1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5212/ar5212.h"
25#include "ar5212/ar5212reg.h"
26#include "ar5212/ar5212phy.h"
27
28#include "ah_eeprom_v3.h"
29
30#define AH_5212_2425
31#define AH_5212_2417
32#include "ar5212/ar5212.ini"
33
34#define	N(a)	(sizeof(a)/sizeof(a[0]))
35
36struct ar2425State {
37	RF_HAL_FUNCS	base;		/* public state, must be first */
38	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
39
40	uint32_t	Bank1Data[N(ar5212Bank1_2425)];
41	uint32_t	Bank2Data[N(ar5212Bank2_2425)];
42	uint32_t	Bank3Data[N(ar5212Bank3_2425)];
43	uint32_t	Bank6Data[N(ar5212Bank6_2425)];	/* 2417 is same size */
44	uint32_t	Bank7Data[N(ar5212Bank7_2425)];
45};
46#define	AR2425(ah)	((struct ar2425State *) AH5212(ah)->ah_rfHal)
47
48extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
49		uint32_t numBits, uint32_t firstBit, uint32_t column);
50
51static void
52ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
53	int writes)
54{
55	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
56	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
57	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
58#if 0
59	/*
60	 * for SWAN similar to Condor
61	 * Bit 0 enables link to go to L1 when MAC goes to sleep.
62	 * Bit 3 enables the loop back the link down to reset.
63	 */
64	if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
65		OS_REG_WRITE(ah, AR_PCIE_PMC,
66		    AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
67	}
68	/*
69	 * for Standby issue in Swan/Condor.
70	 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71	 *	before last Training Sequence 2 (TS2)
72	 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73	 *	Power Reset along with PCI Reset
74	 */
75	OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
76#endif
77}
78
79/*
80 * Take the MHz channel value and set the Channel value
81 *
82 * ASSUMES: Writes enabled to analog bus
83 */
84static HAL_BOOL
85ar2425SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
86{
87	uint16_t freq = ath_hal_gethwchannel(ah, chan);
88	uint32_t channelSel  = 0;
89	uint32_t bModeSynth  = 0;
90	uint32_t aModeRefSel = 0;
91	uint32_t reg32       = 0;
92
93	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
94
95	if (freq < 4800) {
96		uint32_t txctl;
97
98        channelSel = freq - 2272;
99        channelSel = ath_hal_reverseBits(channelSel, 8);
100
101		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
102        if (freq == 2484) {
103			// Enable channel spreading for channel 14
104			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
106		} else {
107			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
108				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
109		}
110
111	} else if (((freq % 5) == 2) && (freq <= 5435)) {
112		freq = freq - 2; /* Align to even 5MHz raster */
113		channelSel = ath_hal_reverseBits(
114			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
115            	aModeRefSel = ath_hal_reverseBits(0, 2);
116	} else if ((freq % 20) == 0 && freq >= 5120) {
117		channelSel = ath_hal_reverseBits(
118			((freq - 4800) / 20 << 2), 8);
119		aModeRefSel = ath_hal_reverseBits(1, 2);
120	} else if ((freq % 10) == 0) {
121		channelSel = ath_hal_reverseBits(
122			((freq - 4800) / 10 << 1), 8);
123		aModeRefSel = ath_hal_reverseBits(1, 2);
124	} else if ((freq % 5) == 0) {
125		channelSel = ath_hal_reverseBits(
126			(freq - 4800) / 5, 8);
127		aModeRefSel = ath_hal_reverseBits(1, 2);
128	} else {
129		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
130		    __func__, freq);
131		return AH_FALSE;
132	}
133
134	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
135			(1 << 12) | 0x1;
136	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
137
138	reg32 >>= 8;
139	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
140
141	AH_PRIVATE(ah)->ah_curchan = chan;
142	return AH_TRUE;
143}
144
145/*
146 * Reads EEPROM header info from device structure and programs
147 * all rf registers
148 *
149 * REQUIRES: Access to the analog rf device
150 */
151static HAL_BOOL
152ar2425SetRfRegs(struct ath_hal *ah,
153	const struct ieee80211_channel *chan,
154	uint16_t modesIndex, uint16_t *rfXpdGain)
155{
156#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
157	int i;								    \
158	for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)			    \
159		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
160} while (0)
161	struct ath_hal_5212 *ahp = AH5212(ah);
162	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
163	struct ar2425State *priv = AR2425(ah);
164	uint16_t ob2GHz = 0, db2GHz = 0;
165	int regWrites = 0;
166
167	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
168	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
169
170	HALASSERT(priv);
171
172	/* Setup rf parameters */
173	if (IEEE80211_IS_CHAN_B(chan)) {
174		ob2GHz = ee->ee_obFor24;
175		db2GHz = ee->ee_dbFor24;
176	} else {
177		ob2GHz = ee->ee_obFor24g;
178		db2GHz = ee->ee_dbFor24g;
179	}
180
181	/* Bank 1 Write */
182	RF_BANK_SETUP(priv, 1, 1);
183
184	/* Bank 2 Write */
185	RF_BANK_SETUP(priv, 2, modesIndex);
186
187	/* Bank 3 Write */
188	RF_BANK_SETUP(priv, 3, modesIndex);
189
190	/* Bank 6 Write */
191	RF_BANK_SETUP(priv, 6, modesIndex);
192
193        ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
194        ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
195
196	/* Bank 7 Setup */
197	RF_BANK_SETUP(priv, 7, modesIndex);
198
199	/* Write Analog registers */
200	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
201	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
202	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
203	if (IS_2417(ah)) {
204		HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
205		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
206		    regWrites);
207	} else
208		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
209		    regWrites);
210	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
211
212	/* Now that we have reprogrammed rfgain value, clear the flag. */
213	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214
215	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
216	return AH_TRUE;
217#undef	RF_BANK_SETUP
218}
219
220/*
221 * Return a reference to the requested RF Bank.
222 */
223static uint32_t *
224ar2425GetRfBank(struct ath_hal *ah, int bank)
225{
226	struct ar2425State *priv = AR2425(ah);
227
228	HALASSERT(priv != AH_NULL);
229	switch (bank) {
230	case 1: return priv->Bank1Data;
231	case 2: return priv->Bank2Data;
232	case 3: return priv->Bank3Data;
233	case 6: return priv->Bank6Data;
234	case 7: return priv->Bank7Data;
235	}
236	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
237	    __func__, bank);
238	return AH_NULL;
239}
240
241/*
242 * Return indices surrounding the value in sorted integer lists.
243 *
244 * NB: the input list is assumed to be sorted in ascending order
245 */
246static void
247GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
248                          uint32_t *vlo, uint32_t *vhi)
249{
250	int16_t target = v;
251	const uint16_t *ep = lp+listSize;
252	const uint16_t *tp;
253
254	/*
255	 * Check first and last elements for out-of-bounds conditions.
256	 */
257	if (target < lp[0]) {
258		*vlo = *vhi = 0;
259		return;
260	}
261	if (target >= ep[-1]) {
262		*vlo = *vhi = listSize - 1;
263		return;
264	}
265
266	/* look for value being near or between 2 values in list */
267	for (tp = lp; tp < ep; tp++) {
268		/*
269		 * If value is close to the current value of the list
270		 * then target is not between values, it is one of the values
271		 */
272		if (*tp == target) {
273			*vlo = *vhi = tp - (const uint16_t *) lp;
274			return;
275		}
276		/*
277		 * Look for value being between current value and next value
278		 * if so return these 2 values
279		 */
280		if (target < tp[1]) {
281			*vlo = tp - (const uint16_t *) lp;
282			*vhi = *vlo + 1;
283			return;
284		}
285	}
286}
287
288/*
289 * Fill the Vpdlist for indices Pmax-Pmin
290 */
291static HAL_BOOL
292ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
293		   const int16_t *pwrList, const uint16_t *VpdList,
294		   uint16_t numIntercepts,
295		   uint16_t retVpdList[][64])
296{
297	uint16_t ii, jj, kk;
298	int16_t currPwr = (int16_t)(2*Pmin);
299	/* since Pmin is pwr*2 and pwrList is 4*pwr */
300	uint32_t  idxL, idxR;
301
302	ii = 0;
303	jj = 0;
304
305	if (numIntercepts < 2)
306		return AH_FALSE;
307
308	while (ii <= (uint16_t)(Pmax - Pmin)) {
309		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
310				   numIntercepts, &(idxL), &(idxR));
311		if (idxR < 1)
312			idxR = 1;			/* extrapolate below */
313		if (idxL == (uint32_t)(numIntercepts - 1))
314			idxL = numIntercepts - 2;	/* extrapolate above */
315		if (pwrList[idxL] == pwrList[idxR])
316			kk = VpdList[idxL];
317		else
318			kk = (uint16_t)
319				(((currPwr - pwrList[idxL])*VpdList[idxR]+
320				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
321				 (pwrList[idxR] - pwrList[idxL]));
322		retVpdList[pdGainIdx][ii] = kk;
323		ii++;
324		currPwr += 2;				/* half dB steps */
325	}
326
327	return AH_TRUE;
328}
329
330/*
331 * Returns interpolated or the scaled up interpolated value
332 */
333static int16_t
334interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
335	int16_t targetLeft, int16_t targetRight)
336{
337	int16_t rv;
338
339	if (srcRight != srcLeft) {
340		rv = ((target - srcLeft)*targetRight +
341		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
342	} else {
343		rv = targetLeft;
344	}
345	return rv;
346}
347
348/*
349 * Uses the data points read from EEPROM to reconstruct the pdadc power table
350 * Called by ar2425SetPowerTable()
351 */
352static void
353ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
354		const RAW_DATA_STRUCT_2413 *pRawDataset,
355		uint16_t pdGainOverlap_t2,
356		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
357		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
358{
359    /* Note the items statically allocated below are to reduce stack usage */
360	uint32_t ii, jj, kk;
361	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
362	uint32_t idxL, idxR;
363	uint32_t numPdGainsUsed = 0;
364        static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
365	/* filled out Vpd table for all pdGains (chanL) */
366        static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
367	/* filled out Vpd table for all pdGains (chanR) */
368        static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
369	/* filled out Vpd table for all pdGains (interpolated) */
370	/*
371	 * If desired to support -ve power levels in future, just
372	 * change pwr_I_0 to signed 5-bits.
373	 */
374        static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
375	/* to accomodate -ve power levels later on. */
376        static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
377	/* to accomodate -ve power levels later on */
378	uint16_t numVpd = 0;
379	uint16_t Vpd_step;
380	int16_t tmpVal ;
381	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
382
383	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
384
385	/* Get upper lower index */
386	GetLowerUpperIndex(channel, pRawDataset->pChannels,
387				 pRawDataset->numChannels, &(idxL), &(idxR));
388
389	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
390		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
391		/* work backwards 'cause highest pdGain for lowest power */
392		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
393		if (numVpd > 0) {
394			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
395			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
396			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
397				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
398			}
399			Pmin_t2[numPdGainsUsed] = (int16_t)
400				(Pmin_t2[numPdGainsUsed] / 2);
401			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
402			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
403				Pmax_t2[numPdGainsUsed] =
404					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
405			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
406			ar2425FillVpdTable(
407					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
408					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
409					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
410					   );
411			ar2425FillVpdTable(
412					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
413					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
414					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
415					   );
416			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
417				VpdTable_I[numPdGainsUsed][kk] =
418					interpolate_signed(
419							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
420							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
421			}
422			/* fill VpdTable_I for this pdGain */
423			numPdGainsUsed++;
424		}
425		/* if this pdGain is used */
426	}
427
428	*pMinCalPower = Pmin_t2[0];
429	kk = 0; /* index for the final table */
430	for (ii = 0; ii < numPdGainsUsed; ii++) {
431		if (ii == (numPdGainsUsed - 1))
432			pPdGainBoundaries[ii] = Pmax_t2[ii] +
433				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
434		else
435			pPdGainBoundaries[ii] = (uint16_t)
436				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
437
438		/* Find starting index for this pdGain */
439		if (ii == 0)
440			ss = 0; /* for the first pdGain, start from index 0 */
441		else
442			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
443				pdGainOverlap_t2;
444		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
445		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
446		/*
447		 *-ve ss indicates need to extrapolate data below for this pdGain
448		 */
449		while (ss < 0) {
450			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
451			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
452			ss++;
453		}
454
455		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
456		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
457		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
458
459		while (ss < (int16_t)maxIndex)
460			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
461
462		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
463				       VpdTable_I[ii][sizeCurrVpdTable-2]);
464		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
465		/*
466		 * for last gain, pdGainBoundary == Pmax_t2, so will
467		 * have to extrapolate
468		 */
469		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
470			while(ss < (int16_t)tgtIndex) {
471				tmpVal = (uint16_t)
472					(VpdTable_I[ii][sizeCurrVpdTable-1] +
473					 (ss-maxIndex)*Vpd_step);
474				pPDADCValues[kk++] = (tmpVal > 127) ?
475					127 : tmpVal;
476				ss++;
477			}
478		}				/* extrapolated above */
479	}					/* for all pdGainUsed */
480
481	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
482		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
483		ii++;
484	}
485	while (kk < 128) {
486		pPDADCValues[kk] = pPDADCValues[kk-1];
487		kk++;
488	}
489
490	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
491}
492
493
494/* Same as 2413 set power table */
495static HAL_BOOL
496ar2425SetPowerTable(struct ath_hal *ah,
497	int16_t *minPower, int16_t *maxPower,
498	const struct ieee80211_channel *chan,
499	uint16_t *rfXpdGain)
500{
501	uint16_t freq = ath_hal_gethwchannel(ah, chan);
502	struct ath_hal_5212 *ahp = AH5212(ah);
503	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
504	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
505	uint16_t pdGainOverlap_t2;
506	int16_t minCalPower2413_t2;
507	uint16_t *pdadcValues = ahp->ah_pcdacTable;
508	uint16_t gainBoundaries[4];
509	uint32_t i, reg32, regoffset;
510
511	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
512	    __func__, freq, chan->ic_flags);
513
514	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
515		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
516	else if (IEEE80211_IS_CHAN_B(chan))
517		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
518	else {
519		HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
520		return AH_FALSE;
521	}
522
523	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
524					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
525
526	ar2425getGainBoundariesAndPdadcsForPowers(ah, freq,
527		pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
528		rfXpdGain, pdadcValues);
529
530	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
531			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
532
533	/*
534	 * Note the pdadc table may not start at 0 dBm power, could be
535	 * negative or greater than 0.  Need to offset the power
536	 * values by the amount of minPower for griffin
537	 */
538	if (minCalPower2413_t2 != 0)
539		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
540	else
541		ahp->ah_txPowerIndexOffset = 0;
542
543	/* Finally, write the power values into the baseband power table */
544	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
545	for (i = 0; i < 32; i++) {
546		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
547			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
548			((pdadcValues[4*i + 2] & 0xFF) << 16) |
549			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
550		OS_REG_WRITE(ah, regoffset, reg32);
551		regoffset += 4;
552	}
553
554	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
555		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
556		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
557		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
558		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
559		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
560
561	return AH_TRUE;
562}
563
564static int16_t
565ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
566{
567	uint32_t ii,jj;
568	uint16_t Pmin=0,numVpd;
569
570	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
571		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
572		/* work backwards 'cause highest pdGain for lowest power */
573		numVpd = data->pDataPerPDGain[jj].numVpd;
574		if (numVpd > 0) {
575			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
576			return(Pmin);
577		}
578	}
579	return(Pmin);
580}
581
582static int16_t
583ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
584{
585	uint32_t ii;
586	uint16_t Pmax=0,numVpd;
587
588	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
589		/* work forwards cuase lowest pdGain for highest power */
590		numVpd = data->pDataPerPDGain[ii].numVpd;
591		if (numVpd > 0) {
592			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
593			return(Pmax);
594		}
595	}
596	return(Pmax);
597}
598
599static
600HAL_BOOL
601ar2425GetChannelMaxMinPower(struct ath_hal *ah,
602	const struct ieee80211_channel *chan,
603	int16_t *maxPow, int16_t *minPow)
604{
605	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
606	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
607	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
608	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
609	uint16_t numChannels;
610	int totalD,totalF, totalMin,last, i;
611
612	*maxPow = 0;
613
614	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
615		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
616	else if (IEEE80211_IS_CHAN_B(chan))
617		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
618	else
619		return(AH_FALSE);
620
621	numChannels = pRawDataset->numChannels;
622	data = pRawDataset->pDataPerChannel;
623
624	/* Make sure the channel is in the range of the TP values
625	 *  (freq piers)
626	 */
627	if (numChannels < 1)
628		return(AH_FALSE);
629
630	if ((freq < data[0].channelValue) ||
631	    (freq > data[numChannels-1].channelValue)) {
632		if (freq < data[0].channelValue) {
633			*maxPow = ar2425GetMaxPower(ah, &data[0]);
634			*minPow = ar2425GetMinPower(ah, &data[0]);
635			return(AH_TRUE);
636		} else {
637			*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
638			*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
639			return(AH_TRUE);
640		}
641	}
642
643	/* Linearly interpolate the power value now */
644	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
645	     last = i++);
646	totalD = data[i].channelValue - data[last].channelValue;
647	if (totalD > 0) {
648		totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
649		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
650				     ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
651		totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
652		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
653				     ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
654		return(AH_TRUE);
655	} else {
656		if (freq == data[i].channelValue) {
657			*maxPow = ar2425GetMaxPower(ah, &data[i]);
658			*minPow = ar2425GetMinPower(ah, &data[i]);
659			return(AH_TRUE);
660		} else
661			return(AH_FALSE);
662	}
663}
664
665/*
666 * Free memory for analog bank scratch buffers
667 */
668static void
669ar2425RfDetach(struct ath_hal *ah)
670{
671	struct ath_hal_5212 *ahp = AH5212(ah);
672
673	HALASSERT(ahp->ah_rfHal != AH_NULL);
674	ath_hal_free(ahp->ah_rfHal);
675	ahp->ah_rfHal = AH_NULL;
676}
677
678/*
679 * Allocate memory for analog bank scratch buffers
680 * Scratch Buffer will be reinitialized every reset so no need to zero now
681 */
682static HAL_BOOL
683ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
684{
685	struct ath_hal_5212 *ahp = AH5212(ah);
686	struct ar2425State *priv;
687
688	HALASSERT(ah->ah_magic == AR5212_MAGIC);
689
690	HALASSERT(ahp->ah_rfHal == AH_NULL);
691	priv = ath_hal_malloc(sizeof(struct ar2425State));
692	if (priv == AH_NULL) {
693		HALDEBUG(ah, HAL_DEBUG_ANY,
694		    "%s: cannot allocate private state\n", __func__);
695		*status = HAL_ENOMEM;		/* XXX */
696		return AH_FALSE;
697	}
698	priv->base.rfDetach		= ar2425RfDetach;
699	priv->base.writeRegs		= ar2425WriteRegs;
700	priv->base.getRfBank		= ar2425GetRfBank;
701	priv->base.setChannel		= ar2425SetChannel;
702	priv->base.setRfRegs		= ar2425SetRfRegs;
703	priv->base.setPowerTable	= ar2425SetPowerTable;
704	priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
705	priv->base.getNfAdjust		= ar5212GetNfAdjust;
706
707	ahp->ah_pcdacTable = priv->pcdacTable;
708	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
709	ahp->ah_rfHal = &priv->base;
710
711	return AH_TRUE;
712}
713
714static HAL_BOOL
715ar2425Probe(struct ath_hal *ah)
716{
717	return IS_2425(ah) || IS_2417(ah);
718}
719AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
720