1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81
82#include <sys/cdefs.h>
83__FBSDID("$FreeBSD: stable/10/sys/arm/arm/trap.c 335557 2018-06-22 11:16:17Z avg $");
84
85#include <sys/param.h>
86#include <sys/systm.h>
87#include <sys/proc.h>
88#include <sys/lock.h>
89#include <sys/mutex.h>
90#include <sys/signalvar.h>
91
92#include <vm/vm.h>
93#include <vm/pmap.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_map.h>
96#include <vm/vm_extern.h>
97
98#include <machine/acle-compat.h>
99#include <machine/cpu.h>
100#include <machine/frame.h>
101#include <machine/machdep.h>
102#include <machine/pcb.h>
103#include <machine/vmparam.h>
104
105#ifdef KDB
106#include <sys/kdb.h>
107#endif
108
109extern char fusubailout[];
110
111#ifdef DEBUG
112int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
113#endif
114
115struct ksig {
116	int signb;
117	u_long code;
118};
119struct data_abort {
120	int (*func)(struct trapframe *, u_int, u_int, struct thread *,
121	    struct ksig *);
122	const char *desc;
123};
124
125static int dab_fatal(struct trapframe *, u_int, u_int, struct thread *,
126    struct ksig *);
127static int dab_align(struct trapframe *, u_int, u_int, struct thread *,
128    struct ksig *);
129static int dab_buserr(struct trapframe *, u_int, u_int, struct thread *,
130    struct ksig *);
131static void prefetch_abort_handler(struct trapframe *);
132
133static const struct data_abort data_aborts[] = {
134	{dab_fatal,	"Vector Exception"},
135	{dab_align,	"Alignment Fault 1"},
136	{dab_fatal,	"Terminal Exception"},
137	{dab_align,	"Alignment Fault 3"},
138	{dab_buserr,	"External Linefetch Abort (S)"},
139	{NULL,		"Translation Fault (S)"},
140#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
141	{NULL,		"Translation Flag Fault"},
142#else
143	{dab_buserr,	"External Linefetch Abort (P)"},
144#endif
145	{NULL,		"Translation Fault (P)"},
146	{dab_buserr,	"External Non-Linefetch Abort (S)"},
147	{NULL,		"Domain Fault (S)"},
148	{dab_buserr,	"External Non-Linefetch Abort (P)"},
149	{NULL,		"Domain Fault (P)"},
150	{dab_buserr,	"External Translation Abort (L1)"},
151	{NULL,		"Permission Fault (S)"},
152	{dab_buserr,	"External Translation Abort (L2)"},
153	{NULL,		"Permission Fault (P)"}
154};
155
156/* Determine if a fault came from user mode */
157#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
158
159/* Determine if 'x' is a permission fault */
160#define	IS_PERMISSION_FAULT(x)					\
161	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
162	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
163
164static __inline void
165call_trapsignal(struct thread *td, int sig, u_long code)
166{
167	ksiginfo_t ksi;
168
169	ksiginfo_init_trap(&ksi);
170	ksi.ksi_signo = sig;
171	ksi.ksi_code = (int)code;
172	trapsignal(td, &ksi);
173}
174
175void
176abort_handler(struct trapframe *tf, int type)
177{
178	struct vm_map *map;
179	struct pcb *pcb;
180	struct thread *td;
181	u_int user, far, fsr;
182	vm_prot_t ftype;
183	void *onfault;
184	vm_offset_t va;
185	int error = 0;
186	struct ksig ksig;
187	struct proc *p;
188
189	if (type == 1)
190		return (prefetch_abort_handler(tf));
191
192	/* Grab FAR/FSR before enabling interrupts */
193	far = cpu_faultaddress();
194	fsr = cpu_faultstatus();
195#if 0
196	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
197	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
198#endif
199
200	/* Update vmmeter statistics */
201#if 0
202	vmexp.traps++;
203#endif
204
205	td = curthread;
206	p = td->td_proc;
207
208	PCPU_INC(cnt.v_trap);
209	/* Data abort came from user mode? */
210	user = TRAP_USERMODE(tf);
211
212	if (user) {
213		td->td_pticks = 0;
214		td->td_frame = tf;
215		if (td->td_ucred != td->td_proc->p_ucred)
216			cred_update_thread(td);
217
218	}
219	/* Grab the current pcb */
220	pcb = td->td_pcb;
221	/* Re-enable interrupts if they were enabled previously */
222	if (td->td_md.md_spinlock_count == 0) {
223		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
224			enable_interrupts(PSR_I);
225		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
226			enable_interrupts(PSR_F);
227	}
228
229
230	/* Invoke the appropriate handler, if necessary */
231	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
232		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
233		    td, &ksig)) {
234			goto do_trapsignal;
235		}
236		goto out;
237	}
238
239	/*
240	 * At this point, we're dealing with one of the following data aborts:
241	 *
242	 *  FAULT_TRANS_S  - Translation -- Section
243	 *  FAULT_TRANS_P  - Translation -- Page
244	 *  FAULT_DOMAIN_S - Domain -- Section
245	 *  FAULT_DOMAIN_P - Domain -- Page
246	 *  FAULT_PERM_S   - Permission -- Section
247	 *  FAULT_PERM_P   - Permission -- Page
248	 *
249	 * These are the main virtual memory-related faults signalled by
250	 * the MMU.
251	 */
252
253	/* fusubailout is used by [fs]uswintr to avoid page faulting */
254	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
255		tf->tf_r0 = EFAULT;
256		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
257		return;
258	}
259
260	/*
261	 * Make sure the Program Counter is sane. We could fall foul of
262	 * someone executing Thumb code, in which case the PC might not
263	 * be word-aligned. This would cause a kernel alignment fault
264	 * further down if we have to decode the current instruction.
265	 * XXX: It would be nice to be able to support Thumb at some point.
266	 */
267	if (__predict_false((tf->tf_pc & 3) != 0)) {
268		if (user) {
269			/*
270			 * Give the user an illegal instruction signal.
271			 */
272			/* Deliver a SIGILL to the process */
273			ksig.signb = SIGILL;
274			ksig.code = 0;
275			goto do_trapsignal;
276		}
277
278		/*
279		 * The kernel never executes Thumb code.
280		 */
281		printf("\ndata_abort_fault: Misaligned Kernel-mode "
282		    "Program Counter\n");
283		dab_fatal(tf, fsr, far, td, &ksig);
284	}
285
286	va = trunc_page((vm_offset_t)far);
287
288	/*
289	 * It is only a kernel address space fault iff:
290	 *	1. user == 0  and
291	 *	2. pcb_onfault not set or
292	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
293	 */
294	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
295	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
296	    __predict_true((pcb->pcb_onfault == NULL ||
297	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
298		map = kernel_map;
299
300		/* Was the fault due to the FPE/IPKDB ? */
301		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
302
303			/*
304			 * Force exit via userret()
305			 * This is necessary as the FPE is an extension to
306			 * userland that actually runs in a priveledged mode
307			 * but uses USR mode permissions for its accesses.
308			 */
309			user = 1;
310			ksig.signb = SIGSEGV;
311			ksig.code = 0;
312			goto do_trapsignal;
313		}
314	} else {
315		map = &td->td_proc->p_vmspace->vm_map;
316	}
317
318	/*
319	 * We need to know whether the page should be mapped as R or R/W.  On
320	 * armv6 and later the fault status register indicates whether the
321	 * access was a read or write.  Prior to armv6, we know that a
322	 * permission fault can only be the result of a write to a read-only
323	 * location, so we can deal with those quickly.  Otherwise we need to
324	 * disassemble the faulting instruction to determine if it was a write.
325	 */
326#if __ARM_ARCH >= 6
327	ftype = (fsr & FAULT_WNR) ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
328#else
329	if (IS_PERMISSION_FAULT(fsr))
330		ftype = VM_PROT_WRITE;
331	else {
332		u_int insn = ReadWord(tf->tf_pc);
333
334		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
335		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
336		    ((insn & 0x0a100000) == 0x08000000)) {	/* STM/CDT */
337			ftype = VM_PROT_WRITE;
338		} else {
339			if ((insn & 0x0fb00ff0) == 0x01000090)	/* SWP */
340				ftype = VM_PROT_READ | VM_PROT_WRITE;
341			else
342				ftype = VM_PROT_READ;
343		}
344	}
345#endif
346
347	/*
348	 * See if the fault is as a result of ref/mod emulation,
349	 * or domain mismatch.
350	 */
351#ifdef DEBUG
352	last_fault_code = fsr;
353#endif
354	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
355	    user)) {
356		goto out;
357	}
358
359	onfault = pcb->pcb_onfault;
360	pcb->pcb_onfault = NULL;
361	if (map != kernel_map) {
362		PROC_LOCK(p);
363		p->p_lock++;
364		PROC_UNLOCK(p);
365	}
366	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
367	pcb->pcb_onfault = onfault;
368
369	if (map != kernel_map) {
370		PROC_LOCK(p);
371		p->p_lock--;
372		PROC_UNLOCK(p);
373	}
374	if (__predict_true(error == 0))
375		goto out;
376	if (user == 0) {
377		if (pcb->pcb_onfault) {
378			tf->tf_r0 = error;
379			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
380			return;
381		}
382
383		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
384		    error);
385		dab_fatal(tf, fsr, far, td, &ksig);
386	}
387
388
389	if (error == ENOMEM) {
390		printf("VM: pid %d (%s), uid %d killed: "
391		    "out of swap\n", td->td_proc->p_pid, td->td_name,
392		    (td->td_proc->p_ucred) ?
393		     td->td_proc->p_ucred->cr_uid : -1);
394		ksig.signb = SIGKILL;
395	} else {
396		ksig.signb = SIGSEGV;
397	}
398	ksig.code = 0;
399do_trapsignal:
400	call_trapsignal(td, ksig.signb, ksig.code);
401out:
402	/* If returning to user mode, make sure to invoke userret() */
403	if (user)
404		userret(td, tf);
405}
406
407/*
408 * dab_fatal() handles the following data aborts:
409 *
410 *  FAULT_WRTBUF_0 - Vector Exception
411 *  FAULT_WRTBUF_1 - Terminal Exception
412 *
413 * We should never see these on a properly functioning system.
414 *
415 * This function is also called by the other handlers if they
416 * detect a fatal problem.
417 *
418 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
419 */
420static int
421dab_fatal(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
422    struct ksig *ksig)
423{
424	const char *mode;
425#ifdef KDB
426	bool handled;
427#endif
428
429#ifdef KDB
430	if (kdb_active) {
431		kdb_reenter();
432		return (0);
433	}
434#endif
435	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
436
437	disable_interrupts(PSR_I|PSR_F);
438	if (td != NULL) {
439		printf("Fatal %s mode data abort: '%s'\n", mode,
440		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
441		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
442		if ((fsr & FAULT_IMPRECISE) == 0)
443			printf("%08x, ", far);
444		else
445			printf("Invalid,  ");
446		printf("spsr=%08x\n", tf->tf_spsr);
447	} else {
448		printf("Fatal %s mode prefetch abort at 0x%08x\n",
449		    mode, tf->tf_pc);
450		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
451	}
452
453	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
454	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
455	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
456	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
457	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
458	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
459	printf("r12=%08x, ", tf->tf_r12);
460
461	if (TRAP_USERMODE(tf))
462		printf("usp=%08x, ulr=%08x",
463		    tf->tf_usr_sp, tf->tf_usr_lr);
464	else
465		printf("ssp=%08x, slr=%08x",
466		    tf->tf_svc_sp, tf->tf_svc_lr);
467	printf(", pc =%08x\n\n", tf->tf_pc);
468
469#ifdef KDB
470	if (debugger_on_panic) {
471		kdb_why = KDB_WHY_TRAP;
472		handled = kdb_trap(fsr, 0, tf);
473		kdb_why = KDB_WHY_UNSET;
474		if (handled)
475			return (0);
476	}
477#endif
478	panic("Fatal abort");
479	/*NOTREACHED*/
480}
481
482/*
483 * dab_align() handles the following data aborts:
484 *
485 *  FAULT_ALIGN_0 - Alignment fault
486 *  FAULT_ALIGN_1 - Alignment fault
487 *
488 * These faults are fatal if they happen in kernel mode. Otherwise, we
489 * deliver a bus error to the process.
490 */
491static int
492dab_align(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
493    struct ksig *ksig)
494{
495
496	/* Alignment faults are always fatal if they occur in kernel mode */
497	if (!TRAP_USERMODE(tf)) {
498		if (!td || !td->td_pcb->pcb_onfault)
499			dab_fatal(tf, fsr, far, td, ksig);
500		tf->tf_r0 = EFAULT;
501		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
502		return (0);
503	}
504
505	/* pcb_onfault *must* be NULL at this point */
506
507	/* Deliver a bus error signal to the process */
508	ksig->code = 0;
509	ksig->signb = SIGBUS;
510	td->td_frame = tf;
511
512	return (1);
513}
514
515/*
516 * dab_buserr() handles the following data aborts:
517 *
518 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
519 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
520 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
521 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
522 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
523 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
524 *
525 * If pcb_onfault is set, flag the fault and return to the handler.
526 * If the fault occurred in user mode, give the process a SIGBUS.
527 *
528 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
529 * can be flagged as imprecise in the FSR. This causes a real headache
530 * since some of the machine state is lost. In this case, tf->tf_pc
531 * may not actually point to the offending instruction. In fact, if
532 * we've taken a double abort fault, it generally points somewhere near
533 * the top of "data_abort_entry" in exception.S.
534 *
535 * In all other cases, these data aborts are considered fatal.
536 */
537static int
538dab_buserr(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
539    struct ksig *ksig)
540{
541	struct pcb *pcb = td->td_pcb;
542
543#ifdef __XSCALE__
544	if ((fsr & FAULT_IMPRECISE) != 0 &&
545	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
546		/*
547		 * Oops, an imprecise, double abort fault. We've lost the
548		 * r14_abt/spsr_abt values corresponding to the original
549		 * abort, and the spsr saved in the trapframe indicates
550		 * ABT mode.
551		 */
552		tf->tf_spsr &= ~PSR_MODE;
553
554		/*
555		 * We use a simple heuristic to determine if the double abort
556		 * happened as a result of a kernel or user mode access.
557		 * If the current trapframe is at the top of the kernel stack,
558		 * the fault _must_ have come from user mode.
559		 */
560		if (tf != ((struct trapframe *)pcb->pcb_regs.sf_sp) - 1) {
561			/*
562			 * Kernel mode. We're either about to die a
563			 * spectacular death, or pcb_onfault will come
564			 * to our rescue. Either way, the current value
565			 * of tf->tf_pc is irrelevant.
566			 */
567			tf->tf_spsr |= PSR_SVC32_MODE;
568			if (pcb->pcb_onfault == NULL)
569				printf("\nKernel mode double abort!\n");
570		} else {
571			/*
572			 * User mode. We've lost the program counter at the
573			 * time of the fault (not that it was accurate anyway;
574			 * it's not called an imprecise fault for nothing).
575			 * About all we can do is copy r14_usr to tf_pc and
576			 * hope for the best. The process is about to get a
577			 * SIGBUS, so it's probably history anyway.
578			 */
579			tf->tf_spsr |= PSR_USR32_MODE;
580			tf->tf_pc = tf->tf_usr_lr;
581		}
582	}
583
584	/* FAR is invalid for imprecise exceptions */
585	if ((fsr & FAULT_IMPRECISE) != 0)
586		far = 0;
587#endif /* __XSCALE__ */
588
589	if (pcb->pcb_onfault) {
590		tf->tf_r0 = EFAULT;
591		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
592		return (0);
593	}
594
595	/*
596	 * At this point, if the fault happened in kernel mode, we're toast
597	 */
598	if (!TRAP_USERMODE(tf))
599		dab_fatal(tf, fsr, far, td, ksig);
600
601	/* Deliver a bus error signal to the process */
602	ksig->signb = SIGBUS;
603	ksig->code = 0;
604	td->td_frame = tf;
605
606	return (1);
607}
608
609/*
610 * void prefetch_abort_handler(struct trapframe *tf)
611 *
612 * Abort handler called when instruction execution occurs at
613 * a non existent or restricted (access permissions) memory page.
614 * If the address is invalid and we were in SVC mode then panic as
615 * the kernel should never prefetch abort.
616 * If the address is invalid and the page is mapped then the user process
617 * does no have read permission so send it a signal.
618 * Otherwise fault the page in and try again.
619 */
620static void
621prefetch_abort_handler(struct trapframe *tf)
622{
623	struct thread *td;
624	struct proc * p;
625	struct vm_map *map;
626	vm_offset_t fault_pc, va;
627	int error = 0;
628	struct ksig ksig;
629
630
631#if 0
632	/* Update vmmeter statistics */
633	uvmexp.traps++;
634#endif
635#if 0
636	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
637	    (void*)tf->tf_usr_lr);
638#endif
639
640 	td = curthread;
641	p = td->td_proc;
642	PCPU_INC(cnt.v_trap);
643
644	if (TRAP_USERMODE(tf)) {
645		td->td_frame = tf;
646		if (td->td_ucred != td->td_proc->p_ucred)
647			cred_update_thread(td);
648	}
649	fault_pc = tf->tf_pc;
650	if (td->td_md.md_spinlock_count == 0) {
651		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
652			enable_interrupts(PSR_I);
653		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
654			enable_interrupts(PSR_F);
655	}
656
657	/* Prefetch aborts cannot happen in kernel mode */
658	if (__predict_false(!TRAP_USERMODE(tf)))
659		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
660	td->td_pticks = 0;
661
662
663	/* Ok validate the address, can only execute in USER space */
664	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
665	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
666		ksig.signb = SIGSEGV;
667		ksig.code = 0;
668		goto do_trapsignal;
669	}
670
671	map = &td->td_proc->p_vmspace->vm_map;
672	va = trunc_page(fault_pc);
673
674	/*
675	 * See if the pmap can handle this fault on its own...
676	 */
677#ifdef DEBUG
678	last_fault_code = -1;
679#endif
680	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
681		goto out;
682
683	if (map != kernel_map) {
684		PROC_LOCK(p);
685		p->p_lock++;
686		PROC_UNLOCK(p);
687	}
688
689	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
690	    VM_FAULT_NORMAL);
691	if (map != kernel_map) {
692		PROC_LOCK(p);
693		p->p_lock--;
694		PROC_UNLOCK(p);
695	}
696
697	if (__predict_true(error == 0))
698		goto out;
699
700	if (error == ENOMEM) {
701		printf("VM: pid %d (%s), uid %d killed: "
702		    "out of swap\n", td->td_proc->p_pid, td->td_name,
703		    (td->td_proc->p_ucred) ?
704		     td->td_proc->p_ucred->cr_uid : -1);
705		ksig.signb = SIGKILL;
706	} else {
707		ksig.signb = SIGSEGV;
708	}
709	ksig.code = 0;
710
711do_trapsignal:
712	call_trapsignal(td, ksig.signb, ksig.code);
713
714out:
715	userret(td, tf);
716
717}
718
719extern int badaddr_read_1(const uint8_t *, uint8_t *);
720extern int badaddr_read_2(const uint16_t *, uint16_t *);
721extern int badaddr_read_4(const uint32_t *, uint32_t *);
722/*
723 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
724 * If the read succeeds, the value is written to 'rptr' and zero is returned.
725 * Else, return EFAULT.
726 */
727int
728badaddr_read(void *addr, size_t size, void *rptr)
729{
730	union {
731		uint8_t v1;
732		uint16_t v2;
733		uint32_t v4;
734	} u;
735	int rv;
736
737	cpu_drain_writebuf();
738
739	/* Read from the test address. */
740	switch (size) {
741	case sizeof(uint8_t):
742		rv = badaddr_read_1(addr, &u.v1);
743		if (rv == 0 && rptr)
744			*(uint8_t *) rptr = u.v1;
745		break;
746
747	case sizeof(uint16_t):
748		rv = badaddr_read_2(addr, &u.v2);
749		if (rv == 0 && rptr)
750			*(uint16_t *) rptr = u.v2;
751		break;
752
753	case sizeof(uint32_t):
754		rv = badaddr_read_4(addr, &u.v4);
755		if (rv == 0 && rptr)
756			*(uint32_t *) rptr = u.v4;
757		break;
758
759	default:
760		panic("badaddr: invalid size (%lu)", (u_long) size);
761	}
762
763	/* Return EFAULT if the address was invalid, else zero */
764	return (rv);
765}
766