1/*-
2 * 1. Redistributions of source code must retain the
3 * Copyright (c) 1997 Amancio Hasty, 1999 Roger Hardiman
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *      This product includes software developed by Amancio Hasty and
17 *      Roger Hardiman
18 * 4. The name of the author may not be used to endorse or promote products
19 *    derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/10/sys/dev/bktr/bktr_tuner.c 331338 2018-03-22 00:55:36Z emaste $");
36
37/*
38 * This is part of the Driver for Video Capture Cards (Frame grabbers)
39 * and TV Tuner cards using the Brooktree Bt848, Bt848A, Bt849A, Bt878, Bt879
40 * chipset.
41 * Copyright Roger Hardiman and Amancio Hasty.
42 *
43 * bktr_tuner : This deals with controlling the tuner fitted to TV cards.
44 */
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#ifdef __NetBSD__
50#include <sys/proc.h>
51#endif
52
53#ifdef __FreeBSD__
54#if (__FreeBSD_version < 500000)
55#include <machine/clock.h>              /* for DELAY */
56#include <pci/pcivar.h>
57#else
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/selinfo.h>
61#include <dev/pci/pcivar.h>
62#endif
63
64#include <machine/bus.h>
65#include <sys/bus.h>
66#endif
67
68#ifdef __NetBSD__
69#include <dev/ic/bt8xx.h>	/* NetBSD .h file location */
70#include <dev/pci/bktr/bktr_reg.h>
71#include <dev/pci/bktr/bktr_tuner.h>
72#include <dev/pci/bktr/bktr_card.h>
73#include <dev/pci/bktr/bktr_core.h>
74#else
75#include <dev/bktr/ioctl_meteor.h>
76#include <dev/bktr/ioctl_bt848.h>	/* extensions to ioctl_meteor.h */
77#include <dev/bktr/bktr_reg.h>
78#include <dev/bktr/bktr_tuner.h>
79#include <dev/bktr/bktr_card.h>
80#include <dev/bktr/bktr_core.h>
81#endif
82
83
84
85#if defined( TUNER_AFC )
86#define AFC_DELAY               10000   /* 10 millisend delay */
87#define AFC_BITS                0x07
88#define AFC_FREQ_MINUS_125      0x00
89#define AFC_FREQ_MINUS_62       0x01
90#define AFC_FREQ_CENTERED       0x02
91#define AFC_FREQ_PLUS_62        0x03
92#define AFC_FREQ_PLUS_125       0x04
93#define AFC_MAX_STEP            (5 * FREQFACTOR) /* no more than 5 MHz */
94#endif /* TUNER_AFC */
95
96
97#define TTYPE_XXX               0
98#define TTYPE_NTSC              1
99#define TTYPE_NTSC_J            2
100#define TTYPE_PAL               3
101#define TTYPE_PAL_M             4
102#define TTYPE_PAL_N             5
103#define TTYPE_SECAM             6
104
105#define TSA552x_CB_MSB          (0x80)
106#define TSA552x_CB_CP           (1<<6)	/* set this for fast tuning */
107#define TSA552x_CB_T2           (1<<5)	/* test mode - Normally set to 0 */
108#define TSA552x_CB_T1           (1<<4)	/* test mode - Normally set to 0 */
109#define TSA552x_CB_T0           (1<<3)	/* test mode - Normally set to 1 */
110#define TSA552x_CB_RSA          (1<<2)	/* 0 for 31.25 khz, 1 for 62.5 kHz */
111#define TSA552x_CB_RSB          (1<<1)	/* 0 for FM 50kHz steps, 1 = Use RSA*/
112#define TSA552x_CB_OS           (1<<0)	/* Set to 0 for normal operation */
113
114#define TSA552x_RADIO           (TSA552x_CB_MSB |       \
115                                 TSA552x_CB_T0)
116
117/* raise the charge pump voltage for fast tuning */
118#define TSA552x_FCONTROL        (TSA552x_CB_MSB |       \
119                                 TSA552x_CB_CP  |       \
120                                 TSA552x_CB_T0  |       \
121                                 TSA552x_CB_RSA |       \
122                                 TSA552x_CB_RSB)
123
124/* lower the charge pump voltage for better residual oscillator FM */
125#define TSA552x_SCONTROL        (TSA552x_CB_MSB |       \
126                                 TSA552x_CB_T0  |       \
127                                 TSA552x_CB_RSA |       \
128                                 TSA552x_CB_RSB)
129
130/* The control value for the ALPS TSCH5 Tuner */
131#define TSCH5_FCONTROL          0x82
132#define TSCH5_RADIO             0x86
133
134/* The control value for the ALPS TSBH1 Tuner */
135#define TSBH1_FCONTROL		0xce
136
137
138static void mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq);
139
140
141static const struct TUNER tuners[] = {
142/* XXX FIXME: fill in the band-switch crosspoints */
143	/* NO_TUNER */
144	{ "<no>",				/* the 'name' */
145	   TTYPE_XXX,				/* input type */
146 	   { 0x00,				/* control byte for Tuner PLL */
147 	     0x00,
148 	     0x00,
149 	     0x00 },
150	   { 0x00, 0x00 },			/* band-switch crosspoints */
151	   { 0x00, 0x00, 0x00,0x00} },		/* the band-switch values */
152
153	/* TEMIC_NTSC */
154	{ "Temic NTSC",				/* the 'name' */
155	   TTYPE_NTSC,				/* input type */
156	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
157	     TSA552x_SCONTROL,
158	     TSA552x_SCONTROL,
159	     0x00 },
160	   { 0x00, 0x00},			/* band-switch crosspoints */
161	   { 0x02, 0x04, 0x01, 0x00 } },	/* the band-switch values */
162
163	/* TEMIC_PAL */
164	{ "Temic PAL",				/* the 'name' */
165	   TTYPE_PAL,				/* input type */
166	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
167	     TSA552x_SCONTROL,
168	     TSA552x_SCONTROL,
169	     0x00 },
170	   { 0x00, 0x00 },			/* band-switch crosspoints */
171	   { 0x02, 0x04, 0x01, 0x00 } },	/* the band-switch values */
172
173	/* TEMIC_SECAM */
174	{ "Temic SECAM",			/* the 'name' */
175	   TTYPE_SECAM,				/* input type */
176	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
177	     TSA552x_SCONTROL,
178	     TSA552x_SCONTROL,
179	     0x00 },
180	   { 0x00, 0x00 },			/* band-switch crosspoints */
181	   { 0x02, 0x04, 0x01,0x00 } },		/* the band-switch values */
182
183	/* PHILIPS_NTSC */
184	{ "Philips NTSC",			/* the 'name' */
185	   TTYPE_NTSC,				/* input type */
186	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
187	     TSA552x_SCONTROL,
188	     TSA552x_SCONTROL,
189	     0x00 },
190	   { 0x00, 0x00 },			/* band-switch crosspoints */
191	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
192
193	/* PHILIPS_PAL */
194	{ "Philips PAL",			/* the 'name' */
195	   TTYPE_PAL,				/* input type */
196	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
197	     TSA552x_SCONTROL,
198	     TSA552x_SCONTROL,
199	     0x00 },
200	   { 0x00, 0x00 },			/* band-switch crosspoints */
201	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
202
203	/* PHILIPS_SECAM */
204	{ "Philips SECAM",			/* the 'name' */
205	   TTYPE_SECAM,				/* input type */
206	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
207	     TSA552x_SCONTROL,
208	     TSA552x_SCONTROL,
209	     0x00 },
210	   { 0x00, 0x00 },			/* band-switch crosspoints */
211	   { 0xa7, 0x97, 0x37, 0x00 } },	/* the band-switch values */
212
213	/* TEMIC_PAL I */
214	{ "Temic PAL I",			/* the 'name' */
215	   TTYPE_PAL,				/* input type */
216	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
217	     TSA552x_SCONTROL,
218	     TSA552x_SCONTROL,
219	     0x00 },
220	   { 0x00, 0x00 },			/* band-switch crosspoints */
221	   { 0x02, 0x04, 0x01,0x00 } },		/* the band-switch values */
222
223	/* PHILIPS_PALI */
224	{ "Philips PAL I",			/* the 'name' */
225	   TTYPE_PAL,				/* input type */
226	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
227	     TSA552x_SCONTROL,
228	     TSA552x_SCONTROL,
229	     0x00 },
230          { 0x00, 0x00 },                      /* band-switch crosspoints */
231          { 0xa0, 0x90, 0x30,0x00 } },         /* the band-switch values */
232
233       /* PHILIPS_FR1236_NTSC */
234       { "Philips FR1236 NTSC FM",             /* the 'name' */
235          TTYPE_NTSC,                          /* input type */
236	  { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
237	    TSA552x_FCONTROL,
238	    TSA552x_FCONTROL,
239	    TSA552x_RADIO  },
240          { 0x00, 0x00 },			/* band-switch crosspoints */
241	  { 0xa0, 0x90, 0x30,0xa4 } },		/* the band-switch values */
242
243	/* PHILIPS_FR1216_PAL */
244	{ "Philips FR1216 PAL FM" ,		/* the 'name' */
245	   TTYPE_PAL,				/* input type */
246	   { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
247	     TSA552x_FCONTROL,
248	     TSA552x_FCONTROL,
249	     TSA552x_RADIO },
250	   { 0x00, 0x00 },			/* band-switch crosspoints */
251	   { 0xa0, 0x90, 0x30, 0xa4 } },	/* the band-switch values */
252
253	/* PHILIPS_FR1236_SECAM */
254	{ "Philips FR1236 SECAM FM",		/* the 'name' */
255	   TTYPE_SECAM,				/* input type */
256	   { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
257	     TSA552x_FCONTROL,
258	     TSA552x_FCONTROL,
259	     TSA552x_RADIO },
260	   { 0x00, 0x00 },			/* band-switch crosspoints */
261	   { 0xa7, 0x97, 0x37, 0xa4 } },	/* the band-switch values */
262
263        /* ALPS TSCH5 NTSC */
264        { "ALPS TSCH5 NTSC FM",                 /* the 'name' */
265           TTYPE_NTSC,                          /* input type */
266           { TSCH5_FCONTROL,                    /* control byte for Tuner PLL */
267             TSCH5_FCONTROL,
268             TSCH5_FCONTROL,
269             TSCH5_RADIO },
270           { 0x00, 0x00 },                      /* band-switch crosspoints */
271           { 0x14, 0x12, 0x11, 0x04 } },        /* the band-switch values */
272
273        /* ALPS TSBH1 NTSC */
274        { "ALPS TSBH1 NTSC",                    /* the 'name' */
275           TTYPE_NTSC,                          /* input type */
276           { TSBH1_FCONTROL,                    /* control byte for Tuner PLL */
277             TSBH1_FCONTROL,
278             TSBH1_FCONTROL,
279             0x00 },
280           { 0x00, 0x00 },                      /* band-switch crosspoints */
281           { 0x01, 0x02, 0x08, 0x00 } },        /* the band-switch values */
282
283	/* MT2032 Microtune */
284	{ "MT2032",				/* the 'name' */
285	   TTYPE_PAL,				/* input type */
286	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
287	     TSA552x_SCONTROL,
288	     TSA552x_SCONTROL,
289	     0x00 },
290	   { 0x00, 0x00 },			/* band-switch crosspoints */
291	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
292
293	 /* LG TPI8PSB12P PAL */
294	 { "LG TPI8PSB12P PAL",                 /* the 'name' */
295	   TTYPE_PAL,                           /* input type */
296	   { TSA552x_SCONTROL,                  /* control byte for Tuner PLL */
297	     TSA552x_SCONTROL,
298	     TSA552x_SCONTROL,
299	     0x00 },
300	   { 0x00, 0x00 },                      /* band-switch crosspoints */
301	   { 0xa0, 0x90, 0x30, 0x8e } },        /* the band-switch values */
302};
303
304
305/* scaling factor for frequencies expressed as ints */
306#define FREQFACTOR		16
307
308/*
309 * Format:
310 *	entry 0:         MAX legal channel
311 *	entry 1:         IF frequency
312 *			 expressed as fi{mHz} * 16,
313 *			 eg 45.75mHz == 45.75 * 16 = 732
314 *	entry 2:         [place holder/future]
315 *	entry 3:         base of channel record 0
316 *	entry 3 + (x*3): base of channel record 'x'
317 *	entry LAST:      NULL channel entry marking end of records
318 *
319 * Record:
320 *	int 0:		base channel
321 *	int 1:		frequency of base channel,
322 *			 expressed as fb{mHz} * 16,
323 *	int 2:		offset frequency between channels,
324 *			 expressed as fo{mHz} * 16,
325 */
326
327/*
328 * North American Broadcast Channels:
329 *
330 *  2:  55.25 mHz -  4:  67.25 mHz
331 *  5:  77.25 mHz -  6:	 83.25 mHz
332 *  7: 175.25 mHz - 13:	211.25 mHz
333 * 14: 471.25 mHz - 83:	885.25 mHz
334 *
335 * IF freq: 45.75 mHz
336 */
337#define OFFSET	6.00
338static int nabcst[] = {
339	83,	(int)( 45.75 * FREQFACTOR),	0,
340	14,	(int)(471.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
341	 7,	(int)(175.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
342	 5,	(int)( 77.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
343	 2,	(int)( 55.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
344	 0
345};
346#undef OFFSET
347
348/*
349 * North American Cable Channels, IRC:
350 *
351 *  2:  55.25 mHz -  4:  67.25 mHz
352 *  5:  77.25 mHz -  6:  83.25 mHz
353 *  7: 175.25 mHz - 13: 211.25 mHz
354 * 14: 121.25 mHz - 22: 169.25 mHz
355 * 23: 217.25 mHz - 94: 643.25 mHz
356 * 95:  91.25 mHz - 99: 115.25 mHz
357 *
358 * IF freq: 45.75 mHz
359 */
360#define OFFSET	6.00
361static int irccable[] = {
362	116,    (int)( 45.75 * FREQFACTOR),     0,
363	100,    (int)(649.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
364	95,	(int)( 91.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
365	23,	(int)(217.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
366	14,	(int)(121.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
367	 7,	(int)(175.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
368	 5,	(int)( 77.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
369	 2,	(int)( 55.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
370	 0
371};
372#undef OFFSET
373
374/*
375 * North American Cable Channels, HRC:
376 *
377 * 2:   54 mHz  - 4:    66 mHz
378 * 5:   78 mHz  - 6:    84 mHz
379 * 7:  174 mHz  - 13:  210 mHz
380 * 14: 120 mHz  - 22:  168 mHz
381 * 23: 216 mHz  - 94:  642 mHz
382 * 95:  90 mHz  - 99:  114 mHz
383 *
384 * IF freq: 45.75 mHz
385 */
386#define OFFSET  6.00
387static int hrccable[] = {
388	116,    (int)( 45.75 * FREQFACTOR),     0,
389	100,    (int)(648.00 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
390	95,	(int)( 90.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
391	23,	(int)(216.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
392	14,	(int)(120.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
393	7,	(int)(174.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
394	5,	(int)( 78.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
395	2,	(int)( 54.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
396	0
397};
398#undef OFFSET
399
400/*
401 * Western European broadcast channels:
402 *
403 * (there are others that appear to vary between countries - rmt)
404 *
405 * here's the table Philips provides:
406 * caution, some of the offsets don't compute...
407 *
408 *  1	 4525	700	N21
409 *
410 *  2	 4825	700	E2
411 *  3	 5525	700	E3
412 *  4	 6225	700	E4
413 *
414 *  5	17525	700	E5
415 *  6	18225	700	E6
416 *  7	18925	700	E7
417 *  8	19625	700	E8
418 *  9	20325	700	E9
419 * 10	21025	700	E10
420 * 11	21725	700	E11
421 * 12	22425	700	E12
422 *
423 * 13	 5375	700	ITA
424 * 14	 6225	700	ITB
425 *
426 * 15	 8225	700	ITC
427 *
428 * 16	17525	700	ITD
429 * 17	18325	700	ITE
430 *
431 * 18	19225	700	ITF
432 * 19	20125	700	ITG
433 * 20	21025	700	ITH
434 *
435 * 21	47125	800	E21
436 * 22	47925	800	E22
437 * 23	48725	800	E23
438 * 24	49525	800	E24
439 * 25	50325	800	E25
440 * 26	51125	800	E26
441 * 27	51925	800	E27
442 * 28	52725	800	E28
443 * 29	53525	800	E29
444 * 30	54325	800	E30
445 * 31	55125	800	E31
446 * 32	55925	800	E32
447 * 33	56725	800	E33
448 * 34	57525	800	E34
449 * 35	58325	800	E35
450 * 36	59125	800	E36
451 * 37	59925	800	E37
452 * 38	60725	800	E38
453 * 39	61525	800	E39
454 * 40	62325	800	E40
455 * 41	63125	800	E41
456 * 42	63925	800	E42
457 * 43	64725	800	E43
458 * 44	65525	800	E44
459 * 45	66325	800	E45
460 * 46	67125	800	E46
461 * 47	67925	800	E47
462 * 48	68725	800	E48
463 * 49	69525	800	E49
464 * 50	70325	800	E50
465 * 51	71125	800	E51
466 * 52	71925	800	E52
467 * 53	72725	800	E53
468 * 54	73525	800	E54
469 * 55	74325	800	E55
470 * 56	75125	800	E56
471 * 57	75925	800	E57
472 * 58	76725	800	E58
473 * 59	77525	800	E59
474 * 60	78325	800	E60
475 * 61	79125	800	E61
476 * 62	79925	800	E62
477 * 63	80725	800	E63
478 * 64	81525	800	E64
479 * 65	82325	800	E65
480 * 66	83125	800	E66
481 * 67	83925	800	E67
482 * 68	84725	800	E68
483 * 69	85525	800	E69
484 *
485 * 70	 4575	800	IA
486 * 71	 5375	800	IB
487 * 72	 6175	800	IC
488 *
489 * 74	 6925	700	S01
490 * 75	 7625	700	S02
491 * 76	 8325	700	S03
492 *
493 * 80	10525	700	S1
494 * 81	11225	700	S2
495 * 82	11925	700	S3
496 * 83	12625	700	S4
497 * 84	13325	700	S5
498 * 85	14025	700	S6
499 * 86	14725	700	S7
500 * 87	15425	700	S8
501 * 88	16125	700	S9
502 * 89	16825	700	S10
503 * 90	23125	700	S11
504 * 91	23825	700	S12
505 * 92	24525	700	S13
506 * 93	25225	700	S14
507 * 94	25925	700	S15
508 * 95	26625	700	S16
509 * 96	27325	700	S17
510 * 97	28025	700	S18
511 * 98	28725	700	S19
512 * 99	29425	700	S20
513 *
514 *
515 * Channels S21 - S41 are taken from
516 * http://gemma.apple.com:80/dev/technotes/tn/tn1012.html
517 *
518 * 100	30325	800	S21
519 * 101	31125	800	S22
520 * 102	31925	800	S23
521 * 103	32725	800	S24
522 * 104	33525	800	S25
523 * 105	34325	800	S26
524 * 106	35125	800	S27
525 * 107	35925	800	S28
526 * 108	36725	800	S29
527 * 109	37525	800	S30
528 * 110	38325	800	S31
529 * 111	39125	800	S32
530 * 112	39925	800	S33
531 * 113	40725	800	S34
532 * 114	41525	800	S35
533 * 115	42325	800	S36
534 * 116	43125	800	S37
535 * 117	43925	800	S38
536 * 118	44725	800	S39
537 * 119	45525	800	S40
538 * 120	46325	800	S41
539 *
540 * 121	 3890	000	IFFREQ
541 *
542 */
543static int weurope[] = {
544       121,     (int)( 38.90 * FREQFACTOR),     0,
545       100,     (int)(303.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
546        90,     (int)(231.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
547        80,     (int)(105.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
548        74,     (int)( 69.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
549        21,     (int)(471.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
550        17,     (int)(183.25 * FREQFACTOR),     (int)(9.00 * FREQFACTOR),
551        16,     (int)(175.25 * FREQFACTOR),     (int)(9.00 * FREQFACTOR),
552        15,     (int)(82.25 * FREQFACTOR),      (int)(8.50 * FREQFACTOR),
553        13,     (int)(53.75 * FREQFACTOR),      (int)(8.50 * FREQFACTOR),
554         5,     (int)(175.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
555         2,     (int)(48.25 * FREQFACTOR),      (int)(7.00 * FREQFACTOR),
556	 0
557};
558
559/*
560 * Japanese Broadcast Channels:
561 *
562 *  1:  91.25MHz -  3: 103.25MHz
563 *  4: 171.25MHz -  7: 189.25MHz
564 *  8: 193.25MHz - 12: 217.25MHz  (VHF)
565 * 13: 471.25MHz - 62: 765.25MHz  (UHF)
566 *
567 * IF freq: 58.75 mHz
568 */
569#define OFFSET  6.00
570#define IF_FREQ 58.75
571static int jpnbcst[] = {
572	62,     (int)(IF_FREQ * FREQFACTOR),    0,
573	13,     (int)(471.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
574	 8,     (int)(193.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
575	 4,     (int)(171.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
576	 1,     (int)( 91.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
577	 0
578};
579#undef IF_FREQ
580#undef OFFSET
581
582/*
583 * Japanese Cable Channels:
584 *
585 *  1:  91.25MHz -  3: 103.25MHz
586 *  4: 171.25MHz -  7: 189.25MHz
587 *  8: 193.25MHz - 12: 217.25MHz
588 * 13: 109.25MHz - 21: 157.25MHz
589 * 22: 165.25MHz
590 * 23: 223.25MHz - 63: 463.25MHz
591 *
592 * IF freq: 58.75 mHz
593 */
594#define OFFSET  6.00
595#define IF_FREQ 58.75
596static int jpncable[] = {
597	63,     (int)(IF_FREQ * FREQFACTOR),    0,
598	23,     (int)(223.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
599	22,     (int)(165.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
600	13,     (int)(109.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
601	 8,     (int)(193.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
602	 4,     (int)(171.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
603	 1,     (int)( 91.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
604	 0
605};
606#undef IF_FREQ
607#undef OFFSET
608
609/*
610 * xUSSR Broadcast Channels:
611 *
612 *  1:  49.75MHz -  2:  59.25MHz
613 *  3:  77.25MHz -  5:  93.25MHz
614 *  6: 175.25MHz - 12: 223.25MHz
615 * 13-20 - not exist
616 * 21: 471.25MHz - 34: 575.25MHz
617 * 35: 583.25MHz - 69: 855.25MHz
618 *
619 * Cable channels
620 *
621 * 70: 111.25MHz - 77: 167.25MHz
622 * 78: 231.25MHz -107: 463.25MHz
623 *
624 * IF freq: 38.90 MHz
625 */
626#define IF_FREQ 38.90
627static int xussr[] = {
628      107,     (int)(IF_FREQ * FREQFACTOR),    0,
629       78,     (int)(231.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
630       70,     (int)(111.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
631       35,     (int)(583.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
632       21,     (int)(471.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
633        6,     (int)(175.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
634        3,     (int)( 77.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
635        1,     (int)( 49.75 * FREQFACTOR),     (int)(9.50 * FREQFACTOR),
636        0
637};
638#undef IF_FREQ
639
640/*
641 * Australian broadcast channels
642 */
643#define OFFSET	7.00
644#define IF_FREQ 38.90
645static int australia[] = {
646       83,     (int)(IF_FREQ * FREQFACTOR),    0,
647       28,     (int)(527.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
648       10,     (int)(209.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
649        6,     (int)(175.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
650        4,     (int)( 95.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
651        3,     (int)( 86.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
652        1,     (int)( 57.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
653        0
654};
655#undef OFFSET
656#undef IF_FREQ
657
658/*
659 * France broadcast channels
660 */
661#define OFFSET 8.00
662#define IF_FREQ 38.90
663static int france[] = {
664        69,     (int)(IF_FREQ * FREQFACTOR),     0,
665        21,     (int)(471.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 21 -> 69 */
666         5,     (int)(176.00 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 5 -> 10 */
667         4,     (int)( 63.75 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 4    */
668         3,     (int)( 60.50 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 3    */
669         1,     (int)( 47.75 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 1  2 */
670         0
671};
672#undef OFFSET
673#undef IF_FREQ
674
675static struct {
676        int     *ptr;
677        char    name[BT848_MAX_CHNLSET_NAME_LEN];
678} freqTable[] = {
679        {NULL,          ""},
680        {nabcst,        "nabcst"},
681        {irccable,      "cableirc"},
682        {hrccable,      "cablehrc"},
683        {weurope,       "weurope"},
684        {jpnbcst,       "jpnbcst"},
685        {jpncable,      "jpncable"},
686        {xussr,         "xussr"},
687        {australia,     "australia"},
688        {france,        "france"},
689
690};
691
692#define TBL_CHNL	freqTable[ bktr->tuner.chnlset ].ptr[ x ]
693#define TBL_BASE_FREQ	freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ]
694#define TBL_OFFSET	freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ]
695static int
696frequency_lookup( bktr_ptr_t bktr, int channel )
697{
698	int	x;
699
700	/* check for "> MAX channel" */
701	x = 0;
702	if ( channel > TBL_CHNL )
703		return( -1 );
704
705	/* search the table for data */
706	for ( x = 3; TBL_CHNL; x += 3 ) {
707		if ( channel >= TBL_CHNL ) {
708			return( TBL_BASE_FREQ +
709				 ((channel - TBL_CHNL) * TBL_OFFSET) );
710		}
711	}
712
713	/* not found, must be below the MIN channel */
714	return( -1 );
715}
716#undef TBL_OFFSET
717#undef TBL_BASE_FREQ
718#undef TBL_CHNL
719
720
721#define	TBL_IF	(bktr->format_params == BT848_IFORM_F_NTSCJ || \
722                 bktr->format_params == BT848_IFORM_F_NTSCM ? \
723                 nabcst[1] : weurope[1])
724
725
726/* Initialise the tuner structures in the bktr_softc */
727/* This is needed as the tuner details are no longer globally declared */
728
729void    select_tuner( bktr_ptr_t bktr, int tuner_type ) {
730	if (tuner_type < Bt848_MAX_TUNER) {
731		bktr->card.tuner = &tuners[ tuner_type ];
732	} else {
733		bktr->card.tuner = NULL;
734	}
735}
736
737/*
738 * Tuner Notes:
739 * Programming the tuner properly is quite complicated.
740 * Here are some notes, based on a FM1246 data sheet for a PAL-I tuner.
741 * The tuner (front end) covers 45.75 Mhz - 855.25 Mhz and an FM band of
742 * 87.5 Mhz to 108.0 Mhz.
743 *
744 * RF and IF.  RF = radio frequencies, it is the transmitted signal.
745 *             IF is the Intermediate Frequency (the offset from the base
746 *             signal where the video, color,  audio and NICAM signals are.
747 *
748 * Eg, Picture at 38.9 Mhz, Colour at 34.47 MHz, sound at 32.9 MHz
749 * NICAM at 32.348 Mhz.
750 * Strangely enough, there is an IF (intermediate frequency) for
751 * FM Radio which is 10.7 Mhz.
752 *
753 * The tuner also works in Bands. Philips bands are
754 * FM radio band 87.50 to 108.00 MHz
755 * Low band 45.75 to 170.00 MHz
756 * Mid band 170.00 to 450.00 MHz
757 * High band 450.00 to 855.25 MHz
758 *
759 *
760 * Now we need to set the PLL on the tuner to the required freuqncy.
761 * It has a programmable divisor.
762 * For TV we want
763 *  N = 16 (freq RF(pc) + freq IF(pc))  pc is picture carrier and RF and IF
764 *  are in MHz.
765
766 * For RADIO we want a different equation.
767 *  freq IF is 10.70 MHz (so the data sheet tells me)
768 * N = (freq RF + freq IF) / step size
769 * The step size must be set to 50 khz (so the data sheet tells me)
770 * (note this is 50 kHz, the other things are in MHz)
771 * so we end up with N = 20x(freq RF + 10.7)
772 *
773 */
774
775#define LOW_BAND 0
776#define MID_BAND 1
777#define HIGH_BAND 2
778#define FM_RADIO_BAND 3
779
780
781/* Check if these are correct for other than Philips PAL */
782#define STATUSBIT_COLD   0x80
783#define STATUSBIT_LOCK   0x40
784#define STATUSBIT_TV     0x20
785#define STATUSBIT_STEREO 0x10 /* valid if FM (aka not TV) */
786#define STATUSBIT_ADC    0x07
787
788/*
789 * set the frequency of the tuner
790 * If 'type' is TV_FREQUENCY, the frequency is freq MHz*16
791 * If 'type' is FM_RADIO_FREQUENCY, the frequency is freq MHz * 100
792 * (note *16 gives is 4 bits of fraction, eg steps of nnn.0625)
793 *
794 */
795int
796tv_freq( bktr_ptr_t bktr, int frequency, int type )
797{
798	const struct TUNER*	tuner;
799	u_char			addr;
800	u_char			control;
801	u_char			band;
802	int			N;
803	int			band_select = 0;
804#if defined( TEST_TUNER_AFC )
805	int			oldFrequency, afcDelta;
806#endif
807
808	tuner = bktr->card.tuner;
809	if ( tuner == NULL )
810		return( -1 );
811
812	if (tuner == &tuners[TUNER_MT2032]) {
813		mt2032_set_tv_freq(bktr, frequency);
814		return 0;
815	}
816	if (type == TV_FREQUENCY) {
817		/*
818		 * select the band based on frequency
819		 * XXX FIXME: get the cross-over points from the tuner struct
820		 */
821		if ( frequency < (160 * FREQFACTOR  ) )
822		    band_select = LOW_BAND;
823		else if ( frequency < (454 * FREQFACTOR ) )
824		    band_select = MID_BAND;
825		else
826		    band_select = HIGH_BAND;
827
828#if defined( TEST_TUNER_AFC )
829		if ( bktr->tuner.afc )
830			frequency -= 4;
831#endif
832		/*
833		 * N = 16 * { fRF(pc) + fIF(pc) }
834		 * or N = 16* fRF(pc) + 16*fIF(pc) }
835		 * where:
836		 *  pc is picture carrier, fRF & fIF are in MHz
837		 *
838		 * fortunatly, frequency is passed in as MHz * 16
839		 * and the TBL_IF frequency is also stored in MHz * 16
840		 */
841		N = frequency + TBL_IF;
842
843		/* set the address of the PLL */
844		addr    = bktr->card.tuner_pllAddr;
845		control = tuner->pllControl[ band_select ];
846		band    = tuner->bandAddrs[ band_select ];
847
848		if(!(band && control))		/* Don't try to set un-	*/
849		  return(-1);			/* supported modes.	*/
850
851		if ( frequency > bktr->tuner.frequency ) {
852			i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
853			i2cWrite( bktr, addr, control, band );
854	        }
855	        else {
856			i2cWrite( bktr, addr, control, band );
857			i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
858       		}
859
860#if defined( TUNER_AFC )
861		if ( bktr->tuner.afc == TRUE ) {
862#if defined( TEST_TUNER_AFC )
863			oldFrequency = frequency;
864#endif
865			if ( (N = do_afc( bktr, addr, N )) < 0 ) {
866			    /* AFC failed, restore requested frequency */
867			    N = frequency + TBL_IF;
868#if defined( TEST_TUNER_AFC )
869			    printf("%s: do_afc: failed to lock\n",
870				   bktr_name(bktr));
871#endif
872			    i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
873			}
874			else
875			    frequency = N - TBL_IF;
876#if defined( TEST_TUNER_AFC )
877 printf("%s: do_afc: returned freq %d (%d %% %d)\n", bktr_name(bktr), frequency, frequency / 16, frequency % 16);
878			    afcDelta = frequency - oldFrequency;
879 printf("%s: changed by: %d clicks (%d mod %d)\n", bktr_name(bktr), afcDelta, afcDelta / 16, afcDelta % 16);
880#endif
881			}
882#endif /* TUNER_AFC */
883
884		bktr->tuner.frequency = frequency;
885	}
886
887	if ( type == FM_RADIO_FREQUENCY ) {
888		band_select = FM_RADIO_BAND;
889
890		/*
891		 * N = { fRF(pc) + fIF(pc) }/step_size
892                 * The step size is 50kHz for FM radio.
893		 * (eg after 102.35MHz comes 102.40 MHz)
894		 * fIF is 10.7 MHz (as detailed in the specs)
895		 *
896		 * frequency is passed in as MHz * 100
897		 *
898		 * So, we have N = (frequency/100 + 10.70)  /(50/1000)
899		 */
900		N = (frequency + 1070)/5;
901
902		/* set the address of the PLL */
903		addr    = bktr->card.tuner_pllAddr;
904		control = tuner->pllControl[ band_select ];
905		band    = tuner->bandAddrs[ band_select ];
906
907		if(!(band && control))		/* Don't try to set un-	*/
908		  return(-1);			/* supported modes.	*/
909
910		band |= bktr->tuner.radio_mode; /* tuner.radio_mode is set in
911						 * the ioctls RADIO_SETMODE
912						 * and RADIO_GETMODE */
913
914		i2cWrite( bktr, addr, control, band );
915		i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
916
917		bktr->tuner.frequency = (N * 5) - 1070;
918
919
920	}
921
922
923	return( 0 );
924}
925
926
927
928#if defined( TUNER_AFC )
929/*
930 *
931 */
932int
933do_afc( bktr_ptr_t bktr, int addr, int frequency )
934{
935	int step;
936	int status;
937	int origFrequency;
938
939	origFrequency = frequency;
940
941	/* wait for first setting to take effect */
942	tsleep( BKTR_SLEEP, PZERO, "tuning", hz/8 );
943
944	if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
945		return( -1 );
946
947#if defined( TEST_TUNER_AFC )
948 printf( "%s: Original freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
949#endif
950	for ( step = 0; step < AFC_MAX_STEP; ++step ) {
951		if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
952			goto fubar;
953		if ( !(status & 0x40) ) {
954#if defined( TEST_TUNER_AFC )
955 printf( "%s: no lock!\n", bktr_name(bktr) );
956#endif
957			goto fubar;
958		}
959
960		switch( status & AFC_BITS ) {
961		case AFC_FREQ_CENTERED:
962#if defined( TEST_TUNER_AFC )
963 printf( "%s: Centered, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
964#endif
965			return( frequency );
966
967		case AFC_FREQ_MINUS_125:
968		case AFC_FREQ_MINUS_62:
969#if defined( TEST_TUNER_AFC )
970 printf( "%s: Low, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
971#endif
972			--frequency;
973			break;
974
975		case AFC_FREQ_PLUS_62:
976		case AFC_FREQ_PLUS_125:
977#if defined( TEST_TUNER_AFC )
978 printf( "%s: Hi, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
979#endif
980			++frequency;
981			break;
982		}
983
984		i2cWrite( bktr, addr,
985			  (frequency>>8) & 0x7f, frequency & 0xff );
986		DELAY( AFC_DELAY );
987	}
988
989 fubar:
990	i2cWrite( bktr, addr,
991		  (origFrequency>>8) & 0x7f, origFrequency & 0xff );
992
993	return( -1 );
994}
995#endif /* TUNER_AFC */
996#undef TBL_IF
997
998
999/*
1000 * Get the Tuner status and signal strength
1001 */
1002int     get_tuner_status( bktr_ptr_t bktr ) {
1003	if (bktr->card.tuner == &tuners[TUNER_MT2032])
1004		return 0;
1005	return i2cRead( bktr, bktr->card.tuner_pllAddr + 1 );
1006}
1007
1008/*
1009 * set the channel of the tuner
1010 */
1011int
1012tv_channel( bktr_ptr_t bktr, int channel )
1013{
1014	int frequency;
1015
1016	/* calculate the frequency according to tuner type */
1017	if ( (frequency = frequency_lookup( bktr, channel )) < 0 )
1018		return( -1 );
1019
1020	/* set the new frequency */
1021	if ( tv_freq( bktr, frequency, TV_FREQUENCY ) < 0 )
1022		return( -1 );
1023
1024	/* OK to update records */
1025	return( (bktr->tuner.channel = channel) );
1026}
1027
1028/*
1029 * get channelset name
1030 */
1031int
1032tuner_getchnlset(struct bktr_chnlset *chnlset)
1033{
1034       if (( chnlset->index < CHNLSET_MIN ) ||
1035               ( chnlset->index > CHNLSET_MAX ))
1036                       return( EINVAL );
1037
1038       memcpy(&chnlset->name, &freqTable[chnlset->index].name,
1039               BT848_MAX_CHNLSET_NAME_LEN);
1040
1041       chnlset->max_channel=freqTable[chnlset->index].ptr[0];
1042       return( 0 );
1043}
1044
1045
1046
1047
1048#define	TDA9887_ADDR	0x86
1049
1050static int
1051TDA9887_init(bktr_ptr_t bktr, int output2_enable)
1052{
1053	u_char addr = TDA9887_ADDR;
1054
1055	i2cWrite(bktr, addr, 0, output2_enable ? 0x50 : 0xd0);
1056	i2cWrite(bktr, addr, 1, 0x6e); /* takeover point / de-emphasis */
1057
1058	/* PAL BG: 0x09  PAL I: 0x0a  NTSC: 0x04 */
1059#ifdef MT2032_NTSC
1060	i2cWrite(bktr, addr, 2, 0x04);
1061#else
1062	i2cWrite(bktr, addr, 2, 0x09);
1063#endif
1064	return 0;
1065}
1066
1067
1068
1069#define MT2032_OPTIMIZE_VCO	 1
1070
1071/* holds the value of XOGC register after init */
1072static int      MT2032_XOGC = 4;
1073
1074/* card.tuner_pllAddr not set during init */
1075#define	MT2032_ADDR		0xc0
1076
1077#ifndef MT2032_ADDR
1078#define	MT2032_ADDR		(bktr->card.tuner_pllAddr)
1079#endif
1080
1081static int
1082_MT2032_GetRegister(bktr_ptr_t bktr, u_char regNum)
1083{
1084	int		ch;
1085
1086	if (i2cWrite(bktr, MT2032_ADDR, regNum, -1) == -1) {
1087		if (bootverbose)
1088			printf("%s: MT2032 write failed (i2c addr %#x)\n",
1089				bktr_name(bktr), MT2032_ADDR);
1090		return -1;
1091	}
1092	if ((ch = i2cRead(bktr, MT2032_ADDR + 1)) == -1) {
1093		if (bootverbose)
1094			printf("%s: MT2032 get register %d failed\n",
1095				bktr_name(bktr), regNum);
1096		return -1;
1097	}
1098	return ch;
1099}
1100
1101static void
1102_MT2032_SetRegister(bktr_ptr_t bktr, u_char regNum, u_char data)
1103{
1104	i2cWrite(bktr, MT2032_ADDR, regNum, data);
1105}
1106
1107#define	MT2032_GetRegister(r)		_MT2032_GetRegister(bktr,r)
1108#define	MT2032_SetRegister(r,d)		_MT2032_SetRegister(bktr,r,d)
1109
1110
1111int
1112mt2032_init(bktr_ptr_t bktr)
1113{
1114	u_char            rdbuf[22];
1115	int             xogc, xok = 0;
1116	int             i;
1117	int		x;
1118
1119	TDA9887_init(bktr, 0);
1120
1121	for (i = 0; i < 21; i++) {
1122		if ((x = MT2032_GetRegister(i)) == -1)
1123			break;
1124		rdbuf[i] = x;
1125	}
1126	if (i < 21)
1127		return -1;
1128
1129	printf("%s: MT2032: Companycode=%02x%02x Part=%02x Revision=%02x\n",
1130		bktr_name(bktr),
1131		rdbuf[0x11], rdbuf[0x12], rdbuf[0x13], rdbuf[0x14]);
1132	if (rdbuf[0x13] != 4) {
1133		printf("%s: MT2032 not found or unknown type\n", bktr_name(bktr));
1134		return -1;
1135	}
1136
1137	/* Initialize Registers per spec. */
1138	MT2032_SetRegister(2, 0xff);
1139	MT2032_SetRegister(3, 0x0f);
1140	MT2032_SetRegister(4, 0x1f);
1141	MT2032_SetRegister(6, 0xe4);
1142	MT2032_SetRegister(7, 0x8f);
1143	MT2032_SetRegister(8, 0xc3);
1144	MT2032_SetRegister(9, 0x4e);
1145	MT2032_SetRegister(10, 0xec);
1146	MT2032_SetRegister(13, 0x32);
1147
1148	/* Adjust XOGC (register 7), wait for XOK */
1149	xogc = 7;
1150	do {
1151		DELAY(10000);
1152		xok = MT2032_GetRegister(0x0e) & 0x01;
1153		if (xok == 1) {
1154			break;
1155		}
1156		xogc--;
1157		if (xogc == 3) {
1158			xogc = 4;	/* min. 4 per spec */
1159			break;
1160		}
1161		MT2032_SetRegister(7, 0x88 + xogc);
1162	} while (xok != 1);
1163
1164	TDA9887_init(bktr, 1);
1165
1166	MT2032_XOGC = xogc;
1167
1168	return 0;
1169}
1170
1171static int
1172MT2032_SpurCheck(int f1, int f2, int spectrum_from, int spectrum_to)
1173{
1174	int             n1 = 1, n2, f;
1175
1176	f1 = f1 / 1000;		/* scale to kHz to avoid 32bit overflows */
1177	f2 = f2 / 1000;
1178	spectrum_from /= 1000;
1179	spectrum_to /= 1000;
1180
1181	do {
1182		n2 = -n1;
1183		f = n1 * (f1 - f2);
1184		do {
1185			n2--;
1186			f = f - f2;
1187			if ((f > spectrum_from) && (f < spectrum_to)) {
1188				return 1;
1189			}
1190		} while ((f > (f2 - spectrum_to)) || (n2 > -5));
1191		n1++;
1192	} while (n1 < 5);
1193
1194	return 0;
1195}
1196
1197static int
1198MT2032_ComputeFreq(
1199		   int rfin,
1200		   int if1,
1201		   int if2,
1202		   int spectrum_from,
1203		   int spectrum_to,
1204		   unsigned char *buf,
1205		   int *ret_sel,
1206		   int xogc
1207)
1208{				/* all in Hz */
1209	int             fref, lo1, lo1n, lo1a, s, sel;
1210	int             lo1freq, desired_lo1, desired_lo2, lo2, lo2n, lo2a,
1211	                lo2num, lo2freq;
1212	int             nLO1adjust;
1213
1214	fref = 5250 * 1000;	/* 5.25MHz */
1215
1216	/* per spec 2.3.1 */
1217	desired_lo1 = rfin + if1;
1218	lo1 = (2 * (desired_lo1 / 1000) + (fref / 1000)) / (2 * fref / 1000);
1219	lo1freq = lo1 * fref;
1220	desired_lo2 = lo1freq - rfin - if2;
1221
1222	/* per spec 2.3.2 */
1223	for (nLO1adjust = 1; nLO1adjust < 3; nLO1adjust++) {
1224		if (!MT2032_SpurCheck(lo1freq, desired_lo2, spectrum_from, spectrum_to)) {
1225			break;
1226		}
1227		if (lo1freq < desired_lo1) {
1228			lo1 += nLO1adjust;
1229		} else {
1230			lo1 -= nLO1adjust;
1231		}
1232
1233		lo1freq = lo1 * fref;
1234		desired_lo2 = lo1freq - rfin - if2;
1235	}
1236
1237	/* per spec 2.3.3 */
1238	s = lo1freq / 1000 / 1000;
1239
1240	if (MT2032_OPTIMIZE_VCO) {
1241		if (s > 1890) {
1242			sel = 0;
1243		} else if (s > 1720) {
1244			sel = 1;
1245		} else if (s > 1530) {
1246			sel = 2;
1247		} else if (s > 1370) {
1248			sel = 3;
1249		} else {
1250			sel = 4;/* >1090 */
1251		}
1252	} else {
1253		if (s > 1790) {
1254			sel = 0;/* <1958 */
1255		} else if (s > 1617) {
1256			sel = 1;
1257		} else if (s > 1449) {
1258			sel = 2;
1259		} else if (s > 1291) {
1260			sel = 3;
1261		} else {
1262			sel = 4;/* >1090 */
1263		}
1264	}
1265
1266	*ret_sel = sel;
1267
1268	/* per spec 2.3.4 */
1269	lo1n = lo1 / 8;
1270	lo1a = lo1 - (lo1n * 8);
1271	lo2 = desired_lo2 / fref;
1272	lo2n = lo2 / 8;
1273	lo2a = lo2 - (lo2n * 8);
1274	/* scale to fit in 32bit arith */
1275	lo2num = ((desired_lo2 / 1000) % (fref / 1000)) * 3780 / (fref / 1000);
1276	lo2freq = (lo2a + 8 * lo2n) * fref + lo2num * (fref / 1000) / 3780 * 1000;
1277
1278	if (lo1a < 0 || lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a < 0 ||
1279	    lo2a > 7 || lo2n < 17 || lo2n > 30) {
1280		printf("MT2032: parameter out of range\n");
1281		return -1;
1282	}
1283	/* set up MT2032 register map for transfer over i2c */
1284	buf[0] = lo1n - 1;
1285	buf[1] = lo1a | (sel << 4);
1286	buf[2] = 0x86;		/* LOGC */
1287	buf[3] = 0x0f;		/* reserved */
1288	buf[4] = 0x1f;
1289	buf[5] = (lo2n - 1) | (lo2a << 5);
1290	if (rfin < 400 * 1000 * 1000) {
1291		buf[6] = 0xe4;
1292	} else {
1293		buf[6] = 0xf4;	/* set PKEN per rev 1.2 */
1294	}
1295
1296	buf[7] = 8 + xogc;
1297	buf[8] = 0xc3;		/* reserved */
1298	buf[9] = 0x4e;		/* reserved */
1299	buf[10] = 0xec;		/* reserved */
1300	buf[11] = (lo2num & 0xff);
1301	buf[12] = (lo2num >> 8) | 0x80;	/* Lo2RST */
1302
1303	return 0;
1304}
1305
1306static int
1307MT2032_CheckLOLock(bktr_ptr_t bktr)
1308{
1309	int             t, lock = 0;
1310	for (t = 0; t < 10; t++) {
1311		lock = MT2032_GetRegister(0x0e) & 0x06;
1312		if (lock == 6) {
1313			break;
1314		}
1315		DELAY(1000);
1316	}
1317	return lock;
1318}
1319
1320static int
1321MT2032_OptimizeVCO(bktr_ptr_t bktr, int sel, int lock)
1322{
1323	int             tad1, lo1a;
1324
1325	tad1 = MT2032_GetRegister(0x0f) & 0x07;
1326
1327	if (tad1 == 0) {
1328		return lock;
1329	}
1330	if (tad1 == 1) {
1331		return lock;
1332	}
1333	if (tad1 == 2) {
1334		if (sel == 0) {
1335			return lock;
1336		} else {
1337			sel--;
1338		}
1339	} else {
1340		if (sel < 4) {
1341			sel++;
1342		} else {
1343			return lock;
1344		}
1345	}
1346	lo1a = MT2032_GetRegister(0x01) & 0x07;
1347	MT2032_SetRegister(0x01, lo1a | (sel << 4));
1348	lock = MT2032_CheckLOLock(bktr);
1349	return lock;
1350}
1351
1352static int
1353MT2032_SetIFFreq(bktr_ptr_t bktr, int rfin, int if1, int if2, int from, int to)
1354{
1355	u_char          buf[21];
1356	int             lint_try, sel, lock = 0;
1357
1358	if (MT2032_ComputeFreq(rfin, if1, if2, from, to, &buf[0], &sel, MT2032_XOGC) == -1)
1359		return -1;
1360
1361	TDA9887_init(bktr, 0);
1362
1363	/* send only the relevant registers per Rev. 1.2 */
1364	MT2032_SetRegister(0, buf[0x00]);
1365	MT2032_SetRegister(1, buf[0x01]);
1366	MT2032_SetRegister(2, buf[0x02]);
1367
1368	MT2032_SetRegister(5, buf[0x05]);
1369	MT2032_SetRegister(6, buf[0x06]);
1370	MT2032_SetRegister(7, buf[0x07]);
1371
1372	MT2032_SetRegister(11, buf[0x0B]);
1373	MT2032_SetRegister(12, buf[0x0C]);
1374
1375	/* wait for PLLs to lock (per manual), retry LINT if not. */
1376	for (lint_try = 0; lint_try < 2; lint_try++) {
1377		lock = MT2032_CheckLOLock(bktr);
1378
1379		if (MT2032_OPTIMIZE_VCO) {
1380			lock = MT2032_OptimizeVCO(bktr, sel, lock);
1381		}
1382		if (lock == 6) {
1383			break;
1384		}
1385		/* set LINT to re-init PLLs */
1386		MT2032_SetRegister(7, 0x80 + 8 + MT2032_XOGC);
1387		DELAY(10000);
1388		MT2032_SetRegister(7, 8 + MT2032_XOGC);
1389	}
1390	if (lock != 6)
1391		printf("%s: PLL didn't lock\n", bktr_name(bktr));
1392
1393	MT2032_SetRegister(2, 0x20);
1394
1395	TDA9887_init(bktr, 1);
1396	return 0;
1397}
1398
1399static void
1400mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq)
1401{
1402	int if2,from,to;
1403	int stat, tad;
1404
1405#ifdef MT2032_NTSC
1406	from=40750*1000;
1407	to=46750*1000;
1408	if2=45750*1000;
1409#else
1410	from=32900*1000;
1411	to=39900*1000;
1412	if2=38900*1000;
1413#endif
1414
1415	if (MT2032_SetIFFreq(bktr, freq*62500 /* freq*1000*1000/16 */,
1416			1090*1000*1000, if2, from, to) == 0) {
1417		bktr->tuner.frequency = freq;
1418		stat = MT2032_GetRegister(0x0e);
1419		tad = MT2032_GetRegister(0x0f);
1420		if (bootverbose)
1421			printf("%s: frequency set to %d, st = %#x, tad = %#x\n",
1422				bktr_name(bktr), freq*62500, stat, tad);
1423	}
1424}
1425