1/*-
2 * Copyright (c) 2000 Matthew Jacob
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification, immediately at the beginning of the file.
11 * 2. The name of the author may not be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <sys/param.h>
31
32#include <sys/conf.h>
33#include <sys/errno.h>
34#include <sys/kernel.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/queue.h>
38#include <sys/sx.h>
39#include <sys/systm.h>
40#include <sys/sysctl.h>
41#include <sys/types.h>
42
43#include <cam/cam.h>
44#include <cam/cam_ccb.h>
45#include <cam/cam_periph.h>
46
47#include <cam/scsi/scsi_enc.h>
48#include <cam/scsi/scsi_enc_internal.h>
49#include <cam/scsi/scsi_message.h>
50
51/*
52 * SAF-TE Type Device Emulation
53 */
54
55static int safte_set_enc_status(enc_softc_t *enc, uint8_t encstat, int slpflag);
56
57#define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
58	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
59/*
60 * SAF-TE specific defines- Mandatory ones only...
61 */
62
63/*
64 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
65 */
66#define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
67#define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
68#define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
69#define	SAFTE_RD_RDGFLG	0x05	/* read global flags */
70
71/*
72 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
73 */
74#define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
75#define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
76#define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
77#define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
78#define	SAFTE_WT_GLOBAL	0x15	/* send global command */
79
80#define	SAFT_SCRATCH	64
81#define	SCSZ		0x8000
82
83typedef enum {
84	SAFTE_UPDATE_NONE,
85	SAFTE_UPDATE_READCONFIG,
86	SAFTE_UPDATE_READGFLAGS,
87	SAFTE_UPDATE_READENCSTATUS,
88	SAFTE_UPDATE_READSLOTSTATUS,
89	SAFTE_PROCESS_CONTROL_REQS,
90	SAFTE_NUM_UPDATE_STATES
91} safte_update_action;
92
93static fsm_fill_handler_t safte_fill_read_buf_io;
94static fsm_fill_handler_t safte_fill_control_request;
95static fsm_done_handler_t safte_process_config;
96static fsm_done_handler_t safte_process_gflags;
97static fsm_done_handler_t safte_process_status;
98static fsm_done_handler_t safte_process_slotstatus;
99static fsm_done_handler_t safte_process_control_request;
100
101static struct enc_fsm_state enc_fsm_states[SAFTE_NUM_UPDATE_STATES] =
102{
103	{ "SAFTE_UPDATE_NONE", 0, 0, 0, NULL, NULL, NULL },
104	{
105		"SAFTE_UPDATE_READCONFIG",
106		SAFTE_RD_RDCFG,
107		SAFT_SCRATCH,
108		60 * 1000,
109		safte_fill_read_buf_io,
110		safte_process_config,
111		enc_error
112	},
113	{
114		"SAFTE_UPDATE_READGFLAGS",
115		SAFTE_RD_RDGFLG,
116		16,
117		60 * 1000,
118		safte_fill_read_buf_io,
119		safte_process_gflags,
120		enc_error
121	},
122	{
123		"SAFTE_UPDATE_READENCSTATUS",
124		SAFTE_RD_RDESTS,
125		SCSZ,
126		60 * 1000,
127		safte_fill_read_buf_io,
128		safte_process_status,
129		enc_error
130	},
131	{
132		"SAFTE_UPDATE_READSLOTSTATUS",
133		SAFTE_RD_RDDSTS,
134		SCSZ,
135		60 * 1000,
136		safte_fill_read_buf_io,
137		safte_process_slotstatus,
138		enc_error
139	},
140	{
141		"SAFTE_PROCESS_CONTROL_REQS",
142		0,
143		SCSZ,
144		60 * 1000,
145		safte_fill_control_request,
146		safte_process_control_request,
147		enc_error
148	}
149};
150
151typedef struct safte_control_request {
152	int	elm_idx;
153	uint8_t	elm_stat[4];
154	int	result;
155	TAILQ_ENTRY(safte_control_request) links;
156} safte_control_request_t;
157TAILQ_HEAD(safte_control_reqlist, safte_control_request);
158typedef struct safte_control_reqlist safte_control_reqlist_t;
159enum {
160	SES_SETSTATUS_ENC_IDX = -1
161};
162
163static void
164safte_terminate_control_requests(safte_control_reqlist_t *reqlist, int result)
165{
166	safte_control_request_t *req;
167
168	while ((req = TAILQ_FIRST(reqlist)) != NULL) {
169		TAILQ_REMOVE(reqlist, req, links);
170		req->result = result;
171		wakeup(req);
172	}
173}
174
175struct scfg {
176	/*
177	 * Cached Configuration
178	 */
179	uint8_t	Nfans;		/* Number of Fans */
180	uint8_t	Npwr;		/* Number of Power Supplies */
181	uint8_t	Nslots;		/* Number of Device Slots */
182	uint8_t	DoorLock;	/* Door Lock Installed */
183	uint8_t	Ntherm;		/* Number of Temperature Sensors */
184	uint8_t	Nspkrs;		/* Number of Speakers */
185	uint8_t	Ntstats;	/* Number of Thermostats */
186	/*
187	 * Cached Flag Bytes for Global Status
188	 */
189	uint8_t	flag1;
190	uint8_t	flag2;
191	/*
192	 * What object index ID is where various slots start.
193	 */
194	uint8_t	pwroff;
195	uint8_t	slotoff;
196#define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
197
198	encioc_enc_status_t	adm_status;
199	encioc_enc_status_t	enc_status;
200	encioc_enc_status_t	slot_status;
201
202	safte_control_reqlist_t	requests;
203	safte_control_request_t	*current_request;
204	int			current_request_stage;
205	int			current_request_stages;
206};
207
208#define	SAFT_FLG1_ALARM		0x1
209#define	SAFT_FLG1_GLOBFAIL	0x2
210#define	SAFT_FLG1_GLOBWARN	0x4
211#define	SAFT_FLG1_ENCPWROFF	0x8
212#define	SAFT_FLG1_ENCFANFAIL	0x10
213#define	SAFT_FLG1_ENCPWRFAIL	0x20
214#define	SAFT_FLG1_ENCDRVFAIL	0x40
215#define	SAFT_FLG1_ENCDRVWARN	0x80
216
217#define	SAFT_FLG2_LOCKDOOR	0x4
218#define	SAFT_PRIVATE		sizeof (struct scfg)
219
220static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
221#define	SAFT_BAIL(r, x)	\
222	if ((r) >= (x)) { \
223		ENC_VLOG(enc, safte_2little, x, __LINE__);\
224		return (EIO); \
225	}
226
227int emulate_array_devices = 1;
228SYSCTL_DECL(_kern_cam_enc);
229SYSCTL_INT(_kern_cam_enc, OID_AUTO, emulate_array_devices, CTLFLAG_RW,
230           &emulate_array_devices, 0, "Emulate Array Devices for SAF-TE");
231TUNABLE_INT("kern.cam.enc.emulate_array_devices", &emulate_array_devices);
232
233static int
234safte_fill_read_buf_io(enc_softc_t *enc, struct enc_fsm_state *state,
235		       union ccb *ccb, uint8_t *buf)
236{
237
238	if (state->page_code != SAFTE_RD_RDCFG &&
239	    enc->enc_cache.nelms == 0) {
240		enc_update_request(enc, SAFTE_UPDATE_READCONFIG);
241		return (-1);
242	}
243
244	if (enc->enc_type == ENC_SEMB_SAFT) {
245		semb_read_buffer(&ccb->ataio, /*retries*/5,
246				NULL, MSG_SIMPLE_Q_TAG,
247				state->page_code, buf, state->buf_size,
248				state->timeout);
249	} else {
250		scsi_read_buffer(&ccb->csio, /*retries*/5,
251				NULL, MSG_SIMPLE_Q_TAG, 1,
252				state->page_code, 0, buf, state->buf_size,
253				SSD_FULL_SIZE, state->timeout);
254	}
255	return (0);
256}
257
258static int
259safte_process_config(enc_softc_t *enc, struct enc_fsm_state *state,
260    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
261{
262	struct scfg *cfg;
263	uint8_t *buf = *bufp;
264	int i, r;
265
266	cfg = enc->enc_private;
267	if (cfg == NULL)
268		return (ENXIO);
269	if (error != 0)
270		return (error);
271	if (xfer_len < 6) {
272		ENC_VLOG(enc, "too little data (%d) for configuration\n",
273		    xfer_len);
274		return (EIO);
275	}
276	cfg->Nfans = buf[0];
277	cfg->Npwr = buf[1];
278	cfg->Nslots = buf[2];
279	cfg->DoorLock = buf[3];
280	cfg->Ntherm = buf[4];
281	cfg->Nspkrs = buf[5];
282	if (xfer_len >= 7)
283		cfg->Ntstats = buf[6] & 0x0f;
284	else
285		cfg->Ntstats = 0;
286	ENC_VLOG(enc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d "
287	    "Ntstats %d\n",
288	    cfg->Nfans, cfg->Npwr, cfg->Nslots, cfg->DoorLock, cfg->Ntherm,
289	    cfg->Nspkrs, cfg->Ntstats);
290
291	enc->enc_cache.nelms = cfg->Nfans + cfg->Npwr + cfg->Nslots +
292	    cfg->DoorLock + cfg->Ntherm + cfg->Nspkrs + cfg->Ntstats + 1;
293	ENC_FREE_AND_NULL(enc->enc_cache.elm_map);
294	enc->enc_cache.elm_map =
295	    malloc(enc->enc_cache.nelms * sizeof(enc_element_t),
296	    M_SCSIENC, M_WAITOK|M_ZERO);
297
298	r = 0;
299	/*
300	 * Note that this is all arranged for the convenience
301	 * in later fetches of status.
302	 */
303	for (i = 0; i < cfg->Nfans; i++)
304		enc->enc_cache.elm_map[r++].enctype = ELMTYP_FAN;
305	cfg->pwroff = (uint8_t) r;
306	for (i = 0; i < cfg->Npwr; i++)
307		enc->enc_cache.elm_map[r++].enctype = ELMTYP_POWER;
308	for (i = 0; i < cfg->DoorLock; i++)
309		enc->enc_cache.elm_map[r++].enctype = ELMTYP_DOORLOCK;
310	if (cfg->Nspkrs > 0)
311		enc->enc_cache.elm_map[r++].enctype = ELMTYP_ALARM;
312	for (i = 0; i < cfg->Ntherm; i++)
313		enc->enc_cache.elm_map[r++].enctype = ELMTYP_THERM;
314	for (i = 0; i <= cfg->Ntstats; i++)
315		enc->enc_cache.elm_map[r++].enctype = ELMTYP_THERM;
316	cfg->slotoff = (uint8_t) r;
317	for (i = 0; i < cfg->Nslots; i++)
318		enc->enc_cache.elm_map[r++].enctype =
319		    emulate_array_devices ? ELMTYP_ARRAY_DEV :
320		     ELMTYP_DEVICE;
321
322	enc_update_request(enc, SAFTE_UPDATE_READGFLAGS);
323	enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
324	enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
325
326	return (0);
327}
328
329static int
330safte_process_gflags(enc_softc_t *enc, struct enc_fsm_state *state,
331    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
332{
333	struct scfg *cfg;
334	uint8_t *buf = *bufp;
335
336	cfg = enc->enc_private;
337	if (cfg == NULL)
338		return (ENXIO);
339	if (error != 0)
340		return (error);
341	SAFT_BAIL(3, xfer_len);
342	cfg->flag1 = buf[1];
343	cfg->flag2 = buf[2];
344
345	cfg->adm_status = 0;
346	if (cfg->flag1 & SAFT_FLG1_GLOBFAIL)
347		cfg->adm_status |= SES_ENCSTAT_CRITICAL;
348	else if (cfg->flag1 & SAFT_FLG1_GLOBWARN)
349		cfg->adm_status |= SES_ENCSTAT_NONCRITICAL;
350
351	return (0);
352}
353
354static int
355safte_process_status(enc_softc_t *enc, struct enc_fsm_state *state,
356    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
357{
358	struct scfg *cfg;
359	uint8_t *buf = *bufp;
360	int oid, r, i, nitems;
361	uint16_t tempflags;
362	enc_cache_t *cache = &enc->enc_cache;
363
364	cfg = enc->enc_private;
365	if (cfg == NULL)
366		return (ENXIO);
367	if (error != 0)
368		return (error);
369
370	oid = r = 0;
371	cfg->enc_status = 0;
372
373	for (nitems = i = 0; i < cfg->Nfans; i++) {
374		SAFT_BAIL(r, xfer_len);
375		/*
376		 * 0 = Fan Operational
377		 * 1 = Fan is malfunctioning
378		 * 2 = Fan is not present
379		 * 0x80 = Unknown or Not Reportable Status
380		 */
381		cache->elm_map[oid].encstat[1] = 0;	/* resvd */
382		cache->elm_map[oid].encstat[2] = 0;	/* resvd */
383		if (cfg->flag1 & SAFT_FLG1_ENCFANFAIL)
384			cache->elm_map[oid].encstat[3] |= 0x40;
385		else
386			cache->elm_map[oid].encstat[3] &= ~0x40;
387		switch ((int)buf[r]) {
388		case 0:
389			nitems++;
390			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
391			if ((cache->elm_map[oid].encstat[3] & 0x37) == 0)
392				cache->elm_map[oid].encstat[3] |= 0x27;
393			break;
394
395		case 1:
396			cache->elm_map[oid].encstat[0] =
397			    SES_OBJSTAT_CRIT;
398			/*
399			 * FAIL and FAN STOPPED synthesized
400			 */
401			cache->elm_map[oid].encstat[3] |= 0x10;
402			cache->elm_map[oid].encstat[3] &= ~0x07;
403			/*
404			 * Enclosure marked with CRITICAL error
405			 * if only one fan or no thermometers,
406			 * else the NONCRITICAL error is set.
407			 */
408			if (cfg->Nfans == 1 || (cfg->Ntherm + cfg->Ntstats) == 0)
409				cfg->enc_status |= SES_ENCSTAT_CRITICAL;
410			else
411				cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
412			break;
413		case 2:
414			cache->elm_map[oid].encstat[0] =
415			    SES_OBJSTAT_NOTINSTALLED;
416			cache->elm_map[oid].encstat[3] |= 0x10;
417			cache->elm_map[oid].encstat[3] &= ~0x07;
418			/*
419			 * Enclosure marked with CRITICAL error
420			 * if only one fan or no thermometers,
421			 * else the NONCRITICAL error is set.
422			 */
423			if (cfg->Nfans == 1)
424				cfg->enc_status |= SES_ENCSTAT_CRITICAL;
425			else
426				cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
427			break;
428		case 0x80:
429			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
430			cache->elm_map[oid].encstat[3] = 0;
431			cfg->enc_status |= SES_ENCSTAT_INFO;
432			break;
433		default:
434			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
435			ENC_VLOG(enc, "Unknown fan%d status 0x%x\n", i,
436			    buf[r] & 0xff);
437			break;
438		}
439		cache->elm_map[oid++].svalid = 1;
440		r++;
441	}
442
443	/*
444	 * No matter how you cut it, no cooling elements when there
445	 * should be some there is critical.
446	 */
447	if (cfg->Nfans && nitems == 0)
448		cfg->enc_status |= SES_ENCSTAT_CRITICAL;
449
450	for (i = 0; i < cfg->Npwr; i++) {
451		SAFT_BAIL(r, xfer_len);
452		cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
453		cache->elm_map[oid].encstat[1] = 0;	/* resvd */
454		cache->elm_map[oid].encstat[2] = 0;	/* resvd */
455		cache->elm_map[oid].encstat[3] = 0x20;	/* requested on */
456		switch (buf[r]) {
457		case 0x00:	/* pws operational and on */
458			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
459			break;
460		case 0x01:	/* pws operational and off */
461			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
462			cache->elm_map[oid].encstat[3] = 0x10;
463			cfg->enc_status |= SES_ENCSTAT_INFO;
464			break;
465		case 0x10:	/* pws is malfunctioning and commanded on */
466			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
467			cache->elm_map[oid].encstat[3] = 0x61;
468			cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
469			break;
470
471		case 0x11:	/* pws is malfunctioning and commanded off */
472			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
473			cache->elm_map[oid].encstat[3] = 0x51;
474			cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
475			break;
476		case 0x20:	/* pws is not present */
477			cache->elm_map[oid].encstat[0] =
478			    SES_OBJSTAT_NOTINSTALLED;
479			cache->elm_map[oid].encstat[3] = 0;
480			cfg->enc_status |= SES_ENCSTAT_INFO;
481			break;
482		case 0x21:	/* pws is present */
483			/*
484			 * This is for enclosures that cannot tell whether the
485			 * device is on or malfunctioning, but know that it is
486			 * present. Just fall through.
487			 */
488			/* FALLTHROUGH */
489		case 0x80:	/* Unknown or Not Reportable Status */
490			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
491			cache->elm_map[oid].encstat[3] = 0;
492			cfg->enc_status |= SES_ENCSTAT_INFO;
493			break;
494		default:
495			ENC_VLOG(enc, "unknown power supply %d status (0x%x)\n",
496			    i, buf[r] & 0xff);
497			break;
498		}
499		enc->enc_cache.elm_map[oid++].svalid = 1;
500		r++;
501	}
502
503	/*
504	 * Copy Slot SCSI IDs
505	 */
506	for (i = 0; i < cfg->Nslots; i++) {
507		SAFT_BAIL(r, xfer_len);
508		if (cache->elm_map[cfg->slotoff + i].enctype == ELMTYP_DEVICE)
509			cache->elm_map[cfg->slotoff + i].encstat[1] = buf[r];
510		r++;
511	}
512
513	/*
514	 * We always have doorlock status, no matter what,
515	 * but we only save the status if we have one.
516	 */
517	SAFT_BAIL(r, xfer_len);
518	if (cfg->DoorLock) {
519		/*
520		 * 0 = Door Locked
521		 * 1 = Door Unlocked, or no Lock Installed
522		 * 0x80 = Unknown or Not Reportable Status
523		 */
524		cache->elm_map[oid].encstat[1] = 0;
525		cache->elm_map[oid].encstat[2] = 0;
526		switch (buf[r]) {
527		case 0:
528			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
529			cache->elm_map[oid].encstat[3] = 0;
530			break;
531		case 1:
532			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
533			cache->elm_map[oid].encstat[3] = 1;
534			break;
535		case 0x80:
536			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
537			cache->elm_map[oid].encstat[3] = 0;
538			cfg->enc_status |= SES_ENCSTAT_INFO;
539			break;
540		default:
541			cache->elm_map[oid].encstat[0] =
542			    SES_OBJSTAT_UNSUPPORTED;
543			ENC_VLOG(enc, "unknown lock status 0x%x\n",
544			    buf[r] & 0xff);
545			break;
546		}
547		cache->elm_map[oid++].svalid = 1;
548	}
549	r++;
550
551	/*
552	 * We always have speaker status, no matter what,
553	 * but we only save the status if we have one.
554	 */
555	SAFT_BAIL(r, xfer_len);
556	if (cfg->Nspkrs) {
557		cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
558		cache->elm_map[oid].encstat[1] = 0;
559		cache->elm_map[oid].encstat[2] = 0;
560		if (buf[r] == 0) {
561			cache->elm_map[oid].encstat[0] |= SESCTL_DISABLE;
562			cache->elm_map[oid].encstat[3] |= 0x40;
563		}
564		cache->elm_map[oid++].svalid = 1;
565	}
566	r++;
567
568	/*
569	 * Now, for "pseudo" thermometers, we have two bytes
570	 * of information in enclosure status- 16 bits. Actually,
571	 * the MSB is a single TEMP ALERT flag indicating whether
572	 * any other bits are set, but, thanks to fuzzy thinking,
573	 * in the SAF-TE spec, this can also be set even if no
574	 * other bits are set, thus making this really another
575	 * binary temperature sensor.
576	 */
577
578	SAFT_BAIL(r + cfg->Ntherm, xfer_len);
579	tempflags = buf[r + cfg->Ntherm];
580	SAFT_BAIL(r + cfg->Ntherm + 1, xfer_len);
581	tempflags |= (tempflags << 8) | buf[r + cfg->Ntherm + 1];
582
583	for (i = 0; i < cfg->Ntherm; i++) {
584		SAFT_BAIL(r, xfer_len);
585		/*
586		 * Status is a range from -10 to 245 deg Celsius,
587		 * which we need to normalize to -20 to -245 according
588		 * to the latest SCSI spec, which makes little
589		 * sense since this would overflow an 8bit value.
590		 * Well, still, the base normalization is -20,
591		 * not -10, so we have to adjust.
592		 *
593		 * So what's over and under temperature?
594		 * Hmm- we'll state that 'normal' operating
595		 * is 10 to 40 deg Celsius.
596		 */
597
598		/*
599		 * Actually.... All of the units that people out in the world
600		 * seem to have do not come even close to setting a value that
601		 * complies with this spec.
602		 *
603		 * The closest explanation I could find was in an
604		 * LSI-Logic manual, which seemed to indicate that
605		 * this value would be set by whatever the I2C code
606		 * would interpolate from the output of an LM75
607		 * temperature sensor.
608		 *
609		 * This means that it is impossible to use the actual
610		 * numeric value to predict anything. But we don't want
611		 * to lose the value. So, we'll propagate the *uncorrected*
612		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
613		 * temperature flags for warnings.
614		 */
615		if (tempflags & (1 << i)) {
616			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
617			cfg->enc_status |= SES_ENCSTAT_CRITICAL;
618		} else
619			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
620		cache->elm_map[oid].encstat[1] = 0;
621		cache->elm_map[oid].encstat[2] = buf[r];
622		cache->elm_map[oid].encstat[3] = 0;
623		cache->elm_map[oid++].svalid = 1;
624		r++;
625	}
626
627	for (i = 0; i <= cfg->Ntstats; i++) {
628		cache->elm_map[oid].encstat[1] = 0;
629		if (tempflags & (1 <<
630		    ((i == cfg->Ntstats) ? 15 : (cfg->Ntherm + i)))) {
631			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
632			cache->elm_map[4].encstat[2] = 0xff;
633			/*
634			 * Set 'over temperature' failure.
635			 */
636			cache->elm_map[oid].encstat[3] = 8;
637			cfg->enc_status |= SES_ENCSTAT_CRITICAL;
638		} else {
639			/*
640			 * We used to say 'not available' and synthesize a
641			 * nominal 30 deg (C)- that was wrong. Actually,
642			 * Just say 'OK', and use the reserved value of
643			 * zero.
644			 */
645			if ((cfg->Ntherm + cfg->Ntstats) == 0)
646				cache->elm_map[oid].encstat[0] =
647				    SES_OBJSTAT_NOTAVAIL;
648			else
649				cache->elm_map[oid].encstat[0] =
650				    SES_OBJSTAT_OK;
651			cache->elm_map[oid].encstat[2] = 0;
652			cache->elm_map[oid].encstat[3] = 0;
653		}
654		cache->elm_map[oid++].svalid = 1;
655	}
656	r += 2;
657
658	cache->enc_status =
659	    cfg->enc_status | cfg->slot_status | cfg->adm_status;
660	return (0);
661}
662
663static int
664safte_process_slotstatus(enc_softc_t *enc, struct enc_fsm_state *state,
665    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
666{
667	struct scfg *cfg;
668	uint8_t *buf = *bufp;
669	enc_cache_t *cache = &enc->enc_cache;
670	int oid, r, i;
671
672	cfg = enc->enc_private;
673	if (cfg == NULL)
674		return (ENXIO);
675	if (error != 0)
676		return (error);
677	cfg->slot_status = 0;
678	oid = cfg->slotoff;
679	for (r = i = 0; i < cfg->Nslots; i++, r += 4) {
680		SAFT_BAIL(r+3, xfer_len);
681		if (cache->elm_map[oid].enctype == ELMTYP_ARRAY_DEV)
682			cache->elm_map[oid].encstat[1] = 0;
683		cache->elm_map[oid].encstat[2] &= SESCTL_RQSID;
684		cache->elm_map[oid].encstat[3] = 0;
685		if ((buf[r+3] & 0x01) == 0) {	/* no device */
686			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NOTINSTALLED;
687		} else if (buf[r+0] & 0x02) {
688			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
689			cfg->slot_status |= SES_ENCSTAT_CRITICAL;
690		} else if (buf[r+0] & 0x40) {
691			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
692			cfg->slot_status |= SES_ENCSTAT_NONCRITICAL;
693		} else {
694			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
695		}
696		if (buf[r+3] & 0x2) {
697			if (buf[r+3] & 0x01)
698				cache->elm_map[oid].encstat[2] |= SESCTL_RQSRMV;
699			else
700				cache->elm_map[oid].encstat[2] |= SESCTL_RQSINS;
701		}
702		if ((buf[r+3] & 0x04) == 0)
703			cache->elm_map[oid].encstat[3] |= SESCTL_DEVOFF;
704		if (buf[r+0] & 0x02)
705			cache->elm_map[oid].encstat[3] |= SESCTL_RQSFLT;
706		if (buf[r+0] & 0x40)
707			cache->elm_map[oid].encstat[0] |= SESCTL_PRDFAIL;
708		if (cache->elm_map[oid].enctype == ELMTYP_ARRAY_DEV) {
709			if (buf[r+0] & 0x01)
710				cache->elm_map[oid].encstat[1] |= 0x80;
711			if (buf[r+0] & 0x04)
712				cache->elm_map[oid].encstat[1] |= 0x02;
713			if (buf[r+0] & 0x08)
714				cache->elm_map[oid].encstat[1] |= 0x04;
715			if (buf[r+0] & 0x10)
716				cache->elm_map[oid].encstat[1] |= 0x08;
717			if (buf[r+0] & 0x20)
718				cache->elm_map[oid].encstat[1] |= 0x10;
719			if (buf[r+1] & 0x01)
720				cache->elm_map[oid].encstat[1] |= 0x20;
721			if (buf[r+1] & 0x02)
722				cache->elm_map[oid].encstat[1] |= 0x01;
723		}
724		cache->elm_map[oid++].svalid = 1;
725	}
726
727	cache->enc_status =
728	    cfg->enc_status | cfg->slot_status | cfg->adm_status;
729	return (0);
730}
731
732static int
733safte_fill_control_request(enc_softc_t *enc, struct enc_fsm_state *state,
734		       union ccb *ccb, uint8_t *buf)
735{
736	struct scfg *cfg;
737	enc_element_t *ep, *ep1;
738	safte_control_request_t *req;
739	int i, idx, xfer_len;
740
741	cfg = enc->enc_private;
742	if (cfg == NULL)
743		return (ENXIO);
744
745	if (enc->enc_cache.nelms == 0) {
746		enc_update_request(enc, SAFTE_UPDATE_READCONFIG);
747		return (-1);
748	}
749
750	if (cfg->current_request == NULL) {
751		cfg->current_request = TAILQ_FIRST(&cfg->requests);
752		TAILQ_REMOVE(&cfg->requests, cfg->current_request, links);
753		cfg->current_request_stage = 0;
754		cfg->current_request_stages = 1;
755	}
756	req = cfg->current_request;
757
758	idx = (int)req->elm_idx;
759	if (req->elm_idx == SES_SETSTATUS_ENC_IDX) {
760		cfg->adm_status = req->elm_stat[0] & ALL_ENC_STAT;
761		cfg->flag1 &= ~(SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
762		if (req->elm_stat[0] & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV))
763			cfg->flag1 |= SAFT_FLG1_GLOBFAIL;
764		else if (req->elm_stat[0] & SES_ENCSTAT_NONCRITICAL)
765			cfg->flag1 |= SAFT_FLG1_GLOBWARN;
766		buf[0] = SAFTE_WT_GLOBAL;
767		buf[1] = cfg->flag1;
768		buf[2] = cfg->flag2;
769		buf[3] = 0;
770		xfer_len = 16;
771	} else {
772		ep = &enc->enc_cache.elm_map[idx];
773
774		switch (ep->enctype) {
775		case ELMTYP_DEVICE:
776		case ELMTYP_ARRAY_DEV:
777			switch (cfg->current_request_stage) {
778			case 0:
779				ep->priv = 0;
780				if (req->elm_stat[0] & SESCTL_PRDFAIL)
781					ep->priv |= 0x40;
782				if (req->elm_stat[3] & SESCTL_RQSFLT)
783					ep->priv |= 0x02;
784				if (ep->enctype == ELMTYP_ARRAY_DEV) {
785					if (req->elm_stat[1] & 0x01)
786						ep->priv |= 0x200;
787					if (req->elm_stat[1] & 0x02)
788						ep->priv |= 0x04;
789					if (req->elm_stat[1] & 0x04)
790						ep->priv |= 0x08;
791					if (req->elm_stat[1] & 0x08)
792						ep->priv |= 0x10;
793					if (req->elm_stat[1] & 0x10)
794						ep->priv |= 0x20;
795					if (req->elm_stat[1] & 0x20)
796						ep->priv |= 0x100;
797					if (req->elm_stat[1] & 0x80)
798						ep->priv |= 0x01;
799				}
800				if (ep->priv == 0)
801					ep->priv |= 0x01;	/* no errors */
802
803				buf[0] = SAFTE_WT_DSTAT;
804				for (i = 0; i < cfg->Nslots; i++) {
805					ep1 = &enc->enc_cache.elm_map[cfg->slotoff + i];
806					buf[1 + (3 * i)] = ep1->priv;
807					buf[2 + (3 * i)] = ep1->priv >> 8;
808				}
809				xfer_len = cfg->Nslots * 3 + 1;
810#define DEVON(x)	(!(((x)[2] & SESCTL_RQSINS) |	\
811			   ((x)[2] & SESCTL_RQSRMV) |	\
812			   ((x)[3] & SESCTL_DEVOFF)))
813				if (DEVON(req->elm_stat) != DEVON(ep->encstat))
814					cfg->current_request_stages++;
815#define IDON(x)		(!!((x)[2] & SESCTL_RQSID))
816				if (IDON(req->elm_stat) != IDON(ep->encstat))
817					cfg->current_request_stages++;
818				break;
819			case 1:
820			case 2:
821				buf[0] = SAFTE_WT_SLTOP;
822				buf[1] = idx - cfg->slotoff;
823				if (cfg->current_request_stage == 1 &&
824				    DEVON(req->elm_stat) != DEVON(ep->encstat)) {
825					if (DEVON(req->elm_stat))
826						buf[2] = 0x01;
827					else
828						buf[2] = 0x02;
829				} else {
830					if (IDON(req->elm_stat))
831						buf[2] = 0x04;
832					else
833						buf[2] = 0x00;
834					ep->encstat[2] &= ~SESCTL_RQSID;
835					ep->encstat[2] |= req->elm_stat[2] &
836					    SESCTL_RQSID;
837				}
838				xfer_len = 64;
839				break;
840			default:
841				return (EINVAL);
842			}
843			break;
844		case ELMTYP_POWER:
845			cfg->current_request_stages = 2;
846			switch (cfg->current_request_stage) {
847			case 0:
848				if (req->elm_stat[3] & SESCTL_RQSTFAIL) {
849					cfg->flag1 |= SAFT_FLG1_ENCPWRFAIL;
850				} else {
851					cfg->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
852				}
853				buf[0] = SAFTE_WT_GLOBAL;
854				buf[1] = cfg->flag1;
855				buf[2] = cfg->flag2;
856				buf[3] = 0;
857				xfer_len = 16;
858				break;
859			case 1:
860				buf[0] = SAFTE_WT_ACTPWS;
861				buf[1] = idx - cfg->pwroff;
862				if (req->elm_stat[3] & SESCTL_RQSTON)
863					buf[2] = 0x01;
864				else
865					buf[2] = 0x00;
866				buf[3] = 0;
867				xfer_len = 16;
868			default:
869				return (EINVAL);
870			}
871			break;
872		case ELMTYP_FAN:
873			if ((req->elm_stat[3] & 0x7) != 0)
874				cfg->current_request_stages = 2;
875			switch (cfg->current_request_stage) {
876			case 0:
877				if (req->elm_stat[3] & SESCTL_RQSTFAIL)
878					cfg->flag1 |= SAFT_FLG1_ENCFANFAIL;
879				else
880					cfg->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
881				buf[0] = SAFTE_WT_GLOBAL;
882				buf[1] = cfg->flag1;
883				buf[2] = cfg->flag2;
884				buf[3] = 0;
885				xfer_len = 16;
886				break;
887			case 1:
888				buf[0] = SAFTE_WT_FANSPD;
889				buf[1] = idx;
890				if (req->elm_stat[3] & SESCTL_RQSTON) {
891					if ((req->elm_stat[3] & 0x7) == 7)
892						buf[2] = 4;
893					else if ((req->elm_stat[3] & 0x7) >= 5)
894						buf[2] = 3;
895					else if ((req->elm_stat[3] & 0x7) >= 3)
896						buf[2] = 2;
897					else
898						buf[2] = 1;
899				} else
900					buf[2] = 0;
901				buf[3] = 0;
902				xfer_len = 16;
903				ep->encstat[3] = req->elm_stat[3] & 0x67;
904			default:
905				return (EINVAL);
906			}
907			break;
908		case ELMTYP_DOORLOCK:
909			if (req->elm_stat[3] & 0x1)
910				cfg->flag2 &= ~SAFT_FLG2_LOCKDOOR;
911			else
912				cfg->flag2 |= SAFT_FLG2_LOCKDOOR;
913			buf[0] = SAFTE_WT_GLOBAL;
914			buf[1] = cfg->flag1;
915			buf[2] = cfg->flag2;
916			buf[3] = 0;
917			xfer_len = 16;
918			break;
919		case ELMTYP_ALARM:
920			if ((req->elm_stat[0] & SESCTL_DISABLE) ||
921			    (req->elm_stat[3] & 0x40)) {
922				cfg->flag2 &= ~SAFT_FLG1_ALARM;
923			} else if ((req->elm_stat[3] & 0x0f) != 0) {
924				cfg->flag2 |= SAFT_FLG1_ALARM;
925			} else {
926				cfg->flag2 &= ~SAFT_FLG1_ALARM;
927			}
928			buf[0] = SAFTE_WT_GLOBAL;
929			buf[1] = cfg->flag1;
930			buf[2] = cfg->flag2;
931			buf[3] = 0;
932			xfer_len = 16;
933			ep->encstat[3] = req->elm_stat[3];
934			break;
935		default:
936			return (EINVAL);
937		}
938	}
939
940	if (enc->enc_type == ENC_SEMB_SAFT) {
941		semb_write_buffer(&ccb->ataio, /*retries*/5,
942				NULL, MSG_SIMPLE_Q_TAG,
943				buf, xfer_len, state->timeout);
944	} else {
945		scsi_write_buffer(&ccb->csio, /*retries*/5,
946				NULL, MSG_SIMPLE_Q_TAG, 1,
947				0, 0, buf, xfer_len,
948				SSD_FULL_SIZE, state->timeout);
949	}
950	return (0);
951}
952
953static int
954safte_process_control_request(enc_softc_t *enc, struct enc_fsm_state *state,
955    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
956{
957	struct scfg *cfg;
958	safte_control_request_t *req;
959	int idx, type;
960
961	cfg = enc->enc_private;
962	if (cfg == NULL)
963		return (ENXIO);
964
965	req = cfg->current_request;
966	if (req->result == 0)
967		req->result = error;
968	if (++cfg->current_request_stage >= cfg->current_request_stages) {
969		idx = req->elm_idx;
970		if (idx == SES_SETSTATUS_ENC_IDX)
971			type = -1;
972		else
973			type = enc->enc_cache.elm_map[idx].enctype;
974		if (type == ELMTYP_DEVICE || type == ELMTYP_ARRAY_DEV)
975			enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
976		else
977			enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
978		cfg->current_request = NULL;
979		wakeup(req);
980	} else {
981		enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
982	}
983	return (0);
984}
985
986static void
987safte_softc_invalidate(enc_softc_t *enc)
988{
989	struct scfg *cfg;
990
991	cfg = enc->enc_private;
992	safte_terminate_control_requests(&cfg->requests, ENXIO);
993}
994
995static void
996safte_softc_cleanup(enc_softc_t *enc)
997{
998
999	ENC_FREE_AND_NULL(enc->enc_cache.elm_map);
1000	ENC_FREE_AND_NULL(enc->enc_private);
1001	enc->enc_cache.nelms = 0;
1002}
1003
1004static int
1005safte_init_enc(enc_softc_t *enc)
1006{
1007	struct scfg *cfg;
1008	int err;
1009	static char cdb0[6] = { SEND_DIAGNOSTIC };
1010
1011	cfg = enc->enc_private;
1012	if (cfg == NULL)
1013		return (ENXIO);
1014
1015	err = enc_runcmd(enc, cdb0, 6, NULL, 0);
1016	if (err) {
1017		return (err);
1018	}
1019	DELAY(5000);
1020	cfg->flag1 = 0;
1021	cfg->flag2 = 0;
1022	err = safte_set_enc_status(enc, 0, 1);
1023	return (err);
1024}
1025
1026static int
1027safte_get_enc_status(enc_softc_t *enc, int slpflg)
1028{
1029
1030	return (0);
1031}
1032
1033static int
1034safte_set_enc_status(enc_softc_t *enc, uint8_t encstat, int slpflag)
1035{
1036	struct scfg *cfg;
1037	safte_control_request_t req;
1038
1039	cfg = enc->enc_private;
1040	if (cfg == NULL)
1041		return (ENXIO);
1042
1043	req.elm_idx = SES_SETSTATUS_ENC_IDX;
1044	req.elm_stat[0] = encstat & 0xf;
1045	req.result = 0;
1046
1047	TAILQ_INSERT_TAIL(&cfg->requests, &req, links);
1048	enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
1049	cam_periph_sleep(enc->periph, &req, PUSER, "encstat", 0);
1050
1051	return (req.result);
1052}
1053
1054static int
1055safte_get_elm_status(enc_softc_t *enc, encioc_elm_status_t *elms, int slpflg)
1056{
1057	int i = (int)elms->elm_idx;
1058
1059	elms->cstat[0] = enc->enc_cache.elm_map[i].encstat[0];
1060	elms->cstat[1] = enc->enc_cache.elm_map[i].encstat[1];
1061	elms->cstat[2] = enc->enc_cache.elm_map[i].encstat[2];
1062	elms->cstat[3] = enc->enc_cache.elm_map[i].encstat[3];
1063	return (0);
1064}
1065
1066static int
1067safte_set_elm_status(enc_softc_t *enc, encioc_elm_status_t *elms, int slpflag)
1068{
1069	struct scfg *cfg;
1070	safte_control_request_t req;
1071
1072	cfg = enc->enc_private;
1073	if (cfg == NULL)
1074		return (ENXIO);
1075
1076	/* If this is clear, we don't do diddly.  */
1077	if ((elms->cstat[0] & SESCTL_CSEL) == 0)
1078		return (0);
1079
1080	req.elm_idx = elms->elm_idx;
1081	memcpy(&req.elm_stat, elms->cstat, sizeof(req.elm_stat));
1082	req.result = 0;
1083
1084	TAILQ_INSERT_TAIL(&cfg->requests, &req, links);
1085	enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
1086	cam_periph_sleep(enc->periph, &req, PUSER, "encstat", 0);
1087
1088	return (req.result);
1089}
1090
1091static void
1092safte_poll_status(enc_softc_t *enc)
1093{
1094
1095	enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
1096	enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
1097}
1098
1099static struct enc_vec safte_enc_vec =
1100{
1101	.softc_invalidate	= safte_softc_invalidate,
1102	.softc_cleanup	= safte_softc_cleanup,
1103	.init_enc	= safte_init_enc,
1104	.get_enc_status	= safte_get_enc_status,
1105	.set_enc_status	= safte_set_enc_status,
1106	.get_elm_status	= safte_get_elm_status,
1107	.set_elm_status	= safte_set_elm_status,
1108	.poll_status	= safte_poll_status
1109};
1110
1111int
1112safte_softc_init(enc_softc_t *enc)
1113{
1114	struct scfg *cfg;
1115
1116	enc->enc_vec = safte_enc_vec;
1117	enc->enc_fsm_states = enc_fsm_states;
1118
1119	if (enc->enc_private == NULL) {
1120		enc->enc_private = ENC_MALLOCZ(SAFT_PRIVATE);
1121		if (enc->enc_private == NULL)
1122			return (ENOMEM);
1123	}
1124	cfg = enc->enc_private;
1125
1126	enc->enc_cache.nelms = 0;
1127	enc->enc_cache.enc_status = 0;
1128
1129	TAILQ_INIT(&cfg->requests);
1130	return (0);
1131}
1132
1133