trap.c revision 266311
1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81
82#include "opt_ktrace.h"
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/10/sys/arm/arm/trap.c 266311 2014-05-17 13:53:38Z ian $");
86
87#include <sys/param.h>
88#include <sys/bus.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/kernel.h>
92#include <sys/lock.h>
93#include <sys/mutex.h>
94#include <sys/syscall.h>
95#include <sys/sysent.h>
96#include <sys/signalvar.h>
97#include <sys/ktr.h>
98#ifdef KTRACE
99#include <sys/uio.h>
100#include <sys/ktrace.h>
101#endif
102#include <sys/ptrace.h>
103#include <sys/pioctl.h>
104
105#include <vm/vm.h>
106#include <vm/pmap.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_map.h>
109#include <vm/vm_extern.h>
110
111#include <machine/armreg.h>
112#include <machine/cpuconf.h>
113#include <machine/vmparam.h>
114#include <machine/frame.h>
115#include <machine/cpu.h>
116#include <machine/intr.h>
117#include <machine/pcb.h>
118#include <machine/proc.h>
119#include <machine/swi.h>
120
121#include <security/audit/audit.h>
122
123#ifdef KDB
124#include <sys/kdb.h>
125#endif
126
127
128void swi_handler(struct trapframe *);
129
130#include <machine/disassem.h>
131#include <machine/machdep.h>
132
133extern char fusubailout[];
134
135#ifdef DEBUG
136int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
137#endif
138
139struct ksig {
140	int signb;
141	u_long code;
142};
143struct data_abort {
144	int (*func)(struct trapframe *, u_int, u_int, struct thread *,
145	    struct ksig *);
146	const char *desc;
147};
148
149static int dab_fatal(struct trapframe *, u_int, u_int, struct thread *,
150    struct ksig *);
151static int dab_align(struct trapframe *, u_int, u_int, struct thread *,
152    struct ksig *);
153static int dab_buserr(struct trapframe *, u_int, u_int, struct thread *,
154    struct ksig *);
155
156static const struct data_abort data_aborts[] = {
157	{dab_fatal,	"Vector Exception"},
158	{dab_align,	"Alignment Fault 1"},
159	{dab_fatal,	"Terminal Exception"},
160	{dab_align,	"Alignment Fault 3"},
161	{dab_buserr,	"External Linefetch Abort (S)"},
162	{NULL,		"Translation Fault (S)"},
163#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
164	{NULL,		"Translation Flag Fault"},
165#else
166	{dab_buserr,	"External Linefetch Abort (P)"},
167#endif
168	{NULL,		"Translation Fault (P)"},
169	{dab_buserr,	"External Non-Linefetch Abort (S)"},
170	{NULL,		"Domain Fault (S)"},
171	{dab_buserr,	"External Non-Linefetch Abort (P)"},
172	{NULL,		"Domain Fault (P)"},
173	{dab_buserr,	"External Translation Abort (L1)"},
174	{NULL,		"Permission Fault (S)"},
175	{dab_buserr,	"External Translation Abort (L2)"},
176	{NULL,		"Permission Fault (P)"}
177};
178
179/* Determine if a fault came from user mode */
180#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
181
182/* Determine if 'x' is a permission fault */
183#define	IS_PERMISSION_FAULT(x)					\
184	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
185	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
186
187static __inline void
188call_trapsignal(struct thread *td, int sig, u_long code)
189{
190	ksiginfo_t ksi;
191
192	ksiginfo_init_trap(&ksi);
193	ksi.ksi_signo = sig;
194	ksi.ksi_code = (int)code;
195	trapsignal(td, &ksi);
196}
197
198void
199data_abort_handler(struct trapframe *tf)
200{
201	struct vm_map *map;
202	struct pcb *pcb;
203	struct thread *td;
204	u_int user, far, fsr;
205	vm_prot_t ftype;
206	void *onfault;
207	vm_offset_t va;
208	int error = 0;
209	struct ksig ksig;
210	struct proc *p;
211
212
213	/* Grab FAR/FSR before enabling interrupts */
214	far = cpu_faultaddress();
215	fsr = cpu_faultstatus();
216#if 0
217	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
218	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
219#endif
220
221	/* Update vmmeter statistics */
222#if 0
223	vmexp.traps++;
224#endif
225
226	td = curthread;
227	p = td->td_proc;
228
229	PCPU_INC(cnt.v_trap);
230	/* Data abort came from user mode? */
231	user = TRAP_USERMODE(tf);
232
233	if (user) {
234		td->td_pticks = 0;
235		td->td_frame = tf;
236		if (td->td_ucred != td->td_proc->p_ucred)
237			cred_update_thread(td);
238
239	}
240	/* Grab the current pcb */
241	pcb = td->td_pcb;
242	/* Re-enable interrupts if they were enabled previously */
243	if (td->td_md.md_spinlock_count == 0) {
244		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
245			enable_interrupts(I32_bit);
246		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
247			enable_interrupts(F32_bit);
248	}
249
250
251	/* Invoke the appropriate handler, if necessary */
252	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
253		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
254		    td, &ksig)) {
255			goto do_trapsignal;
256		}
257		goto out;
258	}
259
260	/*
261	 * At this point, we're dealing with one of the following data aborts:
262	 *
263	 *  FAULT_TRANS_S  - Translation -- Section
264	 *  FAULT_TRANS_P  - Translation -- Page
265	 *  FAULT_DOMAIN_S - Domain -- Section
266	 *  FAULT_DOMAIN_P - Domain -- Page
267	 *  FAULT_PERM_S   - Permission -- Section
268	 *  FAULT_PERM_P   - Permission -- Page
269	 *
270	 * These are the main virtual memory-related faults signalled by
271	 * the MMU.
272	 */
273
274	/* fusubailout is used by [fs]uswintr to avoid page faulting */
275	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
276		tf->tf_r0 = EFAULT;
277		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
278		return;
279	}
280
281	/*
282	 * Make sure the Program Counter is sane. We could fall foul of
283	 * someone executing Thumb code, in which case the PC might not
284	 * be word-aligned. This would cause a kernel alignment fault
285	 * further down if we have to decode the current instruction.
286	 * XXX: It would be nice to be able to support Thumb at some point.
287	 */
288	if (__predict_false((tf->tf_pc & 3) != 0)) {
289		if (user) {
290			/*
291			 * Give the user an illegal instruction signal.
292			 */
293			/* Deliver a SIGILL to the process */
294			ksig.signb = SIGILL;
295			ksig.code = 0;
296			goto do_trapsignal;
297		}
298
299		/*
300		 * The kernel never executes Thumb code.
301		 */
302		printf("\ndata_abort_fault: Misaligned Kernel-mode "
303		    "Program Counter\n");
304		dab_fatal(tf, fsr, far, td, &ksig);
305	}
306
307	va = trunc_page((vm_offset_t)far);
308
309	/*
310	 * It is only a kernel address space fault iff:
311	 *	1. user == 0  and
312	 *	2. pcb_onfault not set or
313	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
314	 */
315	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
316	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
317	    __predict_true((pcb->pcb_onfault == NULL ||
318	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
319		map = kernel_map;
320
321		/* Was the fault due to the FPE/IPKDB ? */
322		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
323
324			/*
325			 * Force exit via userret()
326			 * This is necessary as the FPE is an extension to
327			 * userland that actually runs in a priveledged mode
328			 * but uses USR mode permissions for its accesses.
329			 */
330			user = 1;
331			ksig.signb = SIGSEGV;
332			ksig.code = 0;
333			goto do_trapsignal;
334		}
335	} else {
336		map = &td->td_proc->p_vmspace->vm_map;
337	}
338
339	/*
340	 * We need to know whether the page should be mapped as R or R/W.  On
341	 * armv6 and later the fault status register indicates whether the
342	 * access was a read or write.  Prior to armv6, we know that a
343	 * permission fault can only be the result of a write to a read-only
344	 * location, so we can deal with those quickly.  Otherwise we need to
345	 * disassemble the faulting instruction to determine if it was a write.
346	 */
347#if ARM_ARCH_6 || ARM_ARCH_7A
348	ftype = (fsr & FAULT_WNR) ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
349#else
350	if (IS_PERMISSION_FAULT(fsr))
351		ftype = VM_PROT_WRITE;
352	else {
353		u_int insn = ReadWord(tf->tf_pc);
354
355		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
356		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
357		    ((insn & 0x0a100000) == 0x08000000)) {	/* STM/CDT */
358			ftype = VM_PROT_WRITE;
359		} else {
360			if ((insn & 0x0fb00ff0) == 0x01000090)	/* SWP */
361				ftype = VM_PROT_READ | VM_PROT_WRITE;
362			else
363				ftype = VM_PROT_READ;
364		}
365	}
366#endif
367
368	/*
369	 * See if the fault is as a result of ref/mod emulation,
370	 * or domain mismatch.
371	 */
372#ifdef DEBUG
373	last_fault_code = fsr;
374#endif
375	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
376	    user)) {
377		goto out;
378	}
379
380	onfault = pcb->pcb_onfault;
381	pcb->pcb_onfault = NULL;
382	if (map != kernel_map) {
383		PROC_LOCK(p);
384		p->p_lock++;
385		PROC_UNLOCK(p);
386	}
387	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
388	pcb->pcb_onfault = onfault;
389
390	if (map != kernel_map) {
391		PROC_LOCK(p);
392		p->p_lock--;
393		PROC_UNLOCK(p);
394	}
395	if (__predict_true(error == 0))
396		goto out;
397	if (user == 0) {
398		if (pcb->pcb_onfault) {
399			tf->tf_r0 = error;
400			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
401			return;
402		}
403
404		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
405		    error);
406		dab_fatal(tf, fsr, far, td, &ksig);
407	}
408
409
410	if (error == ENOMEM) {
411		printf("VM: pid %d (%s), uid %d killed: "
412		    "out of swap\n", td->td_proc->p_pid, td->td_name,
413		    (td->td_proc->p_ucred) ?
414		     td->td_proc->p_ucred->cr_uid : -1);
415		ksig.signb = SIGKILL;
416	} else {
417		ksig.signb = SIGSEGV;
418	}
419	ksig.code = 0;
420do_trapsignal:
421	call_trapsignal(td, ksig.signb, ksig.code);
422out:
423	/* If returning to user mode, make sure to invoke userret() */
424	if (user)
425		userret(td, tf);
426}
427
428/*
429 * dab_fatal() handles the following data aborts:
430 *
431 *  FAULT_WRTBUF_0 - Vector Exception
432 *  FAULT_WRTBUF_1 - Terminal Exception
433 *
434 * We should never see these on a properly functioning system.
435 *
436 * This function is also called by the other handlers if they
437 * detect a fatal problem.
438 *
439 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
440 */
441static int
442dab_fatal(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
443    struct ksig *ksig)
444{
445	const char *mode;
446
447	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
448
449	disable_interrupts(I32_bit|F32_bit);
450	if (td != NULL) {
451		printf("Fatal %s mode data abort: '%s'\n", mode,
452		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
453		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
454		if ((fsr & FAULT_IMPRECISE) == 0)
455			printf("%08x, ", far);
456		else
457			printf("Invalid,  ");
458		printf("spsr=%08x\n", tf->tf_spsr);
459	} else {
460		printf("Fatal %s mode prefetch abort at 0x%08x\n",
461		    mode, tf->tf_pc);
462		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
463	}
464
465	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
466	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
467	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
468	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
469	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
470	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
471	printf("r12=%08x, ", tf->tf_r12);
472
473	if (TRAP_USERMODE(tf))
474		printf("usp=%08x, ulr=%08x",
475		    tf->tf_usr_sp, tf->tf_usr_lr);
476	else
477		printf("ssp=%08x, slr=%08x",
478		    tf->tf_svc_sp, tf->tf_svc_lr);
479	printf(", pc =%08x\n\n", tf->tf_pc);
480
481#ifdef KDB
482	if (debugger_on_panic || kdb_active)
483		if (kdb_trap(fsr, 0, tf))
484			return (0);
485#endif
486	panic("Fatal abort");
487	/*NOTREACHED*/
488}
489
490/*
491 * dab_align() handles the following data aborts:
492 *
493 *  FAULT_ALIGN_0 - Alignment fault
494 *  FAULT_ALIGN_1 - Alignment fault
495 *
496 * These faults are fatal if they happen in kernel mode. Otherwise, we
497 * deliver a bus error to the process.
498 */
499static int
500dab_align(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
501    struct ksig *ksig)
502{
503
504	/* Alignment faults are always fatal if they occur in kernel mode */
505	if (!TRAP_USERMODE(tf)) {
506		if (!td || !td->td_pcb->pcb_onfault)
507			dab_fatal(tf, fsr, far, td, ksig);
508		tf->tf_r0 = EFAULT;
509		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
510		return (0);
511	}
512
513	/* pcb_onfault *must* be NULL at this point */
514
515	/* Deliver a bus error signal to the process */
516	ksig->code = 0;
517	ksig->signb = SIGBUS;
518	td->td_frame = tf;
519
520	return (1);
521}
522
523/*
524 * dab_buserr() handles the following data aborts:
525 *
526 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
527 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
528 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
529 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
530 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
531 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
532 *
533 * If pcb_onfault is set, flag the fault and return to the handler.
534 * If the fault occurred in user mode, give the process a SIGBUS.
535 *
536 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
537 * can be flagged as imprecise in the FSR. This causes a real headache
538 * since some of the machine state is lost. In this case, tf->tf_pc
539 * may not actually point to the offending instruction. In fact, if
540 * we've taken a double abort fault, it generally points somewhere near
541 * the top of "data_abort_entry" in exception.S.
542 *
543 * In all other cases, these data aborts are considered fatal.
544 */
545static int
546dab_buserr(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
547    struct ksig *ksig)
548{
549	struct pcb *pcb = td->td_pcb;
550
551#ifdef __XSCALE__
552	if ((fsr & FAULT_IMPRECISE) != 0 &&
553	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
554		/*
555		 * Oops, an imprecise, double abort fault. We've lost the
556		 * r14_abt/spsr_abt values corresponding to the original
557		 * abort, and the spsr saved in the trapframe indicates
558		 * ABT mode.
559		 */
560		tf->tf_spsr &= ~PSR_MODE;
561
562		/*
563		 * We use a simple heuristic to determine if the double abort
564		 * happened as a result of a kernel or user mode access.
565		 * If the current trapframe is at the top of the kernel stack,
566		 * the fault _must_ have come from user mode.
567		 */
568		if (tf != ((struct trapframe *)pcb->un_32.pcb32_sp) - 1) {
569			/*
570			 * Kernel mode. We're either about to die a
571			 * spectacular death, or pcb_onfault will come
572			 * to our rescue. Either way, the current value
573			 * of tf->tf_pc is irrelevant.
574			 */
575			tf->tf_spsr |= PSR_SVC32_MODE;
576			if (pcb->pcb_onfault == NULL)
577				printf("\nKernel mode double abort!\n");
578		} else {
579			/*
580			 * User mode. We've lost the program counter at the
581			 * time of the fault (not that it was accurate anyway;
582			 * it's not called an imprecise fault for nothing).
583			 * About all we can do is copy r14_usr to tf_pc and
584			 * hope for the best. The process is about to get a
585			 * SIGBUS, so it's probably history anyway.
586			 */
587			tf->tf_spsr |= PSR_USR32_MODE;
588			tf->tf_pc = tf->tf_usr_lr;
589		}
590	}
591
592	/* FAR is invalid for imprecise exceptions */
593	if ((fsr & FAULT_IMPRECISE) != 0)
594		far = 0;
595#endif /* __XSCALE__ */
596
597	if (pcb->pcb_onfault) {
598		tf->tf_r0 = EFAULT;
599		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
600		return (0);
601	}
602
603	/*
604	 * At this point, if the fault happened in kernel mode, we're toast
605	 */
606	if (!TRAP_USERMODE(tf))
607		dab_fatal(tf, fsr, far, td, ksig);
608
609	/* Deliver a bus error signal to the process */
610	ksig->signb = SIGBUS;
611	ksig->code = 0;
612	td->td_frame = tf;
613
614	return (1);
615}
616
617/*
618 * void prefetch_abort_handler(struct trapframe *tf)
619 *
620 * Abort handler called when instruction execution occurs at
621 * a non existent or restricted (access permissions) memory page.
622 * If the address is invalid and we were in SVC mode then panic as
623 * the kernel should never prefetch abort.
624 * If the address is invalid and the page is mapped then the user process
625 * does no have read permission so send it a signal.
626 * Otherwise fault the page in and try again.
627 */
628void
629prefetch_abort_handler(struct trapframe *tf)
630{
631	struct thread *td;
632	struct proc * p;
633	struct vm_map *map;
634	vm_offset_t fault_pc, va;
635	int error = 0;
636	struct ksig ksig;
637
638
639#if 0
640	/* Update vmmeter statistics */
641	uvmexp.traps++;
642#endif
643#if 0
644	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
645	    (void*)tf->tf_usr_lr);
646#endif
647
648 	td = curthread;
649	p = td->td_proc;
650	PCPU_INC(cnt.v_trap);
651
652	if (TRAP_USERMODE(tf)) {
653		td->td_frame = tf;
654		if (td->td_ucred != td->td_proc->p_ucred)
655			cred_update_thread(td);
656	}
657	fault_pc = tf->tf_pc;
658	if (td->td_md.md_spinlock_count == 0) {
659		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
660			enable_interrupts(I32_bit);
661		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
662			enable_interrupts(F32_bit);
663	}
664
665	/* Prefetch aborts cannot happen in kernel mode */
666	if (__predict_false(!TRAP_USERMODE(tf)))
667		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
668	td->td_pticks = 0;
669
670
671	/* Ok validate the address, can only execute in USER space */
672	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
673	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
674		ksig.signb = SIGSEGV;
675		ksig.code = 0;
676		goto do_trapsignal;
677	}
678
679	map = &td->td_proc->p_vmspace->vm_map;
680	va = trunc_page(fault_pc);
681
682	/*
683	 * See if the pmap can handle this fault on its own...
684	 */
685#ifdef DEBUG
686	last_fault_code = -1;
687#endif
688	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
689		goto out;
690
691	if (map != kernel_map) {
692		PROC_LOCK(p);
693		p->p_lock++;
694		PROC_UNLOCK(p);
695	}
696
697	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
698	    VM_FAULT_NORMAL);
699	if (map != kernel_map) {
700		PROC_LOCK(p);
701		p->p_lock--;
702		PROC_UNLOCK(p);
703	}
704
705	if (__predict_true(error == 0))
706		goto out;
707
708	if (error == ENOMEM) {
709		printf("VM: pid %d (%s), uid %d killed: "
710		    "out of swap\n", td->td_proc->p_pid, td->td_name,
711		    (td->td_proc->p_ucred) ?
712		     td->td_proc->p_ucred->cr_uid : -1);
713		ksig.signb = SIGKILL;
714	} else {
715		ksig.signb = SIGSEGV;
716	}
717	ksig.code = 0;
718
719do_trapsignal:
720	call_trapsignal(td, ksig.signb, ksig.code);
721
722out:
723	userret(td, tf);
724
725}
726
727extern int badaddr_read_1(const uint8_t *, uint8_t *);
728extern int badaddr_read_2(const uint16_t *, uint16_t *);
729extern int badaddr_read_4(const uint32_t *, uint32_t *);
730/*
731 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
732 * If the read succeeds, the value is written to 'rptr' and zero is returned.
733 * Else, return EFAULT.
734 */
735int
736badaddr_read(void *addr, size_t size, void *rptr)
737{
738	union {
739		uint8_t v1;
740		uint16_t v2;
741		uint32_t v4;
742	} u;
743	int rv;
744
745	cpu_drain_writebuf();
746
747	/* Read from the test address. */
748	switch (size) {
749	case sizeof(uint8_t):
750		rv = badaddr_read_1(addr, &u.v1);
751		if (rv == 0 && rptr)
752			*(uint8_t *) rptr = u.v1;
753		break;
754
755	case sizeof(uint16_t):
756		rv = badaddr_read_2(addr, &u.v2);
757		if (rv == 0 && rptr)
758			*(uint16_t *) rptr = u.v2;
759		break;
760
761	case sizeof(uint32_t):
762		rv = badaddr_read_4(addr, &u.v4);
763		if (rv == 0 && rptr)
764			*(uint32_t *) rptr = u.v4;
765		break;
766
767	default:
768		panic("badaddr: invalid size (%lu)", (u_long) size);
769	}
770
771	/* Return EFAULT if the address was invalid, else zero */
772	return (rv);
773}
774
775int
776cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa)
777{
778	struct proc *p;
779	register_t *ap;
780	int error;
781
782#ifdef __ARM_EABI__
783	sa->code = td->td_frame->tf_r7;
784#else
785	sa->code = sa->insn & 0x000fffff;
786#endif
787	ap = &td->td_frame->tf_r0;
788	if (sa->code == SYS_syscall) {
789		sa->code = *ap++;
790		sa->nap--;
791	} else if (sa->code == SYS___syscall) {
792		sa->code = ap[_QUAD_LOWWORD];
793		sa->nap -= 2;
794		ap += 2;
795	}
796	p = td->td_proc;
797	if (p->p_sysent->sv_mask)
798		sa->code &= p->p_sysent->sv_mask;
799	if (sa->code >= p->p_sysent->sv_size)
800		sa->callp = &p->p_sysent->sv_table[0];
801	else
802		sa->callp = &p->p_sysent->sv_table[sa->code];
803	sa->narg = sa->callp->sy_narg;
804	error = 0;
805	memcpy(sa->args, ap, sa->nap * sizeof(register_t));
806	if (sa->narg > sa->nap) {
807		error = copyin((void *)td->td_frame->tf_usr_sp, sa->args +
808		    sa->nap, (sa->narg - sa->nap) * sizeof(register_t));
809	}
810	if (error == 0) {
811		td->td_retval[0] = 0;
812		td->td_retval[1] = 0;
813	}
814	return (error);
815}
816
817#include "../../kern/subr_syscall.c"
818
819static void
820syscall(struct thread *td, struct trapframe *frame)
821{
822	struct syscall_args sa;
823	int error;
824
825#ifndef __ARM_EABI__
826	sa.insn = *(uint32_t *)(frame->tf_pc - INSN_SIZE);
827	switch (sa.insn & SWI_OS_MASK) {
828	case 0: /* XXX: we need our own one. */
829		break;
830	default:
831		call_trapsignal(td, SIGILL, 0);
832		userret(td, frame);
833		return;
834	}
835#endif
836	sa.nap = 4;
837
838	error = syscallenter(td, &sa);
839	KASSERT(error != 0 || td->td_ar == NULL,
840	    ("returning from syscall with td_ar set!"));
841	syscallret(td, error, &sa);
842}
843
844void
845swi_handler(struct trapframe *frame)
846{
847	struct thread *td = curthread;
848
849	td->td_frame = frame;
850
851	td->td_pticks = 0;
852	/*
853      	 * Make sure the program counter is correctly aligned so we
854	 * don't take an alignment fault trying to read the opcode.
855	 */
856	if (__predict_false(((frame->tf_pc - INSN_SIZE) & 3) != 0)) {
857		call_trapsignal(td, SIGILL, 0);
858		userret(td, frame);
859		return;
860	}
861	/*
862	 * Enable interrupts if they were enabled before the exception.
863	 * Since all syscalls *should* come from user mode it will always
864	 * be safe to enable them, but check anyway.
865	 */
866	if (td->td_md.md_spinlock_count == 0) {
867		if (__predict_true(frame->tf_spsr & I32_bit) == 0)
868			enable_interrupts(I32_bit);
869		if (__predict_true(frame->tf_spsr & F32_bit) == 0)
870			enable_interrupts(F32_bit);
871	}
872
873	syscall(td, frame);
874}
875
876