svm.c revision 308436
1/*-
2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/amd/svm.c 308436 2016-11-08 07:18:39Z avg $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/smp.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/pcpu.h>
36#include <sys/proc.h>
37#include <sys/sysctl.h>
38
39#include <vm/vm.h>
40#include <vm/pmap.h>
41
42#include <machine/cpufunc.h>
43#include <machine/psl.h>
44#include <machine/pmap.h>
45#include <machine/md_var.h>
46#include <machine/specialreg.h>
47#include <machine/smp.h>
48#include <machine/vmm.h>
49#include <machine/vmm_dev.h>
50#include <machine/vmm_instruction_emul.h>
51
52#include "vmm_lapic.h"
53#include "vmm_stat.h"
54#include "vmm_ktr.h"
55#include "vmm_ioport.h"
56#include "vatpic.h"
57#include "vlapic.h"
58#include "vlapic_priv.h"
59
60#include "x86.h"
61#include "vmcb.h"
62#include "svm.h"
63#include "svm_softc.h"
64#include "svm_msr.h"
65#include "npt.h"
66
67SYSCTL_DECL(_hw_vmm);
68SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * SVM CPUID function 0x8000_000A, edx bit decoding.
72 */
73#define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74#define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75#define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76#define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77#define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78#define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79#define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80#define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81#define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82#define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83#define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
84
85#define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
86				VMCB_CACHE_IOPM		|	\
87				VMCB_CACHE_I		|	\
88				VMCB_CACHE_TPR		|	\
89				VMCB_CACHE_CR2		|	\
90				VMCB_CACHE_CR		|	\
91				VMCB_CACHE_DT		|	\
92				VMCB_CACHE_SEG		|	\
93				VMCB_CACHE_NP)
94
95static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
96SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
97    0, NULL);
98
99static MALLOC_DEFINE(M_SVM, "svm", "svm");
100static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
101
102/* Per-CPU context area. */
103extern struct pcpu __pcpu[];
104
105static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
106SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
107    "SVM features advertised by CPUID.8000000AH:EDX");
108
109static int disable_npf_assist;
110SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111    &disable_npf_assist, 0, NULL);
112
113/* Maximum ASIDs supported by the processor */
114static uint32_t nasid;
115SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
116    "Number of ASIDs supported by this processor");
117
118/* Current ASID generation for each host cpu */
119static struct asid asid[MAXCPU];
120
121/*
122 * SVM host state saved area of size 4KB for each core.
123 */
124static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125
126static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129
130static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131
132static __inline int
133flush_by_asid(void)
134{
135
136	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137}
138
139static __inline int
140decode_assist(void)
141{
142
143	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144}
145
146static void
147svm_disable(void *arg __unused)
148{
149	uint64_t efer;
150
151	efer = rdmsr(MSR_EFER);
152	efer &= ~EFER_SVM;
153	wrmsr(MSR_EFER, efer);
154}
155
156/*
157 * Disable SVM on all CPUs.
158 */
159static int
160svm_cleanup(void)
161{
162
163	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164	return (0);
165}
166
167/*
168 * Verify that all the features required by bhyve are available.
169 */
170static int
171check_svm_features(void)
172{
173	u_int regs[4];
174
175	/* CPUID Fn8000_000A is for SVM */
176	do_cpuid(0x8000000A, regs);
177	svm_feature &= regs[3];
178
179	/*
180	 * The number of ASIDs can be configured to be less than what is
181	 * supported by the hardware but not more.
182	 */
183	if (nasid == 0 || nasid > regs[1])
184		nasid = regs[1];
185	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
186
187	/* bhyve requires the Nested Paging feature */
188	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
189		printf("SVM: Nested Paging feature not available.\n");
190		return (ENXIO);
191	}
192
193	/* bhyve requires the NRIP Save feature */
194	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
195		printf("SVM: NRIP Save feature not available.\n");
196		return (ENXIO);
197	}
198
199	return (0);
200}
201
202static void
203svm_enable(void *arg __unused)
204{
205	uint64_t efer;
206
207	efer = rdmsr(MSR_EFER);
208	efer |= EFER_SVM;
209	wrmsr(MSR_EFER, efer);
210
211	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
212}
213
214/*
215 * Return 1 if SVM is enabled on this processor and 0 otherwise.
216 */
217static int
218svm_available(void)
219{
220	uint64_t msr;
221
222	/* Section 15.4 Enabling SVM from APM2. */
223	if ((amd_feature2 & AMDID2_SVM) == 0) {
224		printf("SVM: not available.\n");
225		return (0);
226	}
227
228	msr = rdmsr(MSR_VM_CR);
229	if ((msr & VM_CR_SVMDIS) != 0) {
230		printf("SVM: disabled by BIOS.\n");
231		return (0);
232	}
233
234	return (1);
235}
236
237static int
238svm_init(int ipinum)
239{
240	int error, cpu;
241
242	if (!svm_available())
243		return (ENXIO);
244
245	error = check_svm_features();
246	if (error)
247		return (error);
248
249	vmcb_clean &= VMCB_CACHE_DEFAULT;
250
251	for (cpu = 0; cpu < MAXCPU; cpu++) {
252		/*
253		 * Initialize the host ASIDs to their "highest" valid values.
254		 *
255		 * The next ASID allocation will rollover both 'gen' and 'num'
256		 * and start off the sequence at {1,1}.
257		 */
258		asid[cpu].gen = ~0UL;
259		asid[cpu].num = nasid - 1;
260	}
261
262	svm_msr_init();
263	svm_npt_init(ipinum);
264
265	/* Enable SVM on all CPUs */
266	smp_rendezvous(NULL, svm_enable, NULL, NULL);
267
268	return (0);
269}
270
271static void
272svm_restore(void)
273{
274
275	svm_enable(NULL);
276}
277
278/* Pentium compatible MSRs */
279#define MSR_PENTIUM_START 	0
280#define MSR_PENTIUM_END 	0x1FFF
281/* AMD 6th generation and Intel compatible MSRs */
282#define MSR_AMD6TH_START 	0xC0000000UL
283#define MSR_AMD6TH_END 		0xC0001FFFUL
284/* AMD 7th and 8th generation compatible MSRs */
285#define MSR_AMD7TH_START 	0xC0010000UL
286#define MSR_AMD7TH_END 		0xC0011FFFUL
287
288/*
289 * Get the index and bit position for a MSR in permission bitmap.
290 * Two bits are used for each MSR: lower bit for read and higher bit for write.
291 */
292static int
293svm_msr_index(uint64_t msr, int *index, int *bit)
294{
295	uint32_t base, off;
296
297	*index = -1;
298	*bit = (msr % 4) * 2;
299	base = 0;
300
301	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
302		*index = msr / 4;
303		return (0);
304	}
305
306	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
307	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
308		off = (msr - MSR_AMD6TH_START);
309		*index = (off + base) / 4;
310		return (0);
311	}
312
313	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
314	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
315		off = (msr - MSR_AMD7TH_START);
316		*index = (off + base) / 4;
317		return (0);
318	}
319
320	return (EINVAL);
321}
322
323/*
324 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
325 */
326static void
327svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
328{
329	int index, bit, error;
330
331	error = svm_msr_index(msr, &index, &bit);
332	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
333	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
334	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
335	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
336	    "msr %#lx", __func__, bit, msr));
337
338	if (read)
339		perm_bitmap[index] &= ~(1UL << bit);
340
341	if (write)
342		perm_bitmap[index] &= ~(2UL << bit);
343}
344
345static void
346svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
347{
348
349	svm_msr_perm(perm_bitmap, msr, true, true);
350}
351
352static void
353svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
354{
355
356	svm_msr_perm(perm_bitmap, msr, true, false);
357}
358
359static __inline int
360svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
361{
362	struct vmcb_ctrl *ctrl;
363
364	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
365
366	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
367	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
368}
369
370static __inline void
371svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
372    int enabled)
373{
374	struct vmcb_ctrl *ctrl;
375	uint32_t oldval;
376
377	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
378
379	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
380	oldval = ctrl->intercept[idx];
381
382	if (enabled)
383		ctrl->intercept[idx] |= bitmask;
384	else
385		ctrl->intercept[idx] &= ~bitmask;
386
387	if (ctrl->intercept[idx] != oldval) {
388		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
389		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
390		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
391	}
392}
393
394static __inline void
395svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
396{
397
398	svm_set_intercept(sc, vcpu, off, bitmask, 0);
399}
400
401static __inline void
402svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
403{
404
405	svm_set_intercept(sc, vcpu, off, bitmask, 1);
406}
407
408static void
409vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
410    uint64_t msrpm_base_pa, uint64_t np_pml4)
411{
412	struct vmcb_ctrl *ctrl;
413	struct vmcb_state *state;
414	uint32_t mask;
415	int n;
416
417	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
418	state = svm_get_vmcb_state(sc, vcpu);
419
420	ctrl->iopm_base_pa = iopm_base_pa;
421	ctrl->msrpm_base_pa = msrpm_base_pa;
422
423	/* Enable nested paging */
424	ctrl->np_enable = 1;
425	ctrl->n_cr3 = np_pml4;
426
427	/*
428	 * Intercept accesses to the control registers that are not shadowed
429	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
430	 */
431	for (n = 0; n < 16; n++) {
432		mask = (BIT(n) << 16) | BIT(n);
433		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
434			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
435		else
436			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
437	}
438
439
440	/*
441	 * Intercept everything when tracing guest exceptions otherwise
442	 * just intercept machine check exception.
443	 */
444	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
445		for (n = 0; n < 32; n++) {
446			/*
447			 * Skip unimplemented vectors in the exception bitmap.
448			 */
449			if (n == 2 || n == 9) {
450				continue;
451			}
452			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
453		}
454	} else {
455		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
456	}
457
458	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
459	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
460	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
461	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
462	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
463	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
464	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
465	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
466	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
467	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
468	    VMCB_INTCPT_FERR_FREEZE);
469
470	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
471	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
472
473	/*
474	 * From section "Canonicalization and Consistency Checks" in APMv2
475	 * the VMRUN intercept bit must be set to pass the consistency check.
476	 */
477	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
478
479	/*
480	 * The ASID will be set to a non-zero value just before VMRUN.
481	 */
482	ctrl->asid = 0;
483
484	/*
485	 * Section 15.21.1, Interrupt Masking in EFLAGS
486	 * Section 15.21.2, Virtualizing APIC.TPR
487	 *
488	 * This must be set for %rflag and %cr8 isolation of guest and host.
489	 */
490	ctrl->v_intr_masking = 1;
491
492	/* Enable Last Branch Record aka LBR for debugging */
493	ctrl->lbr_virt_en = 1;
494	state->dbgctl = BIT(0);
495
496	/* EFER_SVM must always be set when the guest is executing */
497	state->efer = EFER_SVM;
498
499	/* Set up the PAT to power-on state */
500	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
501	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
502	    PAT_VALUE(2, PAT_UNCACHED)		|
503	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
504	    PAT_VALUE(4, PAT_WRITE_BACK)	|
505	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
506	    PAT_VALUE(6, PAT_UNCACHED)		|
507	    PAT_VALUE(7, PAT_UNCACHEABLE);
508}
509
510/*
511 * Initialize a virtual machine.
512 */
513static void *
514svm_vminit(struct vm *vm, pmap_t pmap)
515{
516	struct svm_softc *svm_sc;
517	struct svm_vcpu *vcpu;
518	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
519	int i;
520
521	svm_sc = contigmalloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO,
522	    0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
523	svm_sc->vm = vm;
524	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
525
526	/*
527	 * Intercept read and write accesses to all MSRs.
528	 */
529	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
530
531	/*
532	 * Access to the following MSRs is redirected to the VMCB when the
533	 * guest is executing. Therefore it is safe to allow the guest to
534	 * read/write these MSRs directly without hypervisor involvement.
535	 */
536	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
537	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
538	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
539
540	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
541	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
542	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
543	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
544	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
545	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
546	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
547	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
548
549	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
550
551	/*
552	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
553	 */
554	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
555
556	/* Intercept access to all I/O ports. */
557	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
558
559	iopm_pa = vtophys(svm_sc->iopm_bitmap);
560	msrpm_pa = vtophys(svm_sc->msr_bitmap);
561	pml4_pa = svm_sc->nptp;
562	for (i = 0; i < VM_MAXCPU; i++) {
563		vcpu = svm_get_vcpu(svm_sc, i);
564		vcpu->nextrip = ~0;
565		vcpu->lastcpu = NOCPU;
566		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
567		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
568		svm_msr_guest_init(svm_sc, i);
569	}
570	return (svm_sc);
571}
572
573/*
574 * Collateral for a generic SVM VM-exit.
575 */
576static void
577vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
578{
579
580	vme->exitcode = VM_EXITCODE_SVM;
581	vme->u.svm.exitcode = code;
582	vme->u.svm.exitinfo1 = info1;
583	vme->u.svm.exitinfo2 = info2;
584}
585
586static int
587svm_cpl(struct vmcb_state *state)
588{
589
590	/*
591	 * From APMv2:
592	 *   "Retrieve the CPL from the CPL field in the VMCB, not
593	 *    from any segment DPL"
594	 */
595	return (state->cpl);
596}
597
598static enum vm_cpu_mode
599svm_vcpu_mode(struct vmcb *vmcb)
600{
601	struct vmcb_segment seg;
602	struct vmcb_state *state;
603	int error;
604
605	state = &vmcb->state;
606
607	if (state->efer & EFER_LMA) {
608		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
609		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
610		    error));
611
612		/*
613		 * Section 4.8.1 for APM2, check if Code Segment has
614		 * Long attribute set in descriptor.
615		 */
616		if (seg.attrib & VMCB_CS_ATTRIB_L)
617			return (CPU_MODE_64BIT);
618		else
619			return (CPU_MODE_COMPATIBILITY);
620	} else  if (state->cr0 & CR0_PE) {
621		return (CPU_MODE_PROTECTED);
622	} else {
623		return (CPU_MODE_REAL);
624	}
625}
626
627static enum vm_paging_mode
628svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
629{
630
631	if ((cr0 & CR0_PG) == 0)
632		return (PAGING_MODE_FLAT);
633	if ((cr4 & CR4_PAE) == 0)
634		return (PAGING_MODE_32);
635	if (efer & EFER_LME)
636		return (PAGING_MODE_64);
637	else
638		return (PAGING_MODE_PAE);
639}
640
641/*
642 * ins/outs utility routines
643 */
644static uint64_t
645svm_inout_str_index(struct svm_regctx *regs, int in)
646{
647	uint64_t val;
648
649	val = in ? regs->sctx_rdi : regs->sctx_rsi;
650
651	return (val);
652}
653
654static uint64_t
655svm_inout_str_count(struct svm_regctx *regs, int rep)
656{
657	uint64_t val;
658
659	val = rep ? regs->sctx_rcx : 1;
660
661	return (val);
662}
663
664static void
665svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
666    int in, struct vm_inout_str *vis)
667{
668	int error, s;
669
670	if (in) {
671		vis->seg_name = VM_REG_GUEST_ES;
672	} else {
673		/* The segment field has standard encoding */
674		s = (info1 >> 10) & 0x7;
675		vis->seg_name = vm_segment_name(s);
676	}
677
678	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
679	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
680}
681
682static int
683svm_inout_str_addrsize(uint64_t info1)
684{
685        uint32_t size;
686
687        size = (info1 >> 7) & 0x7;
688        switch (size) {
689        case 1:
690                return (2);     /* 16 bit */
691        case 2:
692                return (4);     /* 32 bit */
693        case 4:
694                return (8);     /* 64 bit */
695        default:
696                panic("%s: invalid size encoding %d", __func__, size);
697        }
698}
699
700static void
701svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
702{
703	struct vmcb_state *state;
704
705	state = &vmcb->state;
706	paging->cr3 = state->cr3;
707	paging->cpl = svm_cpl(state);
708	paging->cpu_mode = svm_vcpu_mode(vmcb);
709	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
710	    state->efer);
711}
712
713#define	UNHANDLED 0
714
715/*
716 * Handle guest I/O intercept.
717 */
718static int
719svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
720{
721	struct vmcb_ctrl *ctrl;
722	struct vmcb_state *state;
723	struct svm_regctx *regs;
724	struct vm_inout_str *vis;
725	uint64_t info1;
726	int inout_string;
727
728	state = svm_get_vmcb_state(svm_sc, vcpu);
729	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
730	regs  = svm_get_guest_regctx(svm_sc, vcpu);
731
732	info1 = ctrl->exitinfo1;
733	inout_string = info1 & BIT(2) ? 1 : 0;
734
735	/*
736	 * The effective segment number in EXITINFO1[12:10] is populated
737	 * only if the processor has the DecodeAssist capability.
738	 *
739	 * XXX this is not specified explicitly in APMv2 but can be verified
740	 * empirically.
741	 */
742	if (inout_string && !decode_assist())
743		return (UNHANDLED);
744
745	vmexit->exitcode 	= VM_EXITCODE_INOUT;
746	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
747	vmexit->u.inout.string 	= inout_string;
748	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
749	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
750	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
751	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
752
753	if (inout_string) {
754		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
755		vis = &vmexit->u.inout_str;
756		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
757		vis->rflags = state->rflags;
758		vis->cr0 = state->cr0;
759		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
760		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
761		vis->addrsize = svm_inout_str_addrsize(info1);
762		svm_inout_str_seginfo(svm_sc, vcpu, info1,
763		    vmexit->u.inout.in, vis);
764	}
765
766	return (UNHANDLED);
767}
768
769static int
770npf_fault_type(uint64_t exitinfo1)
771{
772
773	if (exitinfo1 & VMCB_NPF_INFO1_W)
774		return (VM_PROT_WRITE);
775	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
776		return (VM_PROT_EXECUTE);
777	else
778		return (VM_PROT_READ);
779}
780
781static bool
782svm_npf_emul_fault(uint64_t exitinfo1)
783{
784
785	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
786		return (false);
787	}
788
789	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
790		return (false);
791	}
792
793	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
794		return (false);
795	}
796
797	return (true);
798}
799
800static void
801svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
802{
803	struct vm_guest_paging *paging;
804	struct vmcb_segment seg;
805	struct vmcb_ctrl *ctrl;
806	char *inst_bytes;
807	int error, inst_len;
808
809	ctrl = &vmcb->ctrl;
810	paging = &vmexit->u.inst_emul.paging;
811
812	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
813	vmexit->u.inst_emul.gpa = gpa;
814	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
815	svm_paging_info(vmcb, paging);
816
817	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
818	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
819
820	switch(paging->cpu_mode) {
821	case CPU_MODE_REAL:
822		vmexit->u.inst_emul.cs_base = seg.base;
823		vmexit->u.inst_emul.cs_d = 0;
824		break;
825	case CPU_MODE_PROTECTED:
826	case CPU_MODE_COMPATIBILITY:
827		vmexit->u.inst_emul.cs_base = seg.base;
828
829		/*
830		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
831		 */
832		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
833		    1 : 0;
834		break;
835	default:
836		vmexit->u.inst_emul.cs_base = 0;
837		vmexit->u.inst_emul.cs_d = 0;
838		break;
839	}
840
841	/*
842	 * Copy the instruction bytes into 'vie' if available.
843	 */
844	if (decode_assist() && !disable_npf_assist) {
845		inst_len = ctrl->inst_len;
846		inst_bytes = ctrl->inst_bytes;
847	} else {
848		inst_len = 0;
849		inst_bytes = NULL;
850	}
851	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
852}
853
854#ifdef KTR
855static const char *
856intrtype_to_str(int intr_type)
857{
858	switch (intr_type) {
859	case VMCB_EVENTINJ_TYPE_INTR:
860		return ("hwintr");
861	case VMCB_EVENTINJ_TYPE_NMI:
862		return ("nmi");
863	case VMCB_EVENTINJ_TYPE_INTn:
864		return ("swintr");
865	case VMCB_EVENTINJ_TYPE_EXCEPTION:
866		return ("exception");
867	default:
868		panic("%s: unknown intr_type %d", __func__, intr_type);
869	}
870}
871#endif
872
873/*
874 * Inject an event to vcpu as described in section 15.20, "Event injection".
875 */
876static void
877svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
878		 uint32_t error, bool ec_valid)
879{
880	struct vmcb_ctrl *ctrl;
881
882	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
883
884	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
885	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
886
887	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
888	    __func__, vector));
889
890	switch (intr_type) {
891	case VMCB_EVENTINJ_TYPE_INTR:
892	case VMCB_EVENTINJ_TYPE_NMI:
893	case VMCB_EVENTINJ_TYPE_INTn:
894		break;
895	case VMCB_EVENTINJ_TYPE_EXCEPTION:
896		if (vector >= 0 && vector <= 31 && vector != 2)
897			break;
898		/* FALLTHROUGH */
899	default:
900		panic("%s: invalid intr_type/vector: %d/%d", __func__,
901		    intr_type, vector);
902	}
903	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
904	if (ec_valid) {
905		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
906		ctrl->eventinj |= (uint64_t)error << 32;
907		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
908		    intrtype_to_str(intr_type), vector, error);
909	} else {
910		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
911		    intrtype_to_str(intr_type), vector);
912	}
913}
914
915static void
916svm_update_virqinfo(struct svm_softc *sc, int vcpu)
917{
918	struct vm *vm;
919	struct vlapic *vlapic;
920	struct vmcb_ctrl *ctrl;
921	int pending;
922
923	vm = sc->vm;
924	vlapic = vm_lapic(vm, vcpu);
925	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
926
927	/* Update %cr8 in the emulated vlapic */
928	vlapic_set_cr8(vlapic, ctrl->v_tpr);
929
930	/*
931	 * If V_IRQ indicates that the interrupt injection attempted on then
932	 * last VMRUN was successful then update the vlapic accordingly.
933	 */
934	if (ctrl->v_intr_vector != 0) {
935		pending = ctrl->v_irq;
936		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
937		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
938		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
939		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
940		    pending ? "pending" : "accepted");
941		if (!pending)
942			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
943	}
944}
945
946static void
947svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
948{
949	struct vmcb_ctrl *ctrl;
950	uint64_t intinfo;
951
952	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
953	intinfo = ctrl->exitintinfo;
954	if (!VMCB_EXITINTINFO_VALID(intinfo))
955		return;
956
957	/*
958	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
959	 *
960	 * If a #VMEXIT happened during event delivery then record the event
961	 * that was being delivered.
962	 */
963	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
964		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
965	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
966	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
967}
968
969static __inline int
970vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
971{
972
973	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
974	    VMCB_INTCPT_VINTR));
975}
976
977static __inline void
978enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
979{
980	struct vmcb_ctrl *ctrl;
981
982	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
983
984	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
985		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
986		KASSERT(vintr_intercept_enabled(sc, vcpu),
987		    ("%s: vintr intercept should be enabled", __func__));
988		return;
989	}
990
991	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
992	ctrl->v_irq = 1;
993	ctrl->v_ign_tpr = 1;
994	ctrl->v_intr_vector = 0;
995	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
996	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
997}
998
999static __inline void
1000disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1001{
1002	struct vmcb_ctrl *ctrl;
1003
1004	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1005
1006	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1007		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1008		    ("%s: vintr intercept should be disabled", __func__));
1009		return;
1010	}
1011
1012#ifdef KTR
1013	if (ctrl->v_intr_vector == 0)
1014		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1015	else
1016		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
1017#endif
1018	ctrl->v_irq = 0;
1019	ctrl->v_intr_vector = 0;
1020	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1021	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1022}
1023
1024static int
1025svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1026{
1027	struct vmcb_ctrl *ctrl;
1028	int oldval, newval;
1029
1030	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1031	oldval = ctrl->intr_shadow;
1032	newval = val ? 1 : 0;
1033	if (newval != oldval) {
1034		ctrl->intr_shadow = newval;
1035		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1036	}
1037	return (0);
1038}
1039
1040static int
1041svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1042{
1043	struct vmcb_ctrl *ctrl;
1044
1045	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1046	*val = ctrl->intr_shadow;
1047	return (0);
1048}
1049
1050/*
1051 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1052 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1053 * to track when the vcpu is done handling the NMI.
1054 */
1055static int
1056nmi_blocked(struct svm_softc *sc, int vcpu)
1057{
1058	int blocked;
1059
1060	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1061	    VMCB_INTCPT_IRET);
1062	return (blocked);
1063}
1064
1065static void
1066enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1067{
1068
1069	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1070	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1071	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1072}
1073
1074static void
1075clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1076{
1077	int error;
1078
1079	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1080	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1081	/*
1082	 * When the IRET intercept is cleared the vcpu will attempt to execute
1083	 * the "iret" when it runs next. However, it is possible to inject
1084	 * another NMI into the vcpu before the "iret" has actually executed.
1085	 *
1086	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1087	 * it will trap back into the hypervisor. If an NMI is pending for
1088	 * the vcpu it will be injected into the guest.
1089	 *
1090	 * XXX this needs to be fixed
1091	 */
1092	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1093
1094	/*
1095	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1096	 * immediate VMRUN.
1097	 */
1098	error = svm_modify_intr_shadow(sc, vcpu, 1);
1099	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1100}
1101
1102#define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1103
1104static int
1105svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1106{
1107	struct vm_exit *vme;
1108	struct vmcb_state *state;
1109	uint64_t changed, lma, oldval;
1110	int error;
1111
1112	state = svm_get_vmcb_state(sc, vcpu);
1113
1114	oldval = state->efer;
1115	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1116
1117	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1118	changed = oldval ^ newval;
1119
1120	if (newval & EFER_MBZ_BITS)
1121		goto gpf;
1122
1123	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1124	if (changed & EFER_LME) {
1125		if (state->cr0 & CR0_PG)
1126			goto gpf;
1127	}
1128
1129	/* EFER.LMA = EFER.LME & CR0.PG */
1130	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1131		lma = EFER_LMA;
1132	else
1133		lma = 0;
1134
1135	if ((newval & EFER_LMA) != lma)
1136		goto gpf;
1137
1138	if (newval & EFER_NXE) {
1139		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1140			goto gpf;
1141	}
1142
1143	/*
1144	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1145	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1146	 */
1147	if (newval & EFER_LMSLE) {
1148		vme = vm_exitinfo(sc->vm, vcpu);
1149		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1150		*retu = true;
1151		return (0);
1152	}
1153
1154	if (newval & EFER_FFXSR) {
1155		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1156			goto gpf;
1157	}
1158
1159	if (newval & EFER_TCE) {
1160		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1161			goto gpf;
1162	}
1163
1164	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1165	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1166	return (0);
1167gpf:
1168	vm_inject_gp(sc->vm, vcpu);
1169	return (0);
1170}
1171
1172static int
1173emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1174    bool *retu)
1175{
1176	int error;
1177
1178	if (lapic_msr(num))
1179		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1180	else if (num == MSR_EFER)
1181		error = svm_write_efer(sc, vcpu, val, retu);
1182	else
1183		error = svm_wrmsr(sc, vcpu, num, val, retu);
1184
1185	return (error);
1186}
1187
1188static int
1189emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1190{
1191	struct vmcb_state *state;
1192	struct svm_regctx *ctx;
1193	uint64_t result;
1194	int error;
1195
1196	if (lapic_msr(num))
1197		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1198	else
1199		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1200
1201	if (error == 0) {
1202		state = svm_get_vmcb_state(sc, vcpu);
1203		ctx = svm_get_guest_regctx(sc, vcpu);
1204		state->rax = result & 0xffffffff;
1205		ctx->sctx_rdx = result >> 32;
1206	}
1207
1208	return (error);
1209}
1210
1211#ifdef KTR
1212static const char *
1213exit_reason_to_str(uint64_t reason)
1214{
1215	static char reasonbuf[32];
1216
1217	switch (reason) {
1218	case VMCB_EXIT_INVALID:
1219		return ("invalvmcb");
1220	case VMCB_EXIT_SHUTDOWN:
1221		return ("shutdown");
1222	case VMCB_EXIT_NPF:
1223		return ("nptfault");
1224	case VMCB_EXIT_PAUSE:
1225		return ("pause");
1226	case VMCB_EXIT_HLT:
1227		return ("hlt");
1228	case VMCB_EXIT_CPUID:
1229		return ("cpuid");
1230	case VMCB_EXIT_IO:
1231		return ("inout");
1232	case VMCB_EXIT_MC:
1233		return ("mchk");
1234	case VMCB_EXIT_INTR:
1235		return ("extintr");
1236	case VMCB_EXIT_NMI:
1237		return ("nmi");
1238	case VMCB_EXIT_VINTR:
1239		return ("vintr");
1240	case VMCB_EXIT_MSR:
1241		return ("msr");
1242	case VMCB_EXIT_IRET:
1243		return ("iret");
1244	case VMCB_EXIT_MONITOR:
1245		return ("monitor");
1246	case VMCB_EXIT_MWAIT:
1247		return ("mwait");
1248	default:
1249		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1250		return (reasonbuf);
1251	}
1252}
1253#endif	/* KTR */
1254
1255/*
1256 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1257 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1258 * and exceptions caused by INT3, INTO and BOUND instructions.
1259 *
1260 * Return 1 if the nRIP is valid and 0 otherwise.
1261 */
1262static int
1263nrip_valid(uint64_t exitcode)
1264{
1265	switch (exitcode) {
1266	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1267	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1268	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1269	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1270	case 0x43:		/* INT3 */
1271	case 0x44:		/* INTO */
1272	case 0x45:		/* BOUND */
1273	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1274	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1275		return (1);
1276	default:
1277		return (0);
1278	}
1279}
1280
1281static int
1282svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1283{
1284	struct vmcb *vmcb;
1285	struct vmcb_state *state;
1286	struct vmcb_ctrl *ctrl;
1287	struct svm_regctx *ctx;
1288	uint64_t code, info1, info2, val;
1289	uint32_t eax, ecx, edx;
1290	int error, errcode_valid, handled, idtvec, reflect;
1291	bool retu;
1292
1293	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1294	vmcb = svm_get_vmcb(svm_sc, vcpu);
1295	state = &vmcb->state;
1296	ctrl = &vmcb->ctrl;
1297
1298	handled = 0;
1299	code = ctrl->exitcode;
1300	info1 = ctrl->exitinfo1;
1301	info2 = ctrl->exitinfo2;
1302
1303	vmexit->exitcode = VM_EXITCODE_BOGUS;
1304	vmexit->rip = state->rip;
1305	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1306
1307	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1308
1309	/*
1310	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1311	 * in an inconsistent state and can trigger assertions that would
1312	 * never happen otherwise.
1313	 */
1314	if (code == VMCB_EXIT_INVALID) {
1315		vm_exit_svm(vmexit, code, info1, info2);
1316		return (0);
1317	}
1318
1319	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1320	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1321
1322	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1323	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1324	    vmexit->inst_length, code, info1, info2));
1325
1326	svm_update_virqinfo(svm_sc, vcpu);
1327	svm_save_intinfo(svm_sc, vcpu);
1328
1329	switch (code) {
1330	case VMCB_EXIT_IRET:
1331		/*
1332		 * Restart execution at "iret" but with the intercept cleared.
1333		 */
1334		vmexit->inst_length = 0;
1335		clear_nmi_blocking(svm_sc, vcpu);
1336		handled = 1;
1337		break;
1338	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1339		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1340		handled = 1;
1341		break;
1342	case VMCB_EXIT_INTR:	/* external interrupt */
1343		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1344		handled = 1;
1345		break;
1346	case VMCB_EXIT_NMI:	/* external NMI */
1347		handled = 1;
1348		break;
1349	case 0x40 ... 0x5F:
1350		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1351		reflect = 1;
1352		idtvec = code - 0x40;
1353		switch (idtvec) {
1354		case IDT_MC:
1355			/*
1356			 * Call the machine check handler by hand. Also don't
1357			 * reflect the machine check back into the guest.
1358			 */
1359			reflect = 0;
1360			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1361			__asm __volatile("int $18");
1362			break;
1363		case IDT_PF:
1364			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1365			    info2);
1366			KASSERT(error == 0, ("%s: error %d updating cr2",
1367			    __func__, error));
1368			/* fallthru */
1369		case IDT_NP:
1370		case IDT_SS:
1371		case IDT_GP:
1372		case IDT_AC:
1373		case IDT_TS:
1374			errcode_valid = 1;
1375			break;
1376
1377		case IDT_DF:
1378			errcode_valid = 1;
1379			info1 = 0;
1380			break;
1381
1382		case IDT_BP:
1383		case IDT_OF:
1384		case IDT_BR:
1385			/*
1386			 * The 'nrip' field is populated for INT3, INTO and
1387			 * BOUND exceptions and this also implies that
1388			 * 'inst_length' is non-zero.
1389			 *
1390			 * Reset 'inst_length' to zero so the guest %rip at
1391			 * event injection is identical to what it was when
1392			 * the exception originally happened.
1393			 */
1394			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1395			    "to zero before injecting exception %d",
1396			    vmexit->inst_length, idtvec);
1397			vmexit->inst_length = 0;
1398			/* fallthru */
1399		default:
1400			errcode_valid = 0;
1401			info1 = 0;
1402			break;
1403		}
1404		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1405		    "when reflecting exception %d into guest",
1406		    vmexit->inst_length, idtvec));
1407
1408		if (reflect) {
1409			/* Reflect the exception back into the guest */
1410			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1411			    "%d/%#x into the guest", idtvec, (int)info1);
1412			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1413			    errcode_valid, info1, 0);
1414			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1415			    __func__, error));
1416		}
1417		handled = 1;
1418		break;
1419	case VMCB_EXIT_MSR:	/* MSR access. */
1420		eax = state->rax;
1421		ecx = ctx->sctx_rcx;
1422		edx = ctx->sctx_rdx;
1423		retu = false;
1424
1425		if (info1) {
1426			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1427			val = (uint64_t)edx << 32 | eax;
1428			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1429			    ecx, val);
1430			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1431				vmexit->exitcode = VM_EXITCODE_WRMSR;
1432				vmexit->u.msr.code = ecx;
1433				vmexit->u.msr.wval = val;
1434			} else if (!retu) {
1435				handled = 1;
1436			} else {
1437				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1438				    ("emulate_wrmsr retu with bogus exitcode"));
1439			}
1440		} else {
1441			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1442			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1443			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1444				vmexit->exitcode = VM_EXITCODE_RDMSR;
1445				vmexit->u.msr.code = ecx;
1446			} else if (!retu) {
1447				handled = 1;
1448			} else {
1449				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1450				    ("emulate_rdmsr retu with bogus exitcode"));
1451			}
1452		}
1453		break;
1454	case VMCB_EXIT_IO:
1455		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1456		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1457		break;
1458	case VMCB_EXIT_CPUID:
1459		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1460		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1461		    (uint32_t *)&state->rax,
1462		    (uint32_t *)&ctx->sctx_rbx,
1463		    (uint32_t *)&ctx->sctx_rcx,
1464		    (uint32_t *)&ctx->sctx_rdx);
1465		break;
1466	case VMCB_EXIT_HLT:
1467		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1468		vmexit->exitcode = VM_EXITCODE_HLT;
1469		vmexit->u.hlt.rflags = state->rflags;
1470		break;
1471	case VMCB_EXIT_PAUSE:
1472		vmexit->exitcode = VM_EXITCODE_PAUSE;
1473		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1474		break;
1475	case VMCB_EXIT_NPF:
1476		/* EXITINFO2 contains the faulting guest physical address */
1477		if (info1 & VMCB_NPF_INFO1_RSV) {
1478			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1479			    "reserved bits set: info1(%#lx) info2(%#lx)",
1480			    info1, info2);
1481		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1482			vmexit->exitcode = VM_EXITCODE_PAGING;
1483			vmexit->u.paging.gpa = info2;
1484			vmexit->u.paging.fault_type = npf_fault_type(info1);
1485			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1486			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1487			    "on gpa %#lx/%#lx at rip %#lx",
1488			    info2, info1, state->rip);
1489		} else if (svm_npf_emul_fault(info1)) {
1490			svm_handle_inst_emul(vmcb, info2, vmexit);
1491			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1492			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1493			    "for gpa %#lx/%#lx at rip %#lx",
1494			    info2, info1, state->rip);
1495		}
1496		break;
1497	case VMCB_EXIT_MONITOR:
1498		vmexit->exitcode = VM_EXITCODE_MONITOR;
1499		break;
1500	case VMCB_EXIT_MWAIT:
1501		vmexit->exitcode = VM_EXITCODE_MWAIT;
1502		break;
1503	default:
1504		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1505		break;
1506	}
1507
1508	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1509	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1510	    vmexit->rip, vmexit->inst_length);
1511
1512	if (handled) {
1513		vmexit->rip += vmexit->inst_length;
1514		vmexit->inst_length = 0;
1515		state->rip = vmexit->rip;
1516	} else {
1517		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1518			/*
1519			 * If this VM exit was not claimed by anybody then
1520			 * treat it as a generic SVM exit.
1521			 */
1522			vm_exit_svm(vmexit, code, info1, info2);
1523		} else {
1524			/*
1525			 * The exitcode and collateral have been populated.
1526			 * The VM exit will be processed further in userland.
1527			 */
1528		}
1529	}
1530	return (handled);
1531}
1532
1533static void
1534svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1535{
1536	uint64_t intinfo;
1537
1538	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1539		return;
1540
1541	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1542	    "valid: %#lx", __func__, intinfo));
1543
1544	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1545		VMCB_EXITINTINFO_VECTOR(intinfo),
1546		VMCB_EXITINTINFO_EC(intinfo),
1547		VMCB_EXITINTINFO_EC_VALID(intinfo));
1548	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1549	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1550}
1551
1552/*
1553 * Inject event to virtual cpu.
1554 */
1555static void
1556svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1557{
1558	struct vmcb_ctrl *ctrl;
1559	struct vmcb_state *state;
1560	struct svm_vcpu *vcpustate;
1561	uint8_t v_tpr;
1562	int vector, need_intr_window, pending_apic_vector;
1563
1564	state = svm_get_vmcb_state(sc, vcpu);
1565	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1566	vcpustate = svm_get_vcpu(sc, vcpu);
1567
1568	need_intr_window = 0;
1569	pending_apic_vector = 0;
1570
1571	if (vcpustate->nextrip != state->rip) {
1572		ctrl->intr_shadow = 0;
1573		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1574		    "cleared due to rip change: %#lx/%#lx",
1575		    vcpustate->nextrip, state->rip);
1576	}
1577
1578	/*
1579	 * Inject pending events or exceptions for this vcpu.
1580	 *
1581	 * An event might be pending because the previous #VMEXIT happened
1582	 * during event delivery (i.e. ctrl->exitintinfo).
1583	 *
1584	 * An event might also be pending because an exception was injected
1585	 * by the hypervisor (e.g. #PF during instruction emulation).
1586	 */
1587	svm_inj_intinfo(sc, vcpu);
1588
1589	/* NMI event has priority over interrupts. */
1590	if (vm_nmi_pending(sc->vm, vcpu)) {
1591		if (nmi_blocked(sc, vcpu)) {
1592			/*
1593			 * Can't inject another NMI if the guest has not
1594			 * yet executed an "iret" after the last NMI.
1595			 */
1596			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1597			    "to NMI-blocking");
1598		} else if (ctrl->intr_shadow) {
1599			/*
1600			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1601			 */
1602			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1603			    "interrupt shadow");
1604			need_intr_window = 1;
1605			goto done;
1606		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1607			/*
1608			 * If there is already an exception/interrupt pending
1609			 * then defer the NMI until after that.
1610			 */
1611			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1612			    "eventinj %#lx", ctrl->eventinj);
1613
1614			/*
1615			 * Use self-IPI to trigger a VM-exit as soon as
1616			 * possible after the event injection is completed.
1617			 *
1618			 * This works only if the external interrupt exiting
1619			 * is at a lower priority than the event injection.
1620			 *
1621			 * Although not explicitly specified in APMv2 the
1622			 * relative priorities were verified empirically.
1623			 */
1624			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1625		} else {
1626			vm_nmi_clear(sc->vm, vcpu);
1627
1628			/* Inject NMI, vector number is not used */
1629			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1630			    IDT_NMI, 0, false);
1631
1632			/* virtual NMI blocking is now in effect */
1633			enable_nmi_blocking(sc, vcpu);
1634
1635			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1636		}
1637	}
1638
1639	if (!vm_extint_pending(sc->vm, vcpu)) {
1640		/*
1641		 * APIC interrupts are delivered using the V_IRQ offload.
1642		 *
1643		 * The primary benefit is that the hypervisor doesn't need to
1644		 * deal with the various conditions that inhibit interrupts.
1645		 * It also means that TPR changes via CR8 will be handled
1646		 * without any hypervisor involvement.
1647		 *
1648		 * Note that the APIC vector must remain pending in the vIRR
1649		 * until it is confirmed that it was delivered to the guest.
1650		 * This can be confirmed based on the value of V_IRQ at the
1651		 * next #VMEXIT (1 = pending, 0 = delivered).
1652		 *
1653		 * Also note that it is possible that another higher priority
1654		 * vector can become pending before this vector is delivered
1655		 * to the guest. This is alright because vcpu_notify_event()
1656		 * will send an IPI and force the vcpu to trap back into the
1657		 * hypervisor. The higher priority vector will be injected on
1658		 * the next VMRUN.
1659		 */
1660		if (vlapic_pending_intr(vlapic, &vector)) {
1661			KASSERT(vector >= 16 && vector <= 255,
1662			    ("invalid vector %d from local APIC", vector));
1663			pending_apic_vector = vector;
1664		}
1665		goto done;
1666	}
1667
1668	/* Ask the legacy pic for a vector to inject */
1669	vatpic_pending_intr(sc->vm, &vector);
1670	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1671	    vector));
1672
1673	/*
1674	 * If the guest has disabled interrupts or is in an interrupt shadow
1675	 * then we cannot inject the pending interrupt.
1676	 */
1677	if ((state->rflags & PSL_I) == 0) {
1678		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1679		    "rflags %#lx", vector, state->rflags);
1680		need_intr_window = 1;
1681		goto done;
1682	}
1683
1684	if (ctrl->intr_shadow) {
1685		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1686		    "interrupt shadow", vector);
1687		need_intr_window = 1;
1688		goto done;
1689	}
1690
1691	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1692		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1693		    "eventinj %#lx", vector, ctrl->eventinj);
1694		need_intr_window = 1;
1695		goto done;
1696	}
1697
1698	/*
1699	 * Legacy PIC interrupts are delivered via the event injection
1700	 * mechanism.
1701	 */
1702	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1703
1704	vm_extint_clear(sc->vm, vcpu);
1705	vatpic_intr_accepted(sc->vm, vector);
1706
1707	/*
1708	 * Force a VM-exit as soon as the vcpu is ready to accept another
1709	 * interrupt. This is done because the PIC might have another vector
1710	 * that it wants to inject. Also, if the APIC has a pending interrupt
1711	 * that was preempted by the ExtInt then it allows us to inject the
1712	 * APIC vector as soon as possible.
1713	 */
1714	need_intr_window = 1;
1715done:
1716	/*
1717	 * The guest can modify the TPR by writing to %CR8. In guest mode
1718	 * the processor reflects this write to V_TPR without hypervisor
1719	 * intervention.
1720	 *
1721	 * The guest can also modify the TPR by writing to it via the memory
1722	 * mapped APIC page. In this case, the write will be emulated by the
1723	 * hypervisor. For this reason V_TPR must be updated before every
1724	 * VMRUN.
1725	 */
1726	v_tpr = vlapic_get_cr8(vlapic);
1727	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1728	if (ctrl->v_tpr != v_tpr) {
1729		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1730		    ctrl->v_tpr, v_tpr);
1731		ctrl->v_tpr = v_tpr;
1732		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1733	}
1734
1735	if (pending_apic_vector) {
1736		/*
1737		 * If an APIC vector is being injected then interrupt window
1738		 * exiting is not possible on this VMRUN.
1739		 */
1740		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1741		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1742		    pending_apic_vector);
1743
1744		ctrl->v_irq = 1;
1745		ctrl->v_ign_tpr = 0;
1746		ctrl->v_intr_vector = pending_apic_vector;
1747		ctrl->v_intr_prio = pending_apic_vector >> 4;
1748		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1749	} else if (need_intr_window) {
1750		/*
1751		 * We use V_IRQ in conjunction with the VINTR intercept to
1752		 * trap into the hypervisor as soon as a virtual interrupt
1753		 * can be delivered.
1754		 *
1755		 * Since injected events are not subject to intercept checks
1756		 * we need to ensure that the V_IRQ is not actually going to
1757		 * be delivered on VM entry. The KASSERT below enforces this.
1758		 */
1759		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1760		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1761		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1762		    "intr_shadow (%u), rflags (%#lx)",
1763		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1764		enable_intr_window_exiting(sc, vcpu);
1765	} else {
1766		disable_intr_window_exiting(sc, vcpu);
1767	}
1768}
1769
1770static __inline void
1771restore_host_tss(void)
1772{
1773	struct system_segment_descriptor *tss_sd;
1774
1775	/*
1776	 * The TSS descriptor was in use prior to launching the guest so it
1777	 * has been marked busy.
1778	 *
1779	 * 'ltr' requires the descriptor to be marked available so change the
1780	 * type to "64-bit available TSS".
1781	 */
1782	tss_sd = PCPU_GET(tss);
1783	tss_sd->sd_type = SDT_SYSTSS;
1784	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1785}
1786
1787static void
1788check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1789{
1790	struct svm_vcpu *vcpustate;
1791	struct vmcb_ctrl *ctrl;
1792	long eptgen;
1793	bool alloc_asid;
1794
1795	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1796	    "active on cpu %u", __func__, thiscpu));
1797
1798	vcpustate = svm_get_vcpu(sc, vcpuid);
1799	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1800
1801	/*
1802	 * The TLB entries associated with the vcpu's ASID are not valid
1803	 * if either of the following conditions is true:
1804	 *
1805	 * 1. The vcpu's ASID generation is different than the host cpu's
1806	 *    ASID generation. This happens when the vcpu migrates to a new
1807	 *    host cpu. It can also happen when the number of vcpus executing
1808	 *    on a host cpu is greater than the number of ASIDs available.
1809	 *
1810	 * 2. The pmap generation number is different than the value cached in
1811	 *    the 'vcpustate'. This happens when the host invalidates pages
1812	 *    belonging to the guest.
1813	 *
1814	 *	asidgen		eptgen	      Action
1815	 *	mismatch	mismatch
1816	 *	   0		   0		(a)
1817	 *	   0		   1		(b1) or (b2)
1818	 *	   1		   0		(c)
1819	 *	   1		   1		(d)
1820	 *
1821	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1822	 *     no further action is needed.
1823	 *
1824	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1825	 *      retained and the TLB entries associated with this ASID
1826	 *      are flushed by VMRUN.
1827	 *
1828	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1829	 *      allocated.
1830	 *
1831	 * (c) A new ASID is allocated.
1832	 *
1833	 * (d) A new ASID is allocated.
1834	 */
1835
1836	alloc_asid = false;
1837	eptgen = pmap->pm_eptgen;
1838	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1839
1840	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1841		alloc_asid = true;	/* (c) and (d) */
1842	} else if (vcpustate->eptgen != eptgen) {
1843		if (flush_by_asid())
1844			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1845		else
1846			alloc_asid = true;			/* (b2) */
1847	} else {
1848		/*
1849		 * This is the common case (a).
1850		 */
1851		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1852		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1853		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1854	}
1855
1856	if (alloc_asid) {
1857		if (++asid[thiscpu].num >= nasid) {
1858			asid[thiscpu].num = 1;
1859			if (++asid[thiscpu].gen == 0)
1860				asid[thiscpu].gen = 1;
1861			/*
1862			 * If this cpu does not support "flush-by-asid"
1863			 * then flush the entire TLB on a generation
1864			 * bump. Subsequent ASID allocation in this
1865			 * generation can be done without a TLB flush.
1866			 */
1867			if (!flush_by_asid())
1868				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1869		}
1870		vcpustate->asid.gen = asid[thiscpu].gen;
1871		vcpustate->asid.num = asid[thiscpu].num;
1872
1873		ctrl->asid = vcpustate->asid.num;
1874		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1875		/*
1876		 * If this cpu supports "flush-by-asid" then the TLB
1877		 * was not flushed after the generation bump. The TLB
1878		 * is flushed selectively after every new ASID allocation.
1879		 */
1880		if (flush_by_asid())
1881			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1882	}
1883	vcpustate->eptgen = eptgen;
1884
1885	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1886	KASSERT(ctrl->asid == vcpustate->asid.num,
1887	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1888}
1889
1890static __inline void
1891disable_gintr(void)
1892{
1893
1894	__asm __volatile("clgi");
1895}
1896
1897static __inline void
1898enable_gintr(void)
1899{
1900
1901        __asm __volatile("stgi");
1902}
1903
1904/*
1905 * Start vcpu with specified RIP.
1906 */
1907static int
1908svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1909	struct vm_eventinfo *evinfo)
1910{
1911	struct svm_regctx *gctx;
1912	struct svm_softc *svm_sc;
1913	struct svm_vcpu *vcpustate;
1914	struct vmcb_state *state;
1915	struct vmcb_ctrl *ctrl;
1916	struct vm_exit *vmexit;
1917	struct vlapic *vlapic;
1918	struct vm *vm;
1919	uint64_t vmcb_pa;
1920	int handled;
1921
1922	svm_sc = arg;
1923	vm = svm_sc->vm;
1924
1925	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1926	state = svm_get_vmcb_state(svm_sc, vcpu);
1927	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1928	vmexit = vm_exitinfo(vm, vcpu);
1929	vlapic = vm_lapic(vm, vcpu);
1930
1931	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1932	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1933
1934	if (vcpustate->lastcpu != curcpu) {
1935		/*
1936		 * Force new ASID allocation by invalidating the generation.
1937		 */
1938		vcpustate->asid.gen = 0;
1939
1940		/*
1941		 * Invalidate the VMCB state cache by marking all fields dirty.
1942		 */
1943		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1944
1945		/*
1946		 * XXX
1947		 * Setting 'vcpustate->lastcpu' here is bit premature because
1948		 * we may return from this function without actually executing
1949		 * the VMRUN  instruction. This could happen if a rendezvous
1950		 * or an AST is pending on the first time through the loop.
1951		 *
1952		 * This works for now but any new side-effects of vcpu
1953		 * migration should take this case into account.
1954		 */
1955		vcpustate->lastcpu = curcpu;
1956		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1957	}
1958
1959	svm_msr_guest_enter(svm_sc, vcpu);
1960
1961	/* Update Guest RIP */
1962	state->rip = rip;
1963
1964	do {
1965		/*
1966		 * Disable global interrupts to guarantee atomicity during
1967		 * loading of guest state. This includes not only the state
1968		 * loaded by the "vmrun" instruction but also software state
1969		 * maintained by the hypervisor: suspended and rendezvous
1970		 * state, NPT generation number, vlapic interrupts etc.
1971		 */
1972		disable_gintr();
1973
1974		if (vcpu_suspended(evinfo)) {
1975			enable_gintr();
1976			vm_exit_suspended(vm, vcpu, state->rip);
1977			break;
1978		}
1979
1980		if (vcpu_rendezvous_pending(evinfo)) {
1981			enable_gintr();
1982			vm_exit_rendezvous(vm, vcpu, state->rip);
1983			break;
1984		}
1985
1986		if (vcpu_reqidle(evinfo)) {
1987			enable_gintr();
1988			vm_exit_reqidle(vm, vcpu, state->rip);
1989			break;
1990		}
1991
1992		/* We are asked to give the cpu by scheduler. */
1993		if (vcpu_should_yield(vm, vcpu)) {
1994			enable_gintr();
1995			vm_exit_astpending(vm, vcpu, state->rip);
1996			break;
1997		}
1998
1999		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2000
2001		/* Activate the nested pmap on 'curcpu' */
2002		CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active);
2003
2004		/*
2005		 * Check the pmap generation and the ASID generation to
2006		 * ensure that the vcpu does not use stale TLB mappings.
2007		 */
2008		check_asid(svm_sc, vcpu, pmap, curcpu);
2009
2010		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2011		vcpustate->dirty = 0;
2012		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2013
2014		/* Launch Virtual Machine. */
2015		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2016		svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]);
2017
2018		CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2019
2020		/*
2021		 * The host GDTR and IDTR is saved by VMRUN and restored
2022		 * automatically on #VMEXIT. However, the host TSS needs
2023		 * to be restored explicitly.
2024		 */
2025		restore_host_tss();
2026
2027		/* #VMEXIT disables interrupts so re-enable them here. */
2028		enable_gintr();
2029
2030		/* Update 'nextrip' */
2031		vcpustate->nextrip = state->rip;
2032
2033		/* Handle #VMEXIT and if required return to user space. */
2034		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2035	} while (handled);
2036
2037	svm_msr_guest_exit(svm_sc, vcpu);
2038
2039	return (0);
2040}
2041
2042static void
2043svm_vmcleanup(void *arg)
2044{
2045	struct svm_softc *sc = arg;
2046
2047	contigfree(sc, sizeof (*sc), M_SVM);
2048}
2049
2050static register_t *
2051swctx_regptr(struct svm_regctx *regctx, int reg)
2052{
2053
2054	switch (reg) {
2055	case VM_REG_GUEST_RBX:
2056		return (&regctx->sctx_rbx);
2057	case VM_REG_GUEST_RCX:
2058		return (&regctx->sctx_rcx);
2059	case VM_REG_GUEST_RDX:
2060		return (&regctx->sctx_rdx);
2061	case VM_REG_GUEST_RDI:
2062		return (&regctx->sctx_rdi);
2063	case VM_REG_GUEST_RSI:
2064		return (&regctx->sctx_rsi);
2065	case VM_REG_GUEST_RBP:
2066		return (&regctx->sctx_rbp);
2067	case VM_REG_GUEST_R8:
2068		return (&regctx->sctx_r8);
2069	case VM_REG_GUEST_R9:
2070		return (&regctx->sctx_r9);
2071	case VM_REG_GUEST_R10:
2072		return (&regctx->sctx_r10);
2073	case VM_REG_GUEST_R11:
2074		return (&regctx->sctx_r11);
2075	case VM_REG_GUEST_R12:
2076		return (&regctx->sctx_r12);
2077	case VM_REG_GUEST_R13:
2078		return (&regctx->sctx_r13);
2079	case VM_REG_GUEST_R14:
2080		return (&regctx->sctx_r14);
2081	case VM_REG_GUEST_R15:
2082		return (&regctx->sctx_r15);
2083	default:
2084		return (NULL);
2085	}
2086}
2087
2088static int
2089svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2090{
2091	struct svm_softc *svm_sc;
2092	register_t *reg;
2093
2094	svm_sc = arg;
2095
2096	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2097		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2098	}
2099
2100	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2101		return (0);
2102	}
2103
2104	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2105
2106	if (reg != NULL) {
2107		*val = *reg;
2108		return (0);
2109	}
2110
2111	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2112	return (EINVAL);
2113}
2114
2115static int
2116svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2117{
2118	struct svm_softc *svm_sc;
2119	register_t *reg;
2120
2121	svm_sc = arg;
2122
2123	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2124		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2125	}
2126
2127	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2128		return (0);
2129	}
2130
2131	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2132
2133	if (reg != NULL) {
2134		*reg = val;
2135		return (0);
2136	}
2137
2138	/*
2139	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2140	 * vcpu's ASID. This needs to be treated differently depending on
2141	 * whether 'running' is true/false.
2142	 */
2143
2144	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2145	return (EINVAL);
2146}
2147
2148static int
2149svm_setcap(void *arg, int vcpu, int type, int val)
2150{
2151	struct svm_softc *sc;
2152	int error;
2153
2154	sc = arg;
2155	error = 0;
2156	switch (type) {
2157	case VM_CAP_HALT_EXIT:
2158		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2159		    VMCB_INTCPT_HLT, val);
2160		break;
2161	case VM_CAP_PAUSE_EXIT:
2162		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2163		    VMCB_INTCPT_PAUSE, val);
2164		break;
2165	case VM_CAP_UNRESTRICTED_GUEST:
2166		/* Unrestricted guest execution cannot be disabled in SVM */
2167		if (val == 0)
2168			error = EINVAL;
2169		break;
2170	default:
2171		error = ENOENT;
2172		break;
2173	}
2174	return (error);
2175}
2176
2177static int
2178svm_getcap(void *arg, int vcpu, int type, int *retval)
2179{
2180	struct svm_softc *sc;
2181	int error;
2182
2183	sc = arg;
2184	error = 0;
2185
2186	switch (type) {
2187	case VM_CAP_HALT_EXIT:
2188		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2189		    VMCB_INTCPT_HLT);
2190		break;
2191	case VM_CAP_PAUSE_EXIT:
2192		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2193		    VMCB_INTCPT_PAUSE);
2194		break;
2195	case VM_CAP_UNRESTRICTED_GUEST:
2196		*retval = 1;	/* unrestricted guest is always enabled */
2197		break;
2198	default:
2199		error = ENOENT;
2200		break;
2201	}
2202	return (error);
2203}
2204
2205static struct vlapic *
2206svm_vlapic_init(void *arg, int vcpuid)
2207{
2208	struct svm_softc *svm_sc;
2209	struct vlapic *vlapic;
2210
2211	svm_sc = arg;
2212	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2213	vlapic->vm = svm_sc->vm;
2214	vlapic->vcpuid = vcpuid;
2215	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2216
2217	vlapic_init(vlapic);
2218
2219	return (vlapic);
2220}
2221
2222static void
2223svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2224{
2225
2226        vlapic_cleanup(vlapic);
2227        free(vlapic, M_SVM_VLAPIC);
2228}
2229
2230struct vmm_ops vmm_ops_amd = {
2231	svm_init,
2232	svm_cleanup,
2233	svm_restore,
2234	svm_vminit,
2235	svm_vmrun,
2236	svm_vmcleanup,
2237	svm_getreg,
2238	svm_setreg,
2239	vmcb_getdesc,
2240	vmcb_setdesc,
2241	svm_getcap,
2242	svm_setcap,
2243	svm_npt_alloc,
2244	svm_npt_free,
2245	svm_vlapic_init,
2246	svm_vlapic_cleanup
2247};
2248