1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73
74#include <net/bpf.h>
75
76#include <dev/ath/if_athvar.h>
77
78#include <dev/ath/if_ath_debug.h>
79#include <dev/ath/if_ath_keycache.h>
80
81#ifdef ATH_DEBUG
82static void
83ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
84	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
85{
86	static const char *ciphers[] = {
87		"WEP",
88		"AES-OCB",
89		"AES-CCM",
90		"CKIP",
91		"TKIP",
92		"CLR",
93	};
94	int i, n;
95
96	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
97	for (i = 0, n = hk->kv_len; i < n; i++)
98		printf("%02x", hk->kv_val[i]);
99	printf(" mac %s", ether_sprintf(mac));
100	if (hk->kv_type == HAL_CIPHER_TKIP) {
101		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
102		for (i = 0; i < sizeof(hk->kv_mic); i++)
103			printf("%02x", hk->kv_mic[i]);
104		if (!sc->sc_splitmic) {
105			printf(" txmic ");
106			for (i = 0; i < sizeof(hk->kv_txmic); i++)
107				printf("%02x", hk->kv_txmic[i]);
108		}
109	}
110	printf("\n");
111}
112#endif
113
114/*
115 * Set a TKIP key into the hardware.  This handles the
116 * potential distribution of key state to multiple key
117 * cache slots for TKIP.
118 */
119static int
120ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
121	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
122{
123#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
124	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
125	struct ath_hal *ah = sc->sc_ah;
126
127	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
128		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
129	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
130		if (sc->sc_splitmic) {
131			/*
132			 * TX key goes at first index, RX key at the rx index.
133			 * The hal handles the MIC keys at index+64.
134			 */
135			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
136			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
137			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
138				return 0;
139
140			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
141			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
142			/* XXX delete tx key on failure? */
143			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
144		} else {
145			/*
146			 * Room for both TX+RX MIC keys in one key cache
147			 * slot, just set key at the first index; the hal
148			 * will handle the rest.
149			 */
150			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
151			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
152			KEYPRINTF(sc, k->wk_keyix, hk, mac);
153			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
154		}
155	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
156		if (sc->sc_splitmic) {
157			/*
158			 * NB: must pass MIC key in expected location when
159			 * the keycache only holds one MIC key per entry.
160			 */
161			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
162		} else
163			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
164		KEYPRINTF(sc, k->wk_keyix, hk, mac);
165		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
166	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
167		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
168		KEYPRINTF(sc, k->wk_keyix, hk, mac);
169		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
170	}
171	return 0;
172#undef IEEE80211_KEY_XR
173}
174
175/*
176 * Set a net80211 key into the hardware.  This handles the
177 * potential distribution of key state to multiple key
178 * cache slots for TKIP with hardware MIC support.
179 */
180int
181ath_keyset(struct ath_softc *sc, struct ieee80211vap *vap,
182	const struct ieee80211_key *k,
183	struct ieee80211_node *bss)
184{
185#define	N(a)	(sizeof(a)/sizeof(a[0]))
186	static const u_int8_t ciphermap[] = {
187		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
188		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
189		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
190		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
191		(u_int8_t) -1,		/* 4 is not allocated */
192		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
193		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
194	};
195	struct ath_hal *ah = sc->sc_ah;
196	const struct ieee80211_cipher *cip = k->wk_cipher;
197	u_int8_t gmac[IEEE80211_ADDR_LEN];
198	const u_int8_t *mac;
199	HAL_KEYVAL hk;
200
201	memset(&hk, 0, sizeof(hk));
202	/*
203	 * Software crypto uses a "clear key" so non-crypto
204	 * state kept in the key cache are maintained and
205	 * so that rx frames have an entry to match.
206	 */
207	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
208		KASSERT(cip->ic_cipher < N(ciphermap),
209			("invalid cipher type %u", cip->ic_cipher));
210		hk.kv_type = ciphermap[cip->ic_cipher];
211		hk.kv_len = k->wk_keylen;
212		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
213	} else
214		hk.kv_type = HAL_CIPHER_CLR;
215
216	/*
217	 * If we're installing a clear cipher key and
218	 * the hardware doesn't support that, just succeed.
219	 * Leave it up to the net80211 layer to figure it out.
220	 */
221	if (hk.kv_type == HAL_CIPHER_CLR && sc->sc_hasclrkey == 0) {
222		return (1);
223	}
224
225	/*
226	 * XXX TODO: check this:
227	 *
228	 * Group keys on hardware that supports multicast frame
229	 * key search should only be done in adhoc/hostap mode,
230	 * not STA mode.
231	 *
232	 * XXX TODO: what about mesh, tdma?
233	 */
234#if 0
235	if ((vap->iv_opmode == IEEE80211_M_HOSTAP ||
236	     vap->iv_opmode == IEEE80211_M_IBSS) &&
237#else
238	if (
239#endif
240	    (k->wk_flags & IEEE80211_KEY_GROUP) &&
241	    sc->sc_mcastkey) {
242		/*
243		 * Group keys on hardware that supports multicast frame
244		 * key search use a MAC that is the sender's address with
245		 * the multicast bit set instead of the app-specified address.
246		 */
247		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
248		gmac[0] |= 0x01;
249		mac = gmac;
250	} else
251		mac = k->wk_macaddr;
252
253	if (hk.kv_type == HAL_CIPHER_TKIP &&
254	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
255		return ath_keyset_tkip(sc, k, &hk, mac);
256	} else {
257		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
258		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
259	}
260#undef N
261}
262
263/*
264 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
265 * each key, one for decrypt/encrypt and the other for the MIC.
266 */
267static u_int16_t
268key_alloc_2pair(struct ath_softc *sc,
269	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
270{
271#define	N(a)	(sizeof(a)/sizeof(a[0]))
272	u_int i, keyix;
273
274	KASSERT(sc->sc_splitmic, ("key cache !split"));
275	/* XXX could optimize */
276	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
277		u_int8_t b = sc->sc_keymap[i];
278		if (b != 0xff) {
279			/*
280			 * One or more slots in this byte are free.
281			 */
282			keyix = i*NBBY;
283			while (b & 1) {
284		again:
285				keyix++;
286				b >>= 1;
287			}
288			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
289			if (isset(sc->sc_keymap, keyix+32) ||
290			    isset(sc->sc_keymap, keyix+64) ||
291			    isset(sc->sc_keymap, keyix+32+64)) {
292				/* full pair unavailable */
293				/* XXX statistic */
294				if (keyix == (i+1)*NBBY) {
295					/* no slots were appropriate, advance */
296					continue;
297				}
298				goto again;
299			}
300			setbit(sc->sc_keymap, keyix);
301			setbit(sc->sc_keymap, keyix+64);
302			setbit(sc->sc_keymap, keyix+32);
303			setbit(sc->sc_keymap, keyix+32+64);
304			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
305				"%s: key pair %u,%u %u,%u\n",
306				__func__, keyix, keyix+64,
307				keyix+32, keyix+32+64);
308			*txkeyix = keyix;
309			*rxkeyix = keyix+32;
310			return 1;
311		}
312	}
313	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
314	return 0;
315#undef N
316}
317
318/*
319 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
320 * each key, one for decrypt/encrypt and the other for the MIC.
321 */
322static u_int16_t
323key_alloc_pair(struct ath_softc *sc,
324	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
325{
326#define	N(a)	(sizeof(a)/sizeof(a[0]))
327	u_int i, keyix;
328
329	KASSERT(!sc->sc_splitmic, ("key cache split"));
330	/* XXX could optimize */
331	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
332		u_int8_t b = sc->sc_keymap[i];
333		if (b != 0xff) {
334			/*
335			 * One or more slots in this byte are free.
336			 */
337			keyix = i*NBBY;
338			while (b & 1) {
339		again:
340				keyix++;
341				b >>= 1;
342			}
343			if (isset(sc->sc_keymap, keyix+64)) {
344				/* full pair unavailable */
345				/* XXX statistic */
346				if (keyix == (i+1)*NBBY) {
347					/* no slots were appropriate, advance */
348					continue;
349				}
350				goto again;
351			}
352			setbit(sc->sc_keymap, keyix);
353			setbit(sc->sc_keymap, keyix+64);
354			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
355				"%s: key pair %u,%u\n",
356				__func__, keyix, keyix+64);
357			*txkeyix = *rxkeyix = keyix;
358			return 1;
359		}
360	}
361	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
362	return 0;
363#undef N
364}
365
366/*
367 * Allocate a single key cache slot.
368 */
369static int
370key_alloc_single(struct ath_softc *sc,
371	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
372{
373#define	N(a)	(sizeof(a)/sizeof(a[0]))
374	u_int i, keyix;
375
376	if (sc->sc_hasclrkey == 0) {
377		/*
378		 * Map to slot 0 for the AR5210.
379		 */
380		*txkeyix = *rxkeyix = 0;
381		return (1);
382	}
383
384	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
385	for (i = 0; i < N(sc->sc_keymap); i++) {
386		u_int8_t b = sc->sc_keymap[i];
387		if (b != 0xff) {
388			/*
389			 * One or more slots are free.
390			 */
391			keyix = i*NBBY;
392			while (b & 1)
393				keyix++, b >>= 1;
394			setbit(sc->sc_keymap, keyix);
395			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
396				__func__, keyix);
397			*txkeyix = *rxkeyix = keyix;
398			return 1;
399		}
400	}
401	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
402	return 0;
403#undef N
404}
405
406/*
407 * Allocate one or more key cache slots for a uniacst key.  The
408 * key itself is needed only to identify the cipher.  For hardware
409 * TKIP with split cipher+MIC keys we allocate two key cache slot
410 * pairs so that we can setup separate TX and RX MIC keys.  Note
411 * that the MIC key for a TKIP key at slot i is assumed by the
412 * hardware to be at slot i+64.  This limits TKIP keys to the first
413 * 64 entries.
414 */
415int
416ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
417	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
418{
419	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
420
421	/*
422	 * Group key allocation must be handled specially for
423	 * parts that do not support multicast key cache search
424	 * functionality.  For those parts the key id must match
425	 * the h/w key index so lookups find the right key.  On
426	 * parts w/ the key search facility we install the sender's
427	 * mac address (with the high bit set) and let the hardware
428	 * find the key w/o using the key id.  This is preferred as
429	 * it permits us to support multiple users for adhoc and/or
430	 * multi-station operation.
431	 */
432	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
433		/*
434		 * Only global keys should have key index assigned.
435		 */
436		if (!(&vap->iv_nw_keys[0] <= k &&
437		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
438			/* should not happen */
439			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
440				"%s: bogus group key\n", __func__);
441			return 0;
442		}
443		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
444		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
445		    !sc->sc_mcastkey) {
446			/*
447			 * XXX we pre-allocate the global keys so
448			 * have no way to check if they've already
449			 * been allocated.
450			 */
451			*keyix = *rxkeyix = k - vap->iv_nw_keys;
452			return 1;
453		}
454		/*
455		 * Group key and device supports multicast key search.
456		 */
457		k->wk_keyix = IEEE80211_KEYIX_NONE;
458	}
459
460	/*
461	 * We allocate two pair for TKIP when using the h/w to do
462	 * the MIC.  For everything else, including software crypto,
463	 * we allocate a single entry.  Note that s/w crypto requires
464	 * a pass-through slot on the 5211 and 5212.  The 5210 does
465	 * not support pass-through cache entries and we map all
466	 * those requests to slot 0.
467	 */
468	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
469		return key_alloc_single(sc, keyix, rxkeyix);
470	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
471	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
472		if (sc->sc_splitmic)
473			return key_alloc_2pair(sc, keyix, rxkeyix);
474		else
475			return key_alloc_pair(sc, keyix, rxkeyix);
476	} else {
477		return key_alloc_single(sc, keyix, rxkeyix);
478	}
479}
480
481/*
482 * Delete an entry in the key cache allocated by ath_key_alloc.
483 */
484int
485ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
486{
487	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
488	struct ath_hal *ah = sc->sc_ah;
489	const struct ieee80211_cipher *cip = k->wk_cipher;
490	u_int keyix = k->wk_keyix;
491
492	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
493
494	ath_hal_keyreset(ah, keyix);
495	/*
496	 * Handle split tx/rx keying required for TKIP with h/w MIC.
497	 */
498	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
499	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
500		ath_hal_keyreset(ah, keyix+32);		/* RX key */
501	if (keyix >= IEEE80211_WEP_NKID) {
502		/*
503		 * Don't touch keymap entries for global keys so
504		 * they are never considered for dynamic allocation.
505		 */
506		clrbit(sc->sc_keymap, keyix);
507		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
508		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
509			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
510			if (sc->sc_splitmic) {
511				/* +32 for RX key, +32+64 for RX key MIC */
512				clrbit(sc->sc_keymap, keyix+32);
513				clrbit(sc->sc_keymap, keyix+32+64);
514			}
515		}
516	}
517	return 1;
518}
519
520/*
521 * Set the key cache contents for the specified key.  Key cache
522 * slot(s) must already have been allocated by ath_key_alloc.
523 */
524int
525ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
526	const u_int8_t mac[IEEE80211_ADDR_LEN])
527{
528	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
529
530	return ath_keyset(sc, vap, k, vap->iv_bss);
531}
532