1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/dev/ale/if_ale.c 312362 2017-01-18 02:16:17Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/module.h>
41#include <sys/rman.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_llc.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56#include <net/if_vlan_var.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/tcp.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69#include <machine/bus.h>
70#include <machine/in_cksum.h>
71
72#include <dev/ale/if_alereg.h>
73#include <dev/ale/if_alevar.h>
74
75/* "device miibus" required.  See GENERIC if you get errors here. */
76#include "miibus_if.h"
77
78/* For more information about Tx checksum offload issues see ale_encap(). */
79#define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
80
81MODULE_DEPEND(ale, pci, 1, 1, 1);
82MODULE_DEPEND(ale, ether, 1, 1, 1);
83MODULE_DEPEND(ale, miibus, 1, 1, 1);
84
85/* Tunables. */
86static int msi_disable = 0;
87static int msix_disable = 0;
88TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
89TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
90
91/*
92 * Devices supported by this driver.
93 */
94static const struct ale_dev {
95	uint16_t	ale_vendorid;
96	uint16_t	ale_deviceid;
97	const char	*ale_name;
98} ale_devs[] = {
99    { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
100    "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
101};
102
103static int	ale_attach(device_t);
104static int	ale_check_boundary(struct ale_softc *);
105static int	ale_detach(device_t);
106static int	ale_dma_alloc(struct ale_softc *);
107static void	ale_dma_free(struct ale_softc *);
108static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109static int	ale_encap(struct ale_softc *, struct mbuf **);
110static void	ale_get_macaddr(struct ale_softc *);
111static void	ale_init(void *);
112static void	ale_init_locked(struct ale_softc *);
113static void	ale_init_rx_pages(struct ale_softc *);
114static void	ale_init_tx_ring(struct ale_softc *);
115static void	ale_int_task(void *, int);
116static int	ale_intr(void *);
117static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
118static void	ale_mac_config(struct ale_softc *);
119static int	ale_miibus_readreg(device_t, int, int);
120static void	ale_miibus_statchg(device_t);
121static int	ale_miibus_writereg(device_t, int, int, int);
122static int	ale_mediachange(struct ifnet *);
123static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
124static void	ale_phy_reset(struct ale_softc *);
125static int	ale_probe(device_t);
126static void	ale_reset(struct ale_softc *);
127static int	ale_resume(device_t);
128static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
129    uint32_t, uint32_t *);
130static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
131static int	ale_rxeof(struct ale_softc *sc, int);
132static void	ale_rxfilter(struct ale_softc *);
133static void	ale_rxvlan(struct ale_softc *);
134static void	ale_setlinkspeed(struct ale_softc *);
135static void	ale_setwol(struct ale_softc *);
136static int	ale_shutdown(device_t);
137static void	ale_start(struct ifnet *);
138static void	ale_start_locked(struct ifnet *);
139static void	ale_stats_clear(struct ale_softc *);
140static void	ale_stats_update(struct ale_softc *);
141static void	ale_stop(struct ale_softc *);
142static void	ale_stop_mac(struct ale_softc *);
143static int	ale_suspend(device_t);
144static void	ale_sysctl_node(struct ale_softc *);
145static void	ale_tick(void *);
146static void	ale_txeof(struct ale_softc *);
147static void	ale_watchdog(struct ale_softc *);
148static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
149static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
150static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
151
152static device_method_t ale_methods[] = {
153	/* Device interface. */
154	DEVMETHOD(device_probe,		ale_probe),
155	DEVMETHOD(device_attach,	ale_attach),
156	DEVMETHOD(device_detach,	ale_detach),
157	DEVMETHOD(device_shutdown,	ale_shutdown),
158	DEVMETHOD(device_suspend,	ale_suspend),
159	DEVMETHOD(device_resume,	ale_resume),
160
161	/* MII interface. */
162	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
163	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
164	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
165
166	DEVMETHOD_END
167};
168
169static driver_t ale_driver = {
170	"ale",
171	ale_methods,
172	sizeof(struct ale_softc)
173};
174
175static devclass_t ale_devclass;
176
177DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
178DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
179
180static struct resource_spec ale_res_spec_mem[] = {
181	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
182	{ -1,			0,		0 }
183};
184
185static struct resource_spec ale_irq_spec_legacy[] = {
186	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec ale_irq_spec_msi[] = {
191	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec ale_irq_spec_msix[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static int
201ale_miibus_readreg(device_t dev, int phy, int reg)
202{
203	struct ale_softc *sc;
204	uint32_t v;
205	int i;
206
207	sc = device_get_softc(dev);
208
209	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
210	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
211	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
212		DELAY(5);
213		v = CSR_READ_4(sc, ALE_MDIO);
214		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
215			break;
216	}
217
218	if (i == 0) {
219		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
220		return (0);
221	}
222
223	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
224}
225
226static int
227ale_miibus_writereg(device_t dev, int phy, int reg, int val)
228{
229	struct ale_softc *sc;
230	uint32_t v;
231	int i;
232
233	sc = device_get_softc(dev);
234
235	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
236	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
237	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
238	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
239		DELAY(5);
240		v = CSR_READ_4(sc, ALE_MDIO);
241		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
242			break;
243	}
244
245	if (i == 0)
246		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
247
248	return (0);
249}
250
251static void
252ale_miibus_statchg(device_t dev)
253{
254	struct ale_softc *sc;
255	struct mii_data *mii;
256	struct ifnet *ifp;
257	uint32_t reg;
258
259	sc = device_get_softc(dev);
260	mii = device_get_softc(sc->ale_miibus);
261	ifp = sc->ale_ifp;
262	if (mii == NULL || ifp == NULL ||
263	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
264		return;
265
266	sc->ale_flags &= ~ALE_FLAG_LINK;
267	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
268	    (IFM_ACTIVE | IFM_AVALID)) {
269		switch (IFM_SUBTYPE(mii->mii_media_active)) {
270		case IFM_10_T:
271		case IFM_100_TX:
272			sc->ale_flags |= ALE_FLAG_LINK;
273			break;
274		case IFM_1000_T:
275			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
276				sc->ale_flags |= ALE_FLAG_LINK;
277			break;
278		default:
279			break;
280		}
281	}
282
283	/* Stop Rx/Tx MACs. */
284	ale_stop_mac(sc);
285
286	/* Program MACs with resolved speed/duplex/flow-control. */
287	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
288		ale_mac_config(sc);
289		/* Reenable Tx/Rx MACs. */
290		reg = CSR_READ_4(sc, ALE_MAC_CFG);
291		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
292		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
293	}
294}
295
296static void
297ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
298{
299	struct ale_softc *sc;
300	struct mii_data *mii;
301
302	sc = ifp->if_softc;
303	ALE_LOCK(sc);
304	if ((ifp->if_flags & IFF_UP) == 0) {
305		ALE_UNLOCK(sc);
306		return;
307	}
308	mii = device_get_softc(sc->ale_miibus);
309
310	mii_pollstat(mii);
311	ifmr->ifm_status = mii->mii_media_status;
312	ifmr->ifm_active = mii->mii_media_active;
313	ALE_UNLOCK(sc);
314}
315
316static int
317ale_mediachange(struct ifnet *ifp)
318{
319	struct ale_softc *sc;
320	struct mii_data *mii;
321	struct mii_softc *miisc;
322	int error;
323
324	sc = ifp->if_softc;
325	ALE_LOCK(sc);
326	mii = device_get_softc(sc->ale_miibus);
327	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
328		PHY_RESET(miisc);
329	error = mii_mediachg(mii);
330	ALE_UNLOCK(sc);
331
332	return (error);
333}
334
335static int
336ale_probe(device_t dev)
337{
338	const struct ale_dev *sp;
339	int i;
340	uint16_t vendor, devid;
341
342	vendor = pci_get_vendor(dev);
343	devid = pci_get_device(dev);
344	sp = ale_devs;
345	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
346		if (vendor == sp->ale_vendorid &&
347		    devid == sp->ale_deviceid) {
348			device_set_desc(dev, sp->ale_name);
349			return (BUS_PROBE_DEFAULT);
350		}
351		sp++;
352	}
353
354	return (ENXIO);
355}
356
357static void
358ale_get_macaddr(struct ale_softc *sc)
359{
360	uint32_t ea[2], reg;
361	int i, vpdc;
362
363	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
364	if ((reg & SPI_VPD_ENB) != 0) {
365		reg &= ~SPI_VPD_ENB;
366		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
367	}
368
369	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
370		/*
371		 * PCI VPD capability found, let TWSI reload EEPROM.
372		 * This will set ethernet address of controller.
373		 */
374		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
375		    TWSI_CTRL_SW_LD_START);
376		for (i = 100; i > 0; i--) {
377			DELAY(1000);
378			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
379			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
380				break;
381		}
382		if (i == 0)
383			device_printf(sc->ale_dev,
384			    "reloading EEPROM timeout!\n");
385	} else {
386		if (bootverbose)
387			device_printf(sc->ale_dev,
388			    "PCI VPD capability not found!\n");
389	}
390
391	ea[0] = CSR_READ_4(sc, ALE_PAR0);
392	ea[1] = CSR_READ_4(sc, ALE_PAR1);
393	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
394	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
395	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
396	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
397	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
398	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
399}
400
401static void
402ale_phy_reset(struct ale_softc *sc)
403{
404
405	/* Reset magic from Linux. */
406	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
407	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
408	    GPHY_CTRL_PHY_PLL_ON);
409	DELAY(1000);
410	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
411	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
412	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
413	DELAY(1000);
414
415#define	ATPHY_DBG_ADDR		0x1D
416#define	ATPHY_DBG_DATA		0x1E
417
418	/* Enable hibernation mode. */
419	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
420	    ATPHY_DBG_ADDR, 0x0B);
421	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
422	    ATPHY_DBG_DATA, 0xBC00);
423	/* Set Class A/B for all modes. */
424	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425	    ATPHY_DBG_ADDR, 0x00);
426	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427	    ATPHY_DBG_DATA, 0x02EF);
428	/* Enable 10BT power saving. */
429	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430	    ATPHY_DBG_ADDR, 0x12);
431	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432	    ATPHY_DBG_DATA, 0x4C04);
433	/* Adjust 1000T power. */
434	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435	    ATPHY_DBG_ADDR, 0x04);
436	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437	    ATPHY_DBG_ADDR, 0x8BBB);
438	/* 10BT center tap voltage. */
439	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440	    ATPHY_DBG_ADDR, 0x05);
441	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442	    ATPHY_DBG_ADDR, 0x2C46);
443
444#undef	ATPHY_DBG_ADDR
445#undef	ATPHY_DBG_DATA
446	DELAY(1000);
447}
448
449static int
450ale_attach(device_t dev)
451{
452	struct ale_softc *sc;
453	struct ifnet *ifp;
454	uint16_t burst;
455	int error, i, msic, msixc, pmc;
456	uint32_t rxf_len, txf_len;
457
458	error = 0;
459	sc = device_get_softc(dev);
460	sc->ale_dev = dev;
461
462	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
463	    MTX_DEF);
464	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
465	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
466
467	/* Map the device. */
468	pci_enable_busmaster(dev);
469	sc->ale_res_spec = ale_res_spec_mem;
470	sc->ale_irq_spec = ale_irq_spec_legacy;
471	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
472	if (error != 0) {
473		device_printf(dev, "cannot allocate memory resources.\n");
474		goto fail;
475	}
476
477	/* Set PHY address. */
478	sc->ale_phyaddr = ALE_PHY_ADDR;
479
480	/* Reset PHY. */
481	ale_phy_reset(sc);
482
483	/* Reset the ethernet controller. */
484	ale_reset(sc);
485
486	/* Get PCI and chip id/revision. */
487	sc->ale_rev = pci_get_revid(dev);
488	if (sc->ale_rev >= 0xF0) {
489		/* L2E Rev. B. AR8114 */
490		sc->ale_flags |= ALE_FLAG_FASTETHER;
491	} else {
492		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
493			/* L1E AR8121 */
494			sc->ale_flags |= ALE_FLAG_JUMBO;
495		} else {
496			/* L2E Rev. A. AR8113 */
497			sc->ale_flags |= ALE_FLAG_FASTETHER;
498		}
499	}
500	/*
501	 * All known controllers seems to require 4 bytes alignment
502	 * of Tx buffers to make Tx checksum offload with custom
503	 * checksum generation method work.
504	 */
505	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
506	/*
507	 * All known controllers seems to have issues on Rx checksum
508	 * offload for fragmented IP datagrams.
509	 */
510	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
511	/*
512	 * Don't use Tx CMB. It is known to cause RRS update failure
513	 * under certain circumstances. Typical phenomenon of the
514	 * issue would be unexpected sequence number encountered in
515	 * Rx handler.
516	 */
517	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
518	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
519	    MASTER_CHIP_REV_SHIFT;
520	if (bootverbose) {
521		device_printf(dev, "PCI device revision : 0x%04x\n",
522		    sc->ale_rev);
523		device_printf(dev, "Chip id/revision : 0x%04x\n",
524		    sc->ale_chip_rev);
525	}
526	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
527	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
528	/*
529	 * Uninitialized hardware returns an invalid chip id/revision
530	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
531	 */
532	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
533	    rxf_len == 0xFFFFFFF) {
534		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
535		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
536		    txf_len, rxf_len);
537		error = ENXIO;
538		goto fail;
539	}
540	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
541
542	/* Allocate IRQ resources. */
543	msixc = pci_msix_count(dev);
544	msic = pci_msi_count(dev);
545	if (bootverbose) {
546		device_printf(dev, "MSIX count : %d\n", msixc);
547		device_printf(dev, "MSI count : %d\n", msic);
548	}
549
550	/* Prefer MSIX over MSI. */
551	if (msix_disable == 0 || msi_disable == 0) {
552		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
553		    pci_alloc_msix(dev, &msixc) == 0) {
554			if (msixc == ALE_MSIX_MESSAGES) {
555				device_printf(dev, "Using %d MSIX messages.\n",
556				    msixc);
557				sc->ale_flags |= ALE_FLAG_MSIX;
558				sc->ale_irq_spec = ale_irq_spec_msix;
559			} else
560				pci_release_msi(dev);
561		}
562		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
563		    msic == ALE_MSI_MESSAGES &&
564		    pci_alloc_msi(dev, &msic) == 0) {
565			if (msic == ALE_MSI_MESSAGES) {
566				device_printf(dev, "Using %d MSI messages.\n",
567				    msic);
568				sc->ale_flags |= ALE_FLAG_MSI;
569				sc->ale_irq_spec = ale_irq_spec_msi;
570			} else
571				pci_release_msi(dev);
572		}
573	}
574
575	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
576	if (error != 0) {
577		device_printf(dev, "cannot allocate IRQ resources.\n");
578		goto fail;
579	}
580
581	/* Get DMA parameters from PCIe device control register. */
582	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
583		sc->ale_flags |= ALE_FLAG_PCIE;
584		burst = pci_read_config(dev, i + 0x08, 2);
585		/* Max read request size. */
586		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
587		    DMA_CFG_RD_BURST_SHIFT;
588		/* Max payload size. */
589		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
590		    DMA_CFG_WR_BURST_SHIFT;
591		if (bootverbose) {
592			device_printf(dev, "Read request size : %d bytes.\n",
593			    128 << ((burst >> 12) & 0x07));
594			device_printf(dev, "TLP payload size : %d bytes.\n",
595			    128 << ((burst >> 5) & 0x07));
596		}
597	} else {
598		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
599		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
600	}
601
602	/* Create device sysctl node. */
603	ale_sysctl_node(sc);
604
605	if ((error = ale_dma_alloc(sc)) != 0)
606		goto fail;
607
608	/* Load station address. */
609	ale_get_macaddr(sc);
610
611	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
612	if (ifp == NULL) {
613		device_printf(dev, "cannot allocate ifnet structure.\n");
614		error = ENXIO;
615		goto fail;
616	}
617
618	ifp->if_softc = sc;
619	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
620	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621	ifp->if_ioctl = ale_ioctl;
622	ifp->if_start = ale_start;
623	ifp->if_init = ale_init;
624	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
625	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
626	IFQ_SET_READY(&ifp->if_snd);
627	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
628	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
629	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
630		sc->ale_flags |= ALE_FLAG_PMCAP;
631		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
632	}
633	ifp->if_capenable = ifp->if_capabilities;
634
635	/* Set up MII bus. */
636	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
637	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
638	    MIIF_DOPAUSE);
639	if (error != 0) {
640		device_printf(dev, "attaching PHYs failed\n");
641		goto fail;
642	}
643
644	ether_ifattach(ifp, sc->ale_eaddr);
645
646	/* VLAN capability setup. */
647	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
648	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
649	ifp->if_capenable = ifp->if_capabilities;
650	/*
651	 * Even though controllers supported by ale(3) have Rx checksum
652	 * offload bug the workaround for fragmented frames seemed to
653	 * work so far. However it seems Rx checksum offload does not
654	 * work under certain conditions. So disable Rx checksum offload
655	 * until I find more clue about it but allow users to override it.
656	 */
657	ifp->if_capenable &= ~IFCAP_RXCSUM;
658
659	/* Tell the upper layer(s) we support long frames. */
660	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
661
662	/* Create local taskq. */
663	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
664	    taskqueue_thread_enqueue, &sc->ale_tq);
665	if (sc->ale_tq == NULL) {
666		device_printf(dev, "could not create taskqueue.\n");
667		ether_ifdetach(ifp);
668		error = ENXIO;
669		goto fail;
670	}
671	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
672	    device_get_nameunit(sc->ale_dev));
673
674	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
675		msic = ALE_MSIX_MESSAGES;
676	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
677		msic = ALE_MSI_MESSAGES;
678	else
679		msic = 1;
680	for (i = 0; i < msic; i++) {
681		error = bus_setup_intr(dev, sc->ale_irq[i],
682		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
683		    &sc->ale_intrhand[i]);
684		if (error != 0)
685			break;
686	}
687	if (error != 0) {
688		device_printf(dev, "could not set up interrupt handler.\n");
689		taskqueue_free(sc->ale_tq);
690		sc->ale_tq = NULL;
691		ether_ifdetach(ifp);
692		goto fail;
693	}
694
695fail:
696	if (error != 0)
697		ale_detach(dev);
698
699	return (error);
700}
701
702static int
703ale_detach(device_t dev)
704{
705	struct ale_softc *sc;
706	struct ifnet *ifp;
707	int i, msic;
708
709	sc = device_get_softc(dev);
710
711	ifp = sc->ale_ifp;
712	if (device_is_attached(dev)) {
713		ether_ifdetach(ifp);
714		ALE_LOCK(sc);
715		ale_stop(sc);
716		ALE_UNLOCK(sc);
717		callout_drain(&sc->ale_tick_ch);
718		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
719	}
720
721	if (sc->ale_tq != NULL) {
722		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
723		taskqueue_free(sc->ale_tq);
724		sc->ale_tq = NULL;
725	}
726
727	if (sc->ale_miibus != NULL) {
728		device_delete_child(dev, sc->ale_miibus);
729		sc->ale_miibus = NULL;
730	}
731	bus_generic_detach(dev);
732	ale_dma_free(sc);
733
734	if (ifp != NULL) {
735		if_free(ifp);
736		sc->ale_ifp = NULL;
737	}
738
739	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
740		msic = ALE_MSIX_MESSAGES;
741	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
742		msic = ALE_MSI_MESSAGES;
743	else
744		msic = 1;
745	for (i = 0; i < msic; i++) {
746		if (sc->ale_intrhand[i] != NULL) {
747			bus_teardown_intr(dev, sc->ale_irq[i],
748			    sc->ale_intrhand[i]);
749			sc->ale_intrhand[i] = NULL;
750		}
751	}
752
753	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
754	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
755		pci_release_msi(dev);
756	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
757	mtx_destroy(&sc->ale_mtx);
758
759	return (0);
760}
761
762#define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
763	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
764
765#if __FreeBSD_version >= 900030
766#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
767	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
768#elif __FreeBSD_version > 800000
769#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
770	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
771#else
772#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
773	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
774#endif
775
776static void
777ale_sysctl_node(struct ale_softc *sc)
778{
779	struct sysctl_ctx_list *ctx;
780	struct sysctl_oid_list *child, *parent;
781	struct sysctl_oid *tree;
782	struct ale_hw_stats *stats;
783	int error;
784
785	stats = &sc->ale_stats;
786	ctx = device_get_sysctl_ctx(sc->ale_dev);
787	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
788
789	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
790	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
791	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
792	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
793	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
794	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
795	/* Pull in device tunables. */
796	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
797	error = resource_int_value(device_get_name(sc->ale_dev),
798	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
799	if (error == 0) {
800		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
801		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
802			device_printf(sc->ale_dev, "int_rx_mod value out of "
803			    "range; using default: %d\n",
804			    ALE_IM_RX_TIMER_DEFAULT);
805			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
806		}
807	}
808	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
809	error = resource_int_value(device_get_name(sc->ale_dev),
810	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
811	if (error == 0) {
812		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
813		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
814			device_printf(sc->ale_dev, "int_tx_mod value out of "
815			    "range; using default: %d\n",
816			    ALE_IM_TX_TIMER_DEFAULT);
817			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
818		}
819	}
820	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
821	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
822	    sysctl_hw_ale_proc_limit, "I",
823	    "max number of Rx events to process");
824	/* Pull in device tunables. */
825	sc->ale_process_limit = ALE_PROC_DEFAULT;
826	error = resource_int_value(device_get_name(sc->ale_dev),
827	    device_get_unit(sc->ale_dev), "process_limit",
828	    &sc->ale_process_limit);
829	if (error == 0) {
830		if (sc->ale_process_limit < ALE_PROC_MIN ||
831		    sc->ale_process_limit > ALE_PROC_MAX) {
832			device_printf(sc->ale_dev,
833			    "process_limit value out of range; "
834			    "using default: %d\n", ALE_PROC_DEFAULT);
835			sc->ale_process_limit = ALE_PROC_DEFAULT;
836		}
837	}
838
839	/* Misc statistics. */
840	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
841	    &stats->reset_brk_seq,
842	    "Controller resets due to broken Rx sequnce number");
843
844	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
845	    NULL, "ATE statistics");
846	parent = SYSCTL_CHILDREN(tree);
847
848	/* Rx statistics. */
849	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
850	    NULL, "Rx MAC statistics");
851	child = SYSCTL_CHILDREN(tree);
852	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
853	    &stats->rx_frames, "Good frames");
854	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
855	    &stats->rx_bcast_frames, "Good broadcast frames");
856	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
857	    &stats->rx_mcast_frames, "Good multicast frames");
858	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
859	    &stats->rx_pause_frames, "Pause control frames");
860	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
861	    &stats->rx_control_frames, "Control frames");
862	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
863	    &stats->rx_crcerrs, "CRC errors");
864	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
865	    &stats->rx_lenerrs, "Frames with length mismatched");
866	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
867	    &stats->rx_bytes, "Good octets");
868	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
869	    &stats->rx_bcast_bytes, "Good broadcast octets");
870	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
871	    &stats->rx_mcast_bytes, "Good multicast octets");
872	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
873	    &stats->rx_runts, "Too short frames");
874	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
875	    &stats->rx_fragments, "Fragmented frames");
876	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
877	    &stats->rx_pkts_64, "64 bytes frames");
878	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
879	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
880	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
881	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
882	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
883	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
884	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
885	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
886	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
887	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
888	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
889	    &stats->rx_pkts_1519_max, "1519 to max frames");
890	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
891	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
892	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
893	    &stats->rx_fifo_oflows, "FIFO overflows");
894	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
895	    &stats->rx_rrs_errs, "Return status write-back errors");
896	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
897	    &stats->rx_alignerrs, "Alignment errors");
898	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
899	    &stats->rx_pkts_filtered,
900	    "Frames dropped due to address filtering");
901
902	/* Tx statistics. */
903	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
904	    NULL, "Tx MAC statistics");
905	child = SYSCTL_CHILDREN(tree);
906	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
907	    &stats->tx_frames, "Good frames");
908	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
909	    &stats->tx_bcast_frames, "Good broadcast frames");
910	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
911	    &stats->tx_mcast_frames, "Good multicast frames");
912	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
913	    &stats->tx_pause_frames, "Pause control frames");
914	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
915	    &stats->tx_control_frames, "Control frames");
916	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
917	    &stats->tx_excess_defer, "Frames with excessive derferrals");
918	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
919	    &stats->tx_excess_defer, "Frames with derferrals");
920	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
921	    &stats->tx_bytes, "Good octets");
922	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
923	    &stats->tx_bcast_bytes, "Good broadcast octets");
924	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
925	    &stats->tx_mcast_bytes, "Good multicast octets");
926	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
927	    &stats->tx_pkts_64, "64 bytes frames");
928	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
929	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
930	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
931	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
932	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
933	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
934	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
935	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
936	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
937	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
938	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
939	    &stats->tx_pkts_1519_max, "1519 to max frames");
940	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
941	    &stats->tx_single_colls, "Single collisions");
942	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
943	    &stats->tx_multi_colls, "Multiple collisions");
944	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
945	    &stats->tx_late_colls, "Late collisions");
946	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
947	    &stats->tx_excess_colls, "Excessive collisions");
948	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
949	    &stats->tx_underrun, "FIFO underruns");
950	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
951	    &stats->tx_desc_underrun, "Descriptor write-back errors");
952	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
953	    &stats->tx_lenerrs, "Frames with length mismatched");
954	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
955	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
956}
957
958#undef ALE_SYSCTL_STAT_ADD32
959#undef ALE_SYSCTL_STAT_ADD64
960
961struct ale_dmamap_arg {
962	bus_addr_t	ale_busaddr;
963};
964
965static void
966ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
967{
968	struct ale_dmamap_arg *ctx;
969
970	if (error != 0)
971		return;
972
973	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
974
975	ctx = (struct ale_dmamap_arg *)arg;
976	ctx->ale_busaddr = segs[0].ds_addr;
977}
978
979/*
980 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
981 * which specifies high address region of DMA blocks. Therefore these
982 * blocks should have the same high address of given 4GB address
983 * space(i.e. crossing 4GB boundary is not allowed).
984 */
985static int
986ale_check_boundary(struct ale_softc *sc)
987{
988	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
989	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
990
991	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
992	    sc->ale_pagesize;
993	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
994	    sc->ale_pagesize;
995	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
996	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
997	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
998	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
999
1000	if ((ALE_ADDR_HI(tx_ring_end) !=
1001	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
1002	    (ALE_ADDR_HI(rx_page_end[0]) !=
1003	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1004	    (ALE_ADDR_HI(rx_page_end[1]) !=
1005	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1006	    (ALE_ADDR_HI(tx_cmb_end) !=
1007	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1008	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1009	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1010	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1011	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1012		return (EFBIG);
1013
1014	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1015	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1016	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1017	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1018	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1019		return (EFBIG);
1020
1021	return (0);
1022}
1023
1024static int
1025ale_dma_alloc(struct ale_softc *sc)
1026{
1027	struct ale_txdesc *txd;
1028	bus_addr_t lowaddr;
1029	struct ale_dmamap_arg ctx;
1030	int error, guard_size, i;
1031
1032	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1033		guard_size = ALE_JUMBO_FRAMELEN;
1034	else
1035		guard_size = ALE_MAX_FRAMELEN;
1036	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1037	    ALE_RX_PAGE_ALIGN);
1038	lowaddr = BUS_SPACE_MAXADDR;
1039again:
1040	/* Create parent DMA tag. */
1041	error = bus_dma_tag_create(
1042	    bus_get_dma_tag(sc->ale_dev), /* parent */
1043	    1, 0,			/* alignment, boundary */
1044	    lowaddr,			/* lowaddr */
1045	    BUS_SPACE_MAXADDR,		/* highaddr */
1046	    NULL, NULL,			/* filter, filterarg */
1047	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1048	    0,				/* nsegments */
1049	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1050	    0,				/* flags */
1051	    NULL, NULL,			/* lockfunc, lockarg */
1052	    &sc->ale_cdata.ale_parent_tag);
1053	if (error != 0) {
1054		device_printf(sc->ale_dev,
1055		    "could not create parent DMA tag.\n");
1056		goto fail;
1057	}
1058
1059	/* Create DMA tag for Tx descriptor ring. */
1060	error = bus_dma_tag_create(
1061	    sc->ale_cdata.ale_parent_tag, /* parent */
1062	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1063	    BUS_SPACE_MAXADDR,		/* lowaddr */
1064	    BUS_SPACE_MAXADDR,		/* highaddr */
1065	    NULL, NULL,			/* filter, filterarg */
1066	    ALE_TX_RING_SZ,		/* maxsize */
1067	    1,				/* nsegments */
1068	    ALE_TX_RING_SZ,		/* maxsegsize */
1069	    0,				/* flags */
1070	    NULL, NULL,			/* lockfunc, lockarg */
1071	    &sc->ale_cdata.ale_tx_ring_tag);
1072	if (error != 0) {
1073		device_printf(sc->ale_dev,
1074		    "could not create Tx ring DMA tag.\n");
1075		goto fail;
1076	}
1077
1078	/* Create DMA tag for Rx pages. */
1079	for (i = 0; i < ALE_RX_PAGES; i++) {
1080		error = bus_dma_tag_create(
1081		    sc->ale_cdata.ale_parent_tag, /* parent */
1082		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1083		    BUS_SPACE_MAXADDR,		/* lowaddr */
1084		    BUS_SPACE_MAXADDR,		/* highaddr */
1085		    NULL, NULL,			/* filter, filterarg */
1086		    sc->ale_pagesize,		/* maxsize */
1087		    1,				/* nsegments */
1088		    sc->ale_pagesize,		/* maxsegsize */
1089		    0,				/* flags */
1090		    NULL, NULL,			/* lockfunc, lockarg */
1091		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1092		if (error != 0) {
1093			device_printf(sc->ale_dev,
1094			    "could not create Rx page %d DMA tag.\n", i);
1095			goto fail;
1096		}
1097	}
1098
1099	/* Create DMA tag for Tx coalescing message block. */
1100	error = bus_dma_tag_create(
1101	    sc->ale_cdata.ale_parent_tag, /* parent */
1102	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1103	    BUS_SPACE_MAXADDR,		/* lowaddr */
1104	    BUS_SPACE_MAXADDR,		/* highaddr */
1105	    NULL, NULL,			/* filter, filterarg */
1106	    ALE_TX_CMB_SZ,		/* maxsize */
1107	    1,				/* nsegments */
1108	    ALE_TX_CMB_SZ,		/* maxsegsize */
1109	    0,				/* flags */
1110	    NULL, NULL,			/* lockfunc, lockarg */
1111	    &sc->ale_cdata.ale_tx_cmb_tag);
1112	if (error != 0) {
1113		device_printf(sc->ale_dev,
1114		    "could not create Tx CMB DMA tag.\n");
1115		goto fail;
1116	}
1117
1118	/* Create DMA tag for Rx coalescing message block. */
1119	for (i = 0; i < ALE_RX_PAGES; i++) {
1120		error = bus_dma_tag_create(
1121		    sc->ale_cdata.ale_parent_tag, /* parent */
1122		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1123		    BUS_SPACE_MAXADDR,		/* lowaddr */
1124		    BUS_SPACE_MAXADDR,		/* highaddr */
1125		    NULL, NULL,			/* filter, filterarg */
1126		    ALE_RX_CMB_SZ,		/* maxsize */
1127		    1,				/* nsegments */
1128		    ALE_RX_CMB_SZ,		/* maxsegsize */
1129		    0,				/* flags */
1130		    NULL, NULL,			/* lockfunc, lockarg */
1131		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1132		if (error != 0) {
1133			device_printf(sc->ale_dev,
1134			    "could not create Rx page %d CMB DMA tag.\n", i);
1135			goto fail;
1136		}
1137	}
1138
1139	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1140	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1141	    (void **)&sc->ale_cdata.ale_tx_ring,
1142	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1143	    &sc->ale_cdata.ale_tx_ring_map);
1144	if (error != 0) {
1145		device_printf(sc->ale_dev,
1146		    "could not allocate DMA'able memory for Tx ring.\n");
1147		goto fail;
1148	}
1149	ctx.ale_busaddr = 0;
1150	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1151	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1152	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1153	if (error != 0 || ctx.ale_busaddr == 0) {
1154		device_printf(sc->ale_dev,
1155		    "could not load DMA'able memory for Tx ring.\n");
1156		goto fail;
1157	}
1158	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1159
1160	/* Rx pages. */
1161	for (i = 0; i < ALE_RX_PAGES; i++) {
1162		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1163		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1164		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1165		    &sc->ale_cdata.ale_rx_page[i].page_map);
1166		if (error != 0) {
1167			device_printf(sc->ale_dev,
1168			    "could not allocate DMA'able memory for "
1169			    "Rx page %d.\n", i);
1170			goto fail;
1171		}
1172		ctx.ale_busaddr = 0;
1173		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1174		    sc->ale_cdata.ale_rx_page[i].page_map,
1175		    sc->ale_cdata.ale_rx_page[i].page_addr,
1176		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1177		if (error != 0 || ctx.ale_busaddr == 0) {
1178			device_printf(sc->ale_dev,
1179			    "could not load DMA'able memory for "
1180			    "Rx page %d.\n", i);
1181			goto fail;
1182		}
1183		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1184	}
1185
1186	/* Tx CMB. */
1187	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1188	    (void **)&sc->ale_cdata.ale_tx_cmb,
1189	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1190	    &sc->ale_cdata.ale_tx_cmb_map);
1191	if (error != 0) {
1192		device_printf(sc->ale_dev,
1193		    "could not allocate DMA'able memory for Tx CMB.\n");
1194		goto fail;
1195	}
1196	ctx.ale_busaddr = 0;
1197	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1198	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1199	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1200	if (error != 0 || ctx.ale_busaddr == 0) {
1201		device_printf(sc->ale_dev,
1202		    "could not load DMA'able memory for Tx CMB.\n");
1203		goto fail;
1204	}
1205	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1206
1207	/* Rx CMB. */
1208	for (i = 0; i < ALE_RX_PAGES; i++) {
1209		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1210		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1211		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1212		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1213		if (error != 0) {
1214			device_printf(sc->ale_dev, "could not allocate "
1215			    "DMA'able memory for Rx page %d CMB.\n", i);
1216			goto fail;
1217		}
1218		ctx.ale_busaddr = 0;
1219		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1220		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1221		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1222		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1223		if (error != 0 || ctx.ale_busaddr == 0) {
1224			device_printf(sc->ale_dev, "could not load DMA'able "
1225			    "memory for Rx page %d CMB.\n", i);
1226			goto fail;
1227		}
1228		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1229	}
1230
1231	/*
1232	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1233	 * high address region of 64bit DMA address space.
1234	 */
1235	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1236	    (error = ale_check_boundary(sc)) != 0) {
1237		device_printf(sc->ale_dev, "4GB boundary crossed, "
1238		    "switching to 32bit DMA addressing mode.\n");
1239		ale_dma_free(sc);
1240		/*
1241		 * Limit max allowable DMA address space to 32bit
1242		 * and try again.
1243		 */
1244		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1245		goto again;
1246	}
1247
1248	/*
1249	 * Create Tx buffer parent tag.
1250	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1251	 * needs separate parent DMA tag as parent DMA address space
1252	 * could be restricted to be within 32bit address space by
1253	 * 4GB boundary crossing.
1254	 */
1255	error = bus_dma_tag_create(
1256	    bus_get_dma_tag(sc->ale_dev), /* parent */
1257	    1, 0,			/* alignment, boundary */
1258	    BUS_SPACE_MAXADDR,		/* lowaddr */
1259	    BUS_SPACE_MAXADDR,		/* highaddr */
1260	    NULL, NULL,			/* filter, filterarg */
1261	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1262	    0,				/* nsegments */
1263	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1264	    0,				/* flags */
1265	    NULL, NULL,			/* lockfunc, lockarg */
1266	    &sc->ale_cdata.ale_buffer_tag);
1267	if (error != 0) {
1268		device_printf(sc->ale_dev,
1269		    "could not create parent buffer DMA tag.\n");
1270		goto fail;
1271	}
1272
1273	/* Create DMA tag for Tx buffers. */
1274	error = bus_dma_tag_create(
1275	    sc->ale_cdata.ale_buffer_tag, /* parent */
1276	    1, 0,			/* alignment, boundary */
1277	    BUS_SPACE_MAXADDR,		/* lowaddr */
1278	    BUS_SPACE_MAXADDR,		/* highaddr */
1279	    NULL, NULL,			/* filter, filterarg */
1280	    ALE_TSO_MAXSIZE,		/* maxsize */
1281	    ALE_MAXTXSEGS,		/* nsegments */
1282	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1283	    0,				/* flags */
1284	    NULL, NULL,			/* lockfunc, lockarg */
1285	    &sc->ale_cdata.ale_tx_tag);
1286	if (error != 0) {
1287		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1288		goto fail;
1289	}
1290
1291	/* Create DMA maps for Tx buffers. */
1292	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1293		txd = &sc->ale_cdata.ale_txdesc[i];
1294		txd->tx_m = NULL;
1295		txd->tx_dmamap = NULL;
1296		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1297		    &txd->tx_dmamap);
1298		if (error != 0) {
1299			device_printf(sc->ale_dev,
1300			    "could not create Tx dmamap.\n");
1301			goto fail;
1302		}
1303	}
1304
1305fail:
1306	return (error);
1307}
1308
1309static void
1310ale_dma_free(struct ale_softc *sc)
1311{
1312	struct ale_txdesc *txd;
1313	int i;
1314
1315	/* Tx buffers. */
1316	if (sc->ale_cdata.ale_tx_tag != NULL) {
1317		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1318			txd = &sc->ale_cdata.ale_txdesc[i];
1319			if (txd->tx_dmamap != NULL) {
1320				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1321				    txd->tx_dmamap);
1322				txd->tx_dmamap = NULL;
1323			}
1324		}
1325		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1326		sc->ale_cdata.ale_tx_tag = NULL;
1327	}
1328	/* Tx descriptor ring. */
1329	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1330		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1331			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1332			    sc->ale_cdata.ale_tx_ring_map);
1333		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1334		    sc->ale_cdata.ale_tx_ring != NULL)
1335			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1336			    sc->ale_cdata.ale_tx_ring,
1337			    sc->ale_cdata.ale_tx_ring_map);
1338		sc->ale_cdata.ale_tx_ring = NULL;
1339		sc->ale_cdata.ale_tx_ring_map = NULL;
1340		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1341		sc->ale_cdata.ale_tx_ring_tag = NULL;
1342	}
1343	/* Rx page block. */
1344	for (i = 0; i < ALE_RX_PAGES; i++) {
1345		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1346			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1347				bus_dmamap_unload(
1348				    sc->ale_cdata.ale_rx_page[i].page_tag,
1349				    sc->ale_cdata.ale_rx_page[i].page_map);
1350			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1351			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1352				bus_dmamem_free(
1353				    sc->ale_cdata.ale_rx_page[i].page_tag,
1354				    sc->ale_cdata.ale_rx_page[i].page_addr,
1355				    sc->ale_cdata.ale_rx_page[i].page_map);
1356			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1357			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1358			bus_dma_tag_destroy(
1359			    sc->ale_cdata.ale_rx_page[i].page_tag);
1360			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1361		}
1362	}
1363	/* Rx CMB. */
1364	for (i = 0; i < ALE_RX_PAGES; i++) {
1365		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1366			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1367				bus_dmamap_unload(
1368				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1369				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1370			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1371			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1372				bus_dmamem_free(
1373				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1374				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1375				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1376			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1377			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1378			bus_dma_tag_destroy(
1379			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1380			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1381		}
1382	}
1383	/* Tx CMB. */
1384	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1385		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1386			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1387			    sc->ale_cdata.ale_tx_cmb_map);
1388		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1389		    sc->ale_cdata.ale_tx_cmb != NULL)
1390			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1391			    sc->ale_cdata.ale_tx_cmb,
1392			    sc->ale_cdata.ale_tx_cmb_map);
1393		sc->ale_cdata.ale_tx_cmb = NULL;
1394		sc->ale_cdata.ale_tx_cmb_map = NULL;
1395		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1396		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1397	}
1398	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1399		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1400		sc->ale_cdata.ale_buffer_tag = NULL;
1401	}
1402	if (sc->ale_cdata.ale_parent_tag != NULL) {
1403		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1404		sc->ale_cdata.ale_parent_tag = NULL;
1405	}
1406}
1407
1408static int
1409ale_shutdown(device_t dev)
1410{
1411
1412	return (ale_suspend(dev));
1413}
1414
1415/*
1416 * Note, this driver resets the link speed to 10/100Mbps by
1417 * restarting auto-negotiation in suspend/shutdown phase but we
1418 * don't know whether that auto-negotiation would succeed or not
1419 * as driver has no control after powering off/suspend operation.
1420 * If the renegotiation fail WOL may not work. Running at 1Gbps
1421 * will draw more power than 375mA at 3.3V which is specified in
1422 * PCI specification and that would result in complete
1423 * shutdowning power to ethernet controller.
1424 *
1425 * TODO
1426 * Save current negotiated media speed/duplex/flow-control to
1427 * softc and restore the same link again after resuming. PHY
1428 * handling such as power down/resetting to 100Mbps may be better
1429 * handled in suspend method in phy driver.
1430 */
1431static void
1432ale_setlinkspeed(struct ale_softc *sc)
1433{
1434	struct mii_data *mii;
1435	int aneg, i;
1436
1437	mii = device_get_softc(sc->ale_miibus);
1438	mii_pollstat(mii);
1439	aneg = 0;
1440	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1441	    (IFM_ACTIVE | IFM_AVALID)) {
1442		switch IFM_SUBTYPE(mii->mii_media_active) {
1443		case IFM_10_T:
1444		case IFM_100_TX:
1445			return;
1446		case IFM_1000_T:
1447			aneg++;
1448			break;
1449		default:
1450			break;
1451		}
1452	}
1453	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1454	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1455	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1456	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1457	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1458	DELAY(1000);
1459	if (aneg != 0) {
1460		/*
1461		 * Poll link state until ale(4) get a 10/100Mbps link.
1462		 */
1463		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1464			mii_pollstat(mii);
1465			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1466			    == (IFM_ACTIVE | IFM_AVALID)) {
1467				switch (IFM_SUBTYPE(
1468				    mii->mii_media_active)) {
1469				case IFM_10_T:
1470				case IFM_100_TX:
1471					ale_mac_config(sc);
1472					return;
1473				default:
1474					break;
1475				}
1476			}
1477			ALE_UNLOCK(sc);
1478			pause("alelnk", hz);
1479			ALE_LOCK(sc);
1480		}
1481		if (i == MII_ANEGTICKS_GIGE)
1482			device_printf(sc->ale_dev,
1483			    "establishing a link failed, WOL may not work!");
1484	}
1485	/*
1486	 * No link, force MAC to have 100Mbps, full-duplex link.
1487	 * This is the last resort and may/may not work.
1488	 */
1489	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1490	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1491	ale_mac_config(sc);
1492}
1493
1494static void
1495ale_setwol(struct ale_softc *sc)
1496{
1497	struct ifnet *ifp;
1498	uint32_t reg, pmcs;
1499	uint16_t pmstat;
1500	int pmc;
1501
1502	ALE_LOCK_ASSERT(sc);
1503
1504	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1505		/* Disable WOL. */
1506		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1507		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1508		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1509		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1510		/* Force PHY power down. */
1511		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1512		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1513		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1514		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1515		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1516		return;
1517	}
1518
1519	ifp = sc->ale_ifp;
1520	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1521		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1522			ale_setlinkspeed(sc);
1523	}
1524
1525	pmcs = 0;
1526	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1527		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1528	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1529	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1530	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1531	    MAC_CFG_BCAST);
1532	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1533		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1534	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1535		reg |= MAC_CFG_RX_ENB;
1536	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1537
1538	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1539		/* WOL disabled, PHY power down. */
1540		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1541		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1542		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1543		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1544		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1545		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1546		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1547		    GPHY_CTRL_PWDOWN_HW);
1548	}
1549	/* Request PME. */
1550	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1551	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1552	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1553		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1554	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1555}
1556
1557static int
1558ale_suspend(device_t dev)
1559{
1560	struct ale_softc *sc;
1561
1562	sc = device_get_softc(dev);
1563
1564	ALE_LOCK(sc);
1565	ale_stop(sc);
1566	ale_setwol(sc);
1567	ALE_UNLOCK(sc);
1568
1569	return (0);
1570}
1571
1572static int
1573ale_resume(device_t dev)
1574{
1575	struct ale_softc *sc;
1576	struct ifnet *ifp;
1577	int pmc;
1578	uint16_t pmstat;
1579
1580	sc = device_get_softc(dev);
1581
1582	ALE_LOCK(sc);
1583	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1584		/* Disable PME and clear PME status. */
1585		pmstat = pci_read_config(sc->ale_dev,
1586		    pmc + PCIR_POWER_STATUS, 2);
1587		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1588			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1589			pci_write_config(sc->ale_dev,
1590			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1591		}
1592	}
1593	/* Reset PHY. */
1594	ale_phy_reset(sc);
1595	ifp = sc->ale_ifp;
1596	if ((ifp->if_flags & IFF_UP) != 0) {
1597		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1598		ale_init_locked(sc);
1599	}
1600	ALE_UNLOCK(sc);
1601
1602	return (0);
1603}
1604
1605static int
1606ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1607{
1608	struct ale_txdesc *txd, *txd_last;
1609	struct tx_desc *desc;
1610	struct mbuf *m;
1611	struct ip *ip;
1612	struct tcphdr *tcp;
1613	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1614	bus_dmamap_t map;
1615	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1616	int error, i, nsegs, prod, si;
1617
1618	ALE_LOCK_ASSERT(sc);
1619
1620	M_ASSERTPKTHDR((*m_head));
1621
1622	m = *m_head;
1623	ip = NULL;
1624	tcp = NULL;
1625	cflags = vtag = 0;
1626	ip_off = poff = 0;
1627	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1628		/*
1629		 * AR81xx requires offset of TCP/UDP payload in its Tx
1630		 * descriptor to perform hardware Tx checksum offload.
1631		 * Additionally, TSO requires IP/TCP header size and
1632		 * modification of IP/TCP header in order to make TSO
1633		 * engine work. This kind of operation takes many CPU
1634		 * cycles on FreeBSD so fast host CPU is required to
1635		 * get smooth TSO performance.
1636		 */
1637		struct ether_header *eh;
1638
1639		if (M_WRITABLE(m) == 0) {
1640			/* Get a writable copy. */
1641			m = m_dup(*m_head, M_NOWAIT);
1642			/* Release original mbufs. */
1643			m_freem(*m_head);
1644			if (m == NULL) {
1645				*m_head = NULL;
1646				return (ENOBUFS);
1647			}
1648			*m_head = m;
1649		}
1650
1651		/*
1652		 * Buggy-controller requires 4 byte aligned Tx buffer
1653		 * to make custom checksum offload work.
1654		 */
1655		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1656		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1657		    (mtod(m, intptr_t) & 3) != 0) {
1658			m = m_defrag(*m_head, M_NOWAIT);
1659			if (m == NULL) {
1660				m_freem(*m_head);
1661				*m_head = NULL;
1662				return (ENOBUFS);
1663			}
1664			*m_head = m;
1665		}
1666
1667		ip_off = sizeof(struct ether_header);
1668		m = m_pullup(m, ip_off);
1669		if (m == NULL) {
1670			*m_head = NULL;
1671			return (ENOBUFS);
1672		}
1673		eh = mtod(m, struct ether_header *);
1674		/*
1675		 * Check if hardware VLAN insertion is off.
1676		 * Additional check for LLC/SNAP frame?
1677		 */
1678		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1679			ip_off = sizeof(struct ether_vlan_header);
1680			m = m_pullup(m, ip_off);
1681			if (m == NULL) {
1682				*m_head = NULL;
1683				return (ENOBUFS);
1684			}
1685		}
1686		m = m_pullup(m, ip_off + sizeof(struct ip));
1687		if (m == NULL) {
1688			*m_head = NULL;
1689			return (ENOBUFS);
1690		}
1691		ip = (struct ip *)(mtod(m, char *) + ip_off);
1692		poff = ip_off + (ip->ip_hl << 2);
1693		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1694			/*
1695			 * XXX
1696			 * AR81xx requires the first descriptor should
1697			 * not include any TCP playload for TSO case.
1698			 * (i.e. ethernet header + IP + TCP header only)
1699			 * m_pullup(9) above will ensure this too.
1700			 * However it's not correct if the first mbuf
1701			 * of the chain does not use cluster.
1702			 */
1703			m = m_pullup(m, poff + sizeof(struct tcphdr));
1704			if (m == NULL) {
1705				*m_head = NULL;
1706				return (ENOBUFS);
1707			}
1708			ip = (struct ip *)(mtod(m, char *) + ip_off);
1709			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1710			m = m_pullup(m, poff + (tcp->th_off << 2));
1711			if (m == NULL) {
1712				*m_head = NULL;
1713				return (ENOBUFS);
1714			}
1715			/*
1716			 * AR81xx requires IP/TCP header size and offset as
1717			 * well as TCP pseudo checksum which complicates
1718			 * TSO configuration. I guess this comes from the
1719			 * adherence to Microsoft NDIS Large Send
1720			 * specification which requires insertion of
1721			 * pseudo checksum by upper stack. The pseudo
1722			 * checksum that NDIS refers to doesn't include
1723			 * TCP payload length so ale(4) should recompute
1724			 * the pseudo checksum here. Hopefully this wouldn't
1725			 * be much burden on modern CPUs.
1726			 * Reset IP checksum and recompute TCP pseudo
1727			 * checksum as NDIS specification said.
1728			 */
1729			ip->ip_sum = 0;
1730			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1731			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1732		}
1733		*m_head = m;
1734	}
1735
1736	si = prod = sc->ale_cdata.ale_tx_prod;
1737	txd = &sc->ale_cdata.ale_txdesc[prod];
1738	txd_last = txd;
1739	map = txd->tx_dmamap;
1740
1741	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1742	    *m_head, txsegs, &nsegs, 0);
1743	if (error == EFBIG) {
1744		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1745		if (m == NULL) {
1746			m_freem(*m_head);
1747			*m_head = NULL;
1748			return (ENOMEM);
1749		}
1750		*m_head = m;
1751		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1752		    *m_head, txsegs, &nsegs, 0);
1753		if (error != 0) {
1754			m_freem(*m_head);
1755			*m_head = NULL;
1756			return (error);
1757		}
1758	} else if (error != 0)
1759		return (error);
1760	if (nsegs == 0) {
1761		m_freem(*m_head);
1762		*m_head = NULL;
1763		return (EIO);
1764	}
1765
1766	/* Check descriptor overrun. */
1767	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1768		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1769		return (ENOBUFS);
1770	}
1771	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1772
1773	m = *m_head;
1774	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1775		/* Request TSO and set MSS. */
1776		cflags |= ALE_TD_TSO;
1777		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1778		/* Set IP/TCP header size. */
1779		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1780		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1781	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1782		/*
1783		 * AR81xx supports Tx custom checksum offload feature
1784		 * that offloads single 16bit checksum computation.
1785		 * So you can choose one among IP, TCP and UDP.
1786		 * Normally driver sets checksum start/insertion
1787		 * position from the information of TCP/UDP frame as
1788		 * TCP/UDP checksum takes more time than that of IP.
1789		 * However it seems that custom checksum offload
1790		 * requires 4 bytes aligned Tx buffers due to hardware
1791		 * bug.
1792		 * AR81xx also supports explicit Tx checksum computation
1793		 * if it is told that the size of IP header and TCP
1794		 * header(for UDP, the header size does not matter
1795		 * because it's fixed length). However with this scheme
1796		 * TSO does not work so you have to choose one either
1797		 * TSO or explicit Tx checksum offload. I chosen TSO
1798		 * plus custom checksum offload with work-around which
1799		 * will cover most common usage for this consumer
1800		 * ethernet controller. The work-around takes a lot of
1801		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1802		 * boundary, though.
1803		 */
1804		cflags |= ALE_TD_CXSUM;
1805		/* Set checksum start offset. */
1806		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1807		/* Set checksum insertion position of TCP/UDP. */
1808		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1809		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1810	}
1811
1812	/* Configure VLAN hardware tag insertion. */
1813	if ((m->m_flags & M_VLANTAG) != 0) {
1814		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1815		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1816		cflags |= ALE_TD_INSERT_VLAN_TAG;
1817	}
1818
1819	i = 0;
1820	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1821		/*
1822		 * Make sure the first fragment contains
1823		 * only ethernet and IP/TCP header with options.
1824		 */
1825		hdrlen =  poff + (tcp->th_off << 2);
1826		desc = &sc->ale_cdata.ale_tx_ring[prod];
1827		desc->addr = htole64(txsegs[i].ds_addr);
1828		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1829		desc->flags = htole32(cflags);
1830		sc->ale_cdata.ale_tx_cnt++;
1831		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1832		if (m->m_len - hdrlen > 0) {
1833			/* Handle remaining payload of the first fragment. */
1834			desc = &sc->ale_cdata.ale_tx_ring[prod];
1835			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1836			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1837			    vtag);
1838			desc->flags = htole32(cflags);
1839			sc->ale_cdata.ale_tx_cnt++;
1840			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1841		}
1842		i = 1;
1843	}
1844	for (; i < nsegs; i++) {
1845		desc = &sc->ale_cdata.ale_tx_ring[prod];
1846		desc->addr = htole64(txsegs[i].ds_addr);
1847		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1848		desc->flags = htole32(cflags);
1849		sc->ale_cdata.ale_tx_cnt++;
1850		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1851	}
1852	/* Update producer index. */
1853	sc->ale_cdata.ale_tx_prod = prod;
1854	/* Set TSO header on the first descriptor. */
1855	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1856		desc = &sc->ale_cdata.ale_tx_ring[si];
1857		desc->flags |= htole32(ALE_TD_TSO_HDR);
1858	}
1859
1860	/* Finally set EOP on the last descriptor. */
1861	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1862	desc = &sc->ale_cdata.ale_tx_ring[prod];
1863	desc->flags |= htole32(ALE_TD_EOP);
1864
1865	/* Swap dmamap of the first and the last. */
1866	txd = &sc->ale_cdata.ale_txdesc[prod];
1867	map = txd_last->tx_dmamap;
1868	txd_last->tx_dmamap = txd->tx_dmamap;
1869	txd->tx_dmamap = map;
1870	txd->tx_m = m;
1871
1872	/* Sync descriptors. */
1873	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1874	    sc->ale_cdata.ale_tx_ring_map,
1875	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1876
1877	return (0);
1878}
1879
1880static void
1881ale_start(struct ifnet *ifp)
1882{
1883        struct ale_softc *sc;
1884
1885	sc = ifp->if_softc;
1886	ALE_LOCK(sc);
1887	ale_start_locked(ifp);
1888	ALE_UNLOCK(sc);
1889}
1890
1891static void
1892ale_start_locked(struct ifnet *ifp)
1893{
1894        struct ale_softc *sc;
1895        struct mbuf *m_head;
1896	int enq;
1897
1898	sc = ifp->if_softc;
1899
1900	ALE_LOCK_ASSERT(sc);
1901
1902	/* Reclaim transmitted frames. */
1903	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1904		ale_txeof(sc);
1905
1906	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1907	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1908		return;
1909
1910	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1911		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1912		if (m_head == NULL)
1913			break;
1914		/*
1915		 * Pack the data into the transmit ring. If we
1916		 * don't have room, set the OACTIVE flag and wait
1917		 * for the NIC to drain the ring.
1918		 */
1919		if (ale_encap(sc, &m_head)) {
1920			if (m_head == NULL)
1921				break;
1922			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1923			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1924			break;
1925		}
1926
1927		enq++;
1928		/*
1929		 * If there's a BPF listener, bounce a copy of this frame
1930		 * to him.
1931		 */
1932		ETHER_BPF_MTAP(ifp, m_head);
1933	}
1934
1935	if (enq > 0) {
1936		/* Kick. */
1937		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1938		    sc->ale_cdata.ale_tx_prod);
1939		/* Set a timeout in case the chip goes out to lunch. */
1940		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1941	}
1942}
1943
1944static void
1945ale_watchdog(struct ale_softc *sc)
1946{
1947	struct ifnet *ifp;
1948
1949	ALE_LOCK_ASSERT(sc);
1950
1951	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1952		return;
1953
1954	ifp = sc->ale_ifp;
1955	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1956		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1957		ifp->if_oerrors++;
1958		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1959		ale_init_locked(sc);
1960		return;
1961	}
1962	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1963	ifp->if_oerrors++;
1964	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1965	ale_init_locked(sc);
1966	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1967		ale_start_locked(ifp);
1968}
1969
1970static int
1971ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1972{
1973	struct ale_softc *sc;
1974	struct ifreq *ifr;
1975	struct mii_data *mii;
1976	int error, mask;
1977
1978	sc = ifp->if_softc;
1979	ifr = (struct ifreq *)data;
1980	error = 0;
1981	switch (cmd) {
1982	case SIOCSIFMTU:
1983		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1984		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1985		    ifr->ifr_mtu > ETHERMTU))
1986			error = EINVAL;
1987		else if (ifp->if_mtu != ifr->ifr_mtu) {
1988			ALE_LOCK(sc);
1989			ifp->if_mtu = ifr->ifr_mtu;
1990			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1991				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1992				ale_init_locked(sc);
1993			}
1994			ALE_UNLOCK(sc);
1995		}
1996		break;
1997	case SIOCSIFFLAGS:
1998		ALE_LOCK(sc);
1999		if ((ifp->if_flags & IFF_UP) != 0) {
2000			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2001				if (((ifp->if_flags ^ sc->ale_if_flags)
2002				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2003					ale_rxfilter(sc);
2004			} else {
2005				ale_init_locked(sc);
2006			}
2007		} else {
2008			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2009				ale_stop(sc);
2010		}
2011		sc->ale_if_flags = ifp->if_flags;
2012		ALE_UNLOCK(sc);
2013		break;
2014	case SIOCADDMULTI:
2015	case SIOCDELMULTI:
2016		ALE_LOCK(sc);
2017		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2018			ale_rxfilter(sc);
2019		ALE_UNLOCK(sc);
2020		break;
2021	case SIOCSIFMEDIA:
2022	case SIOCGIFMEDIA:
2023		mii = device_get_softc(sc->ale_miibus);
2024		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2025		break;
2026	case SIOCSIFCAP:
2027		ALE_LOCK(sc);
2028		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2029		if ((mask & IFCAP_TXCSUM) != 0 &&
2030		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2031			ifp->if_capenable ^= IFCAP_TXCSUM;
2032			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2033				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2034			else
2035				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2036		}
2037		if ((mask & IFCAP_RXCSUM) != 0 &&
2038		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2039			ifp->if_capenable ^= IFCAP_RXCSUM;
2040		if ((mask & IFCAP_TSO4) != 0 &&
2041		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2042			ifp->if_capenable ^= IFCAP_TSO4;
2043			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2044				ifp->if_hwassist |= CSUM_TSO;
2045			else
2046				ifp->if_hwassist &= ~CSUM_TSO;
2047		}
2048
2049		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2050		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2051			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2052		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2053		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2054			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2055		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2056		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2057			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2058		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2059		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2060			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2061		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2062		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2063			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2064			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2065				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2066			ale_rxvlan(sc);
2067		}
2068		ALE_UNLOCK(sc);
2069		VLAN_CAPABILITIES(ifp);
2070		break;
2071	default:
2072		error = ether_ioctl(ifp, cmd, data);
2073		break;
2074	}
2075
2076	return (error);
2077}
2078
2079static void
2080ale_mac_config(struct ale_softc *sc)
2081{
2082	struct mii_data *mii;
2083	uint32_t reg;
2084
2085	ALE_LOCK_ASSERT(sc);
2086
2087	mii = device_get_softc(sc->ale_miibus);
2088	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2089	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2090	    MAC_CFG_SPEED_MASK);
2091	/* Reprogram MAC with resolved speed/duplex. */
2092	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2093	case IFM_10_T:
2094	case IFM_100_TX:
2095		reg |= MAC_CFG_SPEED_10_100;
2096		break;
2097	case IFM_1000_T:
2098		reg |= MAC_CFG_SPEED_1000;
2099		break;
2100	}
2101	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2102		reg |= MAC_CFG_FULL_DUPLEX;
2103		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2104			reg |= MAC_CFG_TX_FC;
2105		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2106			reg |= MAC_CFG_RX_FC;
2107	}
2108	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2109}
2110
2111static void
2112ale_stats_clear(struct ale_softc *sc)
2113{
2114	struct smb sb;
2115	uint32_t *reg;
2116	int i;
2117
2118	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2119		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2120		i += sizeof(uint32_t);
2121	}
2122	/* Read Tx statistics. */
2123	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2124		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2125		i += sizeof(uint32_t);
2126	}
2127}
2128
2129static void
2130ale_stats_update(struct ale_softc *sc)
2131{
2132	struct ale_hw_stats *stat;
2133	struct smb sb, *smb;
2134	struct ifnet *ifp;
2135	uint32_t *reg;
2136	int i;
2137
2138	ALE_LOCK_ASSERT(sc);
2139
2140	ifp = sc->ale_ifp;
2141	stat = &sc->ale_stats;
2142	smb = &sb;
2143
2144	/* Read Rx statistics. */
2145	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2146		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2147		i += sizeof(uint32_t);
2148	}
2149	/* Read Tx statistics. */
2150	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2151		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2152		i += sizeof(uint32_t);
2153	}
2154
2155	/* Rx stats. */
2156	stat->rx_frames += smb->rx_frames;
2157	stat->rx_bcast_frames += smb->rx_bcast_frames;
2158	stat->rx_mcast_frames += smb->rx_mcast_frames;
2159	stat->rx_pause_frames += smb->rx_pause_frames;
2160	stat->rx_control_frames += smb->rx_control_frames;
2161	stat->rx_crcerrs += smb->rx_crcerrs;
2162	stat->rx_lenerrs += smb->rx_lenerrs;
2163	stat->rx_bytes += smb->rx_bytes;
2164	stat->rx_runts += smb->rx_runts;
2165	stat->rx_fragments += smb->rx_fragments;
2166	stat->rx_pkts_64 += smb->rx_pkts_64;
2167	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2168	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2169	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2170	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2171	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2172	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2173	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2174	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2175	stat->rx_rrs_errs += smb->rx_rrs_errs;
2176	stat->rx_alignerrs += smb->rx_alignerrs;
2177	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2178	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2179	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2180
2181	/* Tx stats. */
2182	stat->tx_frames += smb->tx_frames;
2183	stat->tx_bcast_frames += smb->tx_bcast_frames;
2184	stat->tx_mcast_frames += smb->tx_mcast_frames;
2185	stat->tx_pause_frames += smb->tx_pause_frames;
2186	stat->tx_excess_defer += smb->tx_excess_defer;
2187	stat->tx_control_frames += smb->tx_control_frames;
2188	stat->tx_deferred += smb->tx_deferred;
2189	stat->tx_bytes += smb->tx_bytes;
2190	stat->tx_pkts_64 += smb->tx_pkts_64;
2191	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2192	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2193	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2194	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2195	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2196	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2197	stat->tx_single_colls += smb->tx_single_colls;
2198	stat->tx_multi_colls += smb->tx_multi_colls;
2199	stat->tx_late_colls += smb->tx_late_colls;
2200	stat->tx_excess_colls += smb->tx_excess_colls;
2201	stat->tx_underrun += smb->tx_underrun;
2202	stat->tx_desc_underrun += smb->tx_desc_underrun;
2203	stat->tx_lenerrs += smb->tx_lenerrs;
2204	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2205	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2206	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2207
2208	/* Update counters in ifnet. */
2209	ifp->if_opackets += smb->tx_frames;
2210
2211	ifp->if_collisions += smb->tx_single_colls +
2212	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2213	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2214
2215	ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls +
2216	    smb->tx_underrun + smb->tx_pkts_truncated;
2217
2218	ifp->if_ipackets += smb->rx_frames;
2219
2220	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2221	    smb->rx_runts + smb->rx_pkts_truncated +
2222	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2223	    smb->rx_alignerrs;
2224}
2225
2226static int
2227ale_intr(void *arg)
2228{
2229	struct ale_softc *sc;
2230	uint32_t status;
2231
2232	sc = (struct ale_softc *)arg;
2233
2234	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2235	if ((status & ALE_INTRS) == 0)
2236		return (FILTER_STRAY);
2237	/* Disable interrupts. */
2238	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2239	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2240
2241	return (FILTER_HANDLED);
2242}
2243
2244static void
2245ale_int_task(void *arg, int pending)
2246{
2247	struct ale_softc *sc;
2248	struct ifnet *ifp;
2249	uint32_t status;
2250	int more;
2251
2252	sc = (struct ale_softc *)arg;
2253
2254	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2255	ALE_LOCK(sc);
2256	if (sc->ale_morework != 0)
2257		status |= INTR_RX_PKT;
2258	if ((status & ALE_INTRS) == 0)
2259		goto done;
2260
2261	/* Acknowledge interrupts but still disable interrupts. */
2262	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2263
2264	ifp = sc->ale_ifp;
2265	more = 0;
2266	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2267		more = ale_rxeof(sc, sc->ale_process_limit);
2268		if (more == EAGAIN)
2269			sc->ale_morework = 1;
2270		else if (more == EIO) {
2271			sc->ale_stats.reset_brk_seq++;
2272			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2273			ale_init_locked(sc);
2274			ALE_UNLOCK(sc);
2275			return;
2276		}
2277
2278		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2279			if ((status & INTR_DMA_RD_TO_RST) != 0)
2280				device_printf(sc->ale_dev,
2281				    "DMA read error! -- resetting\n");
2282			if ((status & INTR_DMA_WR_TO_RST) != 0)
2283				device_printf(sc->ale_dev,
2284				    "DMA write error! -- resetting\n");
2285			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2286			ale_init_locked(sc);
2287			ALE_UNLOCK(sc);
2288			return;
2289		}
2290		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2291			ale_start_locked(ifp);
2292	}
2293
2294	if (more == EAGAIN ||
2295	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2296		ALE_UNLOCK(sc);
2297		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2298		return;
2299	}
2300
2301done:
2302	ALE_UNLOCK(sc);
2303
2304	/* Re-enable interrupts. */
2305	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2306}
2307
2308static void
2309ale_txeof(struct ale_softc *sc)
2310{
2311	struct ifnet *ifp;
2312	struct ale_txdesc *txd;
2313	uint32_t cons, prod;
2314	int prog;
2315
2316	ALE_LOCK_ASSERT(sc);
2317
2318	ifp = sc->ale_ifp;
2319
2320	if (sc->ale_cdata.ale_tx_cnt == 0)
2321		return;
2322
2323	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2324	    sc->ale_cdata.ale_tx_ring_map,
2325	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2326	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2327		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2328		    sc->ale_cdata.ale_tx_cmb_map,
2329		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2330		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2331	} else
2332		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2333	cons = sc->ale_cdata.ale_tx_cons;
2334	/*
2335	 * Go through our Tx list and free mbufs for those
2336	 * frames which have been transmitted.
2337	 */
2338	for (prog = 0; cons != prod; prog++,
2339	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2340		if (sc->ale_cdata.ale_tx_cnt <= 0)
2341			break;
2342		prog++;
2343		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2344		sc->ale_cdata.ale_tx_cnt--;
2345		txd = &sc->ale_cdata.ale_txdesc[cons];
2346		if (txd->tx_m != NULL) {
2347			/* Reclaim transmitted mbufs. */
2348			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2349			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2350			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2351			    txd->tx_dmamap);
2352			m_freem(txd->tx_m);
2353			txd->tx_m = NULL;
2354		}
2355	}
2356
2357	if (prog > 0) {
2358		sc->ale_cdata.ale_tx_cons = cons;
2359		/*
2360		 * Unarm watchdog timer only when there is no pending
2361		 * Tx descriptors in queue.
2362		 */
2363		if (sc->ale_cdata.ale_tx_cnt == 0)
2364			sc->ale_watchdog_timer = 0;
2365	}
2366}
2367
2368static void
2369ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2370    uint32_t length, uint32_t *prod)
2371{
2372	struct ale_rx_page *rx_page;
2373
2374	rx_page = *page;
2375	/* Update consumer position. */
2376	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2377	    ALE_RX_PAGE_ALIGN);
2378	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2379		/*
2380		 * End of Rx page reached, let hardware reuse
2381		 * this page.
2382		 */
2383		rx_page->cons = 0;
2384		*rx_page->cmb_addr = 0;
2385		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2386		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2387		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2388		    RXF_VALID);
2389		/* Switch to alternate Rx page. */
2390		sc->ale_cdata.ale_rx_curp ^= 1;
2391		rx_page = *page =
2392		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2393		/* Page flipped, sync CMB and Rx page. */
2394		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2395		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2396		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2397		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2398		/* Sync completed, cache updated producer index. */
2399		*prod = *rx_page->cmb_addr;
2400	}
2401}
2402
2403
2404/*
2405 * It seems that AR81xx controller can compute partial checksum.
2406 * The partial checksum value can be used to accelerate checksum
2407 * computation for fragmented TCP/UDP packets. Upper network stack
2408 * already takes advantage of the partial checksum value in IP
2409 * reassembly stage. But I'm not sure the correctness of the
2410 * partial hardware checksum assistance due to lack of data sheet.
2411 * In addition, the Rx feature of controller that requires copying
2412 * for every frames effectively nullifies one of most nice offload
2413 * capability of controller.
2414 */
2415static void
2416ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2417{
2418	struct ifnet *ifp;
2419	struct ip *ip;
2420	char *p;
2421
2422	ifp = sc->ale_ifp;
2423	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2424	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2425		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2426
2427	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2428		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2429		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2430		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2431			m->m_pkthdr.csum_flags |=
2432			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2433			m->m_pkthdr.csum_data = 0xffff;
2434		}
2435	} else {
2436		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2437		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2438			p = mtod(m, char *);
2439			p += ETHER_HDR_LEN;
2440			if ((status & ALE_RD_802_3) != 0)
2441				p += LLC_SNAPFRAMELEN;
2442			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2443			    (status & ALE_RD_VLAN) != 0)
2444				p += ETHER_VLAN_ENCAP_LEN;
2445			ip = (struct ip *)p;
2446			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2447				return;
2448			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2449			    CSUM_PSEUDO_HDR;
2450			m->m_pkthdr.csum_data = 0xffff;
2451		}
2452	}
2453	/*
2454	 * Don't mark bad checksum for TCP/UDP frames
2455	 * as fragmented frames may always have set
2456	 * bad checksummed bit of frame status.
2457	 */
2458}
2459
2460/* Process received frames. */
2461static int
2462ale_rxeof(struct ale_softc *sc, int count)
2463{
2464	struct ale_rx_page *rx_page;
2465	struct rx_rs *rs;
2466	struct ifnet *ifp;
2467	struct mbuf *m;
2468	uint32_t length, prod, seqno, status, vtags;
2469	int prog;
2470
2471	ifp = sc->ale_ifp;
2472	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2473	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2474	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2475	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2476	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2477	/*
2478	 * Don't directly access producer index as hardware may
2479	 * update it while Rx handler is in progress. It would
2480	 * be even better if there is a way to let hardware
2481	 * know how far driver processed its received frames.
2482	 * Alternatively, hardware could provide a way to disable
2483	 * CMB updates until driver acknowledges the end of CMB
2484	 * access.
2485	 */
2486	prod = *rx_page->cmb_addr;
2487	for (prog = 0; prog < count; prog++) {
2488		if (rx_page->cons >= prod)
2489			break;
2490		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2491		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2492		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2493			/*
2494			 * Normally I believe this should not happen unless
2495			 * severe driver bug or corrupted memory. However
2496			 * it seems to happen under certain conditions which
2497			 * is triggered by abrupt Rx events such as initiation
2498			 * of bulk transfer of remote host. It's not easy to
2499			 * reproduce this and I doubt it could be related
2500			 * with FIFO overflow of hardware or activity of Tx
2501			 * CMB updates. I also remember similar behaviour
2502			 * seen on RealTek 8139 which uses resembling Rx
2503			 * scheme.
2504			 */
2505			if (bootverbose)
2506				device_printf(sc->ale_dev,
2507				    "garbled seq: %u, expected: %u -- "
2508				    "resetting!\n", seqno,
2509				    sc->ale_cdata.ale_rx_seqno);
2510			return (EIO);
2511		}
2512		/* Frame received. */
2513		sc->ale_cdata.ale_rx_seqno++;
2514		length = ALE_RX_BYTES(le32toh(rs->length));
2515		status = le32toh(rs->flags);
2516		if ((status & ALE_RD_ERROR) != 0) {
2517			/*
2518			 * We want to pass the following frames to upper
2519			 * layer regardless of error status of Rx return
2520			 * status.
2521			 *
2522			 *  o IP/TCP/UDP checksum is bad.
2523			 *  o frame length and protocol specific length
2524			 *     does not match.
2525			 */
2526			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2527			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2528			    ALE_RD_TRUNC)) != 0) {
2529				ale_rx_update_page(sc, &rx_page, length, &prod);
2530				continue;
2531			}
2532		}
2533		/*
2534		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2535		 * from hardware limitation). For jumbo frames we could
2536		 * get a slightly better performance if driver use
2537		 * m_getjcl(9) with proper buffer size argument. However
2538		 * that would make code more complicated and I don't
2539		 * think users would expect good Rx performance numbers
2540		 * on these low-end consumer ethernet controller.
2541		 */
2542		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2543		    ETHER_ALIGN, ifp, NULL);
2544		if (m == NULL) {
2545			ifp->if_iqdrops++;
2546			ale_rx_update_page(sc, &rx_page, length, &prod);
2547			continue;
2548		}
2549		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2550		    (status & ALE_RD_IPV4) != 0)
2551			ale_rxcsum(sc, m, status);
2552		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2553		    (status & ALE_RD_VLAN) != 0) {
2554			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2555			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2556			m->m_flags |= M_VLANTAG;
2557		}
2558
2559		/* Pass it to upper layer. */
2560		ALE_UNLOCK(sc);
2561		(*ifp->if_input)(ifp, m);
2562		ALE_LOCK(sc);
2563
2564		ale_rx_update_page(sc, &rx_page, length, &prod);
2565	}
2566
2567	return (count > 0 ? 0 : EAGAIN);
2568}
2569
2570static void
2571ale_tick(void *arg)
2572{
2573	struct ale_softc *sc;
2574	struct mii_data *mii;
2575
2576	sc = (struct ale_softc *)arg;
2577
2578	ALE_LOCK_ASSERT(sc);
2579
2580	mii = device_get_softc(sc->ale_miibus);
2581	mii_tick(mii);
2582	ale_stats_update(sc);
2583	/*
2584	 * Reclaim Tx buffers that have been transferred. It's not
2585	 * needed here but it would release allocated mbuf chains
2586	 * faster and limit the maximum delay to a hz.
2587	 */
2588	ale_txeof(sc);
2589	ale_watchdog(sc);
2590	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2591}
2592
2593static void
2594ale_reset(struct ale_softc *sc)
2595{
2596	uint32_t reg;
2597	int i;
2598
2599	/* Initialize PCIe module. From Linux. */
2600	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2601
2602	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2603	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2604		DELAY(10);
2605		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2606			break;
2607	}
2608	if (i == 0)
2609		device_printf(sc->ale_dev, "master reset timeout!\n");
2610
2611	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2612		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2613			break;
2614		DELAY(10);
2615	}
2616
2617	if (i == 0)
2618		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2619}
2620
2621static void
2622ale_init(void *xsc)
2623{
2624	struct ale_softc *sc;
2625
2626	sc = (struct ale_softc *)xsc;
2627	ALE_LOCK(sc);
2628	ale_init_locked(sc);
2629	ALE_UNLOCK(sc);
2630}
2631
2632static void
2633ale_init_locked(struct ale_softc *sc)
2634{
2635	struct ifnet *ifp;
2636	struct mii_data *mii;
2637	uint8_t eaddr[ETHER_ADDR_LEN];
2638	bus_addr_t paddr;
2639	uint32_t reg, rxf_hi, rxf_lo;
2640
2641	ALE_LOCK_ASSERT(sc);
2642
2643	ifp = sc->ale_ifp;
2644	mii = device_get_softc(sc->ale_miibus);
2645
2646	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2647		return;
2648	/*
2649	 * Cancel any pending I/O.
2650	 */
2651	ale_stop(sc);
2652	/*
2653	 * Reset the chip to a known state.
2654	 */
2655	ale_reset(sc);
2656	/* Initialize Tx descriptors, DMA memory blocks. */
2657	ale_init_rx_pages(sc);
2658	ale_init_tx_ring(sc);
2659
2660	/* Reprogram the station address. */
2661	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2662	CSR_WRITE_4(sc, ALE_PAR0,
2663	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2664	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2665	/*
2666	 * Clear WOL status and disable all WOL feature as WOL
2667	 * would interfere Rx operation under normal environments.
2668	 */
2669	CSR_READ_4(sc, ALE_WOL_CFG);
2670	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2671	/*
2672	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2673	 * the same high address part of DMAable region.
2674	 */
2675	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2676	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2677	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2678	CSR_WRITE_4(sc, ALE_TPD_CNT,
2679	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2680	/* Set Rx page base address, note we use single queue. */
2681	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2682	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2683	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2684	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2685	/* Set Tx/Rx CMB addresses. */
2686	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2687	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2688	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2689	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2690	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2691	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2692	/* Mark RXF0 is valid. */
2693	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2694	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2695	/*
2696	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2697	 * multi-queue yet.
2698	 */
2699
2700	/* Set Rx page size, excluding guard frame size. */
2701	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2702	/* Tell hardware that we're ready to load DMA blocks. */
2703	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2704
2705	/* Set Rx/Tx interrupt trigger threshold. */
2706	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2707	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2708	/*
2709	 * XXX
2710	 * Set interrupt trigger timer, its purpose and relation
2711	 * with interrupt moderation mechanism is not clear yet.
2712	 */
2713	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2714	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2715	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2716
2717	/* Configure interrupt moderation timer. */
2718	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2719	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2720	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2721	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2722	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2723	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2724	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2725		reg |= MASTER_IM_RX_TIMER_ENB;
2726	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2727		reg |= MASTER_IM_TX_TIMER_ENB;
2728	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2729	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2730
2731	/* Set Maximum frame size of controller. */
2732	if (ifp->if_mtu < ETHERMTU)
2733		sc->ale_max_frame_size = ETHERMTU;
2734	else
2735		sc->ale_max_frame_size = ifp->if_mtu;
2736	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2737	    ETHER_CRC_LEN;
2738	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2739	/* Configure IPG/IFG parameters. */
2740	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2741	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2742	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2743	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2744	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2745	/* Set parameters for half-duplex media. */
2746	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2747	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2748	    HDPX_CFG_LCOL_MASK) |
2749	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2750	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2751	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2752	    HDPX_CFG_ABEBT_MASK) |
2753	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2754	    HDPX_CFG_JAMIPG_MASK));
2755
2756	/* Configure Tx jumbo frame parameters. */
2757	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2758		if (ifp->if_mtu < ETHERMTU)
2759			reg = sc->ale_max_frame_size;
2760		else if (ifp->if_mtu < 6 * 1024)
2761			reg = (sc->ale_max_frame_size * 2) / 3;
2762		else
2763			reg = sc->ale_max_frame_size / 2;
2764		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2765		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2766		    TX_JUMBO_THRESH_UNIT_SHIFT);
2767	}
2768	/* Configure TxQ. */
2769	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2770	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2771	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2772	    TXQ_CFG_TPD_BURST_MASK;
2773	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2774
2775	/* Configure Rx jumbo frame & flow control parameters. */
2776	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2777		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2778		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2779		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2780		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2781		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2782		    RX_JUMBO_LKAH_MASK));
2783		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2784		rxf_hi = (reg * 7) / 10;
2785		rxf_lo = (reg * 3)/ 10;
2786		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2787		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2788		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2789		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2790		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2791	}
2792
2793	/* Disable RSS. */
2794	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2795	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2796
2797	/* Configure RxQ. */
2798	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2799	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2800
2801	/* Configure DMA parameters. */
2802	reg = 0;
2803	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2804		reg |= DMA_CFG_TXCMB_ENB;
2805	CSR_WRITE_4(sc, ALE_DMA_CFG,
2806	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2807	    sc->ale_dma_rd_burst | reg |
2808	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2809	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2810	    DMA_CFG_RD_DELAY_CNT_MASK) |
2811	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2812	    DMA_CFG_WR_DELAY_CNT_MASK));
2813
2814	/*
2815	 * Hardware can be configured to issue SMB interrupt based
2816	 * on programmed interval. Since there is a callout that is
2817	 * invoked for every hz in driver we use that instead of
2818	 * relying on periodic SMB interrupt.
2819	 */
2820	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2821	/* Clear MAC statistics. */
2822	ale_stats_clear(sc);
2823
2824	/*
2825	 * Configure Tx/Rx MACs.
2826	 *  - Auto-padding for short frames.
2827	 *  - Enable CRC generation.
2828	 *  Actual reconfiguration of MAC for resolved speed/duplex
2829	 *  is followed after detection of link establishment.
2830	 *  AR81xx always does checksum computation regardless of
2831	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2832	 *  cause Rx handling issue for fragmented IP datagrams due
2833	 *  to silicon bug.
2834	 */
2835	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2836	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2837	    MAC_CFG_PREAMBLE_MASK);
2838	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2839		reg |= MAC_CFG_SPEED_10_100;
2840	else
2841		reg |= MAC_CFG_SPEED_1000;
2842	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2843
2844	/* Set up the receive filter. */
2845	ale_rxfilter(sc);
2846	ale_rxvlan(sc);
2847
2848	/* Acknowledge all pending interrupts and clear it. */
2849	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2850	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2851	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2852
2853	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2854	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2855
2856	sc->ale_flags &= ~ALE_FLAG_LINK;
2857	/* Switch to the current media. */
2858	mii_mediachg(mii);
2859
2860	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2861}
2862
2863static void
2864ale_stop(struct ale_softc *sc)
2865{
2866	struct ifnet *ifp;
2867	struct ale_txdesc *txd;
2868	uint32_t reg;
2869	int i;
2870
2871	ALE_LOCK_ASSERT(sc);
2872	/*
2873	 * Mark the interface down and cancel the watchdog timer.
2874	 */
2875	ifp = sc->ale_ifp;
2876	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2877	sc->ale_flags &= ~ALE_FLAG_LINK;
2878	callout_stop(&sc->ale_tick_ch);
2879	sc->ale_watchdog_timer = 0;
2880	ale_stats_update(sc);
2881	/* Disable interrupts. */
2882	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2883	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2884	/* Disable queue processing and DMA. */
2885	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2886	reg &= ~TXQ_CFG_ENB;
2887	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2888	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2889	reg &= ~RXQ_CFG_ENB;
2890	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2891	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2892	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2893	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2894	DELAY(1000);
2895	/* Stop Rx/Tx MACs. */
2896	ale_stop_mac(sc);
2897	/* Disable interrupts which might be touched in taskq handler. */
2898	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2899
2900	/*
2901	 * Free TX mbufs still in the queues.
2902	 */
2903	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2904		txd = &sc->ale_cdata.ale_txdesc[i];
2905		if (txd->tx_m != NULL) {
2906			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2907			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2908			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2909			    txd->tx_dmamap);
2910			m_freem(txd->tx_m);
2911			txd->tx_m = NULL;
2912		}
2913        }
2914}
2915
2916static void
2917ale_stop_mac(struct ale_softc *sc)
2918{
2919	uint32_t reg;
2920	int i;
2921
2922	ALE_LOCK_ASSERT(sc);
2923
2924	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2925	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2926		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2927		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2928	}
2929
2930	for (i = ALE_TIMEOUT; i > 0; i--) {
2931		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2932		if (reg == 0)
2933			break;
2934		DELAY(10);
2935	}
2936	if (i == 0)
2937		device_printf(sc->ale_dev,
2938		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2939}
2940
2941static void
2942ale_init_tx_ring(struct ale_softc *sc)
2943{
2944	struct ale_txdesc *txd;
2945	int i;
2946
2947	ALE_LOCK_ASSERT(sc);
2948
2949	sc->ale_cdata.ale_tx_prod = 0;
2950	sc->ale_cdata.ale_tx_cons = 0;
2951	sc->ale_cdata.ale_tx_cnt = 0;
2952
2953	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2954	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2955	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2956		txd = &sc->ale_cdata.ale_txdesc[i];
2957		txd->tx_m = NULL;
2958	}
2959	*sc->ale_cdata.ale_tx_cmb = 0;
2960	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2961	    sc->ale_cdata.ale_tx_cmb_map,
2962	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2963	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2964	    sc->ale_cdata.ale_tx_ring_map,
2965	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2966}
2967
2968static void
2969ale_init_rx_pages(struct ale_softc *sc)
2970{
2971	struct ale_rx_page *rx_page;
2972	int i;
2973
2974	ALE_LOCK_ASSERT(sc);
2975
2976	sc->ale_morework = 0;
2977	sc->ale_cdata.ale_rx_seqno = 0;
2978	sc->ale_cdata.ale_rx_curp = 0;
2979
2980	for (i = 0; i < ALE_RX_PAGES; i++) {
2981		rx_page = &sc->ale_cdata.ale_rx_page[i];
2982		bzero(rx_page->page_addr, sc->ale_pagesize);
2983		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2984		rx_page->cons = 0;
2985		*rx_page->cmb_addr = 0;
2986		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2987		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2988		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2989		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2990	}
2991}
2992
2993static void
2994ale_rxvlan(struct ale_softc *sc)
2995{
2996	struct ifnet *ifp;
2997	uint32_t reg;
2998
2999	ALE_LOCK_ASSERT(sc);
3000
3001	ifp = sc->ale_ifp;
3002	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3003	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3004	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3005		reg |= MAC_CFG_VLAN_TAG_STRIP;
3006	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3007}
3008
3009static void
3010ale_rxfilter(struct ale_softc *sc)
3011{
3012	struct ifnet *ifp;
3013	struct ifmultiaddr *ifma;
3014	uint32_t crc;
3015	uint32_t mchash[2];
3016	uint32_t rxcfg;
3017
3018	ALE_LOCK_ASSERT(sc);
3019
3020	ifp = sc->ale_ifp;
3021
3022	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3023	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3024	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3025		rxcfg |= MAC_CFG_BCAST;
3026	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3027		if ((ifp->if_flags & IFF_PROMISC) != 0)
3028			rxcfg |= MAC_CFG_PROMISC;
3029		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3030			rxcfg |= MAC_CFG_ALLMULTI;
3031		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3032		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3033		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3034		return;
3035	}
3036
3037	/* Program new filter. */
3038	bzero(mchash, sizeof(mchash));
3039
3040	if_maddr_rlock(ifp);
3041	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3042		if (ifma->ifma_addr->sa_family != AF_LINK)
3043			continue;
3044		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3045		    ifma->ifma_addr), ETHER_ADDR_LEN);
3046		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3047	}
3048	if_maddr_runlock(ifp);
3049
3050	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3051	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3052	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3053}
3054
3055static int
3056sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3057{
3058	int error, value;
3059
3060	if (arg1 == NULL)
3061		return (EINVAL);
3062	value = *(int *)arg1;
3063	error = sysctl_handle_int(oidp, &value, 0, req);
3064	if (error || req->newptr == NULL)
3065		return (error);
3066	if (value < low || value > high)
3067		return (EINVAL);
3068        *(int *)arg1 = value;
3069
3070        return (0);
3071}
3072
3073static int
3074sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3075{
3076	return (sysctl_int_range(oidp, arg1, arg2, req,
3077	    ALE_PROC_MIN, ALE_PROC_MAX));
3078}
3079
3080static int
3081sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3082{
3083
3084	return (sysctl_int_range(oidp, arg1, arg2, req,
3085	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3086}
3087