571				"No Handlers For Any Event Notify Frames. "
572				"Event %#x (ACK %sequired).\n",
573				msg->Event, msg->AckRequired? "r" : "not r");
574		} else if (handled == 0) {
575			mpt_lprt(mpt,
576				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
577				"Unhandled Event Notify Frame. Event %#x "
578				"(ACK %sequired).\n",
579				msg->Event, msg->AckRequired? "r" : "not r");
580		}
581
582		if (msg->AckRequired) {
583			request_t *ack_req;
584			uint32_t context;
585
586			context = req->index | MPT_REPLY_HANDLER_EVENTS;
587			ack_req = mpt_get_request(mpt, FALSE);
588			if (ack_req == NULL) {
589				struct mpt_evtf_record *evtf;
590
591				evtf = (struct mpt_evtf_record *)reply_frame;
592				evtf->context = context;
593				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
594				free_reply = FALSE;
595				break;
596			}
597			mpt_send_event_ack(mpt, ack_req, msg, context);
598			/*
599			 * Don't check for CONTINUATION_REPLY here
600			 */
601			return (free_reply);
602		}
603		break;
604	}
605	case MPI_FUNCTION_PORT_ENABLE:
606		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
607		break;
608	case MPI_FUNCTION_EVENT_ACK:
609		break;
610	default:
611		mpt_prt(mpt, "unknown event function: %x\n",
612			reply_frame->Function);
613		break;
614	}
615
616	/*
617	 * I'm not sure that this continuation stuff works as it should.
618	 *
619	 * I've had FC async events occur that free the frame up because
620	 * the continuation bit isn't set, and then additional async events
621	 * then occur using the same context. As you might imagine, this
622	 * leads to Very Bad Thing.
623	 *
624	 *  Let's just be safe for now and not free them up until we figure
625	 * out what's actually happening here.
626	 */
627#if	0
628	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
629		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
630		mpt_free_request(mpt, req);
631		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
632		    reply_frame->Function, req, req->serno);
633		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
634			MSG_EVENT_NOTIFY_REPLY *msg =
635			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
636			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
637			    msg->Event, msg->AckRequired);
638		}
639	} else {
640		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
641		    reply_frame->Function, req, req->serno);
642		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
643			MSG_EVENT_NOTIFY_REPLY *msg =
644			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
645			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
646			    msg->Event, msg->AckRequired);
647		}
648		mpt_prtc(mpt, "\n");
649	}
650#endif
651	return (free_reply);
652}
653
654/*
655 * Process an asynchronous event from the IOC.
656 */
657static int
658mpt_core_event(struct mpt_softc *mpt, request_t *req,
659	       MSG_EVENT_NOTIFY_REPLY *msg)
660{
661
662	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
663                 msg->Event & 0xFF);
664	switch(msg->Event & 0xFF) {
665	case MPI_EVENT_NONE:
666		break;
667	case MPI_EVENT_LOG_DATA:
668	{
669		int i;
670
671		/* Some error occurred that LSI wants logged */
672		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
673			msg->IOCLogInfo);
674		mpt_prt(mpt, "\tEvtLogData: Event Data:");
675		for (i = 0; i < msg->EventDataLength; i++)
676			mpt_prtc(mpt, "  %08x", msg->Data[i]);
677		mpt_prtc(mpt, "\n");
678		break;
679	}
680	case MPI_EVENT_EVENT_CHANGE:
681		/*
682		 * This is just an acknowledgement
683		 * of our mpt_send_event_request.
684		 */
685		break;
686	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
687		break;
688	default:
689		return (0);
690		break;
691	}
692	return (1);
693}
694
695static void
696mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
697		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
698{
699	MSG_EVENT_ACK *ackp;
700
701	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
702	memset(ackp, 0, sizeof (*ackp));
703	ackp->Function = MPI_FUNCTION_EVENT_ACK;
704	ackp->Event = htole32(msg->Event);
705	ackp->EventContext = htole32(msg->EventContext);
706	ackp->MsgContext = htole32(context);
707	mpt_check_doorbell(mpt);
708	mpt_send_cmd(mpt, ack_req);
709}
710
711/***************************** Interrupt Handling *****************************/
712void
713mpt_intr(void *arg)
714{
715	struct mpt_softc *mpt;
716	uint32_t reply_desc;
717	int ntrips = 0;
718
719	mpt = (struct mpt_softc *)arg;
720	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
721	MPT_LOCK_ASSERT(mpt);
722
723	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
724		request_t	  *req;
725		MSG_DEFAULT_REPLY *reply_frame;
726		uint32_t	   reply_baddr;
727		uint32_t           ctxt_idx;
728		u_int		   cb_index;
729		u_int		   req_index;
730		u_int		   offset;
731		int		   free_rf;
732
733		req = NULL;
734		reply_frame = NULL;
735		reply_baddr = 0;
736		offset = 0;
737		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
738			/*
739			 * Ensure that the reply frame is coherent.
740			 */
741			reply_baddr = MPT_REPLY_BADDR(reply_desc);
742			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
743			bus_dmamap_sync_range(mpt->reply_dmat,
744			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
745			    BUS_DMASYNC_POSTREAD);
746			reply_frame = MPT_REPLY_OTOV(mpt, offset);
747			ctxt_idx = le32toh(reply_frame->MsgContext);
748		} else {
749			uint32_t type;
750
751			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
752			ctxt_idx = reply_desc;
753			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
754				    reply_desc);
755
756			switch (type) {
757			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
758				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
759				break;
760			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
761				ctxt_idx = GET_IO_INDEX(reply_desc);
762				if (mpt->tgt_cmd_ptrs == NULL) {
763					mpt_prt(mpt,
764					    "mpt_intr: no target cmd ptrs\n");
765					reply_desc = MPT_REPLY_EMPTY;
766					break;
767				}
768				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
769					mpt_prt(mpt,
770					    "mpt_intr: bad tgt cmd ctxt %u\n",
771					    ctxt_idx);
772					reply_desc = MPT_REPLY_EMPTY;
773					ntrips = 1000;
774					break;
775				}
776				req = mpt->tgt_cmd_ptrs[ctxt_idx];
777				if (req == NULL) {
778					mpt_prt(mpt, "no request backpointer "
779					    "at index %u", ctxt_idx);
780					reply_desc = MPT_REPLY_EMPTY;
781					ntrips = 1000;
782					break;
783				}
784				/*
785				 * Reformulate ctxt_idx to be just as if
786				 * it were another type of context reply
787				 * so the code below will find the request
788				 * via indexing into the pool.
789				 */
790				ctxt_idx =
791				    req->index | mpt->scsi_tgt_handler_id;
792				req = NULL;
793				break;
794			case MPI_CONTEXT_REPLY_TYPE_LAN:
795				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
796				    reply_desc);
797				reply_desc = MPT_REPLY_EMPTY;
798				break;
799			default:
800				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
801				reply_desc = MPT_REPLY_EMPTY;
802				break;
803			}
804			if (reply_desc == MPT_REPLY_EMPTY) {
805				if (ntrips++ > 1000) {
806					break;
807				}
808				continue;
809			}
810		}
811
812		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
813		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
814		if (req_index < MPT_MAX_REQUESTS(mpt)) {
815			req = &mpt->request_pool[req_index];
816		} else {
817			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
818			    " 0x%x)\n", req_index, reply_desc);
819		}
820
821		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
822		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
823		free_rf = mpt_reply_handlers[cb_index](mpt, req,
824		    reply_desc, reply_frame);
825
826		if (reply_frame != NULL && free_rf) {
827			bus_dmamap_sync_range(mpt->reply_dmat,
828			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
829			    BUS_DMASYNC_PREREAD);
830			mpt_free_reply(mpt, reply_baddr);
831		}
832
833		/*
834		 * If we got ourselves disabled, don't get stuck in a loop
835		 */
836		if (mpt->disabled) {
837			mpt_disable_ints(mpt);
838			break;
839		}
840		if (ntrips++ > 1000) {
841			break;
842		}
843	}
844	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
845}
846
847/******************************* Error Recovery *******************************/
848void
849mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
850			    u_int iocstatus)
851{
852	MSG_DEFAULT_REPLY  ioc_status_frame;
853	request_t	  *req;
854
855	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
856	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
857	ioc_status_frame.IOCStatus = iocstatus;
858	while((req = TAILQ_FIRST(chain)) != NULL) {
859		MSG_REQUEST_HEADER *msg_hdr;
860		u_int		    cb_index;
861
862		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
863		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
864		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
865		ioc_status_frame.Function = msg_hdr->Function;
866		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
867		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
868		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
869		    &ioc_status_frame);
870		if (mpt_req_on_pending_list(mpt, req) != 0)
871			TAILQ_REMOVE(chain, req, links);
872	}
873}
874
875/********************************* Diagnostics ********************************/
876/*
877 * Perform a diagnostic dump of a reply frame.
878 */
879void
880mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
881{
882
883	mpt_prt(mpt, "Address Reply:\n");
884	mpt_print_reply(reply_frame);
885}
886
887/******************************* Doorbell Access ******************************/
888static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
889static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
890
891static __inline uint32_t
892mpt_rd_db(struct mpt_softc *mpt)
893{
894
895	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
896}
897
898static __inline uint32_t
899mpt_rd_intr(struct mpt_softc *mpt)
900{
901
902	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
903}
904
905/* Busy wait for a door bell to be read by IOC */
906static int
907mpt_wait_db_ack(struct mpt_softc *mpt)
908{
909	int i;
910
911	for (i=0; i < MPT_MAX_WAIT; i++) {
912		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
913			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
914			return (MPT_OK);
915		}
916		DELAY(200);
917	}
918	return (MPT_FAIL);
919}
920
921/* Busy wait for a door bell interrupt */
922static int
923mpt_wait_db_int(struct mpt_softc *mpt)
924{
925	int i;
926
927	for (i = 0; i < MPT_MAX_WAIT; i++) {
928		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
929			maxwait_int = i > maxwait_int ? i : maxwait_int;
930			return MPT_OK;
931		}
932		DELAY(100);
933	}
934	return (MPT_FAIL);
935}
936
937/* Wait for IOC to transition to a give state */
938void
939mpt_check_doorbell(struct mpt_softc *mpt)
940{
941	uint32_t db = mpt_rd_db(mpt);
942
943	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
944		mpt_prt(mpt, "Device not running\n");
945		mpt_print_db(db);
946	}
947}
948
949/* Wait for IOC to transition to a give state */
950static int
951mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
952{
953	int i;
954
955	for (i = 0; i < MPT_MAX_WAIT; i++) {
956		uint32_t db = mpt_rd_db(mpt);
957		if (MPT_STATE(db) == state) {
958			maxwait_state = i > maxwait_state ? i : maxwait_state;
959			return (MPT_OK);
960		}
961		DELAY(100);
962	}
963	return (MPT_FAIL);
964}
965
966
967/************************* Intialization/Configuration ************************/
968static int mpt_download_fw(struct mpt_softc *mpt);
969
970/* Issue the reset COMMAND to the IOC */
971static int
972mpt_soft_reset(struct mpt_softc *mpt)
973{
974
975	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
976
977	/* Have to use hard reset if we are not in Running state */
978	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
979		mpt_prt(mpt, "soft reset failed: device not running\n");
980		return (MPT_FAIL);
981	}
982
983	/* If door bell is in use we don't have a chance of getting
984	 * a word in since the IOC probably crashed in message
985	 * processing. So don't waste our time.
986	 */
987	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
988		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
989		return (MPT_FAIL);
990	}
991
992	/* Send the reset request to the IOC */
993	mpt_write(mpt, MPT_OFFSET_DOORBELL,
994	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
995	if (mpt_wait_db_ack(mpt) != MPT_OK) {
996		mpt_prt(mpt, "soft reset failed: ack timeout\n");
997		return (MPT_FAIL);
998	}
999
1000	/* Wait for the IOC to reload and come out of reset state */
1001	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1002		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1003		return (MPT_FAIL);
1004	}
1005
1006	return MPT_OK;
1007}
1008
1009static int
1010mpt_enable_diag_mode(struct mpt_softc *mpt)
1011{
1012	int try;
1013
1014	try = 20;
1015	while (--try) {
1016
1017		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1018			break;
1019
1020		/* Enable diagnostic registers */
1021		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1022		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1023		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1024		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1025		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1026		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1027
1028		DELAY(100000);
1029	}
1030	if (try == 0)
1031		return (EIO);
1032	return (0);
1033}
1034
1035static void
1036mpt_disable_diag_mode(struct mpt_softc *mpt)
1037{
1038
1039	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1040}
1041
1042/* This is a magic diagnostic reset that resets all the ARM
1043 * processors in the chip.
1044 */
1045static void
1046mpt_hard_reset(struct mpt_softc *mpt)
1047{
1048	int error;
1049	int wait;
1050	uint32_t diagreg;
1051
1052	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1053
1054	if (mpt->is_1078) {
1055		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1056		DELAY(1000);
1057		return;
1058	}
1059
1060	error = mpt_enable_diag_mode(mpt);
1061	if (error) {
1062		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1063		mpt_prt(mpt, "Trying to reset anyway.\n");
1064	}
1065
1066	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1067
1068	/*
1069	 * This appears to be a workaround required for some
1070	 * firmware or hardware revs.
1071	 */
1072	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1073	DELAY(1000);
1074
1075	/* Diag. port is now active so we can now hit the reset bit */
1076	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1077
1078        /*
1079         * Ensure that the reset has finished.  We delay 1ms
1080         * prior to reading the register to make sure the chip
1081         * has sufficiently completed its reset to handle register
1082         * accesses.
1083         */
1084	wait = 5000;
1085	do {
1086		DELAY(1000);
1087		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1088	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1089
1090	if (wait == 0) {
1091		mpt_prt(mpt, "WARNING - Failed hard reset! "
1092			"Trying to initialize anyway.\n");
1093	}
1094
1095	/*
1096	 * If we have firmware to download, it must be loaded before
1097	 * the controller will become operational.  Do so now.
1098	 */
1099	if (mpt->fw_image != NULL) {
1100
1101		error = mpt_download_fw(mpt);
1102
1103		if (error) {
1104			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1105			mpt_prt(mpt, "Trying to initialize anyway.\n");
1106		}
1107	}
1108
1109	/*
1110	 * Reseting the controller should have disabled write
1111	 * access to the diagnostic registers, but disable
1112	 * manually to be sure.
1113	 */
1114	mpt_disable_diag_mode(mpt);
1115}
1116
1117static void
1118mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1119{
1120
1121	/*
1122	 * Complete all pending requests with a status
1123	 * appropriate for an IOC reset.
1124	 */
1125	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1126				   MPI_IOCSTATUS_INVALID_STATE);
1127}
1128
1129/*
1130 * Reset the IOC when needed. Try software command first then if needed
1131 * poke at the magic diagnostic reset. Note that a hard reset resets
1132 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1133 * fouls up the PCI configuration registers.
1134 */
1135int
1136mpt_reset(struct mpt_softc *mpt, int reinit)
1137{
1138	struct	mpt_personality *pers;
1139	int	ret;
1140	int	retry_cnt = 0;
1141
1142	/*
1143	 * Try a soft reset. If that fails, get out the big hammer.
1144	 */
1145 again:
1146	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1147		int	cnt;
1148		for (cnt = 0; cnt < 5; cnt++) {
1149			/* Failed; do a hard reset */
1150			mpt_hard_reset(mpt);
1151
1152			/*
1153			 * Wait for the IOC to reload
1154			 * and come out of reset state
1155			 */
1156			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1157			if (ret == MPT_OK) {
1158				break;
1159			}
1160			/*
1161			 * Okay- try to check again...
1162			 */
1163			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1164			if (ret == MPT_OK) {
1165				break;
1166			}
1167			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1168			    retry_cnt, cnt);
1169		}
1170	}
1171
1172	if (retry_cnt == 0) {
1173		/*
1174		 * Invoke reset handlers.  We bump the reset count so
1175		 * that mpt_wait_req() understands that regardless of
1176		 * the specified wait condition, it should stop its wait.
1177		 */
1178		mpt->reset_cnt++;
1179		MPT_PERS_FOREACH(mpt, pers)
1180			pers->reset(mpt, ret);
1181	}
1182
1183	if (reinit) {
1184		ret = mpt_enable_ioc(mpt, 1);
1185		if (ret == MPT_OK) {
1186			mpt_enable_ints(mpt);
1187		}
1188	}
1189	if (ret != MPT_OK && retry_cnt++ < 2) {
1190		goto again;
1191	}
1192	return ret;
1193}
1194
1195/* Return a command buffer to the free queue */
1196void
1197mpt_free_request(struct mpt_softc *mpt, request_t *req)
1198{
1199	request_t *nxt;
1200	struct mpt_evtf_record *record;
1201	uint32_t offset, reply_baddr;
1202
1203	if (req == NULL || req != &mpt->request_pool[req->index]) {
1204		panic("mpt_free_request: bad req ptr");
1205	}
1206	if ((nxt = req->chain) != NULL) {
1207		req->chain = NULL;
1208		mpt_free_request(mpt, nxt);	/* NB: recursion */
1209	}
1210	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1211	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1212	MPT_LOCK_ASSERT(mpt);
1213	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1214	    ("mpt_free_request: req %p:%u func %x already on freelist",
1215	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1217	    ("mpt_free_request: req %p:%u func %x on pending list",
1218	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1219#ifdef	INVARIANTS
1220	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1221#endif
1222
1223	req->ccb = NULL;
1224	if (LIST_EMPTY(&mpt->ack_frames)) {
1225		/*
1226		 * Insert free ones at the tail
1227		 */
1228		req->serno = 0;
1229		req->state = REQ_STATE_FREE;
1230#ifdef	INVARIANTS
1231		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1232#endif
1233		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1234		if (mpt->getreqwaiter != 0) {
1235			mpt->getreqwaiter = 0;
1236			wakeup(&mpt->request_free_list);
1237		}
1238		return;
1239	}
1240
1241	/*
1242	 * Process an ack frame deferred due to resource shortage.
1243	 */
1244	record = LIST_FIRST(&mpt->ack_frames);
1245	LIST_REMOVE(record, links);
1246	req->state = REQ_STATE_ALLOCATED;
1247	mpt_assign_serno(mpt, req);
1248	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1249	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1250	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1251	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1252	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1253	mpt_free_reply(mpt, reply_baddr);
1254}
1255
1256/* Get a command buffer from the free queue */
1257request_t *
1258mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1259{
1260	request_t *req;
1261
1262retry:
1263	MPT_LOCK_ASSERT(mpt);
1264	req = TAILQ_FIRST(&mpt->request_free_list);
1265	if (req != NULL) {
1266		KASSERT(req == &mpt->request_pool[req->index],
1267		    ("mpt_get_request: corrupted request free list"));
1268		KASSERT(req->state == REQ_STATE_FREE,
1269		    ("req %p:%u not free on free list %x index %d function %x",
1270		    req, req->serno, req->state, req->index,
1271		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1272		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1273		req->state = REQ_STATE_ALLOCATED;
1274		req->chain = NULL;
1275		mpt_assign_serno(mpt, req);
1276	} else if (sleep_ok != 0) {
1277		mpt->getreqwaiter = 1;
1278		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1279		goto retry;
1280	}
1281	return (req);
1282}
1283
1284/* Pass the command to the IOC */
1285void
1286mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1287{
1288
1289	if (mpt->verbose > MPT_PRT_DEBUG2) {
1290		mpt_dump_request(mpt, req);
1291	}
1292	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1293	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1294	req->state |= REQ_STATE_QUEUED;
1295	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1296	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1297	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1299	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1300	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1301	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1302	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1303}
1304
1305/*
1306 * Wait for a request to complete.
1307 *
1308 * Inputs:
1309 *	mpt		softc of controller executing request
1310 *	req		request to wait for
1311 *	sleep_ok	nonzero implies may sleep in this context
1312 *	time_ms		timeout in ms.  0 implies no timeout.
1313 *
1314 * Return Values:
1315 *	0		Request completed
1316 *	non-0		Timeout fired before request completion.
1317 */
1318int
1319mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1320	     mpt_req_state_t state, mpt_req_state_t mask,
1321	     int sleep_ok, int time_ms)
1322{
1323	int   timeout;
1324	u_int saved_cnt;
1325	sbintime_t sbt;
1326
1327	/*
1328	 * time_ms is in ms, 0 indicates infinite wait.
1329	 * Convert to sbintime_t or 500us units depending on
1330	 * our sleep mode.
1331	 */
1332	if (sleep_ok != 0) {
1333		sbt = SBT_1MS * time_ms;
1334		/* Set timeout as well so final timeout check works. */
1335		timeout = time_ms;
1336	} else {
1337		sbt = 0; /* Squelch bogus gcc warning. */
1338		timeout = time_ms * 2;
1339	}
1340	req->state |= REQ_STATE_NEED_WAKEUP;
1341	mask &= ~REQ_STATE_NEED_WAKEUP;
1342	saved_cnt = mpt->reset_cnt;
1343	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1344		if (sleep_ok != 0) {
1345			if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
1346			    EWOULDBLOCK) {
1347				timeout = 0;
1348				break;
1349			}
1350		} else {
1351			if (time_ms != 0 && --timeout == 0) {
1352				break;
1353			}
1354			DELAY(500);
1355			mpt_intr(mpt);
1356		}
1357	}
1358	req->state &= ~REQ_STATE_NEED_WAKEUP;
1359	if (mpt->reset_cnt != saved_cnt) {
1360		return (EIO);
1361	}
1362	if (time_ms && timeout <= 0) {
1363		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1364		req->state |= REQ_STATE_TIMEDOUT;
1365		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1366		return (ETIMEDOUT);
1367	}
1368	return (0);
1369}
1370
1371/*
1372 * Send a command to the IOC via the handshake register.
1373 *
1374 * Only done at initialization time and for certain unusual
1375 * commands such as device/bus reset as specified by LSI.
1376 */
1377int
1378mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1379{
1380	int i;
1381	uint32_t data, *data32;
1382
1383	/* Check condition of the IOC */
1384	data = mpt_rd_db(mpt);
1385	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1386	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1387	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1388	 || MPT_DB_IS_IN_USE(data)) {
1389		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1390		mpt_print_db(data);
1391		return (EBUSY);
1392	}
1393
1394	/* We move things in 32 bit chunks */
1395	len = (len + 3) >> 2;
1396	data32 = cmd;
1397
1398	/* Clear any left over pending doorbell interrupts */
1399	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1400		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1401
1402	/*
1403	 * Tell the handshake reg. we are going to send a command
1404         * and how long it is going to be.
1405	 */
1406	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1407	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1408	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1409
1410	/* Wait for the chip to notice */
1411	if (mpt_wait_db_int(mpt) != MPT_OK) {
1412		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1413		return (ETIMEDOUT);
1414	}
1415
1416	/* Clear the interrupt */
1417	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1418
1419	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1420		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1421		return (ETIMEDOUT);
1422	}
1423
1424	/* Send the command */
1425	for (i = 0; i < len; i++) {
1426		mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
1427		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1428			mpt_prt(mpt,
1429			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1430			return (ETIMEDOUT);
1431		}
1432	}
1433	return MPT_OK;
1434}
1435
1436/* Get the response from the handshake register */
1437int
1438mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1439{
1440	int left, reply_left;
1441	u_int16_t *data16;
1442	uint32_t data;
1443	MSG_DEFAULT_REPLY *hdr;
1444
1445	/* We move things out in 16 bit chunks */
1446	reply_len >>= 1;
1447	data16 = (u_int16_t *)reply;
1448
1449	hdr = (MSG_DEFAULT_REPLY *)reply;
1450
1451	/* Get first word */
1452	if (mpt_wait_db_int(mpt) != MPT_OK) {
1453		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1454		return ETIMEDOUT;
1455	}
1456	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1457	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1458	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1459
1460	/* Get second word */
1461	if (mpt_wait_db_int(mpt) != MPT_OK) {
1462		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1463		return ETIMEDOUT;
1464	}
1465	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1466	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1467	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1468
1469	/*
1470	 * With the second word, we can now look at the length.
1471	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1472	 */
1473	if ((reply_len >> 1) != hdr->MsgLength &&
1474	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1475		mpt_prt(mpt, "reply length does not match message length: "
1476			"got %x; expected %zx for function %x\n",
1477			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1478	}
1479
1480	/* Get rest of the reply; but don't overflow the provided buffer */
1481	left = (hdr->MsgLength << 1) - 2;
1482	reply_left =  reply_len - 2;
1483	while (left--) {
1484		if (mpt_wait_db_int(mpt) != MPT_OK) {
1485			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1486			return ETIMEDOUT;
1487		}
1488		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1489		if (reply_left-- > 0)
1490			*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1491		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1492	}
1493
1494	/* One more wait & clear at the end */
1495	if (mpt_wait_db_int(mpt) != MPT_OK) {
1496		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1497		return ETIMEDOUT;
1498	}
1499	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1500
1501	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1502		if (mpt->verbose >= MPT_PRT_TRACE)
1503			mpt_print_reply(hdr);
1504		return (MPT_FAIL | hdr->IOCStatus);
1505	}
1506
1507	return (0);
1508}
1509
1510static int
1511mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1512{
1513	MSG_IOC_FACTS f_req;
1514	int error;
1515
1516	memset(&f_req, 0, sizeof f_req);
1517	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1518	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1519	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1520	if (error) {
1521		return(error);
1522	}
1523	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1524	return (error);
1525}
1526
1527static int
1528mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1529{
1530	MSG_PORT_FACTS f_req;
1531	int error;
1532
1533	memset(&f_req, 0, sizeof f_req);
1534	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1535	f_req.PortNumber = port;
1536	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1537	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1538	if (error) {
1539		return(error);
1540	}
1541	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1542	return (error);
1543}
1544
1545/*
1546 * Send the initialization request. This is where we specify how many
1547 * SCSI busses and how many devices per bus we wish to emulate.
1548 * This is also the command that specifies the max size of the reply
1549 * frames from the IOC that we will be allocating.
1550 */
1551static int
1552mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1553{
1554	int error = 0;
1555	MSG_IOC_INIT init;
1556	MSG_IOC_INIT_REPLY reply;
1557
1558	memset(&init, 0, sizeof init);
1559	init.WhoInit = who;
1560	init.Function = MPI_FUNCTION_IOC_INIT;
1561	init.MaxDevices = 0;	/* at least 256 devices per bus */
1562	init.MaxBuses = 16;	/* at least 16 busses */
1563
1564	init.MsgVersion = htole16(MPI_VERSION);
1565	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1566	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1567	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1568
1569	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1570		return(error);
1571	}
1572
1573	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1574	return (error);
1575}
1576
1577
1578/*
1579 * Utiltity routine to read configuration headers and pages
1580 */
1581int
1582mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1583		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1584{
1585	MSG_CONFIG *cfgp;
1586	SGE_SIMPLE32 *se;
1587
1588	cfgp = req->req_vbuf;
1589	memset(cfgp, 0, sizeof *cfgp);
1590	cfgp->Action = params->Action;
1591	cfgp->Function = MPI_FUNCTION_CONFIG;
1592	cfgp->Header.PageVersion = params->PageVersion;
1593	cfgp->Header.PageNumber = params->PageNumber;
1594	cfgp->PageAddress = htole32(params->PageAddress);
1595	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1596	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1597		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1598		cfgp->Header.PageLength = 0;
1599		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1600		cfgp->ExtPageType = params->ExtPageType;
1601	} else {
1602		cfgp->Header.PageType = params->PageType;
1603		cfgp->Header.PageLength = params->PageLength;
1604	}
1605	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1606	se->Address = htole32(addr);
1607	MPI_pSGE_SET_LENGTH(se, len);
1608	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1609	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1610	    MPI_SGE_FLAGS_END_OF_LIST |
1611	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1612	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1613	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1614	se->FlagsLength = htole32(se->FlagsLength);
1615	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1616
1617	mpt_check_doorbell(mpt);
1618	mpt_send_cmd(mpt, req);
1619	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1620			     sleep_ok, timeout_ms));
1621}
1622
1623int
1624mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1625		       uint32_t PageAddress, int ExtPageType,
1626		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1627		       int sleep_ok, int timeout_ms)
1628{
1629	request_t  *req;
1630	cfgparms_t params;
1631	MSG_CONFIG_REPLY *cfgp;
1632	int	    error;
1633
1634	req = mpt_get_request(mpt, sleep_ok);
1635	if (req == NULL) {
1636		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1637		return (ENOMEM);
1638	}
1639
1640	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1641	params.PageVersion = PageVersion;
1642	params.PageLength = 0;
1643	params.PageNumber = PageNumber;
1644	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1645	params.PageAddress = PageAddress;
1646	params.ExtPageType = ExtPageType;
1647	params.ExtPageLength = 0;
1648	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1649				  sleep_ok, timeout_ms);
1650	if (error != 0) {
1651		/*
1652		 * Leave the request. Without resetting the chip, it's
1653		 * still owned by it and we'll just get into trouble
1654		 * freeing it now. Mark it as abandoned so that if it
1655		 * shows up later it can be freed.
1656		 */
1657		mpt_prt(mpt, "read_extcfg_header timed out\n");
1658		return (ETIMEDOUT);
1659	}
1660
1661        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1662	case MPI_IOCSTATUS_SUCCESS:
1663		cfgp = req->req_vbuf;
1664		rslt->PageVersion = cfgp->Header.PageVersion;
1665		rslt->PageNumber = cfgp->Header.PageNumber;
1666		rslt->PageType = cfgp->Header.PageType;
1667		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1668		rslt->ExtPageType = cfgp->ExtPageType;
1669		error = 0;
1670		break;
1671	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1672		mpt_lprt(mpt, MPT_PRT_DEBUG,
1673		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1674		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1675		error = EINVAL;
1676		break;
1677	default:
1678		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1679			req->IOCStatus);
1680		error = EIO;
1681		break;
1682	}
1683	mpt_free_request(mpt, req);
1684	return (error);
1685}
1686
1687int
1688mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1689		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1690		     int sleep_ok, int timeout_ms)
1691{
1692	request_t    *req;
1693	cfgparms_t    params;
1694	int	      error;
1695
1696	req = mpt_get_request(mpt, sleep_ok);
1697	if (req == NULL) {
1698		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1699		return (-1);
1700	}
1701
1702	params.Action = Action;
1703	params.PageVersion = hdr->PageVersion;
1704	params.PageLength = 0;
1705	params.PageNumber = hdr->PageNumber;
1706	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1707	params.PageAddress = PageAddress;
1708	params.ExtPageType = hdr->ExtPageType;
1709	params.ExtPageLength = hdr->ExtPageLength;
1710	error = mpt_issue_cfg_req(mpt, req, &params,
1711				  req->req_pbuf + MPT_RQSL(mpt),
1712				  len, sleep_ok, timeout_ms);
1713	if (error != 0) {
1714		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1715		return (-1);
1716	}
1717
1718	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1719		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1720			req->IOCStatus);
1721		mpt_free_request(mpt, req);
1722		return (-1);
1723	}
1724	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1725	mpt_free_request(mpt, req);
1726	return (0);
1727}
1728
1729int
1730mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1731		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1732		    int sleep_ok, int timeout_ms)
1733{
1734	request_t  *req;
1735	cfgparms_t params;
1736	MSG_CONFIG *cfgp;
1737	int	    error;
1738
1739	req = mpt_get_request(mpt, sleep_ok);
1740	if (req == NULL) {
1741		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1742		return (ENOMEM);
1743	}
1744
1745	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1746	params.PageVersion = 0;
1747	params.PageLength = 0;
1748	params.PageNumber = PageNumber;
1749	params.PageType = PageType;
1750	params.PageAddress = PageAddress;
1751	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1752				  sleep_ok, timeout_ms);
1753	if (error != 0) {
1754		/*
1755		 * Leave the request. Without resetting the chip, it's
1756		 * still owned by it and we'll just get into trouble
1757		 * freeing it now. Mark it as abandoned so that if it
1758		 * shows up later it can be freed.
1759		 */
1760		mpt_prt(mpt, "read_cfg_header timed out\n");
1761		return (ETIMEDOUT);
1762	}
1763
1764        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1765	case MPI_IOCSTATUS_SUCCESS:
1766		cfgp = req->req_vbuf;
1767		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1768		error = 0;
1769		break;
1770	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1771		mpt_lprt(mpt, MPT_PRT_DEBUG,
1772		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1773		    PageType, PageNumber, PageAddress);
1774		error = EINVAL;
1775		break;
1776	default:
1777		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1778			req->IOCStatus);
1779		error = EIO;
1780		break;
1781	}
1782	mpt_free_request(mpt, req);
1783	return (error);
1784}
1785
1786int
1787mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1788		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1789		  int timeout_ms)
1790{
1791	request_t    *req;
1792	cfgparms_t    params;
1793	int	      error;
1794
1795	req = mpt_get_request(mpt, sleep_ok);
1796	if (req == NULL) {
1797		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1798		return (-1);
1799	}
1800
1801	params.Action = Action;
1802	params.PageVersion = hdr->PageVersion;
1803	params.PageLength = hdr->PageLength;
1804	params.PageNumber = hdr->PageNumber;
1805	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1806	params.PageAddress = PageAddress;
1807	error = mpt_issue_cfg_req(mpt, req, &params,
1808				  req->req_pbuf + MPT_RQSL(mpt),
1809				  len, sleep_ok, timeout_ms);
1810	if (error != 0) {
1811		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1812		return (-1);
1813	}
1814
1815	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1816		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1817			req->IOCStatus);
1818		mpt_free_request(mpt, req);
1819		return (-1);
1820	}
1821	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1822	mpt_free_request(mpt, req);
1823	return (0);
1824}
1825
1826int
1827mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1828		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1829		   int timeout_ms)
1830{
1831	request_t    *req;
1832	cfgparms_t    params;
1833	u_int	      hdr_attr;
1834	int	      error;
1835
1836	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1837	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1838	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1839		mpt_prt(mpt, "page type 0x%x not changeable\n",
1840			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1841		return (-1);
1842	}
1843
1844#if	0
1845	/*
1846	 * We shouldn't mask off other bits here.
1847	 */
1848	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1849#endif
1850
1851	req = mpt_get_request(mpt, sleep_ok);
1852	if (req == NULL)
1853		return (-1);
1854
1855	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1856
1857	/*
1858	 * There isn't any point in restoring stripped out attributes
1859	 * if you then mask them going down to issue the request.
1860	 */
1861
1862	params.Action = Action;
1863	params.PageVersion = hdr->PageVersion;
1864	params.PageLength = hdr->PageLength;
1865	params.PageNumber = hdr->PageNumber;
1866	params.PageAddress = PageAddress;
1867#if	0
1868	/* Restore stripped out attributes */
1869	hdr->PageType |= hdr_attr;
1870	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1871#else
1872	params.PageType = hdr->PageType;
1873#endif
1874	error = mpt_issue_cfg_req(mpt, req, &params,
1875				  req->req_pbuf + MPT_RQSL(mpt),
1876				  len, sleep_ok, timeout_ms);
1877	if (error != 0) {
1878		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1879		return (-1);
1880	}
1881
1882        if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1883		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1884			req->IOCStatus);
1885		mpt_free_request(mpt, req);
1886		return (-1);
1887	}
1888	mpt_free_request(mpt, req);
1889	return (0);
1890}
1891
1892/*
1893 * Read IOC configuration information
1894 */
1895static int
1896mpt_read_config_info_ioc(struct mpt_softc *mpt)
1897{
1898	CONFIG_PAGE_HEADER hdr;
1899	struct mpt_raid_volume *mpt_raid;
1900	int rv;
1901	int i;
1902	size_t len;
1903
1904	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1905		2, 0, &hdr, FALSE, 5000);
1906	/*
1907	 * If it's an invalid page, so what? Not a supported function....
1908	 */
1909	if (rv == EINVAL) {
1910		return (0);
1911	}
1912	if (rv) {
1913		return (rv);
1914	}
1915
1916	mpt_lprt(mpt, MPT_PRT_DEBUG,
1917	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1918	    hdr.PageVersion, hdr.PageLength << 2,
1919	    hdr.PageNumber, hdr.PageType);
1920
1921	len = hdr.PageLength * sizeof(uint32_t);
1922	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1923	if (mpt->ioc_page2 == NULL) {
1924		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1925		mpt_raid_free_mem(mpt);
1926		return (ENOMEM);
1927	}
1928	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1929	rv = mpt_read_cur_cfg_page(mpt, 0,
1930	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1931	if (rv) {
1932		mpt_prt(mpt, "failed to read IOC Page 2\n");
1933		mpt_raid_free_mem(mpt);
1934		return (EIO);
1935	}
1936	mpt2host_config_page_ioc2(mpt->ioc_page2);
1937
1938	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1939		uint32_t mask;
1940
1941		mpt_prt(mpt, "Capabilities: (");
1942		for (mask = 1; mask != 0; mask <<= 1) {
1943			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1944				continue;
1945			}
1946			switch (mask) {
1947			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1948				mpt_prtc(mpt, " RAID-0");
1949				break;
1950			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1951				mpt_prtc(mpt, " RAID-1E");
1952				break;
1953			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1954				mpt_prtc(mpt, " RAID-1");
1955				break;
1956			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1957				mpt_prtc(mpt, " SES");
1958				break;
1959			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1960				mpt_prtc(mpt, " SAFTE");
1961				break;
1962			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1963				mpt_prtc(mpt, " Multi-Channel-Arrays");
1964			default:
1965				break;
1966			}
1967		}
1968		mpt_prtc(mpt, " )\n");
1969		if ((mpt->ioc_page2->CapabilitiesFlags
1970		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1971		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1972		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1973			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1974				mpt->ioc_page2->NumActiveVolumes,
1975				mpt->ioc_page2->NumActiveVolumes != 1
1976			      ? "s " : " ",
1977				mpt->ioc_page2->MaxVolumes);
1978			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1979				mpt->ioc_page2->NumActivePhysDisks,
1980				mpt->ioc_page2->NumActivePhysDisks != 1
1981			      ? "s " : " ",
1982				mpt->ioc_page2->MaxPhysDisks);
1983		}
1984	}
1985
1986	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1987	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1988	if (mpt->raid_volumes == NULL) {
1989		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1990		mpt_raid_free_mem(mpt);
1991		return (ENOMEM);
1992	}
1993
1994	/*
1995	 * Copy critical data out of ioc_page2 so that we can
1996	 * safely refresh the page without windows of unreliable
1997	 * data.
1998	 */
1999	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2000
2001	len = sizeof(*mpt->raid_volumes->config_page) +
2002	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2003	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2004		mpt_raid = &mpt->raid_volumes[i];
2005		mpt_raid->config_page =
2006		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2007		if (mpt_raid->config_page == NULL) {
2008			mpt_prt(mpt, "Could not allocate RAID page data\n");
2009			mpt_raid_free_mem(mpt);
2010			return (ENOMEM);
2011		}
2012	}
2013	mpt->raid_page0_len = len;
2014
2015	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2016	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2017	if (mpt->raid_disks == NULL) {
2018		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2019		mpt_raid_free_mem(mpt);
2020		return (ENOMEM);
2021	}
2022	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2023
2024	/*
2025	 * Load page 3.
2026	 */
2027	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2028	    3, 0, &hdr, FALSE, 5000);
2029	if (rv) {
2030		mpt_raid_free_mem(mpt);
2031		return (EIO);
2032	}
2033
2034	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2035	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2036
2037	len = hdr.PageLength * sizeof(uint32_t);
2038	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2039	if (mpt->ioc_page3 == NULL) {
2040		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2041		mpt_raid_free_mem(mpt);
2042		return (ENOMEM);
2043	}
2044	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2045	rv = mpt_read_cur_cfg_page(mpt, 0,
2046	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2047	if (rv) {
2048		mpt_raid_free_mem(mpt);
2049		return (EIO);
2050	}
2051	mpt2host_config_page_ioc3(mpt->ioc_page3);
2052	mpt_raid_wakeup(mpt);
2053	return (0);
2054}
2055
2056/*
2057 * Enable IOC port
2058 */
2059static int
2060mpt_send_port_enable(struct mpt_softc *mpt, int port)
2061{
2062	request_t	*req;
2063	MSG_PORT_ENABLE *enable_req;
2064	int		 error;
2065
2066	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2067	if (req == NULL)
2068		return (-1);
2069
2070	enable_req = req->req_vbuf;
2071	memset(enable_req, 0,  MPT_RQSL(mpt));
2072
2073	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2074	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2075	enable_req->PortNumber = port;
2076
2077	mpt_check_doorbell(mpt);
2078	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2079
2080	mpt_send_cmd(mpt, req);
2081	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2082	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2083	if (error != 0) {
2084		mpt_prt(mpt, "port %d enable timed out\n", port);
2085		return (-1);
2086	}
2087	mpt_free_request(mpt, req);
2088	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2089	return (0);
2090}
2091
2092/*
2093 * Enable/Disable asynchronous event reporting.
2094 */
2095static int
2096mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2097{
2098	request_t *req;
2099	MSG_EVENT_NOTIFY *enable_req;
2100
2101	req = mpt_get_request(mpt, FALSE);
2102	if (req == NULL) {
2103		return (ENOMEM);
2104	}
2105	enable_req = req->req_vbuf;
2106	memset(enable_req, 0, sizeof *enable_req);
2107
2108	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2109	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2110	enable_req->Switch     = onoff;
2111
2112	mpt_check_doorbell(mpt);
2113	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2114	    onoff ? "en" : "dis");
2115	/*
2116	 * Send the command off, but don't wait for it.
2117	 */
2118	mpt_send_cmd(mpt, req);
2119	return (0);
2120}
2121
2122/*
2123 * Un-mask the interrupts on the chip.
2124 */
2125void
2126mpt_enable_ints(struct mpt_softc *mpt)
2127{
2128
2129	/* Unmask every thing except door bell int */
2130	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2131}
2132
2133/*
2134 * Mask the interrupts on the chip.
2135 */
2136void
2137mpt_disable_ints(struct mpt_softc *mpt)
2138{
2139
2140	/* Mask all interrupts */
2141	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2142	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2143}
2144
2145static void
2146mpt_sysctl_attach(struct mpt_softc *mpt)
2147{
2148	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2149	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2150
2151	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2152		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2153		       "Debugging/Verbose level");
2154	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2155		       "role", CTLFLAG_RD, &mpt->role, 0,
2156		       "HBA role");
2157#ifdef	MPT_TEST_MULTIPATH
2158	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2159		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2160		       "Next Target to Fail");
2161#endif
2162}
2163
2164int
2165mpt_attach(struct mpt_softc *mpt)
2166{
2167	struct mpt_personality *pers;
2168	int i;
2169	int error;
2170
2171	mpt_core_attach(mpt);
2172	mpt_core_enable(mpt);
2173
2174	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2175	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2176		pers = mpt_personalities[i];
2177		if (pers == NULL) {
2178			continue;
2179		}
2180		if (pers->probe(mpt) == 0) {
2181			error = pers->attach(mpt);
2182			if (error != 0) {
2183				mpt_detach(mpt);
2184				return (error);
2185			}
2186			mpt->mpt_pers_mask |= (0x1 << pers->id);
2187			pers->use_count++;
2188		}
2189	}
2190
2191	/*
2192	 * Now that we've attached everything, do the enable function
2193	 * for all of the personalities. This allows the personalities
2194	 * to do setups that are appropriate for them prior to enabling
2195	 * any ports.
2196	 */
2197	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2198		pers = mpt_personalities[i];
2199		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2200			error = pers->enable(mpt);
2201			if (error != 0) {
2202				mpt_prt(mpt, "personality %s attached but would"
2203				    " not enable (%d)\n", pers->name, error);
2204				mpt_detach(mpt);
2205				return (error);
2206			}
2207		}
2208	}
2209	return (0);
2210}
2211
2212int
2213mpt_shutdown(struct mpt_softc *mpt)
2214{
2215	struct mpt_personality *pers;
2216
2217	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2218		pers->shutdown(mpt);
2219	}
2220	return (0);
2221}
2222
2223int
2224mpt_detach(struct mpt_softc *mpt)
2225{
2226	struct mpt_personality *pers;
2227
2228	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2229		pers->detach(mpt);
2230		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2231		pers->use_count--;
2232	}
2233	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2234	return (0);
2235}
2236
2237static int
2238mpt_core_load(struct mpt_personality *pers)
2239{
2240	int i;
2241
2242	/*
2243	 * Setup core handlers and insert the default handler
2244	 * into all "empty slots".
2245	 */
2246	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2247		mpt_reply_handlers[i] = mpt_default_reply_handler;
2248	}
2249
2250	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2251	    mpt_event_reply_handler;
2252	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2253	    mpt_config_reply_handler;
2254	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2255	    mpt_handshake_reply_handler;
2256	return (0);
2257}
2258
2259/*
2260 * Initialize per-instance driver data and perform
2261 * initial controller configuration.
2262 */
2263static int
2264mpt_core_attach(struct mpt_softc *mpt)
2265{
2266        int val, error;
2267
2268	LIST_INIT(&mpt->ack_frames);
2269	/* Put all request buffers on the free list */
2270	TAILQ_INIT(&mpt->request_pending_list);
2271	TAILQ_INIT(&mpt->request_free_list);
2272	TAILQ_INIT(&mpt->request_timeout_list);
2273	for (val = 0; val < MPT_MAX_LUNS; val++) {
2274		STAILQ_INIT(&mpt->trt[val].atios);
2275		STAILQ_INIT(&mpt->trt[val].inots);
2276	}
2277	STAILQ_INIT(&mpt->trt_wildcard.atios);
2278	STAILQ_INIT(&mpt->trt_wildcard.inots);
2279#ifdef	MPT_TEST_MULTIPATH
2280	mpt->failure_id = -1;
2281#endif
2282	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2283	mpt_sysctl_attach(mpt);
2284	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2285	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2286
2287	MPT_LOCK(mpt);
2288	error = mpt_configure_ioc(mpt, 0, 0);
2289	MPT_UNLOCK(mpt);
2290
2291	return (error);
2292}
2293
2294static int
2295mpt_core_enable(struct mpt_softc *mpt)
2296{
2297
2298	/*
2299	 * We enter with the IOC enabled, but async events
2300	 * not enabled, ports not enabled and interrupts
2301	 * not enabled.
2302	 */
2303	MPT_LOCK(mpt);
2304
2305	/*
2306	 * Enable asynchronous event reporting- all personalities
2307	 * have attached so that they should be able to now field
2308	 * async events.
2309	 */
2310	mpt_send_event_request(mpt, 1);
2311
2312	/*
2313	 * Catch any pending interrupts
2314	 *
2315	 * This seems to be crucial- otherwise
2316	 * the portenable below times out.
2317	 */
2318	mpt_intr(mpt);
2319
2320	/*
2321	 * Enable Interrupts
2322	 */
2323	mpt_enable_ints(mpt);
2324
2325	/*
2326	 * Catch any pending interrupts
2327	 *
2328	 * This seems to be crucial- otherwise
2329	 * the portenable below times out.
2330	 */
2331	mpt_intr(mpt);
2332
2333	/*
2334	 * Enable the port.
2335	 */
2336	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2337		mpt_prt(mpt, "failed to enable port 0\n");
2338		MPT_UNLOCK(mpt);
2339		return (ENXIO);
2340	}
2341	MPT_UNLOCK(mpt);
2342	return (0);
2343}
2344
2345static void
2346mpt_core_shutdown(struct mpt_softc *mpt)
2347{
2348
2349	mpt_disable_ints(mpt);
2350}
2351
2352static void
2353mpt_core_detach(struct mpt_softc *mpt)
2354{
2355	int val;
2356
2357	/*
2358	 * XXX: FREE MEMORY
2359	 */
2360	mpt_disable_ints(mpt);
2361
2362	/* Make sure no request has pending timeouts. */
2363	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2364		request_t *req = &mpt->request_pool[val];
2365		mpt_callout_drain(mpt, &req->callout);
2366	}
2367
2368	mpt_dma_buf_free(mpt);
2369}
2370
2371static int
2372mpt_core_unload(struct mpt_personality *pers)
2373{
2374
2375	/* Unload is always successful. */
2376	return (0);
2377}
2378
2379#define FW_UPLOAD_REQ_SIZE				\
2380	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2381       + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2382
2383static int
2384mpt_upload_fw(struct mpt_softc *mpt)
2385{
2386	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2387	MSG_FW_UPLOAD_REPLY fw_reply;
2388	MSG_FW_UPLOAD *fw_req;
2389	FW_UPLOAD_TCSGE *tsge;
2390	SGE_SIMPLE32 *sge;
2391	uint32_t flags;
2392	int error;
2393
2394	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2395	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2396	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2397	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2398	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2399	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2400	tsge->DetailsLength = 12;
2401	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2402	tsge->ImageSize = htole32(mpt->fw_image_size);
2403	sge = (SGE_SIMPLE32 *)(tsge + 1);
2404	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2405	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2406	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2407	flags <<= MPI_SGE_FLAGS_SHIFT;
2408	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2409	sge->Address = htole32(mpt->fw_phys);
2410	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2411	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2412	if (error)
2413		return(error);
2414	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2415	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2416	return (error);
2417}
2418
2419static void
2420mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2421	       uint32_t *data, bus_size_t len)
2422{
2423	uint32_t *data_end;
2424
2425	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2426	if (mpt->is_sas) {
2427		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2428	}
2429	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2430	while (data != data_end) {
2431		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2432		data++;
2433	}
2434	if (mpt->is_sas) {
2435		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2436	}
2437}
2438
2439static int
2440mpt_download_fw(struct mpt_softc *mpt)
2441{
2442	MpiFwHeader_t *fw_hdr;
2443	int error;
2444	uint32_t ext_offset;
2445	uint32_t data;
2446
2447	if (mpt->pci_pio_reg == NULL) {
2448		mpt_prt(mpt, "No PIO resource!\n");
2449		return (ENXIO);
2450	}
2451
2452	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2453		mpt->fw_image_size);
2454
2455	error = mpt_enable_diag_mode(mpt);
2456	if (error != 0) {
2457		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2458		return (EIO);
2459	}
2460
2461	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2462		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2463
2464	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2465	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2466	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2467		       fw_hdr->ImageSize);
2468	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2469
2470	ext_offset = fw_hdr->NextImageHeaderOffset;
2471	while (ext_offset != 0) {
2472		MpiExtImageHeader_t *ext;
2473
2474		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2475		ext_offset = ext->NextImageHeaderOffset;
2476		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2477		    BUS_DMASYNC_PREWRITE);
2478		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2479			       ext->ImageSize);
2480		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2481		    BUS_DMASYNC_POSTWRITE);
2482	}
2483
2484	if (mpt->is_sas) {
2485		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2486	}
2487	/* Setup the address to jump to on reset. */
2488	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2489	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2490
2491	/*
2492	 * The controller sets the "flash bad" status after attempting
2493	 * to auto-boot from flash.  Clear the status so that the controller
2494	 * will continue the boot process with our newly installed firmware.
2495	 */
2496	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2497	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2498	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2500
2501	if (mpt->is_sas) {
2502		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2503	}
2504
2505	/*
2506	 * Re-enable the processor and clear the boot halt flag.
2507	 */
2508	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2509	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2510	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2511
2512	mpt_disable_diag_mode(mpt);
2513	return (0);
2514}
2515
2516static int
2517mpt_dma_buf_alloc(struct mpt_softc *mpt)
2518{
2519	struct mpt_map_info mi;
2520	uint8_t *vptr;
2521	uint32_t pptr, end;
2522	int i, error;
2523
2524	/* Create a child tag for data buffers */
2525	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2526	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2527	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2528	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2529	    &mpt->buffer_dmat) != 0) {
2530		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2531		return (1);
2532	}
2533
2534	/* Create a child tag for request buffers */
2535	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2536	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2537	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2538	    &mpt->request_dmat) != 0) {
2539		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2540		return (1);
2541	}
2542
2543	/* Allocate some DMA accessible memory for requests */
2544	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2545	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2546		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2547		    MPT_REQ_MEM_SIZE(mpt));
2548		return (1);
2549	}
2550
2551	mi.mpt = mpt;
2552	mi.error = 0;
2553
2554	/* Load and lock it into "bus space" */
2555	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2556	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2557
2558	if (mi.error) {
2559		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2560		    mi.error);
2561		return (1);
2562	}
2563	mpt->request_phys = mi.phys;
2564
2565	/*
2566	 * Now create per-request dma maps
2567	 */
2568	i = 0;
2569	pptr =  mpt->request_phys;
2570	vptr =  mpt->request;
2571	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2572	while(pptr < end) {
2573		request_t *req = &mpt->request_pool[i];
2574		req->index = i++;
2575
2576		/* Store location of Request Data */
2577		req->req_pbuf = pptr;
2578		req->req_vbuf = vptr;
2579
2580		pptr += MPT_REQUEST_AREA;
2581		vptr += MPT_REQUEST_AREA;
2582
2583		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2584		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2585
2586		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2587		if (error) {
2588			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2589			    error);
2590			return (1);
2591		}
2592	}
2593
2594	return (0);
2595}
2596
2597static void
2598mpt_dma_buf_free(struct mpt_softc *mpt)
2599{
2600	int i;
2601
2602	if (mpt->request_dmat == 0) {
2603		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2604		return;
2605	}
2606	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2607		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2608	}
2609	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2610	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2611	bus_dma_tag_destroy(mpt->request_dmat);
2612	mpt->request_dmat = 0;
2613	bus_dma_tag_destroy(mpt->buffer_dmat);
2614}
2615
2616/*
2617 * Allocate/Initialize data structures for the controller.  Called
2618 * once at instance startup.
2619 */
2620static int
2621mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2622{
2623	PTR_MSG_PORT_FACTS_REPLY pfp;
2624	int error, port, val;
2625	size_t len;
2626
2627	if (tn == MPT_MAX_TRYS) {
2628		return (-1);
2629	}
2630
2631	/*
2632	 * No need to reset if the IOC is already in the READY state.
2633	 *
2634	 * Force reset if initialization failed previously.
2635	 * Note that a hard_reset of the second channel of a '929
2636	 * will stop operation of the first channel.  Hopefully, if the
2637	 * first channel is ok, the second will not require a hard
2638	 * reset.
2639	 */
2640	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2641		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2642			return (mpt_configure_ioc(mpt, tn++, 1));
2643		}
2644		needreset = 0;
2645	}
2646
2647	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2648		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2649		return (mpt_configure_ioc(mpt, tn++, 1));
2650	}
2651	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2652
2653	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2654	    mpt->ioc_facts.MsgVersion >> 8,
2655	    mpt->ioc_facts.MsgVersion & 0xFF,
2656	    mpt->ioc_facts.HeaderVersion >> 8,
2657	    mpt->ioc_facts.HeaderVersion & 0xFF);
2658
2659	/*
2660	 * Now that we know request frame size, we can calculate
2661	 * the actual (reasonable) segment limit for read/write I/O.
2662	 *
2663	 * This limit is constrained by:
2664	 *
2665	 *  + The size of each area we allocate per command (and how
2666	 *    many chain segments we can fit into it).
2667	 *  + The total number of areas we've set up.
2668	 *  + The actual chain depth the card will allow.
2669	 *
2670	 * The first area's segment count is limited by the I/O request
2671	 * at the head of it. We cannot allocate realistically more
2672	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2673	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2674	 *
2675	 */
2676	/* total number of request areas we (can) allocate */
2677	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2678
2679	/* converted to the number of chain areas possible */
2680	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2681
2682	/* limited by the number of chain areas the card will support */
2683	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2684		mpt_lprt(mpt, MPT_PRT_INFO,
2685		    "chain depth limited to %u (from %u)\n",
2686		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2687		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2688	}
2689
2690	/* converted to the number of simple sges in chain segments. */
2691	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2692
2693	/*
2694	 * Use this as the basis for reporting the maximum I/O size to CAM.
2695	 */
2696	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2697
2698	/* XXX Lame Locking! */
2699	MPT_UNLOCK(mpt);
2700	error = mpt_dma_buf_alloc(mpt);
2701	MPT_LOCK(mpt);
2702
2703	if (error != 0) {
2704		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2705		return (EIO);
2706	}
2707
2708	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2709		request_t *req = &mpt->request_pool[val];
2710		req->state = REQ_STATE_ALLOCATED;
2711		mpt_callout_init(mpt, &req->callout);
2712		mpt_free_request(mpt, req);
2713	}
2714
2715	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2716		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2717		 mpt->max_cam_seg_cnt);
2718
2719	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2720	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2721	mpt_lprt(mpt, MPT_PRT_INFO,
2722	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2723	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2724	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2725	    mpt->ioc_facts.RequestFrameSize << 2,
2726	    mpt->ioc_facts.MaxChainDepth);
2727	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2728	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2729	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2730
2731	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2732	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2733	if (mpt->port_facts == NULL) {
2734		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2735		return (ENOMEM);
2736	}
2737
2738
2739	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2740	    (mpt->fw_uploaded == 0)) {
2741		struct mpt_map_info mi;
2742
2743		/*
2744		 * In some configurations, the IOC's firmware is
2745		 * stored in a shared piece of system NVRAM that
2746		 * is only accessible via the BIOS.  In this
2747		 * case, the firmware keeps a copy of firmware in
2748		 * RAM until the OS driver retrieves it.  Once
2749		 * retrieved, we are responsible for re-downloading
2750		 * the firmware after any hard-reset.
2751		 */
2752		MPT_UNLOCK(mpt);
2753		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2754		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2755		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2756		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2757		    &mpt->fw_dmat);
2758		if (error != 0) {
2759			mpt_prt(mpt, "cannot create firmware dma tag\n");
2760			MPT_LOCK(mpt);
2761			return (ENOMEM);
2762		}
2763		error = bus_dmamem_alloc(mpt->fw_dmat,
2764		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2765		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2766		if (error != 0) {
2767			mpt_prt(mpt, "cannot allocate firmware memory\n");
2768			bus_dma_tag_destroy(mpt->fw_dmat);
2769			MPT_LOCK(mpt);
2770			return (ENOMEM);
2771		}
2772		mi.mpt = mpt;
2773		mi.error = 0;
2774		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2775		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2776		mpt->fw_phys = mi.phys;
2777
2778		MPT_LOCK(mpt);
2779		error = mpt_upload_fw(mpt);
2780		if (error != 0) {
2781			mpt_prt(mpt, "firmware upload failed.\n");
2782			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2783			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2784			    mpt->fw_dmap);
2785			bus_dma_tag_destroy(mpt->fw_dmat);
2786			mpt->fw_image = NULL;
2787			return (EIO);
2788		}
2789		mpt->fw_uploaded = 1;
2790	}
2791
2792	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2793		pfp = &mpt->port_facts[port];
2794		error = mpt_get_portfacts(mpt, 0, pfp);
2795		if (error != MPT_OK) {
2796			mpt_prt(mpt,
2797			    "mpt_get_portfacts on port %d failed\n", port);
2798			free(mpt->port_facts, M_DEVBUF);
2799			mpt->port_facts = NULL;
2800			return (mpt_configure_ioc(mpt, tn++, 1));
2801		}
2802		mpt2host_portfacts_reply(pfp);
2803
2804		if (port > 0) {
2805			error = MPT_PRT_INFO;
2806		} else {
2807			error = MPT_PRT_DEBUG;
2808		}
2809		mpt_lprt(mpt, error,
2810		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2811		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2812		    pfp->MaxDevices);
2813
2814	}
2815
2816	/*
2817	 * XXX: Not yet supporting more than port 0
2818	 */
2819	pfp = &mpt->port_facts[0];
2820	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2821		mpt->is_fc = 1;
2822		mpt->is_sas = 0;
2823		mpt->is_spi = 0;
2824	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2825		mpt->is_fc = 0;
2826		mpt->is_sas = 1;
2827		mpt->is_spi = 0;
2828	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2829		mpt->is_fc = 0;
2830		mpt->is_sas = 0;
2831		mpt->is_spi = 1;
2832		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2833			mpt->mpt_ini_id = pfp->PortSCSIID;
2834	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2835		mpt_prt(mpt, "iSCSI not supported yet\n");
2836		return (ENXIO);
2837	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2838		mpt_prt(mpt, "Inactive Port\n");
2839		return (ENXIO);
2840	} else {
2841		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2842		return (ENXIO);
2843	}
2844
2845	/*
2846	 * Set our role with what this port supports.
2847	 *
2848	 * Note this might be changed later in different modules
2849	 * if this is different from what is wanted.
2850	 */
2851	mpt->role = MPT_ROLE_NONE;
2852	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2853		mpt->role |= MPT_ROLE_INITIATOR;
2854	}
2855	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2856		mpt->role |= MPT_ROLE_TARGET;
2857	}
2858
2859	/*
2860	 * Enable the IOC
2861	 */
2862	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2863		mpt_prt(mpt, "unable to initialize IOC\n");
2864		return (ENXIO);
2865	}
2866
2867	/*
2868	 * Read IOC configuration information.
2869	 *
2870	 * We need this to determine whether or not we have certain
2871	 * settings for Integrated Mirroring (e.g.).
2872	 */
2873	mpt_read_config_info_ioc(mpt);
2874
2875	return (0);
2876}
2877
2878static int
2879mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2880{
2881	uint32_t pptr;
2882	int val;
2883
2884	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2885		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2886		return (EIO);
2887	}
2888
2889	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2890
2891	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2892		mpt_prt(mpt, "IOC failed to go to run state\n");
2893		return (ENXIO);
2894	}
2895	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2896
2897	/*
2898	 * Give it reply buffers
2899	 *
2900	 * Do *not* exceed global credits.
2901	 */
2902	for (val = 0, pptr = mpt->reply_phys;
2903	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2904	     pptr += MPT_REPLY_SIZE) {
2905		mpt_free_reply(mpt, pptr);
2906		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2907			break;
2908	}
2909
2910
2911	/*
2912	 * Enable the port if asked. This is only done if we're resetting
2913	 * the IOC after initial startup.
2914	 */
2915	if (portenable) {
2916		/*
2917		 * Enable asynchronous event reporting
2918		 */
2919		mpt_send_event_request(mpt, 1);
2920
2921		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2922			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2923			return (ENXIO);
2924		}
2925	}
2926	return (MPT_OK);
2927}
2928
2929/*
2930 * Endian Conversion Functions- only used on Big Endian machines
2931 */
2932#if	_BYTE_ORDER == _BIG_ENDIAN
2933void
2934mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2935{
2936
2937	MPT_2_HOST32(sge, FlagsLength);
2938	MPT_2_HOST32(sge, u.Address64.Low);
2939	MPT_2_HOST32(sge, u.Address64.High);
2940}
2941
2942void
2943mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2944{
2945
2946	MPT_2_HOST16(rp, MsgVersion);
2947	MPT_2_HOST16(rp, HeaderVersion);
2948	MPT_2_HOST32(rp, MsgContext);
2949	MPT_2_HOST16(rp, IOCExceptions);
2950	MPT_2_HOST16(rp, IOCStatus);
2951	MPT_2_HOST32(rp, IOCLogInfo);
2952	MPT_2_HOST16(rp, ReplyQueueDepth);
2953	MPT_2_HOST16(rp, RequestFrameSize);
2954	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2955	MPT_2_HOST16(rp, ProductID);
2956	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2957	MPT_2_HOST16(rp, GlobalCredits);
2958	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2959	MPT_2_HOST16(rp, CurReplyFrameSize);
2960	MPT_2_HOST32(rp, FWImageSize);
2961	MPT_2_HOST32(rp, IOCCapabilities);
2962	MPT_2_HOST32(rp, FWVersion.Word);
2963	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2964	MPT_2_HOST16(rp, Reserved2);
2965	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2966	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2967}
2968
2969void
2970mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2971{
2972
2973	MPT_2_HOST16(pfp, Reserved);
2974	MPT_2_HOST16(pfp, Reserved1);
2975	MPT_2_HOST32(pfp, MsgContext);
2976	MPT_2_HOST16(pfp, Reserved2);
2977	MPT_2_HOST16(pfp, IOCStatus);
2978	MPT_2_HOST32(pfp, IOCLogInfo);
2979	MPT_2_HOST16(pfp, MaxDevices);
2980	MPT_2_HOST16(pfp, PortSCSIID);
2981	MPT_2_HOST16(pfp, ProtocolFlags);
2982	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2983	MPT_2_HOST16(pfp, MaxPersistentIDs);
2984	MPT_2_HOST16(pfp, MaxLanBuckets);
2985	MPT_2_HOST16(pfp, Reserved4);
2986	MPT_2_HOST32(pfp, Reserved5);
2987}
2988
2989void
2990mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2991{
2992	int i;
2993
2994	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2995	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2996		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2997	}
2998}
2999
3000void
3001mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
3002{
3003
3004	MPT_2_HOST16(ioc3, Reserved2);
3005}
3006
3007void
3008mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3009{
3010
3011	MPT_2_HOST32(sp0, Capabilities);
3012	MPT_2_HOST32(sp0, PhysicalInterface);
3013}
3014
3015void
3016mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3017{
3018
3019	MPT_2_HOST32(sp1, Configuration);
3020	MPT_2_HOST32(sp1, OnBusTimerValue);
3021	MPT_2_HOST16(sp1, IDConfig);
3022}
3023
3024void
3025host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3026{
3027
3028	HOST_2_MPT32(sp1, Configuration);
3029	HOST_2_MPT32(sp1, OnBusTimerValue);
3030	HOST_2_MPT16(sp1, IDConfig);
3031}
3032
3033void
3034mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3035{
3036	int i;
3037
3038	MPT_2_HOST32(sp2, PortFlags);
3039	MPT_2_HOST32(sp2, PortSettings);
3040	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3041	    sizeof(*sp2->DeviceSettings); i++) {
3042		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3043	}
3044}
3045
3046void
3047mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3048{
3049
3050	MPT_2_HOST32(sd0, NegotiatedParameters);
3051	MPT_2_HOST32(sd0, Information);
3052}
3053
3054void
3055mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3056{
3057
3058	MPT_2_HOST32(sd1, RequestedParameters);
3059	MPT_2_HOST32(sd1, Reserved);
3060	MPT_2_HOST32(sd1, Configuration);
3061}
3062
3063void
3064host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3065{
3066
3067	HOST_2_MPT32(sd1, RequestedParameters);
3068	HOST_2_MPT32(sd1, Reserved);
3069	HOST_2_MPT32(sd1, Configuration);
3070}
3071
3072void
3073mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3074{
3075
3076	MPT_2_HOST32(fp0, Flags);
3077	MPT_2_HOST32(fp0, PortIdentifier);
3078	MPT_2_HOST32(fp0, WWNN.Low);
3079	MPT_2_HOST32(fp0, WWNN.High);
3080	MPT_2_HOST32(fp0, WWPN.Low);
3081	MPT_2_HOST32(fp0, WWPN.High);
3082	MPT_2_HOST32(fp0, SupportedServiceClass);
3083	MPT_2_HOST32(fp0, SupportedSpeeds);
3084	MPT_2_HOST32(fp0, CurrentSpeed);
3085	MPT_2_HOST32(fp0, MaxFrameSize);
3086	MPT_2_HOST32(fp0, FabricWWNN.Low);
3087	MPT_2_HOST32(fp0, FabricWWNN.High);
3088	MPT_2_HOST32(fp0, FabricWWPN.Low);
3089	MPT_2_HOST32(fp0, FabricWWPN.High);
3090	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3091	MPT_2_HOST32(fp0, MaxInitiators);
3092}
3093
3094void
3095mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3096{
3097
3098	MPT_2_HOST32(fp1, Flags);
3099	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3100	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3101	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3102	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3103}
3104
3105void
3106host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3107{
3108
3109	HOST_2_MPT32(fp1, Flags);
3110	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3111	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3112	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3113	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3114}
3115
3116void
3117mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3118{
3119	int i;
3120
3121	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3122	MPT_2_HOST16(volp, VolumeSettings.Settings);
3123	MPT_2_HOST32(volp, MaxLBA);
3124	MPT_2_HOST32(volp, MaxLBAHigh);
3125	MPT_2_HOST32(volp, StripeSize);
3126	MPT_2_HOST32(volp, Reserved2);
3127	MPT_2_HOST32(volp, Reserved3);
3128	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3129		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3130	}
3131}
3132
3133void
3134mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3135{
3136
3137	MPT_2_HOST32(rpd0, Reserved1);
3138	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3139	MPT_2_HOST32(rpd0, MaxLBA);
3140	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3141	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3142	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3143}
3144
3145void
3146mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3147{
3148
3149	MPT_2_HOST16(vi, TotalBlocks.High);
3150	MPT_2_HOST16(vi, TotalBlocks.Low);
3151	MPT_2_HOST16(vi, BlocksRemaining.High);
3152	MPT_2_HOST16(vi, BlocksRemaining.Low);
3153}
3154#endif
3155