1/*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27/*
28 * File : ecore_int.c
29 */
30#include <sys/cdefs.h>
31#include "bcm_osal.h"
32#include "ecore.h"
33#include "ecore_spq.h"
34#include "reg_addr.h"
35#include "ecore_gtt_reg_addr.h"
36#include "ecore_init_ops.h"
37#include "ecore_rt_defs.h"
38#include "ecore_int.h"
39#include "reg_addr.h"
40#include "ecore_hw.h"
41#include "ecore_sriov.h"
42#include "ecore_vf.h"
43#include "ecore_hw_defs.h"
44#include "ecore_hsi_common.h"
45#include "ecore_mcp.h"
46#include "ecore_dbg_fw_funcs.h"
47
48#ifdef DIAG
49/* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
50 * and so the functions are lacking ecore prefix.
51 * If there would be other clients needing this [or if the content that isn't
52 * really optional there would increase], we'll need to re-think this.
53 */
54enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
55							  struct ecore_ptt *ptt,
56							  enum block_id block,
57							  enum dbg_attn_type attn_type,
58							  bool clear_status,
59							  struct dbg_attn_block_result *results);
60
61enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
62							   struct dbg_attn_block_result *results);
63
64const char* dbg_get_status_str(enum dbg_status status);
65
66#define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
67	dbg_read_attn(hwfn, ptt, id, type, clear, results)
68#define ecore_dbg_parse_attn(hwfn, results) \
69	dbg_parse_attn(hwfn, results)
70#define ecore_dbg_get_status_str(status) \
71	dbg_get_status_str(status)
72#endif
73
74struct ecore_pi_info {
75	ecore_int_comp_cb_t comp_cb;
76	void *cookie; /* Will be sent to the completion callback function */
77};
78
79struct ecore_sb_sp_info {
80	struct ecore_sb_info sb_info;
81	/* per protocol index data */
82	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
83};
84
85enum ecore_attention_type {
86	ECORE_ATTN_TYPE_ATTN,
87	ECORE_ATTN_TYPE_PARITY,
88};
89
90#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
91	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
92
93struct aeu_invert_reg_bit {
94	char bit_name[30];
95
96#define ATTENTION_PARITY		(1 << 0)
97
98#define ATTENTION_LENGTH_MASK		(0x00000ff0)
99#define ATTENTION_LENGTH_SHIFT		(4)
100#define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
101					 ATTENTION_LENGTH_SHIFT)
102#define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
103#define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
104#define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
105					 ATTENTION_PARITY)
106
107/* Multiple bits start with this offset */
108#define ATTENTION_OFFSET_MASK		(0x000ff000)
109#define ATTENTION_OFFSET_SHIFT		(12)
110
111#define ATTENTION_BB_MASK		(0x00700000)
112#define ATTENTION_BB_SHIFT		(20)
113#define ATTENTION_BB(value)		(value << ATTENTION_BB_SHIFT)
114#define ATTENTION_BB_DIFFERENT		(1 << 23)
115
116#define	ATTENTION_CLEAR_ENABLE		(1 << 28)
117	unsigned int flags;
118
119	/* Callback to call if attention will be triggered */
120	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
121
122	enum block_id block_index;
123};
124
125struct aeu_invert_reg {
126	struct aeu_invert_reg_bit bits[32];
127};
128
129#define MAX_ATTN_GRPS		(8)
130#define NUM_ATTN_REGS		(9)
131
132static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
133{
134	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
135
136	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
137		tmp);
138	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
139		 0xffffffff);
140
141	return ECORE_SUCCESS;
142}
143
144#define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
145#define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
146#define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
147#define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
148#define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
149#define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
150#define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
151#define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
152#define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
153#define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
154#define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
155#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
156#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK 	(0x1)
157#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
158#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
159#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
160#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
161#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
162#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
163#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
164#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
165#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
166#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
167#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
168static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
169{
170	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
171
172	/* Disabled VF access */
173	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
174		u32 addr, data;
175
176		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
177				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
178		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179				PSWHST_REG_VF_DISABLED_ERROR_DATA);
180		DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
181			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
182			     ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
183			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
184			     ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
185			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
186			     ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
187			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
188			     ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
189			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
190			     ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
191			addr);
192	}
193
194	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
195		       PSWHST_REG_INCORRECT_ACCESS_VALID);
196	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
197		u32 addr, data, length;
198
199		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
200				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
201		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202				PSWHST_REG_INCORRECT_ACCESS_DATA);
203		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
205
206		DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
207			addr, length,
208			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
209			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
210			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
211			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
212			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
213			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
214			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
215			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
216			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
217			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
218			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
219			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
220			data);
221	}
222
223	/* TODO - We know 'some' of these are legal due to virtualization,
224	 * but is it true for all of them?
225	 */
226	return ECORE_SUCCESS;
227}
228
229#define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
230#define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
231#define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
232#define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
233#define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
234#define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
235#define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
236#define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
237#define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
238#define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
239#define ECORE_GRC_ATTENTION_PRIV_VF		(0)
240static const char* grc_timeout_attn_master_to_str(u8 master)
241{
242	switch(master) {
243	case 1: return "PXP";
244	case 2: return "MCP";
245	case 3: return "MSDM";
246	case 4: return "PSDM";
247	case 5: return "YSDM";
248	case 6: return "USDM";
249	case 7: return "TSDM";
250	case 8: return "XSDM";
251	case 9: return "DBU";
252	case 10: return "DMAE";
253	default:
254		return "Unkown";
255	}
256}
257
258static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
259{
260	u32 tmp, tmp2;
261
262	/* We've already cleared the timeout interrupt register, so we learn
263	 * of interrupts via the validity register
264	 */
265	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
266		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
267	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
268		goto out;
269
270	/* Read the GRC timeout information */
271	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
273	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
275
276	DP_NOTICE(p_hwfn->p_dev, false,
277		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
278		  tmp2, tmp,
279		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
280						       : "Read from",
281		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
282		  grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
283						 ECORE_GRC_ATTENTION_MASTER_SHIFT),
284		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
285		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
286		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
287		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
288		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
289		  ECORE_GRC_ATTENTION_VF_SHIFT);
290
291out:
292	/* Regardles of anything else, clean the validity bit */
293	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
294		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
295	return ECORE_SUCCESS;
296}
297
298#define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
299#define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
300#define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
301#define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
302#define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
303#define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
304#define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
305#define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
306#define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
307#define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
308#define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
309#define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
310#define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
311
312enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
313						   struct ecore_ptt *p_ptt)
314{
315	u32 tmp;
316
317	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
318	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
319		u32 addr_lo, addr_hi, details;
320
321		addr_lo = ecore_rd(p_hwfn, p_ptt,
322				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
323		addr_hi = ecore_rd(p_hwfn, p_ptt,
324				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
325		details = ecore_rd(p_hwfn, p_ptt,
326				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
327
328		DP_NOTICE(p_hwfn, false,
329			  "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
330			  addr_hi, addr_lo, details,
331			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
332			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
333			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
334			  tmp,
335			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
336			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
337			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
338	}
339
340	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
341	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
342		u32 addr_lo, addr_hi, details;
343
344		addr_lo = ecore_rd(p_hwfn, p_ptt,
345				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
346		addr_hi = ecore_rd(p_hwfn, p_ptt,
347				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
348		details = ecore_rd(p_hwfn, p_ptt,
349				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
350
351		DP_NOTICE(p_hwfn, false,
352			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
353			  addr_hi, addr_lo, details,
354			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
355			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
356			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
357			  tmp,
358			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
359			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
360			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
361	}
362
363	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
364	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
365		DP_NOTICE(p_hwfn, false, "ICPL error - %08x\n", tmp);
366
367	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
368	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
369		u32 addr_hi, addr_lo;
370
371		addr_lo = ecore_rd(p_hwfn, p_ptt,
372				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
373		addr_hi = ecore_rd(p_hwfn, p_ptt,
374				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
375
376		DP_NOTICE(p_hwfn, false,
377			  "ICPL error - %08x [Address %08x:%08x]\n",
378			  tmp, addr_hi, addr_lo);
379	}
380
381	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
382	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
383		u32 addr_hi, addr_lo, details;
384
385		addr_lo = ecore_rd(p_hwfn, p_ptt,
386				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
387		addr_hi = ecore_rd(p_hwfn, p_ptt,
388				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
389		details = ecore_rd(p_hwfn, p_ptt,
390				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
391
392		DP_NOTICE(p_hwfn, false,
393			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
394			  details, tmp, addr_hi, addr_lo);
395	}
396
397	/* Clear the indications */
398	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
399
400	return ECORE_SUCCESS;
401}
402
403static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
404{
405	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
406}
407
408static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
409{
410	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
411
412	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
413
414	return ECORE_INVAL;
415}
416
417static enum _ecore_status_t
418ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
419{
420	DP_INFO(p_hwfn, "General attention 35!\n");
421
422	return ECORE_SUCCESS;
423}
424
425#define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
426#define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
427#define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
428#define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
429#define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
430
431#define ECORE_DB_REC_COUNT			10
432#define ECORE_DB_REC_INTERVAL			100
433
434/* assumes sticky overflow indication was set for this PF */
435static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
436					      struct ecore_ptt *p_ptt)
437{
438	u8 count = ECORE_DB_REC_COUNT;
439	u32 usage = 1;
440
441	/* wait for usage to zero or count to run out. This is necessary since
442	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
443	 * can "split" over the pci. Possibly, the doorbell drop can happen with
444	 * half an EDPM in the queue and other half dropped. Another EDPM
445	 * doorbell to the same address (from doorbell recovery mechanism or
446	 * from the doorbelling entity) could have first half dropped and second
447	 * half interperted as continuation of the first. To prevent such
448	 * malformed doorbells from reaching the device, flush the queue before
449	 * releaseing the overflow sticky indication.
450	 */
451	while (count-- && usage) {
452		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
453		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
454	}
455
456	/* should have been depleted by now */
457	if (usage) {
458		DP_NOTICE(p_hwfn->p_dev, false,
459			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
460			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
461		return ECORE_TIMEOUT;
462	}
463
464	/* flush any pending (e)dpm as they may never arrive */
465	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
466
467	/* release overflow sticky indication (stop silently dropping everything) */
468	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
469
470	/* repeat all last doorbells (doorbell drop recovery) */
471	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
472
473	return ECORE_SUCCESS;
474}
475
476static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
477{
478	u32 int_sts, first_drop_reason, details, address, overflow,
479		all_drops_reason;
480	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
481	enum _ecore_status_t rc;
482
483	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
484	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
485		  int_sts);
486
487	/* int_sts may be zero since all PFs were interrupted for doorbell
488	 * overflow but another one already handled it. Can abort here. If
489	 * This PF also requires overflow recovery we will be interrupted again.
490	 * The masked almost full indication may also be set. Ignoring.
491	 */
492	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
493		return ECORE_SUCCESS;
494
495	/* check if db_drop or overflow happened */
496	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
497		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
498		/* obtain data about db drop/overflow */
499		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
500				  DORQ_REG_DB_DROP_REASON) &
501				  ECORE_DORQ_ATTENTION_REASON_MASK;
502		details = ecore_rd(p_hwfn, p_ptt,
503				   DORQ_REG_DB_DROP_DETAILS);
504		address = ecore_rd(p_hwfn, p_ptt,
505				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
506		overflow = ecore_rd(p_hwfn, p_ptt,
507				    DORQ_REG_PF_OVFL_STICKY);
508		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
509					    DORQ_REG_DB_DROP_DETAILS_REASON);
510
511		/* log info */
512		DP_NOTICE(p_hwfn->p_dev, false,
513			  "Doorbell drop occurred\n"
514			  "Address\t\t0x%08x\t(second BAR address)\n"
515			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
516			  "Size\t\t0x%04x\t\t(in bytes)\n"
517			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
518			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
519			  "Overflow\t0x%x\t\t(a per PF indication)\n",
520			  address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
521			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
522			  first_drop_reason, all_drops_reason, overflow);
523
524		/* if this PF caused overflow, initiate recovery */
525		if (overflow) {
526			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
527			if (rc != ECORE_SUCCESS)
528				return rc;
529		}
530
531		/* clear the doorbell drop details and prepare for next drop */
532		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
533
534		/* mark interrupt as handeld (note: even if drop was due to a diffrent
535		 * reason than overflow we mark as handled)
536		 */
537		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
538			 DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
539
540		/* if there are no indications otherthan drop indications, success */
541		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
542				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
543				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
544			return ECORE_SUCCESS;
545	}
546
547	/* some other indication was present - non recoverable */
548	DP_INFO(p_hwfn, "DORQ fatal attention\n");
549
550	return ECORE_INVAL;
551}
552
553static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
554{
555#ifndef ASIC_ONLY
556	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
557		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
558				   TM_REG_INT_STS_1);
559
560		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
561			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
562			return ECORE_INVAL;
563
564		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
565			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
566			DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
567		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
568		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
569		       TM_REG_INT_MASK_1_PEND_TASK_SCAN;
570		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
571
572		return ECORE_SUCCESS;
573	}
574#endif
575
576	return ECORE_INVAL;
577}
578
579/* Instead of major changes to the data-structure, we have a some 'special'
580 * identifiers for sources that changed meaning between adapters.
581 */
582enum aeu_invert_reg_special_type {
583	AEU_INVERT_REG_SPECIAL_CNIG_0,
584	AEU_INVERT_REG_SPECIAL_CNIG_1,
585	AEU_INVERT_REG_SPECIAL_CNIG_2,
586	AEU_INVERT_REG_SPECIAL_CNIG_3,
587	AEU_INVERT_REG_SPECIAL_MAX,
588};
589
590static struct aeu_invert_reg_bit
591aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
592	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
593	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
594	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
595	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596};
597
598/* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
599static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
600{
601	{
602		{	/* After Invert 1 */
603			{"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
604		}
605	},
606
607	{
608		{	/* After Invert 2 */
609			{"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
610			{"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
611			{"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
612			{"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613			{"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614			{"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615			{"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
617			{"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
618		}
619	},
620
621	{
622		{	/* After Invert 3 */
623			{"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
624		}
625	},
626
627	{
628		{	/* After Invert 4 */
629			{"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
630			{"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
631			{"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
632			{"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
633				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
634			{"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
635					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
636			{"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
637				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
638			{"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
639					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
640			{"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
641			{"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
642			{"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
643			{"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
644			{"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
645			{"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
646			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
647			{"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
648			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
649			{"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
650			{"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
651			{"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
652		}
653	},
654
655	{
656		{	/* After Invert 5 */
657			{"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
658			{"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
659			{"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
660			{"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
661			{"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
662			{"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
663			{"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
664			{"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
665			{"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
666			{"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
667			{"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
668			{"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
669			{"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
670			{"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
671			{"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
672			{"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
673		}
674	},
675
676	{
677		{	/* After Invert 6 */
678			{"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
679			{"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
680			{"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
681			{"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
682			{"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
683			{"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
684			{"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
685			{"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
686			{"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
687			{"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
688			{"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
689			{"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
690			{"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
691			{"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
692			{"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
693			{"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
694		}
695	},
696
697	{
698		{	/* After Invert 7 */
699			{"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
700			{"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
701			{"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
702			{"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
703			{"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
704			{"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
705			{"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
706			{"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
707			{"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
708			{"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
709			{"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
710			{"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
711			{"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
712			{"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
713			{"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
714			{"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
715			{"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
716		}
717	},
718
719	{
720		{	/* After Invert 8 */
721			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
722			{"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
723			{"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
724			{"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
725			{"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
726			{"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
727			{"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
728			{"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
729			{"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
730			{"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
731			{"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
732			{"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
733			{"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
734			{"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
735			{"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
736			{"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
737			{"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
738			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
739			{"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
740			{"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
741			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
742		}
743	},
744
745	{
746		{	/* After Invert 9 */
747			{"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
748			{"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
749			{"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
750			{"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
752		}
753	},
754
755};
756
757static struct aeu_invert_reg_bit *
758ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
759			struct aeu_invert_reg_bit *p_bit)
760{
761	if (!ECORE_IS_BB(p_hwfn->p_dev))
762		return p_bit;
763
764	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
765		return p_bit;
766
767	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
768				  ATTENTION_BB_SHIFT];
769}
770
771static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
772				     struct aeu_invert_reg_bit *p_bit)
773{
774	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
775		  ATTENTION_PARITY);
776}
777
778#define ATTN_STATE_BITS		(0xfff)
779#define ATTN_BITS_MASKABLE	(0x3ff)
780struct ecore_sb_attn_info {
781	/* Virtual & Physical address of the SB */
782	struct atten_status_block	*sb_attn;
783	dma_addr_t			sb_phys;
784
785	/* Last seen running index */
786	u16				index;
787
788	/* A mask of the AEU bits resulting in a parity error */
789	u32				parity_mask[NUM_ATTN_REGS];
790
791	/* A pointer to the attention description structure */
792	struct aeu_invert_reg		*p_aeu_desc;
793
794	/* Previously asserted attentions, which are still unasserted */
795	u16				known_attn;
796
797	/* Cleanup address for the link's general hw attention */
798	u32				mfw_attn_addr;
799};
800
801static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
802				 struct ecore_sb_attn_info *p_sb_desc)
803{
804	u16 rc = 0, index;
805
806	OSAL_MMIOWB(p_hwfn->p_dev);
807
808	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
809	if (p_sb_desc->index != index) {
810		p_sb_desc->index = index;
811		rc = ECORE_SB_ATT_IDX;
812	}
813
814	OSAL_MMIOWB(p_hwfn->p_dev);
815
816	return rc;
817}
818
819/**
820 * @brief ecore_int_assertion - handles asserted attention bits
821 *
822 * @param p_hwfn
823 * @param asserted_bits newly asserted bits
824 * @return enum _ecore_status_t
825 */
826static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
827						u16 asserted_bits)
828{
829	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
830	u32 igu_mask;
831
832	/* Mask the source of the attention in the IGU */
833	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
834			    IGU_REG_ATTENTION_ENABLE);
835	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
836		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
837	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
838	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
839
840	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
841		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
842		   sb_attn_sw->known_attn,
843		   sb_attn_sw->known_attn | asserted_bits);
844	sb_attn_sw->known_attn |= asserted_bits;
845
846	/* Handle MCP events */
847	if (asserted_bits & 0x100) {
848		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
849		/* Clean the MCP attention */
850		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
851			 sb_attn_sw->mfw_attn_addr, 0);
852	}
853
854	/* FIXME - this will change once we'll have GOOD gtt definitions */
855	DIRECT_REG_WR(p_hwfn,
856		      (u8 OSAL_IOMEM*)p_hwfn->regview +
857		      GTT_BAR0_MAP_REG_IGU_CMD +
858		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
859			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
860
861	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
862		   asserted_bits);
863
864	return ECORE_SUCCESS;
865}
866
867static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
868				 enum block_id id, enum dbg_attn_type type,
869				 bool b_clear)
870{
871	struct dbg_attn_block_result attn_results;
872	enum dbg_status status;
873
874	OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
875
876	status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
877				     b_clear, &attn_results);
878#ifdef ATTN_DESC
879	if (status != DBG_STATUS_OK)
880		DP_NOTICE(p_hwfn, true,
881			  "Failed to parse attention information [status: %s]\n",
882			  ecore_dbg_get_status_str(status));
883	else
884		ecore_dbg_parse_attn(p_hwfn, &attn_results);
885#else
886	if (status != DBG_STATUS_OK)
887		DP_NOTICE(p_hwfn, true,
888			  "Failed to parse attention information [status: %d]\n",
889			  status);
890	else
891		ecore_dbg_print_attn(p_hwfn, &attn_results);
892#endif
893}
894
895/**
896 * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
897 * cause of the attention
898 *
899 * @param p_hwfn
900 * @param p_aeu - descriptor of an AEU bit which caused the attention
901 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
902 *  this bit to this group.
903 * @param bit_index - index of this bit in the aeu_en_reg
904 *
905 * @return enum _ecore_status_t
906 */
907static enum _ecore_status_t
908ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
909			      struct aeu_invert_reg_bit *p_aeu,
910			      u32 aeu_en_reg,
911			      const char *p_bit_name,
912			      u32 bitmask)
913{
914	enum _ecore_status_t rc = ECORE_INVAL;
915	bool b_fatal = false;
916
917	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
918		p_bit_name, bitmask);
919
920	/* Call callback before clearing the interrupt status */
921	if (p_aeu->cb) {
922		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
923			p_bit_name);
924		rc = p_aeu->cb(p_hwfn);
925	}
926
927	if (rc != ECORE_SUCCESS)
928		b_fatal = true;
929
930	/* Print HW block interrupt registers */
931	if (p_aeu->block_index != MAX_BLOCK_ID)
932		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
933				     ATTN_TYPE_INTERRUPT, !b_fatal);
934
935	/* Reach assertion if attention is fatal */
936	if (b_fatal) {
937		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
938			  p_bit_name);
939
940		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
941	}
942
943	/* Prevent this Attention from being asserted in the future */
944	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
945	    p_hwfn->p_dev->attn_clr_en) {
946		u32 val;
947		u32 mask = ~bitmask;
948		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
949		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
950		DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
951			p_bit_name);
952	}
953
954	return rc;
955}
956
957/**
958 * @brief ecore_int_deassertion_parity - handle a single parity AEU source
959 *
960 * @param p_hwfn
961 * @param p_aeu - descriptor of an AEU bit which caused the parity
962 * @param aeu_en_reg - address of the AEU enable register
963 * @param bit_index
964 */
965static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
966					 struct aeu_invert_reg_bit *p_aeu,
967					 u32 aeu_en_reg, u8 bit_index)
968{
969	u32 block_id = p_aeu->block_index, mask, val;
970
971	DP_NOTICE(p_hwfn->p_dev, false,
972		  "%s parity attention is set [address 0x%08x, bit %d]\n",
973		  p_aeu->bit_name, aeu_en_reg, bit_index);
974
975	if (block_id != MAX_BLOCK_ID) {
976		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
977
978		/* In A0, there's a single parity bit for several blocks */
979		if (block_id == BLOCK_BTB) {
980			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
981					     ATTN_TYPE_PARITY, false);
982			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
983					     ATTN_TYPE_PARITY, false);
984		}
985	}
986
987	/* Prevent this parity error from being re-asserted */
988	mask = ~(0x1 << bit_index);
989	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
990	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
991	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
992		p_aeu->bit_name);
993}
994
995/**
996 * @brief - handles deassertion of previously asserted attentions.
997 *
998 * @param p_hwfn
999 * @param deasserted_bits - newly deasserted bits
1000 * @return enum _ecore_status_t
1001 *
1002 */
1003static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1004						  u16 deasserted_bits)
1005{
1006	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1007	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1008	u8 i, j, k, bit_idx;
1009	enum _ecore_status_t rc = ECORE_SUCCESS;
1010
1011	/* Read the attention registers in the AEU */
1012	for (i = 0; i < NUM_ATTN_REGS; i++) {
1013		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1014					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1015					  i * 0x4);
1016		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1017			   "Deasserted bits [%d]: %08x\n",
1018			   i, aeu_inv_arr[i]);
1019	}
1020
1021	/* Handle parity attentions first */
1022	for (i = 0; i < NUM_ATTN_REGS; i++)
1023	{
1024		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1025		u32 parities;
1026
1027		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1028		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1029		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1030
1031		/* Skip register in which no parity bit is currently set */
1032		if (!parities)
1033			continue;
1034
1035		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1036			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1037
1038			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1039			    !!(parities & (1 << bit_idx)))
1040				ecore_int_deassertion_parity(p_hwfn, p_bit,
1041							     aeu_en, bit_idx);
1042
1043			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1044		}
1045	}
1046
1047	/* Find non-parity cause for attention and act */
1048	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1049		struct aeu_invert_reg_bit *p_aeu;
1050
1051		/* Handle only groups whose attention is currently deasserted */
1052		if (!(deasserted_bits & (1 << k)))
1053			continue;
1054
1055		for (i = 0; i < NUM_ATTN_REGS; i++) {
1056			u32 bits;
1057
1058			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1059				 i * sizeof(u32) +
1060				 k * sizeof(u32) * NUM_ATTN_REGS;
1061			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1062			bits = aeu_inv_arr[i] & en;
1063
1064			/* Skip if no bit from this group is currently set */
1065			if (!bits)
1066				continue;
1067
1068			/* Find all set bits from current register which belong
1069			 * to current group, making them responsible for the
1070			 * previous assertion.
1071			 */
1072			for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1073			{
1074				long unsigned int bitmask;
1075				u8 bit, bit_len;
1076
1077				/* Need to account bits with changed meaning */
1078				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1079				p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1080
1081				bit = bit_idx;
1082				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1083				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1084					/* Skip Parity */
1085					bit++;
1086					bit_len--;
1087				}
1088
1089				/* Find the bits relating to HW-block, then
1090				 * shift so they'll become LSB.
1091				 */
1092				bitmask = bits & (((1 << bit_len) - 1) << bit);
1093				bitmask >>= bit;
1094
1095				if (bitmask) {
1096					u32 flags = p_aeu->flags;
1097					char bit_name[30];
1098					u8 num;
1099
1100					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1101								bit_len);
1102
1103					/* Some bits represent more than a
1104					 * a single interrupt. Correctly print
1105					 * their name.
1106					 */
1107					if (ATTENTION_LENGTH(flags) > 2 ||
1108					    ((flags & ATTENTION_PAR_INT) &&
1109					    ATTENTION_LENGTH(flags) > 1))
1110						OSAL_SNPRINTF(bit_name, 30,
1111							      p_aeu->bit_name,
1112							      num);
1113					else
1114						OSAL_STRNCPY(bit_name,
1115							     p_aeu->bit_name,
1116							     30);
1117
1118					/* We now need to pass bitmask in its
1119					 * correct position.
1120					 */
1121					bitmask <<= bit;
1122
1123					/* Handle source of the attention */
1124					ecore_int_deassertion_aeu_bit(p_hwfn,
1125								      p_aeu,
1126								      aeu_en,
1127								      bit_name,
1128								      bitmask);
1129				}
1130
1131				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1132			}
1133		}
1134	}
1135
1136	/* Clear IGU indication for the deasserted bits */
1137	/* FIXME - this will change once we'll have GOOD gtt definitions */
1138	DIRECT_REG_WR(p_hwfn,
1139		      (u8 OSAL_IOMEM*)p_hwfn->regview +
1140				      GTT_BAR0_MAP_REG_IGU_CMD +
1141				      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1142					IGU_CMD_INT_ACK_BASE) << 3),
1143		      ~((u32)deasserted_bits));
1144
1145	/* Unmask deasserted attentions in IGU */
1146	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1147			    IGU_REG_ATTENTION_ENABLE);
1148	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1149	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1150
1151	/* Clear deassertion from inner state */
1152	sb_attn_sw->known_attn &= ~deasserted_bits;
1153
1154	return rc;
1155}
1156
1157static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1158{
1159	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1160	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1161	u16 index = 0, asserted_bits, deasserted_bits;
1162	u32 attn_bits = 0, attn_acks = 0;
1163	enum _ecore_status_t rc = ECORE_SUCCESS;
1164
1165	/* Read current attention bits/acks - safeguard against attentions
1166	 * by guaranting work on a synchronized timeframe
1167	 */
1168	do {
1169		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1170		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1171		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1172	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1173	p_sb_attn->sb_index = index;
1174
1175	/* Attention / Deassertion are meaningful (and in correct state)
1176	 * only when they differ and consistent with known state - deassertion
1177	 * when previous attention & current ack, and assertion when current
1178	 * attention with no previous attention
1179	 */
1180	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1181			~p_sb_attn_sw->known_attn;
1182	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1183			  p_sb_attn_sw->known_attn;
1184
1185	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1186		DP_INFO(p_hwfn,
1187			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1188			index, attn_bits, attn_acks, asserted_bits,
1189			deasserted_bits, p_sb_attn_sw->known_attn);
1190	else if (asserted_bits == 0x100)
1191		DP_INFO(p_hwfn,
1192			"MFW indication via attention\n");
1193	else
1194		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1195			   "MFW indication [deassertion]\n");
1196
1197	if (asserted_bits) {
1198		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1199		if (rc)
1200			return rc;
1201	}
1202
1203	if (deasserted_bits)
1204		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1205
1206	return rc;
1207}
1208
1209static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1210			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1211{
1212	struct igu_prod_cons_update igu_ack = { 0 };
1213
1214	igu_ack.sb_id_and_flags =
1215		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1216		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1217		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1218		 (IGU_SEG_ACCESS_ATTN <<
1219		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1220
1221	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1222
1223	/* Both segments (interrupts & acks) are written to same place address;
1224	 * Need to guarantee all commands will be received (in-order) by HW.
1225	 */
1226	OSAL_MMIOWB(p_hwfn->p_dev);
1227	OSAL_BARRIER(p_hwfn->p_dev);
1228}
1229
1230void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1231{
1232	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1233	struct ecore_pi_info *pi_info = OSAL_NULL;
1234	struct ecore_sb_attn_info *sb_attn;
1235	struct ecore_sb_info *sb_info;
1236	int arr_size;
1237	u16 rc = 0;
1238
1239	if (!p_hwfn)
1240		return;
1241
1242	if (!p_hwfn->p_sp_sb) {
1243		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1244		return;
1245	}
1246
1247	sb_info = &p_hwfn->p_sp_sb->sb_info;
1248	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1249	if (!sb_info) {
1250		DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1251		return;
1252	}
1253
1254	if (!p_hwfn->p_sb_attn) {
1255		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1256		return;
1257	}
1258	sb_attn =  p_hwfn->p_sb_attn;
1259
1260	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1261		   p_hwfn, p_hwfn->my_id);
1262
1263	/* Disable ack for def status block. Required both for msix +
1264	 * inta in non-mask mode, in inta does no harm.
1265	 */
1266	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1267
1268	/* Gather Interrupts/Attentions information */
1269	if (!sb_info->sb_virt) {
1270		DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1271	} else {
1272		u32 tmp_index = sb_info->sb_ack;
1273		rc = ecore_sb_update_sb_idx(sb_info);
1274		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1275			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1276			   tmp_index, sb_info->sb_ack);
1277	}
1278
1279	if (!sb_attn || !sb_attn->sb_attn) {
1280		DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1281	} else {
1282		u16 tmp_index = sb_attn->index;
1283
1284		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1285		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1286			   "Attention indices: 0x%08x --> 0x%08x\n",
1287			   tmp_index, sb_attn->index);
1288	}
1289
1290	/* Check if we expect interrupts at this time. if not just ack them */
1291	if (!(rc & ECORE_SB_EVENT_MASK)) {
1292		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1293		return;
1294	}
1295
1296	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1297	if (!p_hwfn->p_dpc_ptt) {
1298		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1299		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1300		return;
1301	}
1302
1303	if (rc & ECORE_SB_ATT_IDX)
1304		ecore_int_attentions(p_hwfn);
1305
1306	if (rc & ECORE_SB_IDX) {
1307		int pi;
1308
1309		/* Since we only looked at the SB index, it's possible more
1310		 * than a single protocol-index on the SB incremented.
1311		 * Iterate over all configured protocol indices and check
1312		 * whether something happened for each.
1313		 */
1314		for (pi = 0; pi < arr_size; pi++) {
1315			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1316			if (pi_info->comp_cb != OSAL_NULL)
1317				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1318		}
1319	}
1320
1321	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1322		/* This should be done before the interrupts are enabled,
1323		 * since otherwise a new attention will be generated.
1324		 */
1325		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1326	}
1327
1328	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1329}
1330
1331static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1332{
1333	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1334
1335	if (!p_sb)
1336		return;
1337
1338	if (p_sb->sb_attn) {
1339		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1340				       p_sb->sb_phys,
1341				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1342	}
1343
1344	OSAL_FREE(p_hwfn->p_dev, p_sb);
1345	p_hwfn->p_sb_attn = OSAL_NULL;
1346}
1347
1348static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1349				    struct ecore_ptt *p_ptt)
1350{
1351	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1352
1353	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1354
1355	sb_info->index = 0;
1356	sb_info->known_attn = 0;
1357
1358	/* Configure Attention Status Block in IGU */
1359	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1360		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1361	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1362		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1363}
1364
1365static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1366				   struct ecore_ptt *p_ptt,
1367				   void *sb_virt_addr,
1368				   dma_addr_t sb_phy_addr)
1369{
1370	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1371	int i, j, k;
1372
1373	sb_info->sb_attn = sb_virt_addr;
1374	sb_info->sb_phys = sb_phy_addr;
1375
1376	/* Set the pointer to the AEU descriptors */
1377	sb_info->p_aeu_desc = aeu_descs;
1378
1379	/* Calculate Parity Masks */
1380	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1381	for (i = 0; i < NUM_ATTN_REGS; i++) {
1382		/* j is array index, k is bit index */
1383		for (j = 0, k = 0; k < 32; j++) {
1384			struct aeu_invert_reg_bit *p_aeu;
1385
1386			p_aeu = &aeu_descs[i].bits[j];
1387			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1388				sb_info->parity_mask[i] |= 1 << k;
1389
1390			k += ATTENTION_LENGTH(p_aeu->flags);
1391		}
1392		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1393			   "Attn Mask [Reg %d]: 0x%08x\n",
1394			   i, sb_info->parity_mask[i]);
1395	}
1396
1397	/* Set the address of cleanup for the mcp attention */
1398	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1399				 MISC_REG_AEU_GENERAL_ATTN_0;
1400
1401	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1402}
1403
1404static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1405						    struct ecore_ptt *p_ptt)
1406{
1407	struct ecore_dev *p_dev = p_hwfn->p_dev;
1408	struct ecore_sb_attn_info *p_sb;
1409	dma_addr_t p_phys = 0;
1410	void *p_virt;
1411
1412	/* SB struct */
1413	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1414	if (!p_sb) {
1415		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1416		return ECORE_NOMEM;
1417	}
1418
1419	/* SB ring  */
1420	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1421					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1422	if (!p_virt) {
1423		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1424		OSAL_FREE(p_dev, p_sb);
1425		return ECORE_NOMEM;
1426	}
1427
1428	/* Attention setup */
1429	p_hwfn->p_sb_attn = p_sb;
1430	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1431
1432	return ECORE_SUCCESS;
1433}
1434
1435/* coalescing timeout = timeset << (timer_res + 1) */
1436#define ECORE_CAU_DEF_RX_USECS 24
1437#define ECORE_CAU_DEF_TX_USECS 48
1438
1439void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1440			     struct cau_sb_entry *p_sb_entry,
1441			     u8 pf_id, u16 vf_number, u8 vf_valid)
1442{
1443	struct ecore_dev *p_dev = p_hwfn->p_dev;
1444	u32 cau_state;
1445	u8 timer_res;
1446
1447	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1448
1449	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1450	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1451	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1452	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1453	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1454
1455	cau_state = CAU_HC_DISABLE_STATE;
1456
1457	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1458		cau_state = CAU_HC_ENABLE_STATE;
1459		if (!p_dev->rx_coalesce_usecs)
1460			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1461		if (!p_dev->tx_coalesce_usecs)
1462			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1463	}
1464
1465	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1466	if (p_dev->rx_coalesce_usecs <= 0x7F)
1467		timer_res = 0;
1468	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1469		timer_res = 1;
1470	else
1471		timer_res = 2;
1472	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1473
1474	if (p_dev->tx_coalesce_usecs <= 0x7F)
1475		timer_res = 0;
1476	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1477		timer_res = 1;
1478	else
1479		timer_res = 2;
1480	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1481
1482	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1483	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1484}
1485
1486static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1487				   struct ecore_ptt *p_ptt,
1488				   u16 igu_sb_id, u32 pi_index,
1489				   enum ecore_coalescing_fsm coalescing_fsm,
1490				   u8 timeset)
1491{
1492	struct cau_pi_entry pi_entry;
1493	u32 sb_offset, pi_offset;
1494
1495	if (IS_VF(p_hwfn->p_dev))
1496		return;/* @@@TBD MichalK- VF CAU... */
1497
1498	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1499	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1500
1501	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1502	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1503		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1504	else
1505		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1506
1507	pi_offset = sb_offset + pi_index;
1508	if (p_hwfn->hw_init_done) {
1509		ecore_wr(p_hwfn, p_ptt,
1510			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1511			 *((u32 *)&(pi_entry)));
1512	} else {
1513		STORE_RT_REG(p_hwfn,
1514			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1515			     *((u32 *)&(pi_entry)));
1516	}
1517}
1518
1519void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1520			   struct ecore_ptt *p_ptt,
1521			   struct ecore_sb_info *p_sb, u32 pi_index,
1522			   enum ecore_coalescing_fsm coalescing_fsm,
1523			   u8 timeset)
1524{
1525	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1526			       pi_index, coalescing_fsm, timeset);
1527}
1528
1529void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1530			   struct ecore_ptt *p_ptt,
1531			   dma_addr_t sb_phys, u16 igu_sb_id,
1532			   u16 vf_number, u8 vf_valid)
1533{
1534	struct cau_sb_entry sb_entry;
1535
1536	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1537				vf_number, vf_valid);
1538
1539	if (p_hwfn->hw_init_done) {
1540		/* Wide-bus, initialize via DMAE */
1541		u64 phys_addr = (u64)sb_phys;
1542
1543		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1544				    CAU_REG_SB_ADDR_MEMORY +
1545				    igu_sb_id * sizeof(u64), 2,
1546				    OSAL_NULL /* default parameters */);
1547		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1548				    CAU_REG_SB_VAR_MEMORY +
1549				    igu_sb_id * sizeof(u64), 2,
1550				    OSAL_NULL /* default parameters */);
1551	} else {
1552		/* Initialize Status Block Address */
1553		STORE_RT_REG_AGG(p_hwfn,
1554				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1555				 sb_phys);
1556
1557		STORE_RT_REG_AGG(p_hwfn,
1558				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1559				 sb_entry);
1560	}
1561
1562	/* Configure pi coalescing if set */
1563	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1564		/* eth will open queues for all tcs, so configure all of them
1565		 * properly, rather than just the active ones
1566		 */
1567		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1568
1569		u8 timeset, timer_res;
1570		u8 i;
1571
1572		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1573		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1574			timer_res = 0;
1575		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1576			timer_res = 1;
1577		else
1578			timer_res = 2;
1579		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1580		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1581				       ECORE_COAL_RX_STATE_MACHINE,
1582				       timeset);
1583
1584		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1585			timer_res = 0;
1586		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1587			timer_res = 1;
1588		else
1589			timer_res = 2;
1590		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1591		for (i = 0; i < num_tc; i++) {
1592			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1593					       igu_sb_id, TX_PI(i),
1594					       ECORE_COAL_TX_STATE_MACHINE,
1595					       timeset);
1596		}
1597	}
1598}
1599
1600void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1601			       struct ecore_ptt *p_ptt,
1602			       struct ecore_sb_info *sb_info)
1603{
1604	/* zero status block and ack counter */
1605	sb_info->sb_ack = 0;
1606	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1607
1608	if (IS_PF(p_hwfn->p_dev))
1609		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1610				      sb_info->igu_sb_id, 0, 0);
1611}
1612
1613struct ecore_igu_block *
1614ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1615{
1616	struct ecore_igu_block *p_block;
1617	u16 igu_id;
1618
1619	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1620	     igu_id++) {
1621		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1622
1623		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1624		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1625			continue;
1626
1627		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1628		    b_is_pf)
1629			return p_block;
1630	}
1631
1632	return OSAL_NULL;
1633}
1634
1635static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1636				  u16 vector_id)
1637{
1638	struct ecore_igu_block *p_block;
1639	u16 igu_id;
1640
1641	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1642	     igu_id++) {
1643		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1644
1645		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1646		    !p_block->is_pf ||
1647		    p_block->vector_number != vector_id)
1648			continue;
1649
1650		return igu_id;
1651	}
1652
1653	return ECORE_SB_INVALID_IDX;
1654}
1655
1656u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1657{
1658	u16 igu_sb_id;
1659
1660	/* Assuming continuous set of IGU SBs dedicated for given PF */
1661	if (sb_id == ECORE_SP_SB_ID)
1662		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1663	else if (IS_PF(p_hwfn->p_dev))
1664		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1665	else
1666		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1667
1668	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1669		DP_NOTICE(p_hwfn, true,
1670			  "Slowpath SB vector %04x doesn't exist\n",
1671			  sb_id);
1672	else if (sb_id == ECORE_SP_SB_ID)
1673		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1674			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1675	else
1676		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1677			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1678
1679	return igu_sb_id;
1680}
1681
1682enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1683				       struct ecore_ptt *p_ptt,
1684				       struct ecore_sb_info *sb_info,
1685				       void *sb_virt_addr,
1686				       dma_addr_t sb_phy_addr,
1687				       u16 sb_id)
1688{
1689	sb_info->sb_virt = sb_virt_addr;
1690	sb_info->sb_phys = sb_phy_addr;
1691
1692	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1693
1694	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1695		return ECORE_INVAL;
1696
1697	/* Let the igu info reference the client's SB info */
1698	if (sb_id != ECORE_SP_SB_ID) {
1699		if (IS_PF(p_hwfn->p_dev)) {
1700			struct ecore_igu_info *p_info;
1701			struct ecore_igu_block *p_block;
1702
1703			p_info = p_hwfn->hw_info.p_igu_info;
1704			p_block = &p_info->entry[sb_info->igu_sb_id];
1705
1706			p_block->sb_info = sb_info;
1707			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1708			p_info->usage.free_cnt--;
1709		} else {
1710			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1711		}
1712	}
1713
1714#ifdef ECORE_CONFIG_DIRECT_HWFN
1715	sb_info->p_hwfn = p_hwfn;
1716#endif
1717	sb_info->p_dev = p_hwfn->p_dev;
1718
1719	/* The igu address will hold the absolute address that needs to be
1720	 * written to for a specific status block
1721	 */
1722	if (IS_PF(p_hwfn->p_dev)) {
1723		sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1724				    GTT_BAR0_MAP_REG_IGU_CMD +
1725				    (sb_info->igu_sb_id << 3);
1726
1727	} else {
1728		sb_info->igu_addr =
1729			(u8 OSAL_IOMEM*)p_hwfn->regview +
1730			PXP_VF_BAR0_START_IGU +
1731			((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1732	}
1733
1734	sb_info->flags |= ECORE_SB_INFO_INIT;
1735
1736	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1737
1738	return ECORE_SUCCESS;
1739}
1740
1741enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1742					  struct ecore_sb_info *sb_info,
1743					  u16 sb_id)
1744{
1745	struct ecore_igu_info *p_info;
1746	struct ecore_igu_block *p_block;
1747
1748	if (sb_info == OSAL_NULL)
1749		return ECORE_SUCCESS;
1750
1751	/* zero status block and ack counter */
1752	sb_info->sb_ack = 0;
1753	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1754
1755	if (IS_VF(p_hwfn->p_dev)) {
1756		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1757		return ECORE_SUCCESS;
1758	}
1759
1760	p_info = p_hwfn->hw_info.p_igu_info;
1761	p_block = &p_info->entry[sb_info->igu_sb_id];
1762
1763	/* Vector 0 is reserved to Default SB */
1764	if (p_block->vector_number == 0) {
1765		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1766		return ECORE_INVAL;
1767	}
1768
1769	/* Lose reference to client's SB info, and fix counters */
1770	p_block->sb_info = OSAL_NULL;
1771	p_block->status |= ECORE_IGU_STATUS_FREE;
1772	p_info->usage.free_cnt++;
1773
1774	return ECORE_SUCCESS;
1775}
1776
1777static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1778{
1779	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1780
1781	if (!p_sb)
1782		return;
1783
1784	if (p_sb->sb_info.sb_virt) {
1785		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1786				       p_sb->sb_info.sb_virt,
1787				       p_sb->sb_info.sb_phys,
1788				       SB_ALIGNED_SIZE(p_hwfn));
1789	}
1790
1791	OSAL_FREE(p_hwfn->p_dev, p_sb);
1792	p_hwfn->p_sp_sb = OSAL_NULL;
1793}
1794
1795static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1796						  struct ecore_ptt *p_ptt)
1797{
1798	struct ecore_sb_sp_info *p_sb;
1799	dma_addr_t p_phys = 0;
1800	void *p_virt;
1801
1802	/* SB struct */
1803	p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1804	if (!p_sb) {
1805		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1806		return ECORE_NOMEM;
1807	}
1808
1809	/* SB ring  */
1810	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1811					 &p_phys,
1812					 SB_ALIGNED_SIZE(p_hwfn));
1813	if (!p_virt) {
1814		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1815		OSAL_FREE(p_hwfn->p_dev, p_sb);
1816		return ECORE_NOMEM;
1817	}
1818
1819	/* Status Block setup */
1820	p_hwfn->p_sp_sb = p_sb;
1821	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1822			  p_virt, p_phys, ECORE_SP_SB_ID);
1823
1824	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1825
1826	return ECORE_SUCCESS;
1827}
1828
1829enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1830					   ecore_int_comp_cb_t comp_cb,
1831					   void *cookie,
1832					   u8 *sb_idx,
1833					   __le16 **p_fw_cons)
1834{
1835	struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1836	enum _ecore_status_t rc = ECORE_NOMEM;
1837	u8 pi;
1838
1839	/* Look for a free index */
1840	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1841		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1842			continue;
1843
1844		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1845		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1846		*sb_idx = pi;
1847		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1848		rc = ECORE_SUCCESS;
1849		break;
1850	}
1851
1852	return rc;
1853}
1854
1855enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1856					     u8 pi)
1857{
1858	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1859
1860	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1861		return ECORE_NOMEM;
1862
1863	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1864	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1865
1866	return ECORE_SUCCESS;
1867}
1868
1869u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1870{
1871	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1872}
1873
1874void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1875			      struct ecore_ptt	*p_ptt,
1876			      enum ecore_int_mode int_mode)
1877{
1878	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1879
1880#ifndef ASIC_ONLY
1881	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1882		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1883		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1884	}
1885#endif
1886
1887	p_hwfn->p_dev->int_mode = int_mode;
1888	switch (p_hwfn->p_dev->int_mode) {
1889	case ECORE_INT_MODE_INTA:
1890		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1891		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1892		break;
1893
1894	case ECORE_INT_MODE_MSI:
1895		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1896		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1897		break;
1898
1899	case ECORE_INT_MODE_MSIX:
1900		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1901		break;
1902	case ECORE_INT_MODE_POLL:
1903		break;
1904	}
1905
1906	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1907}
1908
1909static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1910				      struct ecore_ptt *p_ptt)
1911{
1912#ifndef ASIC_ONLY
1913	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1914		DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1915		return;
1916	}
1917#endif
1918
1919	/* Configure AEU signal change to produce attentions */
1920	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1921	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1922	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1923	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1924
1925	/* Flush the writes to IGU */
1926	OSAL_MMIOWB(p_hwfn->p_dev);
1927
1928	/* Unmask AEU signals toward IGU */
1929	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1930}
1931
1932enum _ecore_status_t
1933ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1934			  enum ecore_int_mode int_mode)
1935{
1936	enum _ecore_status_t rc = ECORE_SUCCESS;
1937
1938	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1939
1940	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1941		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1942		if (rc != ECORE_SUCCESS) {
1943			DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1944			return ECORE_NORESOURCES;
1945		}
1946		p_hwfn->b_int_requested = true;
1947	}
1948
1949	/* Enable interrupt Generation */
1950	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1951
1952	p_hwfn->b_int_enabled = 1;
1953
1954	return rc;
1955}
1956
1957void ecore_int_igu_disable_int(struct ecore_hwfn	*p_hwfn,
1958			       struct ecore_ptt		*p_ptt)
1959{
1960	p_hwfn->b_int_enabled = 0;
1961
1962	if (IS_VF(p_hwfn->p_dev))
1963		return;
1964
1965	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1966}
1967
1968#define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1969static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1970				     struct ecore_ptt *p_ptt,
1971				     u16 igu_sb_id,
1972				     bool cleanup_set,
1973				     u16 opaque_fid)
1974{
1975	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1976	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1977	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1978	u8  type = 0; /* FIXME MichalS type??? */
1979
1980	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1981			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1982
1983	/* USE Control Command Register to perform cleanup. There is an
1984	 * option to do this using IGU bar, but then it can't be used for VFs.
1985	 */
1986
1987	/* Set the data field */
1988	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1989	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1990	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1991
1992	/* Set the control register */
1993	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1994	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1995	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1996
1997	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1998
1999	OSAL_BARRIER(p_hwfn->p_dev);
2000
2001	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2002
2003	/* Flush the write to IGU */
2004	OSAL_MMIOWB(p_hwfn->p_dev);
2005
2006	/* calculate where to read the status bit from */
2007	sb_bit = 1 << (igu_sb_id % 32);
2008	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2009
2010	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2011
2012	/* Now wait for the command to complete */
2013	while (--sleep_cnt) {
2014		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2015		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2016			break;
2017		OSAL_MSLEEP(5);
2018	}
2019
2020	if (!sleep_cnt)
2021		DP_NOTICE(p_hwfn, true,
2022			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2023			  val, igu_sb_id);
2024}
2025
2026void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2027				       struct ecore_ptt *p_ptt,
2028				       u16 igu_sb_id, u16 opaque, bool b_set)
2029{
2030	struct ecore_igu_block *p_block;
2031	int pi, i;
2032
2033	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2034	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2035		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2036		   igu_sb_id, p_block->function_id, p_block->is_pf,
2037		   p_block->vector_number);
2038
2039	/* Set */
2040	if (b_set)
2041		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2042
2043	/* Clear */
2044	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2045
2046	/* Wait for the IGU SB to cleanup */
2047	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2048		u32 val;
2049
2050		val = ecore_rd(p_hwfn, p_ptt,
2051			       IGU_REG_WRITE_DONE_PENDING +
2052			       ((igu_sb_id / 32) * 4));
2053		if (val & (1 << (igu_sb_id % 32)))
2054			OSAL_UDELAY(10);
2055		else
2056			break;
2057	}
2058	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2059		DP_NOTICE(p_hwfn, true,
2060			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2061			  igu_sb_id);
2062
2063	/* Clear the CAU for the SB */
2064	for (pi = 0; pi < 12; pi++)
2065		ecore_wr(p_hwfn, p_ptt,
2066			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2067}
2068
2069void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2070				 struct ecore_ptt *p_ptt,
2071				 bool b_set,
2072				 bool b_slowpath)
2073{
2074	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2075	struct ecore_igu_block *p_block;
2076	u16 igu_sb_id = 0;
2077	u32 val = 0;
2078
2079	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2080	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2081	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2082	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2083	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2084	/* end temporary */
2085
2086	for (igu_sb_id = 0;
2087	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2088	     igu_sb_id++) {
2089		p_block = &p_info->entry[igu_sb_id];
2090
2091		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2092		    !p_block->is_pf ||
2093		    (p_block->status & ECORE_IGU_STATUS_DSB))
2094			continue;
2095
2096		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2097						  p_hwfn->hw_info.opaque_fid,
2098						  b_set);
2099	}
2100
2101	if (b_slowpath)
2102		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2103						  p_info->igu_dsb_id,
2104						  p_hwfn->hw_info.opaque_fid,
2105						  b_set);
2106}
2107
2108int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2109			    struct ecore_ptt *p_ptt)
2110{
2111	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2112	struct ecore_igu_block *p_block;
2113	int pf_sbs, vf_sbs;
2114	u16 igu_sb_id;
2115	u32 val, rval;
2116
2117	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2118		/* We're using an old MFW - have to prevent any switching
2119		 * of SBs between PF and VFs as later driver wouldn't be
2120		 * able to tell which belongs to which.
2121		 */
2122		p_info->b_allow_pf_vf_change = false;
2123	} else {
2124		/* Use the numbers the MFW have provided -
2125		 * don't forget MFW accounts for the default SB as well.
2126		 */
2127		p_info->b_allow_pf_vf_change = true;
2128
2129		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2130			DP_INFO(p_hwfn,
2131				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2132				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2133				p_info->usage.cnt);
2134			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2135		}
2136
2137		/* TODO - how do we learn about VF SBs from MFW? */
2138		if (IS_PF_SRIOV(p_hwfn)) {
2139			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2140
2141			if (vfs != p_info->usage.iov_cnt)
2142				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2143					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2144					   p_info->usage.iov_cnt, vfs);
2145
2146			/* At this point we know how many SBs we have totally
2147			 * in IGU + number of PF SBs. So we can validate that
2148			 * we'd have sufficient for VF.
2149			 */
2150			if (vfs > p_info->usage.free_cnt +
2151				  p_info->usage.free_cnt_iov -
2152				  p_info->usage.cnt) {
2153				DP_NOTICE(p_hwfn, true,
2154					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2155					  p_info->usage.free_cnt +
2156					  p_info->usage.free_cnt_iov,
2157					  p_info->usage.cnt, vfs);
2158				return ECORE_INVAL;
2159			}
2160		}
2161	}
2162
2163	/* Cap the number of VFs SBs by the number of VFs */
2164	if (IS_PF_SRIOV(p_hwfn))
2165		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2166
2167	/* Mark all SBs as free, now in the right PF/VFs division */
2168	p_info->usage.free_cnt = p_info->usage.cnt;
2169	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2170	p_info->usage.orig = p_info->usage.cnt;
2171	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2172
2173	/* We now proceed to re-configure the IGU cam to reflect the initial
2174	 * configuration. We can start with the Default SB.
2175	 */
2176	pf_sbs = p_info->usage.cnt;
2177	vf_sbs = p_info->usage.iov_cnt;
2178
2179	for (igu_sb_id = p_info->igu_dsb_id;
2180	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2181	     igu_sb_id++) {
2182		p_block = &p_info->entry[igu_sb_id];
2183		val = 0;
2184
2185		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2186			continue;
2187
2188		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2189			p_block->function_id = p_hwfn->rel_pf_id;
2190			p_block->is_pf = 1;
2191			p_block->vector_number = 0;
2192			p_block->status = ECORE_IGU_STATUS_VALID |
2193					  ECORE_IGU_STATUS_PF |
2194					  ECORE_IGU_STATUS_DSB;
2195		} else if (pf_sbs) {
2196			pf_sbs--;
2197			p_block->function_id = p_hwfn->rel_pf_id;
2198			p_block->is_pf = 1;
2199			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2200			p_block->status = ECORE_IGU_STATUS_VALID |
2201					  ECORE_IGU_STATUS_PF |
2202					  ECORE_IGU_STATUS_FREE;
2203		} else if (vf_sbs) {
2204			p_block->function_id =
2205				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2206				p_info->usage.iov_cnt - vf_sbs;
2207			p_block->is_pf = 0;
2208			p_block->vector_number = 0;
2209			p_block->status = ECORE_IGU_STATUS_VALID |
2210					  ECORE_IGU_STATUS_FREE;
2211			vf_sbs--;
2212		} else {
2213			p_block->function_id = 0;
2214			p_block->is_pf = 0;
2215			p_block->vector_number = 0;
2216		}
2217
2218		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2219			  p_block->function_id);
2220		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2221		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2222			  p_block->vector_number);
2223
2224		/* VF entries would be enabled when VF is initializaed */
2225		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2226
2227		rval = ecore_rd(p_hwfn, p_ptt,
2228				IGU_REG_MAPPING_MEMORY +
2229				sizeof(u32) * igu_sb_id);
2230
2231		if (rval != val) {
2232			ecore_wr(p_hwfn, p_ptt,
2233				 IGU_REG_MAPPING_MEMORY +
2234				 sizeof(u32) * igu_sb_id,
2235				 val);
2236
2237			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2238				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2239				   igu_sb_id, p_block->function_id,
2240				   p_block->is_pf, p_block->vector_number,
2241				   rval, val);
2242		}
2243	}
2244
2245	return 0;
2246}
2247
2248int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2249				    struct ecore_ptt *p_ptt)
2250{
2251	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2252
2253	/* Return all the usage indications to default prior to the reset;
2254	 * The reset expects the !orig to reflect the initial status of the
2255	 * SBs, and would re-calculate the originals based on those.
2256	 */
2257	p_cnt->cnt = p_cnt->orig;
2258	p_cnt->free_cnt = p_cnt->orig;
2259	p_cnt->iov_cnt = p_cnt->iov_orig;
2260	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2261	p_cnt->orig = 0;
2262	p_cnt->iov_orig = 0;
2263
2264	/* TODO - we probably need to re-configure the CAU as well... */
2265	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2266}
2267
2268static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2269					 struct ecore_ptt *p_ptt,
2270					 u16 igu_sb_id)
2271{
2272	u32 val = ecore_rd(p_hwfn, p_ptt,
2273			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2274	struct ecore_igu_block *p_block;
2275
2276	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2277
2278	/* Fill the block information */
2279	p_block->function_id = GET_FIELD(val,
2280					 IGU_MAPPING_LINE_FUNCTION_NUMBER);
2281	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2282	p_block->vector_number = GET_FIELD(val,
2283					   IGU_MAPPING_LINE_VECTOR_NUMBER);
2284	p_block->igu_sb_id = igu_sb_id;
2285}
2286
2287enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2288					    struct ecore_ptt *p_ptt)
2289{
2290	struct ecore_igu_info *p_igu_info;
2291	struct ecore_igu_block *p_block;
2292	u32 min_vf = 0, max_vf = 0;
2293	u16 igu_sb_id;
2294
2295	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2296						 GFP_KERNEL,
2297						 sizeof(*p_igu_info));
2298	if (!p_hwfn->hw_info.p_igu_info)
2299		return ECORE_NOMEM;
2300	p_igu_info = p_hwfn->hw_info.p_igu_info;
2301
2302	/* Distinguish between existent and onn-existent default SB */
2303	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2304
2305	/* Find the range of VF ids whose SB belong to this PF */
2306	if (p_hwfn->p_dev->p_iov_info) {
2307		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2308
2309		min_vf = p_iov->first_vf_in_pf;
2310		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2311	}
2312
2313	for (igu_sb_id = 0;
2314	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2315	     igu_sb_id++) {
2316		/* Read current entry; Notice it might not belong to this PF */
2317		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2318		p_block = &p_igu_info->entry[igu_sb_id];
2319
2320		if ((p_block->is_pf) &&
2321		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2322			p_block->status = ECORE_IGU_STATUS_PF |
2323					  ECORE_IGU_STATUS_VALID |
2324					  ECORE_IGU_STATUS_FREE;
2325
2326			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2327				p_igu_info->usage.cnt++;
2328		} else if (!(p_block->is_pf) &&
2329			   (p_block->function_id >= min_vf) &&
2330			   (p_block->function_id < max_vf)) {
2331			/* Available for VFs of this PF */
2332			p_block->status = ECORE_IGU_STATUS_VALID |
2333					  ECORE_IGU_STATUS_FREE;
2334
2335			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2336				p_igu_info->usage.iov_cnt++;
2337		}
2338
2339		/* Mark the First entry belonging to the PF or its VFs
2340		 * as the default SB [we'll reset IGU prior to first usage].
2341		 */
2342		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2343		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2344			p_igu_info->igu_dsb_id = igu_sb_id;
2345			p_block->status |= ECORE_IGU_STATUS_DSB;
2346		}
2347
2348		/* While this isn't suitable for all clients, limit number
2349		 * of prints by having each PF print only its entries with the
2350		 * exception of PF0 which would print everything.
2351		 */
2352		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2353		    (p_hwfn->abs_pf_id == 0))
2354			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2355				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2356				   igu_sb_id, p_block->function_id,
2357				   p_block->is_pf, p_block->vector_number);
2358	}
2359
2360	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2361		DP_NOTICE(p_hwfn, true,
2362			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2363			  p_igu_info->igu_dsb_id);
2364		return ECORE_INVAL;
2365	}
2366
2367	/* All non default SB are considered free at this point */
2368	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2369	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2370
2371	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2372		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2373		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2374		   p_igu_info->usage.iov_cnt);
2375
2376	return ECORE_SUCCESS;
2377}
2378
2379enum _ecore_status_t
2380ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2381			  u16 sb_id, bool b_to_vf)
2382{
2383	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2384	struct ecore_igu_block *p_block = OSAL_NULL;
2385	u16 igu_sb_id = 0, vf_num = 0;
2386	u32 val = 0;
2387
2388	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2389		return ECORE_INVAL;
2390
2391	if (sb_id == ECORE_SP_SB_ID)
2392		return ECORE_INVAL;
2393
2394	if (!p_info->b_allow_pf_vf_change) {
2395		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2396		return ECORE_INVAL;
2397	}
2398
2399	/* If we're moving a SB from PF to VF, the client had to specify
2400	 * which vector it wants to move.
2401	 */
2402	if (b_to_vf) {
2403		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2404		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2405			return ECORE_INVAL;
2406	}
2407
2408	/* If we're moving a SB from VF to PF, need to validate there isn't
2409	 * already a line configured for that vector.
2410	 */
2411	if (!b_to_vf) {
2412		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2413		    ECORE_SB_INVALID_IDX)
2414			return ECORE_INVAL;
2415	}
2416
2417	/* We need to validate that the SB can actually be relocated.
2418	 * This would also handle the previous case where we've explicitly
2419	 * stated which IGU SB needs to move.
2420	 */
2421	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2422	     igu_sb_id++) {
2423		p_block = &p_info->entry[igu_sb_id];
2424
2425		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2426		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2427		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2428			if (b_to_vf)
2429				return ECORE_INVAL;
2430			else
2431				continue;
2432		}
2433
2434		break;
2435	}
2436
2437	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2438		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2439			   "Failed to find a free SB to move\n");
2440		return ECORE_INVAL;
2441	}
2442
2443	if (p_block == OSAL_NULL) {
2444		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2445			   "SB address (p_block) is NULL\n");
2446		return ECORE_INVAL;
2447	}
2448
2449	/* At this point, p_block points to the SB we want to relocate */
2450	if (b_to_vf) {
2451		p_block->status &= ~ECORE_IGU_STATUS_PF;
2452
2453		/* It doesn't matter which VF number we choose, since we're
2454		 * going to disable the line; But let's keep it in range.
2455		 */
2456		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2457
2458		p_block->function_id = (u8)vf_num;
2459		p_block->is_pf = 0;
2460		p_block->vector_number = 0;
2461
2462		p_info->usage.cnt--;
2463		p_info->usage.free_cnt--;
2464		p_info->usage.iov_cnt++;
2465		p_info->usage.free_cnt_iov++;
2466
2467		/* TODO - if SBs aren't really the limiting factor,
2468		 * then it might not be accurate [in the since that
2469		 * we might not need decrement the feature].
2470		 */
2471		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2472		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2473	} else {
2474		p_block->status |= ECORE_IGU_STATUS_PF;
2475		p_block->function_id = p_hwfn->rel_pf_id;
2476		p_block->is_pf = 1;
2477		p_block->vector_number = sb_id + 1;
2478
2479		p_info->usage.cnt++;
2480		p_info->usage.free_cnt++;
2481		p_info->usage.iov_cnt--;
2482		p_info->usage.free_cnt_iov--;
2483
2484		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2485		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2486	}
2487
2488	/* Update the IGU and CAU with the new configuration */
2489	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2490		  p_block->function_id);
2491	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2492	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2493	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2494		  p_block->vector_number);
2495
2496	ecore_wr(p_hwfn, p_ptt,
2497		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2498		 val);
2499
2500	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2501			      igu_sb_id, vf_num,
2502			      p_block->is_pf ? 0 : 1);
2503
2504	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2505		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2506		   igu_sb_id, p_block->function_id,
2507		   p_block->is_pf, p_block->vector_number);
2508
2509	return ECORE_SUCCESS;
2510}
2511
2512/**
2513 * @brief Initialize igu runtime registers
2514 *
2515 * @param p_hwfn
2516 */
2517void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2518{
2519	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2520
2521	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2522}
2523
2524#define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2525			  IGU_CMD_INT_ACK_BASE)
2526#define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2527			  IGU_CMD_INT_ACK_BASE)
2528u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2529{
2530	u32 intr_status_hi = 0, intr_status_lo = 0;
2531	u64 intr_status = 0;
2532
2533	intr_status_lo = REG_RD(p_hwfn,
2534				GTT_BAR0_MAP_REG_IGU_CMD +
2535				LSB_IGU_CMD_ADDR * 8);
2536	intr_status_hi = REG_RD(p_hwfn,
2537				GTT_BAR0_MAP_REG_IGU_CMD +
2538				MSB_IGU_CMD_ADDR * 8);
2539	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2540
2541	return intr_status;
2542}
2543
2544static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2545{
2546	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2547	p_hwfn->b_sp_dpc_enabled = true;
2548}
2549
2550static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2551{
2552	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2553	if (!p_hwfn->sp_dpc)
2554		return ECORE_NOMEM;
2555
2556	return ECORE_SUCCESS;
2557}
2558
2559static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2560{
2561	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2562	p_hwfn->sp_dpc = OSAL_NULL;
2563}
2564
2565enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2566				     struct ecore_ptt *p_ptt)
2567{
2568	enum _ecore_status_t rc = ECORE_SUCCESS;
2569
2570	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2571	if (rc != ECORE_SUCCESS) {
2572		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2573		return rc;
2574	}
2575
2576	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2577	if (rc != ECORE_SUCCESS) {
2578		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2579		return rc;
2580	}
2581
2582	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2583	if (rc != ECORE_SUCCESS)
2584		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2585
2586	return rc;
2587}
2588
2589void ecore_int_free(struct ecore_hwfn *p_hwfn)
2590{
2591	ecore_int_sp_sb_free(p_hwfn);
2592	ecore_int_sb_attn_free(p_hwfn);
2593	ecore_int_sp_dpc_free(p_hwfn);
2594}
2595
2596void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2597{
2598	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2599		return;
2600
2601	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2602	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2603	ecore_int_sp_dpc_setup(p_hwfn);
2604}
2605
2606void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2607			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2608{
2609	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2610
2611	if (!p_igu_info || !p_sb_cnt_info)
2612		return;
2613
2614	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2615		    sizeof(*p_sb_cnt_info));
2616}
2617
2618void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2619{
2620	int i;
2621
2622	for_each_hwfn(p_dev, i)
2623		p_dev->hwfns[i].b_int_requested = false;
2624}
2625
2626void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2627{
2628	p_dev->attn_clr_en = clr_enable;
2629}
2630
2631enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2632					     struct ecore_ptt *p_ptt,
2633					     u8 timer_res, u16 sb_id, bool tx)
2634{
2635	struct cau_sb_entry sb_entry;
2636	enum _ecore_status_t rc;
2637
2638	if (!p_hwfn->hw_init_done) {
2639		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2640		return ECORE_INVAL;
2641	}
2642
2643	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2644				 sb_id * sizeof(u64),
2645				 (u64)(osal_uintptr_t)&sb_entry, 2,
2646				 OSAL_NULL /* default parameters */);
2647	if (rc != ECORE_SUCCESS) {
2648		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2649		return rc;
2650	}
2651
2652	if (tx)
2653		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2654	else
2655		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2656
2657	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2658				 (u64)(osal_uintptr_t)&sb_entry,
2659				 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2660				 OSAL_NULL /* default parameters */);
2661	if (rc != ECORE_SUCCESS) {
2662		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2663		return rc;
2664	}
2665
2666	return rc;
2667}
2668
2669enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2670					  struct ecore_ptt *p_ptt,
2671					  struct ecore_sb_info *p_sb,
2672					  struct ecore_sb_info_dbg *p_info)
2673{
2674	u16 sbid = p_sb->igu_sb_id;
2675	int i;
2676
2677	if (IS_VF(p_hwfn->p_dev))
2678		return ECORE_INVAL;
2679
2680	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2681		return ECORE_INVAL;
2682
2683	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2684				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2685	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2686				    IGU_REG_CONSUMER_MEM + sbid * 4);
2687
2688	for (i = 0; i < PIS_PER_SB_E4; i++)
2689		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2690					      CAU_REG_PI_MEMORY +
2691					      sbid * 4 * PIS_PER_SB_E4 + i * 4);
2692
2693	return ECORE_SUCCESS;
2694}
2695