1/*-
2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/amd/svm.c 330069 2018-02-27 14:47:56Z avg $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/smp.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/pcpu.h>
36#include <sys/proc.h>
37#include <sys/sysctl.h>
38
39#include <vm/vm.h>
40#include <vm/pmap.h>
41
42#include <machine/cpufunc.h>
43#include <machine/psl.h>
44#include <machine/pmap.h>
45#include <machine/md_var.h>
46#include <machine/specialreg.h>
47#include <machine/smp.h>
48#include <machine/vmm.h>
49#include <machine/vmm_dev.h>
50#include <machine/vmm_instruction_emul.h>
51
52#include "vmm_lapic.h"
53#include "vmm_stat.h"
54#include "vmm_ktr.h"
55#include "vmm_ioport.h"
56#include "vatpic.h"
57#include "vlapic.h"
58#include "vlapic_priv.h"
59
60#include "x86.h"
61#include "vmcb.h"
62#include "svm.h"
63#include "svm_softc.h"
64#include "svm_msr.h"
65#include "npt.h"
66
67SYSCTL_DECL(_hw_vmm);
68SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * SVM CPUID function 0x8000_000A, edx bit decoding.
72 */
73#define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74#define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75#define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76#define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77#define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78#define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79#define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80#define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81#define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82#define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83#define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
84
85#define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
86				VMCB_CACHE_IOPM		|	\
87				VMCB_CACHE_I		|	\
88				VMCB_CACHE_TPR		|	\
89				VMCB_CACHE_CR2		|	\
90				VMCB_CACHE_CR		|	\
91				VMCB_CACHE_DT		|	\
92				VMCB_CACHE_SEG		|	\
93				VMCB_CACHE_NP)
94
95static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
96SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
97    0, NULL);
98
99static MALLOC_DEFINE(M_SVM, "svm", "svm");
100static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
101
102/* Per-CPU context area. */
103extern struct pcpu __pcpu[];
104
105static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
106SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
107    "SVM features advertised by CPUID.8000000AH:EDX");
108
109static int disable_npf_assist;
110SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111    &disable_npf_assist, 0, NULL);
112
113/* Maximum ASIDs supported by the processor */
114static uint32_t nasid;
115SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
116    "Number of ASIDs supported by this processor");
117
118/* Current ASID generation for each host cpu */
119static struct asid asid[MAXCPU];
120
121/*
122 * SVM host state saved area of size 4KB for each core.
123 */
124static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125
126static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129
130static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131
132static __inline int
133flush_by_asid(void)
134{
135
136	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137}
138
139static __inline int
140decode_assist(void)
141{
142
143	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144}
145
146static void
147svm_disable(void *arg __unused)
148{
149	uint64_t efer;
150
151	efer = rdmsr(MSR_EFER);
152	efer &= ~EFER_SVM;
153	wrmsr(MSR_EFER, efer);
154}
155
156/*
157 * Disable SVM on all CPUs.
158 */
159static int
160svm_cleanup(void)
161{
162
163	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164	return (0);
165}
166
167/*
168 * Verify that all the features required by bhyve are available.
169 */
170static int
171check_svm_features(void)
172{
173	u_int regs[4];
174
175	/* CPUID Fn8000_000A is for SVM */
176	do_cpuid(0x8000000A, regs);
177	svm_feature &= regs[3];
178
179	/*
180	 * The number of ASIDs can be configured to be less than what is
181	 * supported by the hardware but not more.
182	 */
183	if (nasid == 0 || nasid > regs[1])
184		nasid = regs[1];
185	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
186
187	/* bhyve requires the Nested Paging feature */
188	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
189		printf("SVM: Nested Paging feature not available.\n");
190		return (ENXIO);
191	}
192
193	/* bhyve requires the NRIP Save feature */
194	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
195		printf("SVM: NRIP Save feature not available.\n");
196		return (ENXIO);
197	}
198
199	return (0);
200}
201
202static void
203svm_enable(void *arg __unused)
204{
205	uint64_t efer;
206
207	efer = rdmsr(MSR_EFER);
208	efer |= EFER_SVM;
209	wrmsr(MSR_EFER, efer);
210
211	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
212}
213
214/*
215 * Return 1 if SVM is enabled on this processor and 0 otherwise.
216 */
217static int
218svm_available(void)
219{
220	uint64_t msr;
221
222	/* Section 15.4 Enabling SVM from APM2. */
223	if ((amd_feature2 & AMDID2_SVM) == 0) {
224		printf("SVM: not available.\n");
225		return (0);
226	}
227
228	msr = rdmsr(MSR_VM_CR);
229	if ((msr & VM_CR_SVMDIS) != 0) {
230		printf("SVM: disabled by BIOS.\n");
231		return (0);
232	}
233
234	return (1);
235}
236
237static int
238svm_init(int ipinum)
239{
240	int error, cpu;
241
242	if (!svm_available())
243		return (ENXIO);
244
245	error = check_svm_features();
246	if (error)
247		return (error);
248
249	vmcb_clean &= VMCB_CACHE_DEFAULT;
250
251	for (cpu = 0; cpu < MAXCPU; cpu++) {
252		/*
253		 * Initialize the host ASIDs to their "highest" valid values.
254		 *
255		 * The next ASID allocation will rollover both 'gen' and 'num'
256		 * and start off the sequence at {1,1}.
257		 */
258		asid[cpu].gen = ~0UL;
259		asid[cpu].num = nasid - 1;
260	}
261
262	svm_msr_init();
263	svm_npt_init(ipinum);
264
265	/* Enable SVM on all CPUs */
266	smp_rendezvous(NULL, svm_enable, NULL, NULL);
267
268	return (0);
269}
270
271static void
272svm_restore(void)
273{
274
275	svm_enable(NULL);
276}
277
278/* Pentium compatible MSRs */
279#define MSR_PENTIUM_START 	0
280#define MSR_PENTIUM_END 	0x1FFF
281/* AMD 6th generation and Intel compatible MSRs */
282#define MSR_AMD6TH_START 	0xC0000000UL
283#define MSR_AMD6TH_END 		0xC0001FFFUL
284/* AMD 7th and 8th generation compatible MSRs */
285#define MSR_AMD7TH_START 	0xC0010000UL
286#define MSR_AMD7TH_END 		0xC0011FFFUL
287
288/*
289 * Get the index and bit position for a MSR in permission bitmap.
290 * Two bits are used for each MSR: lower bit for read and higher bit for write.
291 */
292static int
293svm_msr_index(uint64_t msr, int *index, int *bit)
294{
295	uint32_t base, off;
296
297	*index = -1;
298	*bit = (msr % 4) * 2;
299	base = 0;
300
301	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
302		*index = msr / 4;
303		return (0);
304	}
305
306	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
307	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
308		off = (msr - MSR_AMD6TH_START);
309		*index = (off + base) / 4;
310		return (0);
311	}
312
313	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
314	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
315		off = (msr - MSR_AMD7TH_START);
316		*index = (off + base) / 4;
317		return (0);
318	}
319
320	return (EINVAL);
321}
322
323/*
324 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
325 */
326static void
327svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
328{
329	int index, bit, error;
330
331	error = svm_msr_index(msr, &index, &bit);
332	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
333	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
334	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
335	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
336	    "msr %#lx", __func__, bit, msr));
337
338	if (read)
339		perm_bitmap[index] &= ~(1UL << bit);
340
341	if (write)
342		perm_bitmap[index] &= ~(2UL << bit);
343}
344
345static void
346svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
347{
348
349	svm_msr_perm(perm_bitmap, msr, true, true);
350}
351
352static void
353svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
354{
355
356	svm_msr_perm(perm_bitmap, msr, true, false);
357}
358
359static __inline int
360svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
361{
362	struct vmcb_ctrl *ctrl;
363
364	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
365
366	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
367	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
368}
369
370static __inline void
371svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
372    int enabled)
373{
374	struct vmcb_ctrl *ctrl;
375	uint32_t oldval;
376
377	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
378
379	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
380	oldval = ctrl->intercept[idx];
381
382	if (enabled)
383		ctrl->intercept[idx] |= bitmask;
384	else
385		ctrl->intercept[idx] &= ~bitmask;
386
387	if (ctrl->intercept[idx] != oldval) {
388		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
389		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
390		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
391	}
392}
393
394static __inline void
395svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
396{
397
398	svm_set_intercept(sc, vcpu, off, bitmask, 0);
399}
400
401static __inline void
402svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
403{
404
405	svm_set_intercept(sc, vcpu, off, bitmask, 1);
406}
407
408static void
409vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
410    uint64_t msrpm_base_pa, uint64_t np_pml4)
411{
412	struct vmcb_ctrl *ctrl;
413	struct vmcb_state *state;
414	uint32_t mask;
415	int n;
416
417	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
418	state = svm_get_vmcb_state(sc, vcpu);
419
420	ctrl->iopm_base_pa = iopm_base_pa;
421	ctrl->msrpm_base_pa = msrpm_base_pa;
422
423	/* Enable nested paging */
424	ctrl->np_enable = 1;
425	ctrl->n_cr3 = np_pml4;
426
427	/*
428	 * Intercept accesses to the control registers that are not shadowed
429	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
430	 */
431	for (n = 0; n < 16; n++) {
432		mask = (BIT(n) << 16) | BIT(n);
433		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
434			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
435		else
436			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
437	}
438
439
440	/*
441	 * Intercept everything when tracing guest exceptions otherwise
442	 * just intercept machine check exception.
443	 */
444	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
445		for (n = 0; n < 32; n++) {
446			/*
447			 * Skip unimplemented vectors in the exception bitmap.
448			 */
449			if (n == 2 || n == 9) {
450				continue;
451			}
452			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
453		}
454	} else {
455		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
456	}
457
458	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
459	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
460	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
461	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
462	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
463	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
464	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
465	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
466	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
467	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
468	    VMCB_INTCPT_FERR_FREEZE);
469
470	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
471	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
472
473	/*
474	 * From section "Canonicalization and Consistency Checks" in APMv2
475	 * the VMRUN intercept bit must be set to pass the consistency check.
476	 */
477	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
478
479	/*
480	 * The ASID will be set to a non-zero value just before VMRUN.
481	 */
482	ctrl->asid = 0;
483
484	/*
485	 * Section 15.21.1, Interrupt Masking in EFLAGS
486	 * Section 15.21.2, Virtualizing APIC.TPR
487	 *
488	 * This must be set for %rflag and %cr8 isolation of guest and host.
489	 */
490	ctrl->v_intr_masking = 1;
491
492	/* Enable Last Branch Record aka LBR for debugging */
493	ctrl->lbr_virt_en = 1;
494	state->dbgctl = BIT(0);
495
496	/* EFER_SVM must always be set when the guest is executing */
497	state->efer = EFER_SVM;
498
499	/* Set up the PAT to power-on state */
500	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
501	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
502	    PAT_VALUE(2, PAT_UNCACHED)		|
503	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
504	    PAT_VALUE(4, PAT_WRITE_BACK)	|
505	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
506	    PAT_VALUE(6, PAT_UNCACHED)		|
507	    PAT_VALUE(7, PAT_UNCACHEABLE);
508}
509
510/*
511 * Initialize a virtual machine.
512 */
513static void *
514svm_vminit(struct vm *vm, pmap_t pmap)
515{
516	struct svm_softc *svm_sc;
517	struct svm_vcpu *vcpu;
518	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
519	int i;
520
521	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
522	if (((uintptr_t)svm_sc & PAGE_MASK) != 0)
523		panic("malloc of svm_softc not aligned on page boundary");
524
525	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
526	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
527	if (svm_sc->msr_bitmap == NULL)
528		panic("contigmalloc of SVM MSR bitmap failed");
529	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
530	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
531	if (svm_sc->iopm_bitmap == NULL)
532		panic("contigmalloc of SVM IO bitmap failed");
533
534	svm_sc->vm = vm;
535	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
536
537	/*
538	 * Intercept read and write accesses to all MSRs.
539	 */
540	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
541
542	/*
543	 * Access to the following MSRs is redirected to the VMCB when the
544	 * guest is executing. Therefore it is safe to allow the guest to
545	 * read/write these MSRs directly without hypervisor involvement.
546	 */
547	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
548	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
549	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
550
551	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
552	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
553	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
554	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
555	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
556	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
557	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
558	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
559
560	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
561
562	/*
563	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
564	 */
565	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
566
567	/* Intercept access to all I/O ports. */
568	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
569
570	iopm_pa = vtophys(svm_sc->iopm_bitmap);
571	msrpm_pa = vtophys(svm_sc->msr_bitmap);
572	pml4_pa = svm_sc->nptp;
573	for (i = 0; i < VM_MAXCPU; i++) {
574		vcpu = svm_get_vcpu(svm_sc, i);
575		vcpu->nextrip = ~0;
576		vcpu->lastcpu = NOCPU;
577		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
578		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
579		svm_msr_guest_init(svm_sc, i);
580	}
581	return (svm_sc);
582}
583
584/*
585 * Collateral for a generic SVM VM-exit.
586 */
587static void
588vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
589{
590
591	vme->exitcode = VM_EXITCODE_SVM;
592	vme->u.svm.exitcode = code;
593	vme->u.svm.exitinfo1 = info1;
594	vme->u.svm.exitinfo2 = info2;
595}
596
597static int
598svm_cpl(struct vmcb_state *state)
599{
600
601	/*
602	 * From APMv2:
603	 *   "Retrieve the CPL from the CPL field in the VMCB, not
604	 *    from any segment DPL"
605	 */
606	return (state->cpl);
607}
608
609static enum vm_cpu_mode
610svm_vcpu_mode(struct vmcb *vmcb)
611{
612	struct vmcb_segment seg;
613	struct vmcb_state *state;
614	int error;
615
616	state = &vmcb->state;
617
618	if (state->efer & EFER_LMA) {
619		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
620		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
621		    error));
622
623		/*
624		 * Section 4.8.1 for APM2, check if Code Segment has
625		 * Long attribute set in descriptor.
626		 */
627		if (seg.attrib & VMCB_CS_ATTRIB_L)
628			return (CPU_MODE_64BIT);
629		else
630			return (CPU_MODE_COMPATIBILITY);
631	} else  if (state->cr0 & CR0_PE) {
632		return (CPU_MODE_PROTECTED);
633	} else {
634		return (CPU_MODE_REAL);
635	}
636}
637
638static enum vm_paging_mode
639svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
640{
641
642	if ((cr0 & CR0_PG) == 0)
643		return (PAGING_MODE_FLAT);
644	if ((cr4 & CR4_PAE) == 0)
645		return (PAGING_MODE_32);
646	if (efer & EFER_LME)
647		return (PAGING_MODE_64);
648	else
649		return (PAGING_MODE_PAE);
650}
651
652/*
653 * ins/outs utility routines
654 */
655static uint64_t
656svm_inout_str_index(struct svm_regctx *regs, int in)
657{
658	uint64_t val;
659
660	val = in ? regs->sctx_rdi : regs->sctx_rsi;
661
662	return (val);
663}
664
665static uint64_t
666svm_inout_str_count(struct svm_regctx *regs, int rep)
667{
668	uint64_t val;
669
670	val = rep ? regs->sctx_rcx : 1;
671
672	return (val);
673}
674
675static void
676svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
677    int in, struct vm_inout_str *vis)
678{
679	int error, s;
680
681	if (in) {
682		vis->seg_name = VM_REG_GUEST_ES;
683	} else {
684		/* The segment field has standard encoding */
685		s = (info1 >> 10) & 0x7;
686		vis->seg_name = vm_segment_name(s);
687	}
688
689	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
690	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
691}
692
693static int
694svm_inout_str_addrsize(uint64_t info1)
695{
696        uint32_t size;
697
698        size = (info1 >> 7) & 0x7;
699        switch (size) {
700        case 1:
701                return (2);     /* 16 bit */
702        case 2:
703                return (4);     /* 32 bit */
704        case 4:
705                return (8);     /* 64 bit */
706        default:
707                panic("%s: invalid size encoding %d", __func__, size);
708        }
709}
710
711static void
712svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
713{
714	struct vmcb_state *state;
715
716	state = &vmcb->state;
717	paging->cr3 = state->cr3;
718	paging->cpl = svm_cpl(state);
719	paging->cpu_mode = svm_vcpu_mode(vmcb);
720	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
721	    state->efer);
722}
723
724#define	UNHANDLED 0
725
726/*
727 * Handle guest I/O intercept.
728 */
729static int
730svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
731{
732	struct vmcb_ctrl *ctrl;
733	struct vmcb_state *state;
734	struct svm_regctx *regs;
735	struct vm_inout_str *vis;
736	uint64_t info1;
737	int inout_string;
738
739	state = svm_get_vmcb_state(svm_sc, vcpu);
740	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
741	regs  = svm_get_guest_regctx(svm_sc, vcpu);
742
743	info1 = ctrl->exitinfo1;
744	inout_string = info1 & BIT(2) ? 1 : 0;
745
746	/*
747	 * The effective segment number in EXITINFO1[12:10] is populated
748	 * only if the processor has the DecodeAssist capability.
749	 *
750	 * XXX this is not specified explicitly in APMv2 but can be verified
751	 * empirically.
752	 */
753	if (inout_string && !decode_assist())
754		return (UNHANDLED);
755
756	vmexit->exitcode 	= VM_EXITCODE_INOUT;
757	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
758	vmexit->u.inout.string 	= inout_string;
759	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
760	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
761	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
762	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
763
764	if (inout_string) {
765		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
766		vis = &vmexit->u.inout_str;
767		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
768		vis->rflags = state->rflags;
769		vis->cr0 = state->cr0;
770		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
771		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
772		vis->addrsize = svm_inout_str_addrsize(info1);
773		svm_inout_str_seginfo(svm_sc, vcpu, info1,
774		    vmexit->u.inout.in, vis);
775	}
776
777	return (UNHANDLED);
778}
779
780static int
781npf_fault_type(uint64_t exitinfo1)
782{
783
784	if (exitinfo1 & VMCB_NPF_INFO1_W)
785		return (VM_PROT_WRITE);
786	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
787		return (VM_PROT_EXECUTE);
788	else
789		return (VM_PROT_READ);
790}
791
792static bool
793svm_npf_emul_fault(uint64_t exitinfo1)
794{
795
796	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
797		return (false);
798	}
799
800	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
801		return (false);
802	}
803
804	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
805		return (false);
806	}
807
808	return (true);
809}
810
811static void
812svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
813{
814	struct vm_guest_paging *paging;
815	struct vmcb_segment seg;
816	struct vmcb_ctrl *ctrl;
817	char *inst_bytes;
818	int error, inst_len;
819
820	ctrl = &vmcb->ctrl;
821	paging = &vmexit->u.inst_emul.paging;
822
823	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
824	vmexit->u.inst_emul.gpa = gpa;
825	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
826	svm_paging_info(vmcb, paging);
827
828	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
829	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
830
831	switch(paging->cpu_mode) {
832	case CPU_MODE_REAL:
833		vmexit->u.inst_emul.cs_base = seg.base;
834		vmexit->u.inst_emul.cs_d = 0;
835		break;
836	case CPU_MODE_PROTECTED:
837	case CPU_MODE_COMPATIBILITY:
838		vmexit->u.inst_emul.cs_base = seg.base;
839
840		/*
841		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
842		 */
843		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
844		    1 : 0;
845		break;
846	default:
847		vmexit->u.inst_emul.cs_base = 0;
848		vmexit->u.inst_emul.cs_d = 0;
849		break;
850	}
851
852	/*
853	 * Copy the instruction bytes into 'vie' if available.
854	 */
855	if (decode_assist() && !disable_npf_assist) {
856		inst_len = ctrl->inst_len;
857		inst_bytes = ctrl->inst_bytes;
858	} else {
859		inst_len = 0;
860		inst_bytes = NULL;
861	}
862	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
863}
864
865#ifdef KTR
866static const char *
867intrtype_to_str(int intr_type)
868{
869	switch (intr_type) {
870	case VMCB_EVENTINJ_TYPE_INTR:
871		return ("hwintr");
872	case VMCB_EVENTINJ_TYPE_NMI:
873		return ("nmi");
874	case VMCB_EVENTINJ_TYPE_INTn:
875		return ("swintr");
876	case VMCB_EVENTINJ_TYPE_EXCEPTION:
877		return ("exception");
878	default:
879		panic("%s: unknown intr_type %d", __func__, intr_type);
880	}
881}
882#endif
883
884/*
885 * Inject an event to vcpu as described in section 15.20, "Event injection".
886 */
887static void
888svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
889		 uint32_t error, bool ec_valid)
890{
891	struct vmcb_ctrl *ctrl;
892
893	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
894
895	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
896	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
897
898	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
899	    __func__, vector));
900
901	switch (intr_type) {
902	case VMCB_EVENTINJ_TYPE_INTR:
903	case VMCB_EVENTINJ_TYPE_NMI:
904	case VMCB_EVENTINJ_TYPE_INTn:
905		break;
906	case VMCB_EVENTINJ_TYPE_EXCEPTION:
907		if (vector >= 0 && vector <= 31 && vector != 2)
908			break;
909		/* FALLTHROUGH */
910	default:
911		panic("%s: invalid intr_type/vector: %d/%d", __func__,
912		    intr_type, vector);
913	}
914	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
915	if (ec_valid) {
916		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
917		ctrl->eventinj |= (uint64_t)error << 32;
918		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
919		    intrtype_to_str(intr_type), vector, error);
920	} else {
921		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
922		    intrtype_to_str(intr_type), vector);
923	}
924}
925
926static void
927svm_update_virqinfo(struct svm_softc *sc, int vcpu)
928{
929	struct vm *vm;
930	struct vlapic *vlapic;
931	struct vmcb_ctrl *ctrl;
932
933	vm = sc->vm;
934	vlapic = vm_lapic(vm, vcpu);
935	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
936
937	/* Update %cr8 in the emulated vlapic */
938	vlapic_set_cr8(vlapic, ctrl->v_tpr);
939
940	/* Virtual interrupt injection is not used. */
941	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
942	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
943}
944
945static void
946svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
947{
948	struct vmcb_ctrl *ctrl;
949	uint64_t intinfo;
950
951	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
952	intinfo = ctrl->exitintinfo;
953	if (!VMCB_EXITINTINFO_VALID(intinfo))
954		return;
955
956	/*
957	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
958	 *
959	 * If a #VMEXIT happened during event delivery then record the event
960	 * that was being delivered.
961	 */
962	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
963		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
964	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
965	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
966}
967
968#ifdef INVARIANTS
969static __inline int
970vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
971{
972
973	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
974	    VMCB_INTCPT_VINTR));
975}
976#endif
977
978static __inline void
979enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
980{
981	struct vmcb_ctrl *ctrl;
982
983	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
984
985	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
986		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
987		KASSERT(vintr_intercept_enabled(sc, vcpu),
988		    ("%s: vintr intercept should be enabled", __func__));
989		return;
990	}
991
992	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
993	ctrl->v_irq = 1;
994	ctrl->v_ign_tpr = 1;
995	ctrl->v_intr_vector = 0;
996	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
997	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
998}
999
1000static __inline void
1001disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1002{
1003	struct vmcb_ctrl *ctrl;
1004
1005	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1006
1007	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1008		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1009		    ("%s: vintr intercept should be disabled", __func__));
1010		return;
1011	}
1012
1013	VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1014	ctrl->v_irq = 0;
1015	ctrl->v_intr_vector = 0;
1016	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1017	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1018}
1019
1020static int
1021svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1022{
1023	struct vmcb_ctrl *ctrl;
1024	int oldval, newval;
1025
1026	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1027	oldval = ctrl->intr_shadow;
1028	newval = val ? 1 : 0;
1029	if (newval != oldval) {
1030		ctrl->intr_shadow = newval;
1031		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1032	}
1033	return (0);
1034}
1035
1036static int
1037svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1038{
1039	struct vmcb_ctrl *ctrl;
1040
1041	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1042	*val = ctrl->intr_shadow;
1043	return (0);
1044}
1045
1046/*
1047 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1048 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1049 * to track when the vcpu is done handling the NMI.
1050 */
1051static int
1052nmi_blocked(struct svm_softc *sc, int vcpu)
1053{
1054	int blocked;
1055
1056	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1057	    VMCB_INTCPT_IRET);
1058	return (blocked);
1059}
1060
1061static void
1062enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1063{
1064
1065	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1066	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1067	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1068}
1069
1070static void
1071clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1072{
1073	int error;
1074
1075	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1076	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1077	/*
1078	 * When the IRET intercept is cleared the vcpu will attempt to execute
1079	 * the "iret" when it runs next. However, it is possible to inject
1080	 * another NMI into the vcpu before the "iret" has actually executed.
1081	 *
1082	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1083	 * it will trap back into the hypervisor. If an NMI is pending for
1084	 * the vcpu it will be injected into the guest.
1085	 *
1086	 * XXX this needs to be fixed
1087	 */
1088	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1089
1090	/*
1091	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1092	 * immediate VMRUN.
1093	 */
1094	error = svm_modify_intr_shadow(sc, vcpu, 1);
1095	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1096}
1097
1098#define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1099
1100static int
1101svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1102{
1103	struct vm_exit *vme;
1104	struct vmcb_state *state;
1105	uint64_t changed, lma, oldval;
1106	int error;
1107
1108	state = svm_get_vmcb_state(sc, vcpu);
1109
1110	oldval = state->efer;
1111	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1112
1113	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1114	changed = oldval ^ newval;
1115
1116	if (newval & EFER_MBZ_BITS)
1117		goto gpf;
1118
1119	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1120	if (changed & EFER_LME) {
1121		if (state->cr0 & CR0_PG)
1122			goto gpf;
1123	}
1124
1125	/* EFER.LMA = EFER.LME & CR0.PG */
1126	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1127		lma = EFER_LMA;
1128	else
1129		lma = 0;
1130
1131	if ((newval & EFER_LMA) != lma)
1132		goto gpf;
1133
1134	if (newval & EFER_NXE) {
1135		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1136			goto gpf;
1137	}
1138
1139	/*
1140	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1141	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1142	 */
1143	if (newval & EFER_LMSLE) {
1144		vme = vm_exitinfo(sc->vm, vcpu);
1145		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1146		*retu = true;
1147		return (0);
1148	}
1149
1150	if (newval & EFER_FFXSR) {
1151		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1152			goto gpf;
1153	}
1154
1155	if (newval & EFER_TCE) {
1156		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1157			goto gpf;
1158	}
1159
1160	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1161	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1162	return (0);
1163gpf:
1164	vm_inject_gp(sc->vm, vcpu);
1165	return (0);
1166}
1167
1168static int
1169emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1170    bool *retu)
1171{
1172	int error;
1173
1174	if (lapic_msr(num))
1175		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1176	else if (num == MSR_EFER)
1177		error = svm_write_efer(sc, vcpu, val, retu);
1178	else
1179		error = svm_wrmsr(sc, vcpu, num, val, retu);
1180
1181	return (error);
1182}
1183
1184static int
1185emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1186{
1187	struct vmcb_state *state;
1188	struct svm_regctx *ctx;
1189	uint64_t result;
1190	int error;
1191
1192	if (lapic_msr(num))
1193		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1194	else
1195		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1196
1197	if (error == 0) {
1198		state = svm_get_vmcb_state(sc, vcpu);
1199		ctx = svm_get_guest_regctx(sc, vcpu);
1200		state->rax = result & 0xffffffff;
1201		ctx->sctx_rdx = result >> 32;
1202	}
1203
1204	return (error);
1205}
1206
1207#ifdef KTR
1208static const char *
1209exit_reason_to_str(uint64_t reason)
1210{
1211	static char reasonbuf[32];
1212
1213	switch (reason) {
1214	case VMCB_EXIT_INVALID:
1215		return ("invalvmcb");
1216	case VMCB_EXIT_SHUTDOWN:
1217		return ("shutdown");
1218	case VMCB_EXIT_NPF:
1219		return ("nptfault");
1220	case VMCB_EXIT_PAUSE:
1221		return ("pause");
1222	case VMCB_EXIT_HLT:
1223		return ("hlt");
1224	case VMCB_EXIT_CPUID:
1225		return ("cpuid");
1226	case VMCB_EXIT_IO:
1227		return ("inout");
1228	case VMCB_EXIT_MC:
1229		return ("mchk");
1230	case VMCB_EXIT_INTR:
1231		return ("extintr");
1232	case VMCB_EXIT_NMI:
1233		return ("nmi");
1234	case VMCB_EXIT_VINTR:
1235		return ("vintr");
1236	case VMCB_EXIT_MSR:
1237		return ("msr");
1238	case VMCB_EXIT_IRET:
1239		return ("iret");
1240	case VMCB_EXIT_MONITOR:
1241		return ("monitor");
1242	case VMCB_EXIT_MWAIT:
1243		return ("mwait");
1244	default:
1245		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1246		return (reasonbuf);
1247	}
1248}
1249#endif	/* KTR */
1250
1251/*
1252 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1253 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1254 * and exceptions caused by INT3, INTO and BOUND instructions.
1255 *
1256 * Return 1 if the nRIP is valid and 0 otherwise.
1257 */
1258static int
1259nrip_valid(uint64_t exitcode)
1260{
1261	switch (exitcode) {
1262	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1263	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1264	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1265	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1266	case 0x43:		/* INT3 */
1267	case 0x44:		/* INTO */
1268	case 0x45:		/* BOUND */
1269	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1270	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1271		return (1);
1272	default:
1273		return (0);
1274	}
1275}
1276
1277static int
1278svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1279{
1280	struct vmcb *vmcb;
1281	struct vmcb_state *state;
1282	struct vmcb_ctrl *ctrl;
1283	struct svm_regctx *ctx;
1284	uint64_t code, info1, info2, val;
1285	uint32_t eax, ecx, edx;
1286	int error, errcode_valid, handled, idtvec, reflect;
1287	bool retu;
1288
1289	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1290	vmcb = svm_get_vmcb(svm_sc, vcpu);
1291	state = &vmcb->state;
1292	ctrl = &vmcb->ctrl;
1293
1294	handled = 0;
1295	code = ctrl->exitcode;
1296	info1 = ctrl->exitinfo1;
1297	info2 = ctrl->exitinfo2;
1298
1299	vmexit->exitcode = VM_EXITCODE_BOGUS;
1300	vmexit->rip = state->rip;
1301	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1302
1303	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1304
1305	/*
1306	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1307	 * in an inconsistent state and can trigger assertions that would
1308	 * never happen otherwise.
1309	 */
1310	if (code == VMCB_EXIT_INVALID) {
1311		vm_exit_svm(vmexit, code, info1, info2);
1312		return (0);
1313	}
1314
1315	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1316	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1317
1318	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1319	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1320	    vmexit->inst_length, code, info1, info2));
1321
1322	svm_update_virqinfo(svm_sc, vcpu);
1323	svm_save_intinfo(svm_sc, vcpu);
1324
1325	switch (code) {
1326	case VMCB_EXIT_IRET:
1327		/*
1328		 * Restart execution at "iret" but with the intercept cleared.
1329		 */
1330		vmexit->inst_length = 0;
1331		clear_nmi_blocking(svm_sc, vcpu);
1332		handled = 1;
1333		break;
1334	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1335		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1336		handled = 1;
1337		break;
1338	case VMCB_EXIT_INTR:	/* external interrupt */
1339		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1340		handled = 1;
1341		break;
1342	case VMCB_EXIT_NMI:	/* external NMI */
1343		handled = 1;
1344		break;
1345	case 0x40 ... 0x5F:
1346		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1347		reflect = 1;
1348		idtvec = code - 0x40;
1349		switch (idtvec) {
1350		case IDT_MC:
1351			/*
1352			 * Call the machine check handler by hand. Also don't
1353			 * reflect the machine check back into the guest.
1354			 */
1355			reflect = 0;
1356			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1357			__asm __volatile("int $18");
1358			break;
1359		case IDT_PF:
1360			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1361			    info2);
1362			KASSERT(error == 0, ("%s: error %d updating cr2",
1363			    __func__, error));
1364			/* fallthru */
1365		case IDT_NP:
1366		case IDT_SS:
1367		case IDT_GP:
1368		case IDT_AC:
1369		case IDT_TS:
1370			errcode_valid = 1;
1371			break;
1372
1373		case IDT_DF:
1374			errcode_valid = 1;
1375			info1 = 0;
1376			break;
1377
1378		case IDT_BP:
1379		case IDT_OF:
1380		case IDT_BR:
1381			/*
1382			 * The 'nrip' field is populated for INT3, INTO and
1383			 * BOUND exceptions and this also implies that
1384			 * 'inst_length' is non-zero.
1385			 *
1386			 * Reset 'inst_length' to zero so the guest %rip at
1387			 * event injection is identical to what it was when
1388			 * the exception originally happened.
1389			 */
1390			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1391			    "to zero before injecting exception %d",
1392			    vmexit->inst_length, idtvec);
1393			vmexit->inst_length = 0;
1394			/* fallthru */
1395		default:
1396			errcode_valid = 0;
1397			info1 = 0;
1398			break;
1399		}
1400		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1401		    "when reflecting exception %d into guest",
1402		    vmexit->inst_length, idtvec));
1403
1404		if (reflect) {
1405			/* Reflect the exception back into the guest */
1406			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1407			    "%d/%#x into the guest", idtvec, (int)info1);
1408			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1409			    errcode_valid, info1, 0);
1410			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1411			    __func__, error));
1412		}
1413		handled = 1;
1414		break;
1415	case VMCB_EXIT_MSR:	/* MSR access. */
1416		eax = state->rax;
1417		ecx = ctx->sctx_rcx;
1418		edx = ctx->sctx_rdx;
1419		retu = false;
1420
1421		if (info1) {
1422			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1423			val = (uint64_t)edx << 32 | eax;
1424			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1425			    ecx, val);
1426			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1427				vmexit->exitcode = VM_EXITCODE_WRMSR;
1428				vmexit->u.msr.code = ecx;
1429				vmexit->u.msr.wval = val;
1430			} else if (!retu) {
1431				handled = 1;
1432			} else {
1433				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1434				    ("emulate_wrmsr retu with bogus exitcode"));
1435			}
1436		} else {
1437			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1438			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1439			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1440				vmexit->exitcode = VM_EXITCODE_RDMSR;
1441				vmexit->u.msr.code = ecx;
1442			} else if (!retu) {
1443				handled = 1;
1444			} else {
1445				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1446				    ("emulate_rdmsr retu with bogus exitcode"));
1447			}
1448		}
1449		break;
1450	case VMCB_EXIT_IO:
1451		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1452		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1453		break;
1454	case VMCB_EXIT_CPUID:
1455		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1456		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1457		    (uint32_t *)&state->rax,
1458		    (uint32_t *)&ctx->sctx_rbx,
1459		    (uint32_t *)&ctx->sctx_rcx,
1460		    (uint32_t *)&ctx->sctx_rdx);
1461		break;
1462	case VMCB_EXIT_HLT:
1463		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1464		vmexit->exitcode = VM_EXITCODE_HLT;
1465		vmexit->u.hlt.rflags = state->rflags;
1466		break;
1467	case VMCB_EXIT_PAUSE:
1468		vmexit->exitcode = VM_EXITCODE_PAUSE;
1469		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1470		break;
1471	case VMCB_EXIT_NPF:
1472		/* EXITINFO2 contains the faulting guest physical address */
1473		if (info1 & VMCB_NPF_INFO1_RSV) {
1474			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1475			    "reserved bits set: info1(%#lx) info2(%#lx)",
1476			    info1, info2);
1477		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1478			vmexit->exitcode = VM_EXITCODE_PAGING;
1479			vmexit->u.paging.gpa = info2;
1480			vmexit->u.paging.fault_type = npf_fault_type(info1);
1481			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1482			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1483			    "on gpa %#lx/%#lx at rip %#lx",
1484			    info2, info1, state->rip);
1485		} else if (svm_npf_emul_fault(info1)) {
1486			svm_handle_inst_emul(vmcb, info2, vmexit);
1487			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1488			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1489			    "for gpa %#lx/%#lx at rip %#lx",
1490			    info2, info1, state->rip);
1491		}
1492		break;
1493	case VMCB_EXIT_MONITOR:
1494		vmexit->exitcode = VM_EXITCODE_MONITOR;
1495		break;
1496	case VMCB_EXIT_MWAIT:
1497		vmexit->exitcode = VM_EXITCODE_MWAIT;
1498		break;
1499	default:
1500		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1501		break;
1502	}
1503
1504	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1505	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1506	    vmexit->rip, vmexit->inst_length);
1507
1508	if (handled) {
1509		vmexit->rip += vmexit->inst_length;
1510		vmexit->inst_length = 0;
1511		state->rip = vmexit->rip;
1512	} else {
1513		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1514			/*
1515			 * If this VM exit was not claimed by anybody then
1516			 * treat it as a generic SVM exit.
1517			 */
1518			vm_exit_svm(vmexit, code, info1, info2);
1519		} else {
1520			/*
1521			 * The exitcode and collateral have been populated.
1522			 * The VM exit will be processed further in userland.
1523			 */
1524		}
1525	}
1526	return (handled);
1527}
1528
1529static void
1530svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1531{
1532	uint64_t intinfo;
1533
1534	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1535		return;
1536
1537	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1538	    "valid: %#lx", __func__, intinfo));
1539
1540	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1541		VMCB_EXITINTINFO_VECTOR(intinfo),
1542		VMCB_EXITINTINFO_EC(intinfo),
1543		VMCB_EXITINTINFO_EC_VALID(intinfo));
1544	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1545	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1546}
1547
1548/*
1549 * Inject event to virtual cpu.
1550 */
1551static void
1552svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1553{
1554	struct vmcb_ctrl *ctrl;
1555	struct vmcb_state *state;
1556	struct svm_vcpu *vcpustate;
1557	uint8_t v_tpr;
1558	int vector, need_intr_window;
1559	int extint_pending;
1560
1561	state = svm_get_vmcb_state(sc, vcpu);
1562	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1563	vcpustate = svm_get_vcpu(sc, vcpu);
1564
1565	need_intr_window = 0;
1566
1567	if (vcpustate->nextrip != state->rip) {
1568		ctrl->intr_shadow = 0;
1569		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1570		    "cleared due to rip change: %#lx/%#lx",
1571		    vcpustate->nextrip, state->rip);
1572	}
1573
1574	/*
1575	 * Inject pending events or exceptions for this vcpu.
1576	 *
1577	 * An event might be pending because the previous #VMEXIT happened
1578	 * during event delivery (i.e. ctrl->exitintinfo).
1579	 *
1580	 * An event might also be pending because an exception was injected
1581	 * by the hypervisor (e.g. #PF during instruction emulation).
1582	 */
1583	svm_inj_intinfo(sc, vcpu);
1584
1585	/* NMI event has priority over interrupts. */
1586	if (vm_nmi_pending(sc->vm, vcpu)) {
1587		if (nmi_blocked(sc, vcpu)) {
1588			/*
1589			 * Can't inject another NMI if the guest has not
1590			 * yet executed an "iret" after the last NMI.
1591			 */
1592			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1593			    "to NMI-blocking");
1594		} else if (ctrl->intr_shadow) {
1595			/*
1596			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1597			 */
1598			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1599			    "interrupt shadow");
1600			need_intr_window = 1;
1601			goto done;
1602		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1603			/*
1604			 * If there is already an exception/interrupt pending
1605			 * then defer the NMI until after that.
1606			 */
1607			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1608			    "eventinj %#lx", ctrl->eventinj);
1609
1610			/*
1611			 * Use self-IPI to trigger a VM-exit as soon as
1612			 * possible after the event injection is completed.
1613			 *
1614			 * This works only if the external interrupt exiting
1615			 * is at a lower priority than the event injection.
1616			 *
1617			 * Although not explicitly specified in APMv2 the
1618			 * relative priorities were verified empirically.
1619			 */
1620			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1621		} else {
1622			vm_nmi_clear(sc->vm, vcpu);
1623
1624			/* Inject NMI, vector number is not used */
1625			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1626			    IDT_NMI, 0, false);
1627
1628			/* virtual NMI blocking is now in effect */
1629			enable_nmi_blocking(sc, vcpu);
1630
1631			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1632		}
1633	}
1634
1635	extint_pending = vm_extint_pending(sc->vm, vcpu);
1636	if (!extint_pending) {
1637		if (!vlapic_pending_intr(vlapic, &vector))
1638			goto done;
1639		KASSERT(vector >= 16 && vector <= 255,
1640		    ("invalid vector %d from local APIC", vector));
1641	} else {
1642		/* Ask the legacy pic for a vector to inject */
1643		vatpic_pending_intr(sc->vm, &vector);
1644		KASSERT(vector >= 0 && vector <= 255,
1645		    ("invalid vector %d from INTR", vector));
1646	}
1647
1648	/*
1649	 * If the guest has disabled interrupts or is in an interrupt shadow
1650	 * then we cannot inject the pending interrupt.
1651	 */
1652	if ((state->rflags & PSL_I) == 0) {
1653		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1654		    "rflags %#lx", vector, state->rflags);
1655		need_intr_window = 1;
1656		goto done;
1657	}
1658
1659	if (ctrl->intr_shadow) {
1660		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1661		    "interrupt shadow", vector);
1662		need_intr_window = 1;
1663		goto done;
1664	}
1665
1666	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1667		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1668		    "eventinj %#lx", vector, ctrl->eventinj);
1669		need_intr_window = 1;
1670		goto done;
1671	}
1672
1673	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1674
1675	if (!extint_pending) {
1676		vlapic_intr_accepted(vlapic, vector);
1677	} else {
1678		vm_extint_clear(sc->vm, vcpu);
1679		vatpic_intr_accepted(sc->vm, vector);
1680	}
1681
1682	/*
1683	 * Force a VM-exit as soon as the vcpu is ready to accept another
1684	 * interrupt. This is done because the PIC might have another vector
1685	 * that it wants to inject. Also, if the APIC has a pending interrupt
1686	 * that was preempted by the ExtInt then it allows us to inject the
1687	 * APIC vector as soon as possible.
1688	 */
1689	need_intr_window = 1;
1690done:
1691	/*
1692	 * The guest can modify the TPR by writing to %CR8. In guest mode
1693	 * the processor reflects this write to V_TPR without hypervisor
1694	 * intervention.
1695	 *
1696	 * The guest can also modify the TPR by writing to it via the memory
1697	 * mapped APIC page. In this case, the write will be emulated by the
1698	 * hypervisor. For this reason V_TPR must be updated before every
1699	 * VMRUN.
1700	 */
1701	v_tpr = vlapic_get_cr8(vlapic);
1702	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1703	if (ctrl->v_tpr != v_tpr) {
1704		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1705		    ctrl->v_tpr, v_tpr);
1706		ctrl->v_tpr = v_tpr;
1707		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1708	}
1709
1710	if (need_intr_window) {
1711		/*
1712		 * We use V_IRQ in conjunction with the VINTR intercept to
1713		 * trap into the hypervisor as soon as a virtual interrupt
1714		 * can be delivered.
1715		 *
1716		 * Since injected events are not subject to intercept checks
1717		 * we need to ensure that the V_IRQ is not actually going to
1718		 * be delivered on VM entry. The KASSERT below enforces this.
1719		 */
1720		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1721		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1722		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1723		    "intr_shadow (%u), rflags (%#lx)",
1724		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1725		enable_intr_window_exiting(sc, vcpu);
1726	} else {
1727		disable_intr_window_exiting(sc, vcpu);
1728	}
1729}
1730
1731static __inline void
1732restore_host_tss(void)
1733{
1734	struct system_segment_descriptor *tss_sd;
1735
1736	/*
1737	 * The TSS descriptor was in use prior to launching the guest so it
1738	 * has been marked busy.
1739	 *
1740	 * 'ltr' requires the descriptor to be marked available so change the
1741	 * type to "64-bit available TSS".
1742	 */
1743	tss_sd = PCPU_GET(tss);
1744	tss_sd->sd_type = SDT_SYSTSS;
1745	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1746}
1747
1748static void
1749check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1750{
1751	struct svm_vcpu *vcpustate;
1752	struct vmcb_ctrl *ctrl;
1753	long eptgen;
1754	bool alloc_asid;
1755
1756	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1757	    "active on cpu %u", __func__, thiscpu));
1758
1759	vcpustate = svm_get_vcpu(sc, vcpuid);
1760	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1761
1762	/*
1763	 * The TLB entries associated with the vcpu's ASID are not valid
1764	 * if either of the following conditions is true:
1765	 *
1766	 * 1. The vcpu's ASID generation is different than the host cpu's
1767	 *    ASID generation. This happens when the vcpu migrates to a new
1768	 *    host cpu. It can also happen when the number of vcpus executing
1769	 *    on a host cpu is greater than the number of ASIDs available.
1770	 *
1771	 * 2. The pmap generation number is different than the value cached in
1772	 *    the 'vcpustate'. This happens when the host invalidates pages
1773	 *    belonging to the guest.
1774	 *
1775	 *	asidgen		eptgen	      Action
1776	 *	mismatch	mismatch
1777	 *	   0		   0		(a)
1778	 *	   0		   1		(b1) or (b2)
1779	 *	   1		   0		(c)
1780	 *	   1		   1		(d)
1781	 *
1782	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1783	 *     no further action is needed.
1784	 *
1785	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1786	 *      retained and the TLB entries associated with this ASID
1787	 *      are flushed by VMRUN.
1788	 *
1789	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1790	 *      allocated.
1791	 *
1792	 * (c) A new ASID is allocated.
1793	 *
1794	 * (d) A new ASID is allocated.
1795	 */
1796
1797	alloc_asid = false;
1798	eptgen = pmap->pm_eptgen;
1799	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1800
1801	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1802		alloc_asid = true;	/* (c) and (d) */
1803	} else if (vcpustate->eptgen != eptgen) {
1804		if (flush_by_asid())
1805			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1806		else
1807			alloc_asid = true;			/* (b2) */
1808	} else {
1809		/*
1810		 * This is the common case (a).
1811		 */
1812		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1813		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1814		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1815	}
1816
1817	if (alloc_asid) {
1818		if (++asid[thiscpu].num >= nasid) {
1819			asid[thiscpu].num = 1;
1820			if (++asid[thiscpu].gen == 0)
1821				asid[thiscpu].gen = 1;
1822			/*
1823			 * If this cpu does not support "flush-by-asid"
1824			 * then flush the entire TLB on a generation
1825			 * bump. Subsequent ASID allocation in this
1826			 * generation can be done without a TLB flush.
1827			 */
1828			if (!flush_by_asid())
1829				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1830		}
1831		vcpustate->asid.gen = asid[thiscpu].gen;
1832		vcpustate->asid.num = asid[thiscpu].num;
1833
1834		ctrl->asid = vcpustate->asid.num;
1835		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1836		/*
1837		 * If this cpu supports "flush-by-asid" then the TLB
1838		 * was not flushed after the generation bump. The TLB
1839		 * is flushed selectively after every new ASID allocation.
1840		 */
1841		if (flush_by_asid())
1842			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1843	}
1844	vcpustate->eptgen = eptgen;
1845
1846	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1847	KASSERT(ctrl->asid == vcpustate->asid.num,
1848	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1849}
1850
1851static __inline void
1852disable_gintr(void)
1853{
1854
1855	__asm __volatile("clgi");
1856}
1857
1858static __inline void
1859enable_gintr(void)
1860{
1861
1862        __asm __volatile("stgi");
1863}
1864
1865/*
1866 * Start vcpu with specified RIP.
1867 */
1868static int
1869svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1870	struct vm_eventinfo *evinfo)
1871{
1872	struct svm_regctx *gctx;
1873	struct svm_softc *svm_sc;
1874	struct svm_vcpu *vcpustate;
1875	struct vmcb_state *state;
1876	struct vmcb_ctrl *ctrl;
1877	struct vm_exit *vmexit;
1878	struct vlapic *vlapic;
1879	struct vm *vm;
1880	uint64_t vmcb_pa;
1881	int handled;
1882
1883	svm_sc = arg;
1884	vm = svm_sc->vm;
1885
1886	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1887	state = svm_get_vmcb_state(svm_sc, vcpu);
1888	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1889	vmexit = vm_exitinfo(vm, vcpu);
1890	vlapic = vm_lapic(vm, vcpu);
1891
1892	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1893	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1894
1895	if (vcpustate->lastcpu != curcpu) {
1896		/*
1897		 * Force new ASID allocation by invalidating the generation.
1898		 */
1899		vcpustate->asid.gen = 0;
1900
1901		/*
1902		 * Invalidate the VMCB state cache by marking all fields dirty.
1903		 */
1904		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1905
1906		/*
1907		 * XXX
1908		 * Setting 'vcpustate->lastcpu' here is bit premature because
1909		 * we may return from this function without actually executing
1910		 * the VMRUN  instruction. This could happen if a rendezvous
1911		 * or an AST is pending on the first time through the loop.
1912		 *
1913		 * This works for now but any new side-effects of vcpu
1914		 * migration should take this case into account.
1915		 */
1916		vcpustate->lastcpu = curcpu;
1917		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1918	}
1919
1920	svm_msr_guest_enter(svm_sc, vcpu);
1921
1922	/* Update Guest RIP */
1923	state->rip = rip;
1924
1925	do {
1926		/*
1927		 * Disable global interrupts to guarantee atomicity during
1928		 * loading of guest state. This includes not only the state
1929		 * loaded by the "vmrun" instruction but also software state
1930		 * maintained by the hypervisor: suspended and rendezvous
1931		 * state, NPT generation number, vlapic interrupts etc.
1932		 */
1933		disable_gintr();
1934
1935		if (vcpu_suspended(evinfo)) {
1936			enable_gintr();
1937			vm_exit_suspended(vm, vcpu, state->rip);
1938			break;
1939		}
1940
1941		if (vcpu_rendezvous_pending(evinfo)) {
1942			enable_gintr();
1943			vm_exit_rendezvous(vm, vcpu, state->rip);
1944			break;
1945		}
1946
1947		if (vcpu_reqidle(evinfo)) {
1948			enable_gintr();
1949			vm_exit_reqidle(vm, vcpu, state->rip);
1950			break;
1951		}
1952
1953		/* We are asked to give the cpu by scheduler. */
1954		if (vcpu_should_yield(vm, vcpu)) {
1955			enable_gintr();
1956			vm_exit_astpending(vm, vcpu, state->rip);
1957			break;
1958		}
1959
1960		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1961
1962		/* Activate the nested pmap on 'curcpu' */
1963		CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active);
1964
1965		/*
1966		 * Check the pmap generation and the ASID generation to
1967		 * ensure that the vcpu does not use stale TLB mappings.
1968		 */
1969		check_asid(svm_sc, vcpu, pmap, curcpu);
1970
1971		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
1972		vcpustate->dirty = 0;
1973		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
1974
1975		/* Launch Virtual Machine. */
1976		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
1977		svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]);
1978
1979		CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
1980
1981		/*
1982		 * The host GDTR and IDTR is saved by VMRUN and restored
1983		 * automatically on #VMEXIT. However, the host TSS needs
1984		 * to be restored explicitly.
1985		 */
1986		restore_host_tss();
1987
1988		/* #VMEXIT disables interrupts so re-enable them here. */
1989		enable_gintr();
1990
1991		/* Update 'nextrip' */
1992		vcpustate->nextrip = state->rip;
1993
1994		/* Handle #VMEXIT and if required return to user space. */
1995		handled = svm_vmexit(svm_sc, vcpu, vmexit);
1996	} while (handled);
1997
1998	svm_msr_guest_exit(svm_sc, vcpu);
1999
2000	return (0);
2001}
2002
2003static void
2004svm_vmcleanup(void *arg)
2005{
2006	struct svm_softc *sc = arg;
2007
2008	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2009	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2010	free(sc, M_SVM);
2011}
2012
2013static register_t *
2014swctx_regptr(struct svm_regctx *regctx, int reg)
2015{
2016
2017	switch (reg) {
2018	case VM_REG_GUEST_RBX:
2019		return (&regctx->sctx_rbx);
2020	case VM_REG_GUEST_RCX:
2021		return (&regctx->sctx_rcx);
2022	case VM_REG_GUEST_RDX:
2023		return (&regctx->sctx_rdx);
2024	case VM_REG_GUEST_RDI:
2025		return (&regctx->sctx_rdi);
2026	case VM_REG_GUEST_RSI:
2027		return (&regctx->sctx_rsi);
2028	case VM_REG_GUEST_RBP:
2029		return (&regctx->sctx_rbp);
2030	case VM_REG_GUEST_R8:
2031		return (&regctx->sctx_r8);
2032	case VM_REG_GUEST_R9:
2033		return (&regctx->sctx_r9);
2034	case VM_REG_GUEST_R10:
2035		return (&regctx->sctx_r10);
2036	case VM_REG_GUEST_R11:
2037		return (&regctx->sctx_r11);
2038	case VM_REG_GUEST_R12:
2039		return (&regctx->sctx_r12);
2040	case VM_REG_GUEST_R13:
2041		return (&regctx->sctx_r13);
2042	case VM_REG_GUEST_R14:
2043		return (&regctx->sctx_r14);
2044	case VM_REG_GUEST_R15:
2045		return (&regctx->sctx_r15);
2046	default:
2047		return (NULL);
2048	}
2049}
2050
2051static int
2052svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2053{
2054	struct svm_softc *svm_sc;
2055	register_t *reg;
2056
2057	svm_sc = arg;
2058
2059	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2060		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2061	}
2062
2063	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2064		return (0);
2065	}
2066
2067	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2068
2069	if (reg != NULL) {
2070		*val = *reg;
2071		return (0);
2072	}
2073
2074	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2075	return (EINVAL);
2076}
2077
2078static int
2079svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2080{
2081	struct svm_softc *svm_sc;
2082	register_t *reg;
2083
2084	svm_sc = arg;
2085
2086	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2087		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2088	}
2089
2090	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2091		return (0);
2092	}
2093
2094	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2095
2096	if (reg != NULL) {
2097		*reg = val;
2098		return (0);
2099	}
2100
2101	/*
2102	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2103	 * vcpu's ASID. This needs to be treated differently depending on
2104	 * whether 'running' is true/false.
2105	 */
2106
2107	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2108	return (EINVAL);
2109}
2110
2111static int
2112svm_setcap(void *arg, int vcpu, int type, int val)
2113{
2114	struct svm_softc *sc;
2115	int error;
2116
2117	sc = arg;
2118	error = 0;
2119	switch (type) {
2120	case VM_CAP_HALT_EXIT:
2121		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2122		    VMCB_INTCPT_HLT, val);
2123		break;
2124	case VM_CAP_PAUSE_EXIT:
2125		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2126		    VMCB_INTCPT_PAUSE, val);
2127		break;
2128	case VM_CAP_UNRESTRICTED_GUEST:
2129		/* Unrestricted guest execution cannot be disabled in SVM */
2130		if (val == 0)
2131			error = EINVAL;
2132		break;
2133	default:
2134		error = ENOENT;
2135		break;
2136	}
2137	return (error);
2138}
2139
2140static int
2141svm_getcap(void *arg, int vcpu, int type, int *retval)
2142{
2143	struct svm_softc *sc;
2144	int error;
2145
2146	sc = arg;
2147	error = 0;
2148
2149	switch (type) {
2150	case VM_CAP_HALT_EXIT:
2151		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2152		    VMCB_INTCPT_HLT);
2153		break;
2154	case VM_CAP_PAUSE_EXIT:
2155		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2156		    VMCB_INTCPT_PAUSE);
2157		break;
2158	case VM_CAP_UNRESTRICTED_GUEST:
2159		*retval = 1;	/* unrestricted guest is always enabled */
2160		break;
2161	default:
2162		error = ENOENT;
2163		break;
2164	}
2165	return (error);
2166}
2167
2168static struct vlapic *
2169svm_vlapic_init(void *arg, int vcpuid)
2170{
2171	struct svm_softc *svm_sc;
2172	struct vlapic *vlapic;
2173
2174	svm_sc = arg;
2175	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2176	vlapic->vm = svm_sc->vm;
2177	vlapic->vcpuid = vcpuid;
2178	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2179
2180	vlapic_init(vlapic);
2181
2182	return (vlapic);
2183}
2184
2185static void
2186svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2187{
2188
2189        vlapic_cleanup(vlapic);
2190        free(vlapic, M_SVM_VLAPIC);
2191}
2192
2193struct vmm_ops vmm_ops_amd = {
2194	svm_init,
2195	svm_cleanup,
2196	svm_restore,
2197	svm_vminit,
2198	svm_vmrun,
2199	svm_vmcleanup,
2200	svm_getreg,
2201	svm_setreg,
2202	vmcb_getdesc,
2203	vmcb_setdesc,
2204	svm_getcap,
2205	svm_setcap,
2206	svm_npt_alloc,
2207	svm_npt_free,
2208	svm_vlapic_init,
2209	svm_vlapic_cleanup
2210};
2211