1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5210/ar5210.h"
25#include "ar5210/ar5210reg.h"
26#include "ar5210/ar5210phy.h"
27
28#include "ah_eeprom_v1.h"
29
30typedef struct {
31	uint32_t	Offset;
32	uint32_t	Value;
33} REGISTER_VAL;
34
35static const REGISTER_VAL ar5k0007_init[] = {
36#include "ar5210/ar5k_0007.ini"
37};
38
39/* Default Power Settings for channels outside of EEPROM range */
40static const uint8_t ar5k0007_pwrSettings[17] = {
41/*	gain delta			pc dac */
42/* 54  48  36  24  18  12   9   54  48  36  24  18  12   9   6  ob  db	  */
43    9,  9,  0,  0,  0,  0,  0,   2,  2,  6,  6,  6,  6,  6,  6,  2,  2
44};
45
46/*
47 * The delay, in usecs, between writing AR_RC with a reset
48 * request and waiting for the chip to settle.  If this is
49 * too short then the chip does not come out of sleep state.
50 * Note this value was empirically derived and may be dependent
51 * on the host machine (don't know--the problem was identified
52 * on an IBM 570e laptop; 10us delays worked on other systems).
53 */
54#define	AR_RC_SETTLE_TIME	20000
55
56static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57		uint32_t resetMask, u_int delay);
58static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
59static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60
61/*
62 * Places the device in and out of reset and then places sane
63 * values in the registers based on EEPROM config, initialization
64 * vectors (as determined by the mode), and station configuration
65 *
66 * bChannelChange is used to preserve DMA/PCU registers across
67 * a HW Reset during channel change.
68 */
69HAL_BOOL
70ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
72	HAL_STATUS *status)
73{
74#define	N(a)	(sizeof (a) /sizeof (a[0]))
75#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
76	struct ath_hal_5210 *ahp = AH5210(ah);
77	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
78	HAL_CHANNEL_INTERNAL *ichan;
79	HAL_STATUS ecode;
80	uint32_t ledstate;
81	int i, q;
82
83	HALDEBUG(ah, HAL_DEBUG_RESET,
84	    "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
85	    opmode, chan->ic_freq, chan->ic_flags,
86	    bChannelChange ? "change" : "same");
87
88	if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
89		/* Only 11a mode */
90		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
91		FAIL(HAL_EINVAL);
92	}
93	/*
94	 * Map public channel to private.
95	 */
96	ichan = ath_hal_checkchannel(ah, chan);
97	if (ichan == AH_NULL) {
98		HALDEBUG(ah, HAL_DEBUG_ANY,
99		    "%s: invalid channel %u/0x%x; no mapping\n",
100		    __func__, chan->ic_freq, chan->ic_flags);
101		FAIL(HAL_EINVAL);
102	}
103	switch (opmode) {
104	case HAL_M_STA:
105	case HAL_M_IBSS:
106	case HAL_M_HOSTAP:
107	case HAL_M_MONITOR:
108		break;
109	default:
110		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
111		    __func__, opmode);
112		FAIL(HAL_EINVAL);
113		break;
114	}
115
116	ledstate = OS_REG_READ(ah, AR_PCICFG) &
117		(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
118
119	if (!ar5210ChipReset(ah, chan)) {
120		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
121		    __func__);
122		FAIL(HAL_EIO);
123	}
124
125	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
126	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
127	ar5210SetOperatingMode(ah, opmode);
128
129	switch (opmode) {
130	case HAL_M_HOSTAP:
131		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
132		OS_REG_WRITE(ah, AR_PCICFG,
133			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
134		break;
135	case HAL_M_IBSS:
136		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
137		OS_REG_WRITE(ah, AR_PCICFG,
138			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
139		break;
140	case HAL_M_STA:
141		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
142		OS_REG_WRITE(ah, AR_PCICFG,
143			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
144		break;
145	case HAL_M_MONITOR:
146		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
147		OS_REG_WRITE(ah, AR_PCICFG,
148			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
149		break;
150	}
151
152	/* Restore previous led state */
153	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
154
155	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
156	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
157
158	OS_REG_WRITE(ah, AR_TXDP0, 0);
159	OS_REG_WRITE(ah, AR_TXDP1, 0);
160	OS_REG_WRITE(ah, AR_RXDP, 0);
161
162	/*
163	 * Initialize interrupt state.
164	 */
165	(void) OS_REG_READ(ah, AR_ISR);		/* cleared on read */
166	OS_REG_WRITE(ah, AR_IMR, 0);
167	OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
168	ahp->ah_maskReg = 0;
169
170	(void) OS_REG_READ(ah, AR_BSR);		/* cleared on read */
171	OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
172	OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
173
174	OS_REG_WRITE(ah, AR_TOPS, 8);		/* timeout prescale */
175	OS_REG_WRITE(ah, AR_RXNOFRM, 8);	/* RX no frame timeout */
176	OS_REG_WRITE(ah, AR_RPGTO, 0);		/* RX frame gap timeout */
177	OS_REG_WRITE(ah, AR_TXNOFRM, 0);	/* TX no frame timeout */
178
179	OS_REG_WRITE(ah, AR_SFR, 0);
180	OS_REG_WRITE(ah, AR_MIBC, 0);		/* unfreeze ctrs + clr state */
181	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
182	OS_REG_WRITE(ah, AR_CFP_DUR, 0);
183
184	ar5210SetRxFilter(ah, 0);		/* nothing for now */
185	OS_REG_WRITE(ah, AR_MCAST_FIL0, 0);	/* multicast filter */
186	OS_REG_WRITE(ah, AR_MCAST_FIL1, 0);	/* XXX was 2 */
187
188	OS_REG_WRITE(ah, AR_TX_MASK0, 0);
189	OS_REG_WRITE(ah, AR_TX_MASK1, 0);
190	OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
191	OS_REG_WRITE(ah, AR_TRIG_LEV, 1);	/* minimum */
192
193	ar5210UpdateDiagReg(ah, 0);
194
195	OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
196	OS_REG_WRITE(ah, AR_TIMER0, 0);		/* next beacon time */
197	OS_REG_WRITE(ah, AR_TSF_L32, 0);	/* local clock */
198	OS_REG_WRITE(ah, AR_TIMER1, ~0);	/* next DMA beacon alert */
199	OS_REG_WRITE(ah, AR_TIMER2, ~0);	/* next SW beacon alert */
200	OS_REG_WRITE(ah, AR_TIMER3, 1);		/* next ATIM window */
201
202	/* Write the INI values for PHYreg initialization */
203	for (i = 0; i < N(ar5k0007_init); i++) {
204		uint32_t reg = ar5k0007_init[i].Offset;
205		/* On channel change, don't reset the PCU registers */
206		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
207			OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
208	}
209
210	/* Setup the transmit power values for cards since 0x0[0-2]05 */
211	if (!ar5210SetTransmitPower(ah, chan)) {
212		HALDEBUG(ah, HAL_DEBUG_ANY,
213		    "%s: error init'ing transmit power\n", __func__);
214		FAIL(HAL_EIO);
215	}
216
217	OS_REG_WRITE(ah, AR_PHY(10),
218		(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
219		(ee->ee_xlnaOn << 8));
220	OS_REG_WRITE(ah, AR_PHY(13),
221		(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
222		(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
223	OS_REG_WRITE(ah, AR_PHY(17),
224		(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
225		((ee->ee_antenna >> 1) & 0x3F80));
226	OS_REG_WRITE(ah, AR_PHY(18),
227		(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
228		((ee->ee_antenna << 10) & 0x3F000));
229	OS_REG_WRITE(ah, AR_PHY(25),
230		(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
231		((ee->ee_thresh62 << 12) & 0x7F000));
232	OS_REG_WRITE(ah, AR_PHY(68),
233		(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
234		(ee->ee_antenna & 0x3));
235
236	if (!ar5210SetChannel(ah, chan)) {
237		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
238		    __func__);
239		FAIL(HAL_EIO);
240	}
241	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
242		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
243
244	/* Activate the PHY */
245	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
246
247	OS_DELAY(1000);		/* Wait a bit (1 msec) */
248
249	/* calibrate the HW and poll the bit going to 0 for completion */
250	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
251		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
252	(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
253
254	/* Perform noise floor calibration and set status */
255	if (!ar5210CalNoiseFloor(ah, ichan)) {
256		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
257		HALDEBUG(ah, HAL_DEBUG_ANY,
258		    "%s: noise floor calibration failed\n", __func__);
259		FAIL(HAL_EIO);
260	}
261
262	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
263		ar5210ResetTxQueue(ah, q);
264
265	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
266		ar5210EnableRfKill(ah);
267
268	/*
269	 * Writing to AR_BEACON will start timers. Hence it should be
270	 * the last register to be written. Do not reset tsf, do not
271	 * enable beacons at this point, but preserve other values
272	 * like beaconInterval.
273	 */
274	OS_REG_WRITE(ah, AR_BEACON,
275		(OS_REG_READ(ah, AR_BEACON) &
276			~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
277
278	/* Restore user-specified slot time and timeouts */
279	if (ahp->ah_sifstime != (u_int) -1)
280		ar5210SetSifsTime(ah, ahp->ah_sifstime);
281	if (ahp->ah_slottime != (u_int) -1)
282		ar5210SetSlotTime(ah, ahp->ah_slottime);
283	if (ahp->ah_acktimeout != (u_int) -1)
284		ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
285	if (ahp->ah_ctstimeout != (u_int) -1)
286		ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
287	if (AH_PRIVATE(ah)->ah_diagreg != 0)
288		ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
289
290	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
291
292	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
293
294	return AH_TRUE;
295bad:
296	if (status != AH_NULL)
297		*status = ecode;
298	return AH_FALSE;
299#undef FAIL
300#undef N
301}
302
303static void
304ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
305{
306	struct ath_hal_5210 *ahp = AH5210(ah);
307	uint32_t val;
308
309	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
310	switch (opmode) {
311	case HAL_M_HOSTAP:
312		OS_REG_WRITE(ah, AR_STA_ID1, val
313			| AR_STA_ID1_AP
314			| AR_STA_ID1_NO_PSPOLL
315			| AR_STA_ID1_DESC_ANTENNA
316			| ahp->ah_staId1Defaults);
317		break;
318	case HAL_M_IBSS:
319		OS_REG_WRITE(ah, AR_STA_ID1, val
320			| AR_STA_ID1_ADHOC
321			| AR_STA_ID1_NO_PSPOLL
322			| AR_STA_ID1_DESC_ANTENNA
323			| ahp->ah_staId1Defaults);
324		break;
325	case HAL_M_STA:
326		OS_REG_WRITE(ah, AR_STA_ID1, val
327			| AR_STA_ID1_NO_PSPOLL
328			| AR_STA_ID1_PWR_SV
329			| ahp->ah_staId1Defaults);
330		break;
331	case HAL_M_MONITOR:
332		OS_REG_WRITE(ah, AR_STA_ID1, val
333			| AR_STA_ID1_NO_PSPOLL
334			| ahp->ah_staId1Defaults);
335		break;
336	}
337}
338
339void
340ar5210SetPCUConfig(struct ath_hal *ah)
341{
342	ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
343}
344
345/*
346 * Places the PHY and Radio chips into reset.  A full reset
347 * must be called to leave this state.  The PCI/MAC/PCU are
348 * not placed into reset as we must receive interrupt to
349 * re-enable the hardware.
350 */
351HAL_BOOL
352ar5210PhyDisable(struct ath_hal *ah)
353{
354	return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
355}
356
357/*
358 * Places all of hardware into reset
359 */
360HAL_BOOL
361ar5210Disable(struct ath_hal *ah)
362{
363#define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
364	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
365		return AH_FALSE;
366
367	/*
368	 * Reset the HW - PCI must be reset after the rest of the
369	 * device has been reset
370	 */
371	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
372		return AH_FALSE;
373	OS_DELAY(1000);
374	(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
375	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
376
377	return AH_TRUE;
378#undef AR_RC_HW
379}
380
381/*
382 * Places the hardware into reset and then pulls it out of reset
383 */
384HAL_BOOL
385ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
386{
387#define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
388
389	HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
390		chan && IEEE80211_IS_CHAN_TURBO(chan) ?
391		"enabled" : "disabled");
392
393	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
394		return AH_FALSE;
395
396	/* Place chip in turbo before reset to cleanly reset clocks */
397	OS_REG_WRITE(ah, AR_PHY_FRCTL,
398		chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
399
400	/*
401	 * Reset the HW.
402	 * PCI must be reset after the rest of the device has been reset.
403	 */
404	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
405		return AH_FALSE;
406	OS_DELAY(1000);
407	if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
408		return AH_FALSE;
409	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
410
411	/*
412	 * Bring out of sleep mode (AGAIN)
413	 *
414	 * WARNING WARNING WARNING
415	 *
416	 * There is a problem with the chip where it doesn't always indicate
417	 * that it's awake, so initializePowerUp() will fail.
418	 */
419	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
420		return AH_FALSE;
421
422	/* Clear warm reset reg */
423	return ar5210SetResetReg(ah, 0, 10);
424#undef AR_RC_HW
425}
426
427enum {
428	FIRPWR_M	= 0x03fc0000,
429	FIRPWR_S	= 18,
430	KCOARSEHIGH_M   = 0x003f8000,
431	KCOARSEHIGH_S   = 15,
432	KCOARSELOW_M	= 0x00007f80,
433	KCOARSELOW_S	= 7,
434	ADCSAT_ICOUNT_M	= 0x0001f800,
435	ADCSAT_ICOUNT_S	= 11,
436	ADCSAT_THRESH_M	= 0x000007e0,
437	ADCSAT_THRESH_S	= 5
438};
439
440/*
441 * Recalibrate the lower PHY chips to account for temperature/environment
442 * changes.
443 */
444HAL_BOOL
445ar5210PerCalibrationN(struct ath_hal *ah,
446	struct ieee80211_channel *chan, u_int chainMask,
447	HAL_BOOL longCal, HAL_BOOL *isCalDone)
448{
449	uint32_t regBeacon;
450	uint32_t reg9858, reg985c, reg9868;
451	HAL_CHANNEL_INTERNAL *ichan;
452
453	ichan = ath_hal_checkchannel(ah, chan);
454	if (ichan == AH_NULL)
455		return AH_FALSE;
456	/* Disable tx and rx */
457	ar5210UpdateDiagReg(ah,
458		OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
459
460	/* Disable Beacon Enable */
461	regBeacon = OS_REG_READ(ah, AR_BEACON);
462	OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
463
464	/* Delay 4ms to ensure that all tx and rx activity has ceased */
465	OS_DELAY(4000);
466
467	/* Disable AGC to radio traffic */
468	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
469	/* Wait for the AGC traffic to cease. */
470	OS_DELAY(10);
471
472	/* Change Channel to relock synth */
473	if (!ar5210SetChannel(ah, chan))
474		return AH_FALSE;
475
476	/* wait for the synthesizer lock to stabilize */
477	OS_DELAY(1000);
478
479	/* Re-enable AGC to radio traffic */
480	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
481
482	/*
483	 * Configure the AGC so that it is highly unlikely (if not
484	 * impossible) for it to send any gain changes to the analog
485	 * chip.  We store off the current values so that they can
486	 * be rewritten below. Setting the following values:
487	 * firpwr	 = -1
488	 * Kcoursehigh   = -1
489	 * Kcourselow	 = -127
490	 * ADCsat_icount = 2
491	 * ADCsat_thresh = 12
492	 */
493	reg9858 = OS_REG_READ(ah, 0x9858);
494	reg985c = OS_REG_READ(ah, 0x985c);
495	reg9868 = OS_REG_READ(ah, 0x9868);
496
497	OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
498					 ((-1 << FIRPWR_S) & FIRPWR_M));
499	OS_REG_WRITE(ah, 0x985c,
500		 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
501		 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
502		 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
503	OS_REG_WRITE(ah, 0x9868,
504		 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
505		 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
506		 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
507
508	/* Wait for AGC changes to be enacted */
509	OS_DELAY(20);
510
511	/*
512	 * We disable RF mix/gain stages for the PGA to avoid a
513	 * race condition that will occur with receiving a frame
514	 * and performing the AGC calibration.  This will be
515	 * re-enabled at the end of offset cal.  We turn off AGC
516	 * writes during this write as it will go over the analog bus.
517	 */
518	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
519	OS_DELAY(10);		 /* wait for the AGC traffic to cease */
520	OS_REG_WRITE(ah, 0x98D4, 0x21);
521	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
522
523	/* wait to make sure that additional AGC traffic has quiesced */
524	OS_DELAY(1000);
525
526	/* AGC calibration (this was added to make the NF threshold check work) */
527	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
528		 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
529	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
530		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
531		    __func__);
532	}
533
534	/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
535	OS_REG_WRITE(ah, 0x9858, reg9858);
536	OS_REG_WRITE(ah, 0x985c, reg985c);
537	OS_REG_WRITE(ah, 0x9868, reg9868);
538
539	/* Perform noise floor and set status */
540	if (!ar5210CalNoiseFloor(ah, ichan)) {
541		/*
542		 * Delay 5ms before retrying the noise floor -
543		 * just to make sure.  We're in an error
544		 * condition here
545		 */
546		HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
547		    "%s: Performing 2nd Noise Cal\n", __func__);
548		OS_DELAY(5000);
549		if (!ar5210CalNoiseFloor(ah, ichan))
550			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
551	}
552
553	/* Clear tx and rx disable bit */
554	ar5210UpdateDiagReg(ah,
555		 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
556
557	/* Re-enable Beacons */
558	OS_REG_WRITE(ah, AR_BEACON, regBeacon);
559
560	*isCalDone = AH_TRUE;
561
562	return AH_TRUE;
563}
564
565HAL_BOOL
566ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
567	HAL_BOOL *isIQdone)
568{
569	return ar5210PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
570}
571
572HAL_BOOL
573ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
574{
575	return AH_TRUE;
576}
577
578/*
579 * Writes the given reset bit mask into the reset register
580 */
581static HAL_BOOL
582ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
583{
584	uint32_t mask = resetMask ? resetMask : ~0;
585	HAL_BOOL rt;
586
587	OS_REG_WRITE(ah, AR_RC, resetMask);
588	/* need to wait at least 128 clocks when reseting PCI before read */
589	OS_DELAY(delay);
590
591	resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
592	mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
593	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
594        if ((resetMask & AR_RC_RMAC) == 0) {
595		if (isBigEndian()) {
596			/*
597			 * Set CFG, little-endian for descriptor accesses.
598			 */
599			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
600			OS_REG_WRITE(ah, AR_CFG, mask);
601		} else
602			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
603	}
604	return rt;
605}
606
607
608/*
609 * Returns: the pcdac value
610 */
611static uint8_t
612getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
613{
614	int32_t	 i;
615	int useNextEntry = AH_FALSE;
616	uint32_t interp;
617
618	for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
619		/* Check for exact entry */
620		if (dBm == AR_I2DBM(i)) {
621			if (pRD->pcdac[i] != 63)
622				return pRD->pcdac[i];
623			useNextEntry = AH_TRUE;
624		} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
625			/* Interpolate for between entry with a logish scale */
626			if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
627				interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
628				interp = (interp / 1000) + pRD->pcdac[i-1];
629				return interp;
630			}
631			useNextEntry = AH_TRUE;
632		} else if (useNextEntry == AH_TRUE) {
633			/* Grab the next lowest */
634			if (pRD->pcdac[i] != 63)
635				return pRD->pcdac[i];
636		}
637	}
638
639	/* Return the lowest Entry if we haven't returned */
640	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
641		if (pRD->pcdac[i] != 63)
642			return pRD->pcdac[i];
643
644	/* No value to return from table */
645#ifdef AH_DEBUG
646	ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
647#endif
648	return 1;
649}
650
651/*
652 * Find or interpolates the gainF value from the table ptr.
653 */
654static uint8_t
655getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
656	uint8_t pcdac, uint8_t *dBm)
657{
658	uint32_t interp;
659	int low, high, i;
660
661	low = high = -1;
662
663	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
664		if(pRD->pcdac[i] == 63)
665			continue;
666		if (pcdac == pRD->pcdac[i]) {
667			*dBm = AR_I2DBM(i);
668			return pRD->gainF[i];  /* Exact Match */
669		}
670		if (pcdac > pRD->pcdac[i])
671			low = i;
672		if (pcdac < pRD->pcdac[i]) {
673			high = i;
674			if (low == -1) {
675				*dBm = AR_I2DBM(i);
676				/* PCDAC is lower than lowest setting */
677				return pRD->gainF[i];
678			}
679			break;
680		}
681	}
682	if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
683		/* No settings were found */
684#ifdef AH_DEBUG
685		ath_hal_printf(ah,
686			"%s: no valid entries in the pcdac table: %d\n",
687			__func__, pcdac);
688#endif
689		return 63;
690	}
691	if (i >= AR_TP_SCALING_ENTRIES) {
692		/* PCDAC setting was above the max setting in the table */
693		*dBm = AR_I2DBM(low);
694		return pRD->gainF[low];
695	}
696	/* Only exact if table has no missing entries */
697	*dBm = (low + high) + 3;
698
699	/*
700	 * Perform interpolation between low and high values to find gainF
701	 * linearly scale the pcdac between low and high
702	 */
703	interp = ((pcdac - pRD->pcdac[low]) * 1000) /
704		  (pRD->pcdac[high] - pRD->pcdac[low]);
705	/*
706	 * Multiply the scale ratio by the gainF difference
707	 * (plus a rnd up factor)
708	 */
709	interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
710
711	/* Add ratioed gain_f to low gain_f value */
712	return interp + pRD->gainF[low];
713}
714
715HAL_BOOL
716ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
717{
718	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
719	/* XXX flush to h/w */
720	return AH_TRUE;
721}
722
723/*
724 * Get TXPower values and set them in the radio
725 */
726static HAL_BOOL
727setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
728	uint8_t cp[17])
729{
730	uint16_t freq = ath_hal_gethwchannel(ah, chan);
731	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
732	uint8_t gainFRD, gainF36, gainF48, gainF54;
733	uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
734	uint32_t rd, group;
735	const struct tpcMap  *pRD;
736
737	/* Set OB/DB Values regardless of channel */
738	cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
739	cp[16] = ee->ee_biasCurrents & 0x7;
740
741	if (freq < 5170 || freq > 5320) {
742		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
743		    __func__, freq);
744		return AH_FALSE;
745	}
746
747	HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
748	    ee->ee_version < AR_EEPROM_VER3);
749
750	/* Match regulatory domain */
751	for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
752		if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
753			break;
754	if (rd == AR_REG_DOMAINS_MAX) {
755#ifdef AH_DEBUG
756		ath_hal_printf(ah,
757			"%s: no calibrated regulatory domain matches the "
758			"current regularly domain (0x%0x)\n", __func__,
759			AH_PRIVATE(ah)->ah_currentRD);
760#endif
761		return AH_FALSE;
762	}
763	group = ((freq - 5170) / 10);
764
765	if (group > 11) {
766		/* Pull 5.29 into the 5.27 group */
767		group--;
768	}
769
770	/* Integer divide will set group from 0 to 4 */
771	group = group / 3;
772	pRD   = &ee->ee_tpc[group];
773
774	/* Set PC DAC Values */
775	cp[14] = pRD->regdmn[rd];
776	cp[9]  = AH_MIN(pRD->regdmn[rd], pRD->rate36);
777	cp[8]  = AH_MIN(pRD->regdmn[rd], pRD->rate48);
778	cp[7]  = AH_MIN(pRD->regdmn[rd], pRD->rate54);
779
780	/* Find Corresponding gainF values for RD, 36, 48, 54 */
781	gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
782	gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
783	gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
784	gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
785
786	/* Power Scale if requested */
787	if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
788		static const uint16_t tpcScaleReductionTable[5] =
789			{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
790		uint16_t tpScale;
791
792		tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
793		if (dBmRD < tpScale+3)
794			dBmRD = 3;		/* min */
795		else
796			dBmRD -= tpScale;
797		cp[14]  = getPcdac(ah, pRD, dBmRD);
798		gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
799		dBm36   = AH_MIN(dBm36, dBmRD);
800		cp[9]   = getPcdac(ah, pRD, dBm36);
801		gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
802		dBm48   = AH_MIN(dBm48, dBmRD);
803		cp[8]   = getPcdac(ah, pRD, dBm48);
804		gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
805		dBm54   = AH_MIN(dBm54, dBmRD);
806		cp[7]   = getPcdac(ah, pRD, dBm54);
807		gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
808	}
809	/* Record current dBm at rate 6 */
810	AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
811
812	cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
813
814	/* Set GainF Values */
815	cp[0] = gainFRD - gainF54;
816	cp[1] = gainFRD - gainF48;
817	cp[2] = gainFRD - gainF36;
818	/* 9, 12, 18, 24 have no gain_delta from 6 */
819	cp[3] = cp[4] = cp[5] = cp[6] = 0;
820	return AH_TRUE;
821}
822
823/*
824 * Places the device in and out of reset and then places sane
825 * values in the registers based on EEPROM config, initialization
826 * vectors (as determined by the mode), and station configuration
827 */
828HAL_BOOL
829ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
830{
831#define	N(a)	(sizeof (a) / sizeof (a[0]))
832	static const uint32_t pwr_regs_start[17] = {
833		0x00000000, 0x00000000, 0x00000000,
834		0x00000000, 0x00000000, 0xf0000000,
835		0xcc000000, 0x00000000, 0x00000000,
836		0x00000000, 0x0a000000, 0x000000e2,
837		0x0a000020, 0x01000002, 0x01000018,
838		0x40000000, 0x00000418
839	};
840	uint16_t i;
841	uint8_t cp[sizeof(ar5k0007_pwrSettings)];
842	uint32_t pwr_regs[17];
843
844	OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
845	OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
846
847	/* Check the EEPROM tx power calibration settings */
848	if (!setupPowerSettings(ah, chan, cp)) {
849#ifdef AH_DEBUG
850		ath_hal_printf(ah, "%s: unable to setup power settings\n",
851			__func__);
852#endif
853		return AH_FALSE;
854	}
855	if (cp[15] < 1 || cp[15] > 5) {
856#ifdef AH_DEBUG
857		ath_hal_printf(ah, "%s: OB out of range (%u)\n",
858			__func__, cp[15]);
859#endif
860		return AH_FALSE;
861	}
862	if (cp[16] < 1 || cp[16] > 5) {
863#ifdef AH_DEBUG
864		ath_hal_printf(ah, "%s: DB out of range (%u)\n",
865			__func__, cp[16]);
866#endif
867		return AH_FALSE;
868	}
869
870	/* reverse bits of the transmit power array */
871	for (i = 0; i < 7; i++)
872		cp[i] = ath_hal_reverseBits(cp[i], 5);
873	for (i = 7; i < 15; i++)
874		cp[i] = ath_hal_reverseBits(cp[i], 6);
875
876	/* merge transmit power values into the register - quite gross */
877	pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
878	pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
879			((cp[1] >> 3) & 0x03);
880	pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
881	pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
882		       ((cp[4] >> 4) & 0x01);
883	pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
884	pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
885			((cp[7] >> 5) & 0x01);
886	pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
887	pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
888	pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
889	pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
890	pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
891	pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
892
893	/* Set OB */
894	pwr_regs[8] |=  (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
895	pwr_regs[9] |=  (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
896
897	/* Set DB */
898	pwr_regs[9] |=  (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
899
900	/* Write the registers */
901	for (i = 0; i < N(pwr_regs)-1; i++)
902		OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
903	/* last write is a flush */
904	OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
905
906	return AH_TRUE;
907#undef N
908}
909
910/*
911 * Takes the MHz channel value and sets the Channel value
912 *
913 * ASSUMES: Writes enabled to analog bus before AGC is active
914 *   or by disabling the AGC.
915 */
916static HAL_BOOL
917ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
918{
919	uint16_t freq = ath_hal_gethwchannel(ah, chan);
920	uint32_t data;
921
922	/* Set the Channel */
923	data = ath_hal_reverseBits((freq - 5120)/10, 5);
924	data = (data << 1) | 0x41;
925	OS_REG_WRITE(ah, AR_PHY(0x27), data);
926	OS_REG_WRITE(ah, AR_PHY(0x30), 0);
927	AH_PRIVATE(ah)->ah_curchan = chan;
928	return AH_TRUE;
929}
930
931int16_t
932ar5210GetNoiseFloor(struct ath_hal *ah)
933{
934	int16_t nf;
935
936	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
937	if (nf & 0x100)
938		nf = 0 - ((nf ^ 0x1ff) + 1);
939	return nf;
940}
941
942#define NORMAL_NF_THRESH (-72)
943/*
944 * Peform the noisefloor calibration and check for
945 * any constant channel interference
946 *
947 * Returns: TRUE for a successful noise floor calibration; else FALSE
948 */
949HAL_BOOL
950ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
951{
952	int32_t nf, nfLoops;
953
954	/* Calibrate the noise floor */
955	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
956		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
957
958	/* Do not read noise floor until it has done the first update */
959	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
960#ifdef ATH_HAL_DEBUG
961		ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
962			OS_REG_READ(ah, AR_PHY_AGCCTL));
963		ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
964			OS_REG_READ(ah, AR_RC));
965		ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
966			OS_REG_READ(ah, AR_PHY_ACTIVE));
967#endif /* ATH_HAL_DEBUG */
968		return AH_FALSE;
969	}
970
971	nf = 0;
972	/* Keep checking until the floor is below the threshold or the nf is done */
973	for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
974		OS_DELAY(1000); /* Sleep for 1 ms */
975		nf = ar5210GetNoiseFloor(ah);
976	}
977
978	if (nf > NORMAL_NF_THRESH) {
979		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
980		    __func__, nf);
981		ichan->rawNoiseFloor = 0;
982		return AH_FALSE;
983	}
984	ichan->rawNoiseFloor = nf;
985	return AH_TRUE;
986}
987
988/*
989 * Adjust NF based on statistical values for 5GHz frequencies.
990 */
991int16_t
992ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
993{
994	return 0;
995}
996
997HAL_RFGAIN
998ar5210GetRfgain(struct ath_hal *ah)
999{
1000	return HAL_RFGAIN_INACTIVE;
1001}
1002