svm.c revision 329321
1/*-
2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/amd/svm.c 329321 2018-02-15 17:10:42Z avg $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/smp.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/pcpu.h>
36#include <sys/proc.h>
37#include <sys/sysctl.h>
38
39#include <vm/vm.h>
40#include <vm/pmap.h>
41
42#include <machine/cpufunc.h>
43#include <machine/psl.h>
44#include <machine/pmap.h>
45#include <machine/md_var.h>
46#include <machine/specialreg.h>
47#include <machine/smp.h>
48#include <machine/vmm.h>
49#include <machine/vmm_dev.h>
50#include <machine/vmm_instruction_emul.h>
51
52#include "vmm_lapic.h"
53#include "vmm_stat.h"
54#include "vmm_ktr.h"
55#include "vmm_ioport.h"
56#include "vatpic.h"
57#include "vlapic.h"
58#include "vlapic_priv.h"
59
60#include "x86.h"
61#include "vmcb.h"
62#include "svm.h"
63#include "svm_softc.h"
64#include "svm_msr.h"
65#include "npt.h"
66
67SYSCTL_DECL(_hw_vmm);
68SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * SVM CPUID function 0x8000_000A, edx bit decoding.
72 */
73#define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74#define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75#define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76#define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77#define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78#define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79#define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80#define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81#define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82#define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83#define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
84
85#define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
86				VMCB_CACHE_IOPM		|	\
87				VMCB_CACHE_I		|	\
88				VMCB_CACHE_TPR		|	\
89				VMCB_CACHE_CR2		|	\
90				VMCB_CACHE_CR		|	\
91				VMCB_CACHE_DT		|	\
92				VMCB_CACHE_SEG		|	\
93				VMCB_CACHE_NP)
94
95static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
96SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
97    0, NULL);
98
99static MALLOC_DEFINE(M_SVM, "svm", "svm");
100static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
101
102/* Per-CPU context area. */
103extern struct pcpu __pcpu[];
104
105static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
106SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
107    "SVM features advertised by CPUID.8000000AH:EDX");
108
109static int disable_npf_assist;
110SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111    &disable_npf_assist, 0, NULL);
112
113/* Maximum ASIDs supported by the processor */
114static uint32_t nasid;
115SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
116    "Number of ASIDs supported by this processor");
117
118/* Current ASID generation for each host cpu */
119static struct asid asid[MAXCPU];
120
121/*
122 * SVM host state saved area of size 4KB for each core.
123 */
124static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125
126static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129
130static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131
132static __inline int
133flush_by_asid(void)
134{
135
136	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137}
138
139static __inline int
140decode_assist(void)
141{
142
143	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144}
145
146static void
147svm_disable(void *arg __unused)
148{
149	uint64_t efer;
150
151	efer = rdmsr(MSR_EFER);
152	efer &= ~EFER_SVM;
153	wrmsr(MSR_EFER, efer);
154}
155
156/*
157 * Disable SVM on all CPUs.
158 */
159static int
160svm_cleanup(void)
161{
162
163	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164	return (0);
165}
166
167/*
168 * Verify that all the features required by bhyve are available.
169 */
170static int
171check_svm_features(void)
172{
173	u_int regs[4];
174
175	/* CPUID Fn8000_000A is for SVM */
176	do_cpuid(0x8000000A, regs);
177	svm_feature &= regs[3];
178
179	/*
180	 * The number of ASIDs can be configured to be less than what is
181	 * supported by the hardware but not more.
182	 */
183	if (nasid == 0 || nasid > regs[1])
184		nasid = regs[1];
185	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
186
187	/* bhyve requires the Nested Paging feature */
188	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
189		printf("SVM: Nested Paging feature not available.\n");
190		return (ENXIO);
191	}
192
193	/* bhyve requires the NRIP Save feature */
194	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
195		printf("SVM: NRIP Save feature not available.\n");
196		return (ENXIO);
197	}
198
199	return (0);
200}
201
202static void
203svm_enable(void *arg __unused)
204{
205	uint64_t efer;
206
207	efer = rdmsr(MSR_EFER);
208	efer |= EFER_SVM;
209	wrmsr(MSR_EFER, efer);
210
211	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
212}
213
214/*
215 * Return 1 if SVM is enabled on this processor and 0 otherwise.
216 */
217static int
218svm_available(void)
219{
220	uint64_t msr;
221
222	/* Section 15.4 Enabling SVM from APM2. */
223	if ((amd_feature2 & AMDID2_SVM) == 0) {
224		printf("SVM: not available.\n");
225		return (0);
226	}
227
228	msr = rdmsr(MSR_VM_CR);
229	if ((msr & VM_CR_SVMDIS) != 0) {
230		printf("SVM: disabled by BIOS.\n");
231		return (0);
232	}
233
234	return (1);
235}
236
237static int
238svm_init(int ipinum)
239{
240	int error, cpu;
241
242	if (!svm_available())
243		return (ENXIO);
244
245	error = check_svm_features();
246	if (error)
247		return (error);
248
249	vmcb_clean &= VMCB_CACHE_DEFAULT;
250
251	for (cpu = 0; cpu < MAXCPU; cpu++) {
252		/*
253		 * Initialize the host ASIDs to their "highest" valid values.
254		 *
255		 * The next ASID allocation will rollover both 'gen' and 'num'
256		 * and start off the sequence at {1,1}.
257		 */
258		asid[cpu].gen = ~0UL;
259		asid[cpu].num = nasid - 1;
260	}
261
262	svm_msr_init();
263	svm_npt_init(ipinum);
264
265	/* Enable SVM on all CPUs */
266	smp_rendezvous(NULL, svm_enable, NULL, NULL);
267
268	return (0);
269}
270
271static void
272svm_restore(void)
273{
274
275	svm_enable(NULL);
276}
277
278/* Pentium compatible MSRs */
279#define MSR_PENTIUM_START 	0
280#define MSR_PENTIUM_END 	0x1FFF
281/* AMD 6th generation and Intel compatible MSRs */
282#define MSR_AMD6TH_START 	0xC0000000UL
283#define MSR_AMD6TH_END 		0xC0001FFFUL
284/* AMD 7th and 8th generation compatible MSRs */
285#define MSR_AMD7TH_START 	0xC0010000UL
286#define MSR_AMD7TH_END 		0xC0011FFFUL
287
288/*
289 * Get the index and bit position for a MSR in permission bitmap.
290 * Two bits are used for each MSR: lower bit for read and higher bit for write.
291 */
292static int
293svm_msr_index(uint64_t msr, int *index, int *bit)
294{
295	uint32_t base, off;
296
297	*index = -1;
298	*bit = (msr % 4) * 2;
299	base = 0;
300
301	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
302		*index = msr / 4;
303		return (0);
304	}
305
306	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
307	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
308		off = (msr - MSR_AMD6TH_START);
309		*index = (off + base) / 4;
310		return (0);
311	}
312
313	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
314	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
315		off = (msr - MSR_AMD7TH_START);
316		*index = (off + base) / 4;
317		return (0);
318	}
319
320	return (EINVAL);
321}
322
323/*
324 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
325 */
326static void
327svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
328{
329	int index, bit, error;
330
331	error = svm_msr_index(msr, &index, &bit);
332	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
333	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
334	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
335	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
336	    "msr %#lx", __func__, bit, msr));
337
338	if (read)
339		perm_bitmap[index] &= ~(1UL << bit);
340
341	if (write)
342		perm_bitmap[index] &= ~(2UL << bit);
343}
344
345static void
346svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
347{
348
349	svm_msr_perm(perm_bitmap, msr, true, true);
350}
351
352static void
353svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
354{
355
356	svm_msr_perm(perm_bitmap, msr, true, false);
357}
358
359static __inline int
360svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
361{
362	struct vmcb_ctrl *ctrl;
363
364	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
365
366	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
367	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
368}
369
370static __inline void
371svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
372    int enabled)
373{
374	struct vmcb_ctrl *ctrl;
375	uint32_t oldval;
376
377	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
378
379	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
380	oldval = ctrl->intercept[idx];
381
382	if (enabled)
383		ctrl->intercept[idx] |= bitmask;
384	else
385		ctrl->intercept[idx] &= ~bitmask;
386
387	if (ctrl->intercept[idx] != oldval) {
388		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
389		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
390		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
391	}
392}
393
394static __inline void
395svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
396{
397
398	svm_set_intercept(sc, vcpu, off, bitmask, 0);
399}
400
401static __inline void
402svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
403{
404
405	svm_set_intercept(sc, vcpu, off, bitmask, 1);
406}
407
408static void
409vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
410    uint64_t msrpm_base_pa, uint64_t np_pml4)
411{
412	struct vmcb_ctrl *ctrl;
413	struct vmcb_state *state;
414	uint32_t mask;
415	int n;
416
417	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
418	state = svm_get_vmcb_state(sc, vcpu);
419
420	ctrl->iopm_base_pa = iopm_base_pa;
421	ctrl->msrpm_base_pa = msrpm_base_pa;
422
423	/* Enable nested paging */
424	ctrl->np_enable = 1;
425	ctrl->n_cr3 = np_pml4;
426
427	/*
428	 * Intercept accesses to the control registers that are not shadowed
429	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
430	 */
431	for (n = 0; n < 16; n++) {
432		mask = (BIT(n) << 16) | BIT(n);
433		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
434			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
435		else
436			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
437	}
438
439
440	/*
441	 * Intercept everything when tracing guest exceptions otherwise
442	 * just intercept machine check exception.
443	 */
444	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
445		for (n = 0; n < 32; n++) {
446			/*
447			 * Skip unimplemented vectors in the exception bitmap.
448			 */
449			if (n == 2 || n == 9) {
450				continue;
451			}
452			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
453		}
454	} else {
455		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
456	}
457
458	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
459	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
460	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
461	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
462	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
463	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
464	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
465	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
466	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
467	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
468	    VMCB_INTCPT_FERR_FREEZE);
469
470	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
471	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
472
473	/*
474	 * From section "Canonicalization and Consistency Checks" in APMv2
475	 * the VMRUN intercept bit must be set to pass the consistency check.
476	 */
477	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
478
479	/*
480	 * The ASID will be set to a non-zero value just before VMRUN.
481	 */
482	ctrl->asid = 0;
483
484	/*
485	 * Section 15.21.1, Interrupt Masking in EFLAGS
486	 * Section 15.21.2, Virtualizing APIC.TPR
487	 *
488	 * This must be set for %rflag and %cr8 isolation of guest and host.
489	 */
490	ctrl->v_intr_masking = 1;
491
492	/* Enable Last Branch Record aka LBR for debugging */
493	ctrl->lbr_virt_en = 1;
494	state->dbgctl = BIT(0);
495
496	/* EFER_SVM must always be set when the guest is executing */
497	state->efer = EFER_SVM;
498
499	/* Set up the PAT to power-on state */
500	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
501	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
502	    PAT_VALUE(2, PAT_UNCACHED)		|
503	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
504	    PAT_VALUE(4, PAT_WRITE_BACK)	|
505	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
506	    PAT_VALUE(6, PAT_UNCACHED)		|
507	    PAT_VALUE(7, PAT_UNCACHEABLE);
508}
509
510/*
511 * Initialize a virtual machine.
512 */
513static void *
514svm_vminit(struct vm *vm, pmap_t pmap)
515{
516	struct svm_softc *svm_sc;
517	struct svm_vcpu *vcpu;
518	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
519	int i;
520
521	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
522	if (((uintptr_t)svm_sc & PAGE_MASK) != 0)
523		panic("malloc of svm_softc not aligned on page boundary");
524
525	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
526	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
527	if (svm_sc->msr_bitmap == NULL)
528		panic("contigmalloc of SVM MSR bitmap failed");
529	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
530	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
531	if (svm_sc->iopm_bitmap == NULL)
532		panic("contigmalloc of SVM IO bitmap failed");
533
534	svm_sc->vm = vm;
535	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
536
537	/*
538	 * Intercept read and write accesses to all MSRs.
539	 */
540	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
541
542	/*
543	 * Access to the following MSRs is redirected to the VMCB when the
544	 * guest is executing. Therefore it is safe to allow the guest to
545	 * read/write these MSRs directly without hypervisor involvement.
546	 */
547	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
548	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
549	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
550
551	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
552	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
553	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
554	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
555	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
556	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
557	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
558	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
559
560	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
561
562	/*
563	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
564	 */
565	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
566
567	/* Intercept access to all I/O ports. */
568	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
569
570	iopm_pa = vtophys(svm_sc->iopm_bitmap);
571	msrpm_pa = vtophys(svm_sc->msr_bitmap);
572	pml4_pa = svm_sc->nptp;
573	for (i = 0; i < VM_MAXCPU; i++) {
574		vcpu = svm_get_vcpu(svm_sc, i);
575		vcpu->nextrip = ~0;
576		vcpu->lastcpu = NOCPU;
577		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
578		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
579		svm_msr_guest_init(svm_sc, i);
580	}
581	return (svm_sc);
582}
583
584/*
585 * Collateral for a generic SVM VM-exit.
586 */
587static void
588vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
589{
590
591	vme->exitcode = VM_EXITCODE_SVM;
592	vme->u.svm.exitcode = code;
593	vme->u.svm.exitinfo1 = info1;
594	vme->u.svm.exitinfo2 = info2;
595}
596
597static int
598svm_cpl(struct vmcb_state *state)
599{
600
601	/*
602	 * From APMv2:
603	 *   "Retrieve the CPL from the CPL field in the VMCB, not
604	 *    from any segment DPL"
605	 */
606	return (state->cpl);
607}
608
609static enum vm_cpu_mode
610svm_vcpu_mode(struct vmcb *vmcb)
611{
612	struct vmcb_segment seg;
613	struct vmcb_state *state;
614	int error;
615
616	state = &vmcb->state;
617
618	if (state->efer & EFER_LMA) {
619		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
620		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
621		    error));
622
623		/*
624		 * Section 4.8.1 for APM2, check if Code Segment has
625		 * Long attribute set in descriptor.
626		 */
627		if (seg.attrib & VMCB_CS_ATTRIB_L)
628			return (CPU_MODE_64BIT);
629		else
630			return (CPU_MODE_COMPATIBILITY);
631	} else  if (state->cr0 & CR0_PE) {
632		return (CPU_MODE_PROTECTED);
633	} else {
634		return (CPU_MODE_REAL);
635	}
636}
637
638static enum vm_paging_mode
639svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
640{
641
642	if ((cr0 & CR0_PG) == 0)
643		return (PAGING_MODE_FLAT);
644	if ((cr4 & CR4_PAE) == 0)
645		return (PAGING_MODE_32);
646	if (efer & EFER_LME)
647		return (PAGING_MODE_64);
648	else
649		return (PAGING_MODE_PAE);
650}
651
652/*
653 * ins/outs utility routines
654 */
655static uint64_t
656svm_inout_str_index(struct svm_regctx *regs, int in)
657{
658	uint64_t val;
659
660	val = in ? regs->sctx_rdi : regs->sctx_rsi;
661
662	return (val);
663}
664
665static uint64_t
666svm_inout_str_count(struct svm_regctx *regs, int rep)
667{
668	uint64_t val;
669
670	val = rep ? regs->sctx_rcx : 1;
671
672	return (val);
673}
674
675static void
676svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
677    int in, struct vm_inout_str *vis)
678{
679	int error, s;
680
681	if (in) {
682		vis->seg_name = VM_REG_GUEST_ES;
683	} else {
684		/* The segment field has standard encoding */
685		s = (info1 >> 10) & 0x7;
686		vis->seg_name = vm_segment_name(s);
687	}
688
689	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
690	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
691}
692
693static int
694svm_inout_str_addrsize(uint64_t info1)
695{
696        uint32_t size;
697
698        size = (info1 >> 7) & 0x7;
699        switch (size) {
700        case 1:
701                return (2);     /* 16 bit */
702        case 2:
703                return (4);     /* 32 bit */
704        case 4:
705                return (8);     /* 64 bit */
706        default:
707                panic("%s: invalid size encoding %d", __func__, size);
708        }
709}
710
711static void
712svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
713{
714	struct vmcb_state *state;
715
716	state = &vmcb->state;
717	paging->cr3 = state->cr3;
718	paging->cpl = svm_cpl(state);
719	paging->cpu_mode = svm_vcpu_mode(vmcb);
720	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
721	    state->efer);
722}
723
724#define	UNHANDLED 0
725
726/*
727 * Handle guest I/O intercept.
728 */
729static int
730svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
731{
732	struct vmcb_ctrl *ctrl;
733	struct vmcb_state *state;
734	struct svm_regctx *regs;
735	struct vm_inout_str *vis;
736	uint64_t info1;
737	int inout_string;
738
739	state = svm_get_vmcb_state(svm_sc, vcpu);
740	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
741	regs  = svm_get_guest_regctx(svm_sc, vcpu);
742
743	info1 = ctrl->exitinfo1;
744	inout_string = info1 & BIT(2) ? 1 : 0;
745
746	/*
747	 * The effective segment number in EXITINFO1[12:10] is populated
748	 * only if the processor has the DecodeAssist capability.
749	 *
750	 * XXX this is not specified explicitly in APMv2 but can be verified
751	 * empirically.
752	 */
753	if (inout_string && !decode_assist())
754		return (UNHANDLED);
755
756	vmexit->exitcode 	= VM_EXITCODE_INOUT;
757	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
758	vmexit->u.inout.string 	= inout_string;
759	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
760	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
761	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
762	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
763
764	if (inout_string) {
765		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
766		vis = &vmexit->u.inout_str;
767		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
768		vis->rflags = state->rflags;
769		vis->cr0 = state->cr0;
770		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
771		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
772		vis->addrsize = svm_inout_str_addrsize(info1);
773		svm_inout_str_seginfo(svm_sc, vcpu, info1,
774		    vmexit->u.inout.in, vis);
775	}
776
777	return (UNHANDLED);
778}
779
780static int
781npf_fault_type(uint64_t exitinfo1)
782{
783
784	if (exitinfo1 & VMCB_NPF_INFO1_W)
785		return (VM_PROT_WRITE);
786	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
787		return (VM_PROT_EXECUTE);
788	else
789		return (VM_PROT_READ);
790}
791
792static bool
793svm_npf_emul_fault(uint64_t exitinfo1)
794{
795
796	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
797		return (false);
798	}
799
800	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
801		return (false);
802	}
803
804	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
805		return (false);
806	}
807
808	return (true);
809}
810
811static void
812svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
813{
814	struct vm_guest_paging *paging;
815	struct vmcb_segment seg;
816	struct vmcb_ctrl *ctrl;
817	char *inst_bytes;
818	int error, inst_len;
819
820	ctrl = &vmcb->ctrl;
821	paging = &vmexit->u.inst_emul.paging;
822
823	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
824	vmexit->u.inst_emul.gpa = gpa;
825	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
826	svm_paging_info(vmcb, paging);
827
828	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
829	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
830
831	switch(paging->cpu_mode) {
832	case CPU_MODE_REAL:
833		vmexit->u.inst_emul.cs_base = seg.base;
834		vmexit->u.inst_emul.cs_d = 0;
835		break;
836	case CPU_MODE_PROTECTED:
837	case CPU_MODE_COMPATIBILITY:
838		vmexit->u.inst_emul.cs_base = seg.base;
839
840		/*
841		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
842		 */
843		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
844		    1 : 0;
845		break;
846	default:
847		vmexit->u.inst_emul.cs_base = 0;
848		vmexit->u.inst_emul.cs_d = 0;
849		break;
850	}
851
852	/*
853	 * Copy the instruction bytes into 'vie' if available.
854	 */
855	if (decode_assist() && !disable_npf_assist) {
856		inst_len = ctrl->inst_len;
857		inst_bytes = ctrl->inst_bytes;
858	} else {
859		inst_len = 0;
860		inst_bytes = NULL;
861	}
862	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
863}
864
865#ifdef KTR
866static const char *
867intrtype_to_str(int intr_type)
868{
869	switch (intr_type) {
870	case VMCB_EVENTINJ_TYPE_INTR:
871		return ("hwintr");
872	case VMCB_EVENTINJ_TYPE_NMI:
873		return ("nmi");
874	case VMCB_EVENTINJ_TYPE_INTn:
875		return ("swintr");
876	case VMCB_EVENTINJ_TYPE_EXCEPTION:
877		return ("exception");
878	default:
879		panic("%s: unknown intr_type %d", __func__, intr_type);
880	}
881}
882#endif
883
884/*
885 * Inject an event to vcpu as described in section 15.20, "Event injection".
886 */
887static void
888svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
889		 uint32_t error, bool ec_valid)
890{
891	struct vmcb_ctrl *ctrl;
892
893	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
894
895	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
896	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
897
898	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
899	    __func__, vector));
900
901	switch (intr_type) {
902	case VMCB_EVENTINJ_TYPE_INTR:
903	case VMCB_EVENTINJ_TYPE_NMI:
904	case VMCB_EVENTINJ_TYPE_INTn:
905		break;
906	case VMCB_EVENTINJ_TYPE_EXCEPTION:
907		if (vector >= 0 && vector <= 31 && vector != 2)
908			break;
909		/* FALLTHROUGH */
910	default:
911		panic("%s: invalid intr_type/vector: %d/%d", __func__,
912		    intr_type, vector);
913	}
914	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
915	if (ec_valid) {
916		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
917		ctrl->eventinj |= (uint64_t)error << 32;
918		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
919		    intrtype_to_str(intr_type), vector, error);
920	} else {
921		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
922		    intrtype_to_str(intr_type), vector);
923	}
924}
925
926static void
927svm_update_virqinfo(struct svm_softc *sc, int vcpu)
928{
929	struct vm *vm;
930	struct vlapic *vlapic;
931	struct vmcb_ctrl *ctrl;
932
933	vm = sc->vm;
934	vlapic = vm_lapic(vm, vcpu);
935	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
936
937	/* Update %cr8 in the emulated vlapic */
938	vlapic_set_cr8(vlapic, ctrl->v_tpr);
939
940	/* Virtual interrupt injection is not used. */
941	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
942	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
943}
944
945static void
946svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
947{
948	struct vmcb_ctrl *ctrl;
949	uint64_t intinfo;
950
951	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
952	intinfo = ctrl->exitintinfo;
953	if (!VMCB_EXITINTINFO_VALID(intinfo))
954		return;
955
956	/*
957	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
958	 *
959	 * If a #VMEXIT happened during event delivery then record the event
960	 * that was being delivered.
961	 */
962	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
963		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
964	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
965	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
966}
967
968static __inline int
969vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
970{
971
972	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
973	    VMCB_INTCPT_VINTR));
974}
975
976static __inline void
977enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
978{
979	struct vmcb_ctrl *ctrl;
980
981	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
982
983	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
984		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
985		KASSERT(vintr_intercept_enabled(sc, vcpu),
986		    ("%s: vintr intercept should be enabled", __func__));
987		return;
988	}
989
990	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
991	ctrl->v_irq = 1;
992	ctrl->v_ign_tpr = 1;
993	ctrl->v_intr_vector = 0;
994	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
995	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
996}
997
998static __inline void
999disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1000{
1001	struct vmcb_ctrl *ctrl;
1002
1003	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1004
1005	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1006		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1007		    ("%s: vintr intercept should be disabled", __func__));
1008		return;
1009	}
1010
1011	VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1012	ctrl->v_irq = 0;
1013	ctrl->v_intr_vector = 0;
1014	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1015	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1016}
1017
1018static int
1019svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1020{
1021	struct vmcb_ctrl *ctrl;
1022	int oldval, newval;
1023
1024	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1025	oldval = ctrl->intr_shadow;
1026	newval = val ? 1 : 0;
1027	if (newval != oldval) {
1028		ctrl->intr_shadow = newval;
1029		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1030	}
1031	return (0);
1032}
1033
1034static int
1035svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1036{
1037	struct vmcb_ctrl *ctrl;
1038
1039	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1040	*val = ctrl->intr_shadow;
1041	return (0);
1042}
1043
1044/*
1045 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1046 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1047 * to track when the vcpu is done handling the NMI.
1048 */
1049static int
1050nmi_blocked(struct svm_softc *sc, int vcpu)
1051{
1052	int blocked;
1053
1054	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1055	    VMCB_INTCPT_IRET);
1056	return (blocked);
1057}
1058
1059static void
1060enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1061{
1062
1063	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1064	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1065	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1066}
1067
1068static void
1069clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1070{
1071	int error;
1072
1073	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1074	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1075	/*
1076	 * When the IRET intercept is cleared the vcpu will attempt to execute
1077	 * the "iret" when it runs next. However, it is possible to inject
1078	 * another NMI into the vcpu before the "iret" has actually executed.
1079	 *
1080	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1081	 * it will trap back into the hypervisor. If an NMI is pending for
1082	 * the vcpu it will be injected into the guest.
1083	 *
1084	 * XXX this needs to be fixed
1085	 */
1086	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1087
1088	/*
1089	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1090	 * immediate VMRUN.
1091	 */
1092	error = svm_modify_intr_shadow(sc, vcpu, 1);
1093	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1094}
1095
1096#define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1097
1098static int
1099svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1100{
1101	struct vm_exit *vme;
1102	struct vmcb_state *state;
1103	uint64_t changed, lma, oldval;
1104	int error;
1105
1106	state = svm_get_vmcb_state(sc, vcpu);
1107
1108	oldval = state->efer;
1109	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1110
1111	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1112	changed = oldval ^ newval;
1113
1114	if (newval & EFER_MBZ_BITS)
1115		goto gpf;
1116
1117	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1118	if (changed & EFER_LME) {
1119		if (state->cr0 & CR0_PG)
1120			goto gpf;
1121	}
1122
1123	/* EFER.LMA = EFER.LME & CR0.PG */
1124	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1125		lma = EFER_LMA;
1126	else
1127		lma = 0;
1128
1129	if ((newval & EFER_LMA) != lma)
1130		goto gpf;
1131
1132	if (newval & EFER_NXE) {
1133		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1134			goto gpf;
1135	}
1136
1137	/*
1138	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1139	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1140	 */
1141	if (newval & EFER_LMSLE) {
1142		vme = vm_exitinfo(sc->vm, vcpu);
1143		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1144		*retu = true;
1145		return (0);
1146	}
1147
1148	if (newval & EFER_FFXSR) {
1149		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1150			goto gpf;
1151	}
1152
1153	if (newval & EFER_TCE) {
1154		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1155			goto gpf;
1156	}
1157
1158	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1159	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1160	return (0);
1161gpf:
1162	vm_inject_gp(sc->vm, vcpu);
1163	return (0);
1164}
1165
1166static int
1167emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1168    bool *retu)
1169{
1170	int error;
1171
1172	if (lapic_msr(num))
1173		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1174	else if (num == MSR_EFER)
1175		error = svm_write_efer(sc, vcpu, val, retu);
1176	else
1177		error = svm_wrmsr(sc, vcpu, num, val, retu);
1178
1179	return (error);
1180}
1181
1182static int
1183emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1184{
1185	struct vmcb_state *state;
1186	struct svm_regctx *ctx;
1187	uint64_t result;
1188	int error;
1189
1190	if (lapic_msr(num))
1191		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1192	else
1193		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1194
1195	if (error == 0) {
1196		state = svm_get_vmcb_state(sc, vcpu);
1197		ctx = svm_get_guest_regctx(sc, vcpu);
1198		state->rax = result & 0xffffffff;
1199		ctx->sctx_rdx = result >> 32;
1200	}
1201
1202	return (error);
1203}
1204
1205#ifdef KTR
1206static const char *
1207exit_reason_to_str(uint64_t reason)
1208{
1209	static char reasonbuf[32];
1210
1211	switch (reason) {
1212	case VMCB_EXIT_INVALID:
1213		return ("invalvmcb");
1214	case VMCB_EXIT_SHUTDOWN:
1215		return ("shutdown");
1216	case VMCB_EXIT_NPF:
1217		return ("nptfault");
1218	case VMCB_EXIT_PAUSE:
1219		return ("pause");
1220	case VMCB_EXIT_HLT:
1221		return ("hlt");
1222	case VMCB_EXIT_CPUID:
1223		return ("cpuid");
1224	case VMCB_EXIT_IO:
1225		return ("inout");
1226	case VMCB_EXIT_MC:
1227		return ("mchk");
1228	case VMCB_EXIT_INTR:
1229		return ("extintr");
1230	case VMCB_EXIT_NMI:
1231		return ("nmi");
1232	case VMCB_EXIT_VINTR:
1233		return ("vintr");
1234	case VMCB_EXIT_MSR:
1235		return ("msr");
1236	case VMCB_EXIT_IRET:
1237		return ("iret");
1238	case VMCB_EXIT_MONITOR:
1239		return ("monitor");
1240	case VMCB_EXIT_MWAIT:
1241		return ("mwait");
1242	default:
1243		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1244		return (reasonbuf);
1245	}
1246}
1247#endif	/* KTR */
1248
1249/*
1250 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1251 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1252 * and exceptions caused by INT3, INTO and BOUND instructions.
1253 *
1254 * Return 1 if the nRIP is valid and 0 otherwise.
1255 */
1256static int
1257nrip_valid(uint64_t exitcode)
1258{
1259	switch (exitcode) {
1260	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1261	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1262	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1263	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1264	case 0x43:		/* INT3 */
1265	case 0x44:		/* INTO */
1266	case 0x45:		/* BOUND */
1267	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1268	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1269		return (1);
1270	default:
1271		return (0);
1272	}
1273}
1274
1275static int
1276svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1277{
1278	struct vmcb *vmcb;
1279	struct vmcb_state *state;
1280	struct vmcb_ctrl *ctrl;
1281	struct svm_regctx *ctx;
1282	uint64_t code, info1, info2, val;
1283	uint32_t eax, ecx, edx;
1284	int error, errcode_valid, handled, idtvec, reflect;
1285	bool retu;
1286
1287	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1288	vmcb = svm_get_vmcb(svm_sc, vcpu);
1289	state = &vmcb->state;
1290	ctrl = &vmcb->ctrl;
1291
1292	handled = 0;
1293	code = ctrl->exitcode;
1294	info1 = ctrl->exitinfo1;
1295	info2 = ctrl->exitinfo2;
1296
1297	vmexit->exitcode = VM_EXITCODE_BOGUS;
1298	vmexit->rip = state->rip;
1299	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1300
1301	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1302
1303	/*
1304	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1305	 * in an inconsistent state and can trigger assertions that would
1306	 * never happen otherwise.
1307	 */
1308	if (code == VMCB_EXIT_INVALID) {
1309		vm_exit_svm(vmexit, code, info1, info2);
1310		return (0);
1311	}
1312
1313	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1314	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1315
1316	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1317	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1318	    vmexit->inst_length, code, info1, info2));
1319
1320	svm_update_virqinfo(svm_sc, vcpu);
1321	svm_save_intinfo(svm_sc, vcpu);
1322
1323	switch (code) {
1324	case VMCB_EXIT_IRET:
1325		/*
1326		 * Restart execution at "iret" but with the intercept cleared.
1327		 */
1328		vmexit->inst_length = 0;
1329		clear_nmi_blocking(svm_sc, vcpu);
1330		handled = 1;
1331		break;
1332	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1333		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1334		handled = 1;
1335		break;
1336	case VMCB_EXIT_INTR:	/* external interrupt */
1337		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1338		handled = 1;
1339		break;
1340	case VMCB_EXIT_NMI:	/* external NMI */
1341		handled = 1;
1342		break;
1343	case 0x40 ... 0x5F:
1344		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1345		reflect = 1;
1346		idtvec = code - 0x40;
1347		switch (idtvec) {
1348		case IDT_MC:
1349			/*
1350			 * Call the machine check handler by hand. Also don't
1351			 * reflect the machine check back into the guest.
1352			 */
1353			reflect = 0;
1354			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1355			__asm __volatile("int $18");
1356			break;
1357		case IDT_PF:
1358			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1359			    info2);
1360			KASSERT(error == 0, ("%s: error %d updating cr2",
1361			    __func__, error));
1362			/* fallthru */
1363		case IDT_NP:
1364		case IDT_SS:
1365		case IDT_GP:
1366		case IDT_AC:
1367		case IDT_TS:
1368			errcode_valid = 1;
1369			break;
1370
1371		case IDT_DF:
1372			errcode_valid = 1;
1373			info1 = 0;
1374			break;
1375
1376		case IDT_BP:
1377		case IDT_OF:
1378		case IDT_BR:
1379			/*
1380			 * The 'nrip' field is populated for INT3, INTO and
1381			 * BOUND exceptions and this also implies that
1382			 * 'inst_length' is non-zero.
1383			 *
1384			 * Reset 'inst_length' to zero so the guest %rip at
1385			 * event injection is identical to what it was when
1386			 * the exception originally happened.
1387			 */
1388			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1389			    "to zero before injecting exception %d",
1390			    vmexit->inst_length, idtvec);
1391			vmexit->inst_length = 0;
1392			/* fallthru */
1393		default:
1394			errcode_valid = 0;
1395			info1 = 0;
1396			break;
1397		}
1398		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1399		    "when reflecting exception %d into guest",
1400		    vmexit->inst_length, idtvec));
1401
1402		if (reflect) {
1403			/* Reflect the exception back into the guest */
1404			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1405			    "%d/%#x into the guest", idtvec, (int)info1);
1406			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1407			    errcode_valid, info1, 0);
1408			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1409			    __func__, error));
1410		}
1411		handled = 1;
1412		break;
1413	case VMCB_EXIT_MSR:	/* MSR access. */
1414		eax = state->rax;
1415		ecx = ctx->sctx_rcx;
1416		edx = ctx->sctx_rdx;
1417		retu = false;
1418
1419		if (info1) {
1420			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1421			val = (uint64_t)edx << 32 | eax;
1422			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1423			    ecx, val);
1424			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1425				vmexit->exitcode = VM_EXITCODE_WRMSR;
1426				vmexit->u.msr.code = ecx;
1427				vmexit->u.msr.wval = val;
1428			} else if (!retu) {
1429				handled = 1;
1430			} else {
1431				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1432				    ("emulate_wrmsr retu with bogus exitcode"));
1433			}
1434		} else {
1435			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1436			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1437			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1438				vmexit->exitcode = VM_EXITCODE_RDMSR;
1439				vmexit->u.msr.code = ecx;
1440			} else if (!retu) {
1441				handled = 1;
1442			} else {
1443				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1444				    ("emulate_rdmsr retu with bogus exitcode"));
1445			}
1446		}
1447		break;
1448	case VMCB_EXIT_IO:
1449		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1450		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1451		break;
1452	case VMCB_EXIT_CPUID:
1453		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1454		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1455		    (uint32_t *)&state->rax,
1456		    (uint32_t *)&ctx->sctx_rbx,
1457		    (uint32_t *)&ctx->sctx_rcx,
1458		    (uint32_t *)&ctx->sctx_rdx);
1459		break;
1460	case VMCB_EXIT_HLT:
1461		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1462		vmexit->exitcode = VM_EXITCODE_HLT;
1463		vmexit->u.hlt.rflags = state->rflags;
1464		break;
1465	case VMCB_EXIT_PAUSE:
1466		vmexit->exitcode = VM_EXITCODE_PAUSE;
1467		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1468		break;
1469	case VMCB_EXIT_NPF:
1470		/* EXITINFO2 contains the faulting guest physical address */
1471		if (info1 & VMCB_NPF_INFO1_RSV) {
1472			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1473			    "reserved bits set: info1(%#lx) info2(%#lx)",
1474			    info1, info2);
1475		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1476			vmexit->exitcode = VM_EXITCODE_PAGING;
1477			vmexit->u.paging.gpa = info2;
1478			vmexit->u.paging.fault_type = npf_fault_type(info1);
1479			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1480			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1481			    "on gpa %#lx/%#lx at rip %#lx",
1482			    info2, info1, state->rip);
1483		} else if (svm_npf_emul_fault(info1)) {
1484			svm_handle_inst_emul(vmcb, info2, vmexit);
1485			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1486			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1487			    "for gpa %#lx/%#lx at rip %#lx",
1488			    info2, info1, state->rip);
1489		}
1490		break;
1491	case VMCB_EXIT_MONITOR:
1492		vmexit->exitcode = VM_EXITCODE_MONITOR;
1493		break;
1494	case VMCB_EXIT_MWAIT:
1495		vmexit->exitcode = VM_EXITCODE_MWAIT;
1496		break;
1497	default:
1498		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1499		break;
1500	}
1501
1502	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1503	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1504	    vmexit->rip, vmexit->inst_length);
1505
1506	if (handled) {
1507		vmexit->rip += vmexit->inst_length;
1508		vmexit->inst_length = 0;
1509		state->rip = vmexit->rip;
1510	} else {
1511		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1512			/*
1513			 * If this VM exit was not claimed by anybody then
1514			 * treat it as a generic SVM exit.
1515			 */
1516			vm_exit_svm(vmexit, code, info1, info2);
1517		} else {
1518			/*
1519			 * The exitcode and collateral have been populated.
1520			 * The VM exit will be processed further in userland.
1521			 */
1522		}
1523	}
1524	return (handled);
1525}
1526
1527static void
1528svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1529{
1530	uint64_t intinfo;
1531
1532	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1533		return;
1534
1535	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1536	    "valid: %#lx", __func__, intinfo));
1537
1538	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1539		VMCB_EXITINTINFO_VECTOR(intinfo),
1540		VMCB_EXITINTINFO_EC(intinfo),
1541		VMCB_EXITINTINFO_EC_VALID(intinfo));
1542	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1543	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1544}
1545
1546/*
1547 * Inject event to virtual cpu.
1548 */
1549static void
1550svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1551{
1552	struct vmcb_ctrl *ctrl;
1553	struct vmcb_state *state;
1554	struct svm_vcpu *vcpustate;
1555	uint8_t v_tpr;
1556	int vector, need_intr_window;
1557	int extint_pending;
1558
1559	state = svm_get_vmcb_state(sc, vcpu);
1560	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1561	vcpustate = svm_get_vcpu(sc, vcpu);
1562
1563	need_intr_window = 0;
1564
1565	if (vcpustate->nextrip != state->rip) {
1566		ctrl->intr_shadow = 0;
1567		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1568		    "cleared due to rip change: %#lx/%#lx",
1569		    vcpustate->nextrip, state->rip);
1570	}
1571
1572	/*
1573	 * Inject pending events or exceptions for this vcpu.
1574	 *
1575	 * An event might be pending because the previous #VMEXIT happened
1576	 * during event delivery (i.e. ctrl->exitintinfo).
1577	 *
1578	 * An event might also be pending because an exception was injected
1579	 * by the hypervisor (e.g. #PF during instruction emulation).
1580	 */
1581	svm_inj_intinfo(sc, vcpu);
1582
1583	/* NMI event has priority over interrupts. */
1584	if (vm_nmi_pending(sc->vm, vcpu)) {
1585		if (nmi_blocked(sc, vcpu)) {
1586			/*
1587			 * Can't inject another NMI if the guest has not
1588			 * yet executed an "iret" after the last NMI.
1589			 */
1590			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1591			    "to NMI-blocking");
1592		} else if (ctrl->intr_shadow) {
1593			/*
1594			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1595			 */
1596			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1597			    "interrupt shadow");
1598			need_intr_window = 1;
1599			goto done;
1600		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1601			/*
1602			 * If there is already an exception/interrupt pending
1603			 * then defer the NMI until after that.
1604			 */
1605			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1606			    "eventinj %#lx", ctrl->eventinj);
1607
1608			/*
1609			 * Use self-IPI to trigger a VM-exit as soon as
1610			 * possible after the event injection is completed.
1611			 *
1612			 * This works only if the external interrupt exiting
1613			 * is at a lower priority than the event injection.
1614			 *
1615			 * Although not explicitly specified in APMv2 the
1616			 * relative priorities were verified empirically.
1617			 */
1618			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1619		} else {
1620			vm_nmi_clear(sc->vm, vcpu);
1621
1622			/* Inject NMI, vector number is not used */
1623			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1624			    IDT_NMI, 0, false);
1625
1626			/* virtual NMI blocking is now in effect */
1627			enable_nmi_blocking(sc, vcpu);
1628
1629			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1630		}
1631	}
1632
1633	extint_pending = vm_extint_pending(sc->vm, vcpu);
1634	if (!extint_pending) {
1635		if (!vlapic_pending_intr(vlapic, &vector))
1636			goto done;
1637		KASSERT(vector >= 16 && vector <= 255,
1638		    ("invalid vector %d from local APIC", vector));
1639	} else {
1640		/* Ask the legacy pic for a vector to inject */
1641		vatpic_pending_intr(sc->vm, &vector);
1642		KASSERT(vector >= 0 && vector <= 255,
1643		    ("invalid vector %d from INTR", vector));
1644	}
1645
1646	/*
1647	 * If the guest has disabled interrupts or is in an interrupt shadow
1648	 * then we cannot inject the pending interrupt.
1649	 */
1650	if ((state->rflags & PSL_I) == 0) {
1651		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1652		    "rflags %#lx", vector, state->rflags);
1653		need_intr_window = 1;
1654		goto done;
1655	}
1656
1657	if (ctrl->intr_shadow) {
1658		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1659		    "interrupt shadow", vector);
1660		need_intr_window = 1;
1661		goto done;
1662	}
1663
1664	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1665		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1666		    "eventinj %#lx", vector, ctrl->eventinj);
1667		need_intr_window = 1;
1668		goto done;
1669	}
1670
1671	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1672
1673	if (!extint_pending) {
1674		vlapic_intr_accepted(vlapic, vector);
1675	} else {
1676		vm_extint_clear(sc->vm, vcpu);
1677		vatpic_intr_accepted(sc->vm, vector);
1678	}
1679
1680	/*
1681	 * Force a VM-exit as soon as the vcpu is ready to accept another
1682	 * interrupt. This is done because the PIC might have another vector
1683	 * that it wants to inject. Also, if the APIC has a pending interrupt
1684	 * that was preempted by the ExtInt then it allows us to inject the
1685	 * APIC vector as soon as possible.
1686	 */
1687	need_intr_window = 1;
1688done:
1689	/*
1690	 * The guest can modify the TPR by writing to %CR8. In guest mode
1691	 * the processor reflects this write to V_TPR without hypervisor
1692	 * intervention.
1693	 *
1694	 * The guest can also modify the TPR by writing to it via the memory
1695	 * mapped APIC page. In this case, the write will be emulated by the
1696	 * hypervisor. For this reason V_TPR must be updated before every
1697	 * VMRUN.
1698	 */
1699	v_tpr = vlapic_get_cr8(vlapic);
1700	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1701	if (ctrl->v_tpr != v_tpr) {
1702		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1703		    ctrl->v_tpr, v_tpr);
1704		ctrl->v_tpr = v_tpr;
1705		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1706	}
1707
1708	if (need_intr_window) {
1709		/*
1710		 * We use V_IRQ in conjunction with the VINTR intercept to
1711		 * trap into the hypervisor as soon as a virtual interrupt
1712		 * can be delivered.
1713		 *
1714		 * Since injected events are not subject to intercept checks
1715		 * we need to ensure that the V_IRQ is not actually going to
1716		 * be delivered on VM entry. The KASSERT below enforces this.
1717		 */
1718		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1719		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1720		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1721		    "intr_shadow (%u), rflags (%#lx)",
1722		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1723		enable_intr_window_exiting(sc, vcpu);
1724	} else {
1725		disable_intr_window_exiting(sc, vcpu);
1726	}
1727}
1728
1729static __inline void
1730restore_host_tss(void)
1731{
1732	struct system_segment_descriptor *tss_sd;
1733
1734	/*
1735	 * The TSS descriptor was in use prior to launching the guest so it
1736	 * has been marked busy.
1737	 *
1738	 * 'ltr' requires the descriptor to be marked available so change the
1739	 * type to "64-bit available TSS".
1740	 */
1741	tss_sd = PCPU_GET(tss);
1742	tss_sd->sd_type = SDT_SYSTSS;
1743	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1744}
1745
1746static void
1747check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1748{
1749	struct svm_vcpu *vcpustate;
1750	struct vmcb_ctrl *ctrl;
1751	long eptgen;
1752	bool alloc_asid;
1753
1754	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1755	    "active on cpu %u", __func__, thiscpu));
1756
1757	vcpustate = svm_get_vcpu(sc, vcpuid);
1758	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1759
1760	/*
1761	 * The TLB entries associated with the vcpu's ASID are not valid
1762	 * if either of the following conditions is true:
1763	 *
1764	 * 1. The vcpu's ASID generation is different than the host cpu's
1765	 *    ASID generation. This happens when the vcpu migrates to a new
1766	 *    host cpu. It can also happen when the number of vcpus executing
1767	 *    on a host cpu is greater than the number of ASIDs available.
1768	 *
1769	 * 2. The pmap generation number is different than the value cached in
1770	 *    the 'vcpustate'. This happens when the host invalidates pages
1771	 *    belonging to the guest.
1772	 *
1773	 *	asidgen		eptgen	      Action
1774	 *	mismatch	mismatch
1775	 *	   0		   0		(a)
1776	 *	   0		   1		(b1) or (b2)
1777	 *	   1		   0		(c)
1778	 *	   1		   1		(d)
1779	 *
1780	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1781	 *     no further action is needed.
1782	 *
1783	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1784	 *      retained and the TLB entries associated with this ASID
1785	 *      are flushed by VMRUN.
1786	 *
1787	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1788	 *      allocated.
1789	 *
1790	 * (c) A new ASID is allocated.
1791	 *
1792	 * (d) A new ASID is allocated.
1793	 */
1794
1795	alloc_asid = false;
1796	eptgen = pmap->pm_eptgen;
1797	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1798
1799	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1800		alloc_asid = true;	/* (c) and (d) */
1801	} else if (vcpustate->eptgen != eptgen) {
1802		if (flush_by_asid())
1803			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1804		else
1805			alloc_asid = true;			/* (b2) */
1806	} else {
1807		/*
1808		 * This is the common case (a).
1809		 */
1810		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1811		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1812		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1813	}
1814
1815	if (alloc_asid) {
1816		if (++asid[thiscpu].num >= nasid) {
1817			asid[thiscpu].num = 1;
1818			if (++asid[thiscpu].gen == 0)
1819				asid[thiscpu].gen = 1;
1820			/*
1821			 * If this cpu does not support "flush-by-asid"
1822			 * then flush the entire TLB on a generation
1823			 * bump. Subsequent ASID allocation in this
1824			 * generation can be done without a TLB flush.
1825			 */
1826			if (!flush_by_asid())
1827				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1828		}
1829		vcpustate->asid.gen = asid[thiscpu].gen;
1830		vcpustate->asid.num = asid[thiscpu].num;
1831
1832		ctrl->asid = vcpustate->asid.num;
1833		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1834		/*
1835		 * If this cpu supports "flush-by-asid" then the TLB
1836		 * was not flushed after the generation bump. The TLB
1837		 * is flushed selectively after every new ASID allocation.
1838		 */
1839		if (flush_by_asid())
1840			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1841	}
1842	vcpustate->eptgen = eptgen;
1843
1844	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1845	KASSERT(ctrl->asid == vcpustate->asid.num,
1846	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1847}
1848
1849static __inline void
1850disable_gintr(void)
1851{
1852
1853	__asm __volatile("clgi");
1854}
1855
1856static __inline void
1857enable_gintr(void)
1858{
1859
1860        __asm __volatile("stgi");
1861}
1862
1863/*
1864 * Start vcpu with specified RIP.
1865 */
1866static int
1867svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1868	struct vm_eventinfo *evinfo)
1869{
1870	struct svm_regctx *gctx;
1871	struct svm_softc *svm_sc;
1872	struct svm_vcpu *vcpustate;
1873	struct vmcb_state *state;
1874	struct vmcb_ctrl *ctrl;
1875	struct vm_exit *vmexit;
1876	struct vlapic *vlapic;
1877	struct vm *vm;
1878	uint64_t vmcb_pa;
1879	int handled;
1880
1881	svm_sc = arg;
1882	vm = svm_sc->vm;
1883
1884	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1885	state = svm_get_vmcb_state(svm_sc, vcpu);
1886	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1887	vmexit = vm_exitinfo(vm, vcpu);
1888	vlapic = vm_lapic(vm, vcpu);
1889
1890	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1891	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1892
1893	if (vcpustate->lastcpu != curcpu) {
1894		/*
1895		 * Force new ASID allocation by invalidating the generation.
1896		 */
1897		vcpustate->asid.gen = 0;
1898
1899		/*
1900		 * Invalidate the VMCB state cache by marking all fields dirty.
1901		 */
1902		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1903
1904		/*
1905		 * XXX
1906		 * Setting 'vcpustate->lastcpu' here is bit premature because
1907		 * we may return from this function without actually executing
1908		 * the VMRUN  instruction. This could happen if a rendezvous
1909		 * or an AST is pending on the first time through the loop.
1910		 *
1911		 * This works for now but any new side-effects of vcpu
1912		 * migration should take this case into account.
1913		 */
1914		vcpustate->lastcpu = curcpu;
1915		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1916	}
1917
1918	svm_msr_guest_enter(svm_sc, vcpu);
1919
1920	/* Update Guest RIP */
1921	state->rip = rip;
1922
1923	do {
1924		/*
1925		 * Disable global interrupts to guarantee atomicity during
1926		 * loading of guest state. This includes not only the state
1927		 * loaded by the "vmrun" instruction but also software state
1928		 * maintained by the hypervisor: suspended and rendezvous
1929		 * state, NPT generation number, vlapic interrupts etc.
1930		 */
1931		disable_gintr();
1932
1933		if (vcpu_suspended(evinfo)) {
1934			enable_gintr();
1935			vm_exit_suspended(vm, vcpu, state->rip);
1936			break;
1937		}
1938
1939		if (vcpu_rendezvous_pending(evinfo)) {
1940			enable_gintr();
1941			vm_exit_rendezvous(vm, vcpu, state->rip);
1942			break;
1943		}
1944
1945		if (vcpu_reqidle(evinfo)) {
1946			enable_gintr();
1947			vm_exit_reqidle(vm, vcpu, state->rip);
1948			break;
1949		}
1950
1951		/* We are asked to give the cpu by scheduler. */
1952		if (vcpu_should_yield(vm, vcpu)) {
1953			enable_gintr();
1954			vm_exit_astpending(vm, vcpu, state->rip);
1955			break;
1956		}
1957
1958		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1959
1960		/* Activate the nested pmap on 'curcpu' */
1961		CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active);
1962
1963		/*
1964		 * Check the pmap generation and the ASID generation to
1965		 * ensure that the vcpu does not use stale TLB mappings.
1966		 */
1967		check_asid(svm_sc, vcpu, pmap, curcpu);
1968
1969		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
1970		vcpustate->dirty = 0;
1971		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
1972
1973		/* Launch Virtual Machine. */
1974		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
1975		svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]);
1976
1977		CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
1978
1979		/*
1980		 * The host GDTR and IDTR is saved by VMRUN and restored
1981		 * automatically on #VMEXIT. However, the host TSS needs
1982		 * to be restored explicitly.
1983		 */
1984		restore_host_tss();
1985
1986		/* #VMEXIT disables interrupts so re-enable them here. */
1987		enable_gintr();
1988
1989		/* Update 'nextrip' */
1990		vcpustate->nextrip = state->rip;
1991
1992		/* Handle #VMEXIT and if required return to user space. */
1993		handled = svm_vmexit(svm_sc, vcpu, vmexit);
1994	} while (handled);
1995
1996	svm_msr_guest_exit(svm_sc, vcpu);
1997
1998	return (0);
1999}
2000
2001static void
2002svm_vmcleanup(void *arg)
2003{
2004	struct svm_softc *sc = arg;
2005
2006	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2007	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2008	free(sc, M_SVM);
2009}
2010
2011static register_t *
2012swctx_regptr(struct svm_regctx *regctx, int reg)
2013{
2014
2015	switch (reg) {
2016	case VM_REG_GUEST_RBX:
2017		return (&regctx->sctx_rbx);
2018	case VM_REG_GUEST_RCX:
2019		return (&regctx->sctx_rcx);
2020	case VM_REG_GUEST_RDX:
2021		return (&regctx->sctx_rdx);
2022	case VM_REG_GUEST_RDI:
2023		return (&regctx->sctx_rdi);
2024	case VM_REG_GUEST_RSI:
2025		return (&regctx->sctx_rsi);
2026	case VM_REG_GUEST_RBP:
2027		return (&regctx->sctx_rbp);
2028	case VM_REG_GUEST_R8:
2029		return (&regctx->sctx_r8);
2030	case VM_REG_GUEST_R9:
2031		return (&regctx->sctx_r9);
2032	case VM_REG_GUEST_R10:
2033		return (&regctx->sctx_r10);
2034	case VM_REG_GUEST_R11:
2035		return (&regctx->sctx_r11);
2036	case VM_REG_GUEST_R12:
2037		return (&regctx->sctx_r12);
2038	case VM_REG_GUEST_R13:
2039		return (&regctx->sctx_r13);
2040	case VM_REG_GUEST_R14:
2041		return (&regctx->sctx_r14);
2042	case VM_REG_GUEST_R15:
2043		return (&regctx->sctx_r15);
2044	default:
2045		return (NULL);
2046	}
2047}
2048
2049static int
2050svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2051{
2052	struct svm_softc *svm_sc;
2053	register_t *reg;
2054
2055	svm_sc = arg;
2056
2057	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2058		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2059	}
2060
2061	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2062		return (0);
2063	}
2064
2065	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2066
2067	if (reg != NULL) {
2068		*val = *reg;
2069		return (0);
2070	}
2071
2072	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2073	return (EINVAL);
2074}
2075
2076static int
2077svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2078{
2079	struct svm_softc *svm_sc;
2080	register_t *reg;
2081
2082	svm_sc = arg;
2083
2084	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2085		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2086	}
2087
2088	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2089		return (0);
2090	}
2091
2092	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2093
2094	if (reg != NULL) {
2095		*reg = val;
2096		return (0);
2097	}
2098
2099	/*
2100	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2101	 * vcpu's ASID. This needs to be treated differently depending on
2102	 * whether 'running' is true/false.
2103	 */
2104
2105	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2106	return (EINVAL);
2107}
2108
2109static int
2110svm_setcap(void *arg, int vcpu, int type, int val)
2111{
2112	struct svm_softc *sc;
2113	int error;
2114
2115	sc = arg;
2116	error = 0;
2117	switch (type) {
2118	case VM_CAP_HALT_EXIT:
2119		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2120		    VMCB_INTCPT_HLT, val);
2121		break;
2122	case VM_CAP_PAUSE_EXIT:
2123		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2124		    VMCB_INTCPT_PAUSE, val);
2125		break;
2126	case VM_CAP_UNRESTRICTED_GUEST:
2127		/* Unrestricted guest execution cannot be disabled in SVM */
2128		if (val == 0)
2129			error = EINVAL;
2130		break;
2131	default:
2132		error = ENOENT;
2133		break;
2134	}
2135	return (error);
2136}
2137
2138static int
2139svm_getcap(void *arg, int vcpu, int type, int *retval)
2140{
2141	struct svm_softc *sc;
2142	int error;
2143
2144	sc = arg;
2145	error = 0;
2146
2147	switch (type) {
2148	case VM_CAP_HALT_EXIT:
2149		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2150		    VMCB_INTCPT_HLT);
2151		break;
2152	case VM_CAP_PAUSE_EXIT:
2153		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2154		    VMCB_INTCPT_PAUSE);
2155		break;
2156	case VM_CAP_UNRESTRICTED_GUEST:
2157		*retval = 1;	/* unrestricted guest is always enabled */
2158		break;
2159	default:
2160		error = ENOENT;
2161		break;
2162	}
2163	return (error);
2164}
2165
2166static struct vlapic *
2167svm_vlapic_init(void *arg, int vcpuid)
2168{
2169	struct svm_softc *svm_sc;
2170	struct vlapic *vlapic;
2171
2172	svm_sc = arg;
2173	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2174	vlapic->vm = svm_sc->vm;
2175	vlapic->vcpuid = vcpuid;
2176	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2177
2178	vlapic_init(vlapic);
2179
2180	return (vlapic);
2181}
2182
2183static void
2184svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2185{
2186
2187        vlapic_cleanup(vlapic);
2188        free(vlapic, M_SVM_VLAPIC);
2189}
2190
2191struct vmm_ops vmm_ops_amd = {
2192	svm_init,
2193	svm_cleanup,
2194	svm_restore,
2195	svm_vminit,
2196	svm_vmrun,
2197	svm_vmcleanup,
2198	svm_getreg,
2199	svm_setreg,
2200	vmcb_getdesc,
2201	vmcb_setdesc,
2202	svm_getcap,
2203	svm_setcap,
2204	svm_npt_alloc,
2205	svm_npt_free,
2206	svm_vlapic_init,
2207	svm_vlapic_cleanup
2208};
2209