1/*-
2 * Copyright (c) 1990, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#if defined(LIBC_SCCS) && !defined(lint)
34static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
35#endif /* LIBC_SCCS and not lint */
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: stable/10/lib/libc/db/hash/hash_page.c 313532 2017-02-10 06:34:52Z ngie $");
38
39/*
40 * PACKAGE:  hashing
41 *
42 * DESCRIPTION:
43 *	Page manipulation for hashing package.
44 *
45 * ROUTINES:
46 *
47 * External
48 *	__get_page
49 *	__add_ovflpage
50 * Internal
51 *	overflow_page
52 *	open_temp
53 */
54
55#include "namespace.h"
56#include <sys/param.h>
57
58#include <errno.h>
59#include <fcntl.h>
60#include <signal.h>
61#include <stdio.h>
62#include <stdlib.h>
63#include <string.h>
64#include <unistd.h>
65#ifdef DEBUG
66#include <assert.h>
67#endif
68#include "un-namespace.h"
69#include "libc_private.h"
70
71#include <db.h>
72#include "hash.h"
73#include "page.h"
74#include "extern.h"
75
76static u_int32_t *fetch_bitmap(HTAB *, int);
77static u_int32_t  first_free(u_int32_t);
78static int	  open_temp(HTAB *);
79static u_int16_t  overflow_page(HTAB *);
80static void	  putpair(char *, const DBT *, const DBT *);
81static void	  squeeze_key(u_int16_t *, const DBT *, const DBT *);
82static int	  ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
83
84#define	PAGE_INIT(P) { \
85	((u_int16_t *)(P))[0] = 0; \
86	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
87	((u_int16_t *)(P))[2] = hashp->BSIZE; \
88}
89
90/*
91 * This is called AFTER we have verified that there is room on the page for
92 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
93 * stuff on.
94 */
95static void
96putpair(char *p, const DBT *key, const DBT *val)
97{
98	u_int16_t *bp, n, off;
99
100	bp = (u_int16_t *)p;
101
102	/* Enter the key first. */
103	n = bp[0];
104
105	off = OFFSET(bp) - key->size;
106	memmove(p + off, key->data, key->size);
107	bp[++n] = off;
108
109	/* Now the data. */
110	off -= val->size;
111	memmove(p + off, val->data, val->size);
112	bp[++n] = off;
113
114	/* Adjust page info. */
115	bp[0] = n;
116	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
117	bp[n + 2] = off;
118}
119
120/*
121 * Returns:
122 *	 0 OK
123 *	-1 error
124 */
125int
126__delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
127{
128	u_int16_t *bp, newoff, pairlen;
129	int n;
130
131	bp = (u_int16_t *)bufp->page;
132	n = bp[0];
133
134	if (bp[ndx + 1] < REAL_KEY)
135		return (__big_delete(hashp, bufp));
136	if (ndx != 1)
137		newoff = bp[ndx - 1];
138	else
139		newoff = hashp->BSIZE;
140	pairlen = newoff - bp[ndx + 1];
141
142	if (ndx != (n - 1)) {
143		/* Hard Case -- need to shuffle keys */
144		int i;
145		char *src = bufp->page + (int)OFFSET(bp);
146		char *dst = src + (int)pairlen;
147		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
148
149		/* Now adjust the pointers */
150		for (i = ndx + 2; i <= n; i += 2) {
151			if (bp[i + 1] == OVFLPAGE) {
152				bp[i - 2] = bp[i];
153				bp[i - 1] = bp[i + 1];
154			} else {
155				bp[i - 2] = bp[i] + pairlen;
156				bp[i - 1] = bp[i + 1] + pairlen;
157			}
158		}
159		if (ndx == hashp->cndx) {
160			/*
161			 * We just removed pair we were "pointing" to.
162			 * By moving back the cndx we ensure subsequent
163			 * hash_seq() calls won't skip over any entries.
164			 */
165			hashp->cndx -= 2;
166		}
167	}
168	/* Finally adjust the page data */
169	bp[n] = OFFSET(bp) + pairlen;
170	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
171	bp[0] = n - 2;
172	hashp->NKEYS--;
173
174	bufp->flags |= BUF_MOD;
175	return (0);
176}
177/*
178 * Returns:
179 *	 0 ==> OK
180 *	-1 ==> Error
181 */
182int
183__split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket)
184{
185	BUFHEAD *new_bufp, *old_bufp;
186	u_int16_t *ino;
187	char *np;
188	DBT key, val;
189	int n, ndx, retval;
190	u_int16_t copyto, diff, off, moved;
191	char *op;
192
193	copyto = (u_int16_t)hashp->BSIZE;
194	off = (u_int16_t)hashp->BSIZE;
195	old_bufp = __get_buf(hashp, obucket, NULL, 0);
196	if (old_bufp == NULL)
197		return (-1);
198	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
199	if (new_bufp == NULL)
200		return (-1);
201
202	old_bufp->flags |= (BUF_MOD | BUF_PIN);
203	new_bufp->flags |= (BUF_MOD | BUF_PIN);
204
205	ino = (u_int16_t *)(op = old_bufp->page);
206	np = new_bufp->page;
207
208	moved = 0;
209
210	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
211		if (ino[n + 1] < REAL_KEY) {
212			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
213			    (int)copyto, (int)moved);
214			old_bufp->flags &= ~BUF_PIN;
215			new_bufp->flags &= ~BUF_PIN;
216			return (retval);
217
218		}
219		key.data = (u_char *)op + ino[n];
220		key.size = off - ino[n];
221
222		if (__call_hash(hashp, key.data, key.size) == obucket) {
223			/* Don't switch page */
224			diff = copyto - off;
225			if (diff) {
226				copyto = ino[n + 1] + diff;
227				memmove(op + copyto, op + ino[n + 1],
228				    off - ino[n + 1]);
229				ino[ndx] = copyto + ino[n] - ino[n + 1];
230				ino[ndx + 1] = copyto;
231			} else
232				copyto = ino[n + 1];
233			ndx += 2;
234		} else {
235			/* Switch page */
236			val.data = (u_char *)op + ino[n + 1];
237			val.size = ino[n] - ino[n + 1];
238			putpair(np, &key, &val);
239			moved += 2;
240		}
241
242		off = ino[n + 1];
243	}
244
245	/* Now clean up the page */
246	ino[0] -= moved;
247	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
248	OFFSET(ino) = copyto;
249
250#ifdef DEBUG3
251	(void)fprintf(stderr, "split %d/%d\n",
252	    ((u_int16_t *)np)[0] / 2,
253	    ((u_int16_t *)op)[0] / 2);
254#endif
255	/* unpin both pages */
256	old_bufp->flags &= ~BUF_PIN;
257	new_bufp->flags &= ~BUF_PIN;
258	return (0);
259}
260
261/*
262 * Called when we encounter an overflow or big key/data page during split
263 * handling.  This is special cased since we have to begin checking whether
264 * the key/data pairs fit on their respective pages and because we may need
265 * overflow pages for both the old and new pages.
266 *
267 * The first page might be a page with regular key/data pairs in which case
268 * we have a regular overflow condition and just need to go on to the next
269 * page or it might be a big key/data pair in which case we need to fix the
270 * big key/data pair.
271 *
272 * Returns:
273 *	 0 ==> success
274 *	-1 ==> failure
275 */
276static int
277ugly_split(HTAB *hashp,
278    u_int32_t obucket,	/* Same as __split_page. */
279    BUFHEAD *old_bufp,
280    BUFHEAD *new_bufp,
281    int copyto,		/* First byte on page which contains key/data values. */
282    int moved)		/* Number of pairs moved to new page. */
283{
284	BUFHEAD *bufp;	/* Buffer header for ino */
285	u_int16_t *ino;	/* Page keys come off of */
286	u_int16_t *np;	/* New page */
287	u_int16_t *op;	/* Page keys go on to if they aren't moving */
288
289	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
290	DBT key, val;
291	SPLIT_RETURN ret;
292	u_int16_t n, off, ov_addr, scopyto;
293	char *cino;		/* Character value of ino */
294
295	bufp = old_bufp;
296	ino = (u_int16_t *)old_bufp->page;
297	np = (u_int16_t *)new_bufp->page;
298	op = (u_int16_t *)old_bufp->page;
299	last_bfp = NULL;
300	scopyto = (u_int16_t)copyto;	/* ANSI */
301
302	n = ino[0] - 1;
303	while (n < ino[0]) {
304		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
305			if (__big_split(hashp, old_bufp,
306			    new_bufp, bufp, bufp->addr, obucket, &ret))
307				return (-1);
308			old_bufp = ret.oldp;
309			if (!old_bufp)
310				return (-1);
311			op = (u_int16_t *)old_bufp->page;
312			new_bufp = ret.newp;
313			if (!new_bufp)
314				return (-1);
315			np = (u_int16_t *)new_bufp->page;
316			bufp = ret.nextp;
317			if (!bufp)
318				return (0);
319			cino = (char *)bufp->page;
320			ino = (u_int16_t *)cino;
321			last_bfp = ret.nextp;
322		} else if (ino[n + 1] == OVFLPAGE) {
323			ov_addr = ino[n];
324			/*
325			 * Fix up the old page -- the extra 2 are the fields
326			 * which contained the overflow information.
327			 */
328			ino[0] -= (moved + 2);
329			FREESPACE(ino) =
330			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
331			OFFSET(ino) = scopyto;
332
333			bufp = __get_buf(hashp, ov_addr, bufp, 0);
334			if (!bufp)
335				return (-1);
336
337			ino = (u_int16_t *)bufp->page;
338			n = 1;
339			scopyto = hashp->BSIZE;
340			moved = 0;
341
342			if (last_bfp)
343				__free_ovflpage(hashp, last_bfp);
344			last_bfp = bufp;
345		}
346		/* Move regular sized pairs of there are any */
347		off = hashp->BSIZE;
348		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
349			cino = (char *)ino;
350			key.data = (u_char *)cino + ino[n];
351			key.size = off - ino[n];
352			val.data = (u_char *)cino + ino[n + 1];
353			val.size = ino[n] - ino[n + 1];
354			off = ino[n + 1];
355
356			if (__call_hash(hashp, key.data, key.size) == obucket) {
357				/* Keep on old page */
358				if (PAIRFITS(op, (&key), (&val)))
359					putpair((char *)op, &key, &val);
360				else {
361					old_bufp =
362					    __add_ovflpage(hashp, old_bufp);
363					if (!old_bufp)
364						return (-1);
365					op = (u_int16_t *)old_bufp->page;
366					putpair((char *)op, &key, &val);
367				}
368				old_bufp->flags |= BUF_MOD;
369			} else {
370				/* Move to new page */
371				if (PAIRFITS(np, (&key), (&val)))
372					putpair((char *)np, &key, &val);
373				else {
374					new_bufp =
375					    __add_ovflpage(hashp, new_bufp);
376					if (!new_bufp)
377						return (-1);
378					np = (u_int16_t *)new_bufp->page;
379					putpair((char *)np, &key, &val);
380				}
381				new_bufp->flags |= BUF_MOD;
382			}
383		}
384	}
385	if (last_bfp)
386		__free_ovflpage(hashp, last_bfp);
387	return (0);
388}
389
390/*
391 * Add the given pair to the page
392 *
393 * Returns:
394 *	0 ==> OK
395 *	1 ==> failure
396 */
397int
398__addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
399{
400	u_int16_t *bp, *sop;
401	int do_expand;
402
403	bp = (u_int16_t *)bufp->page;
404	do_expand = 0;
405	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
406		/* Exception case */
407		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
408			/* This is the last page of a big key/data pair
409			   and we need to add another page */
410			break;
411		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
412			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
413			if (!bufp)
414				return (-1);
415			bp = (u_int16_t *)bufp->page;
416		} else if (bp[bp[0]] != OVFLPAGE) {
417			/* Short key/data pairs, no more pages */
418			break;
419		} else {
420			/* Try to squeeze key on this page */
421			if (bp[2] >= REAL_KEY &&
422			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
423				squeeze_key(bp, key, val);
424				goto stats;
425			} else {
426				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
427				if (!bufp)
428					return (-1);
429				bp = (u_int16_t *)bufp->page;
430			}
431		}
432
433	if (PAIRFITS(bp, key, val))
434		putpair(bufp->page, key, val);
435	else {
436		do_expand = 1;
437		bufp = __add_ovflpage(hashp, bufp);
438		if (!bufp)
439			return (-1);
440		sop = (u_int16_t *)bufp->page;
441
442		if (PAIRFITS(sop, key, val))
443			putpair((char *)sop, key, val);
444		else
445			if (__big_insert(hashp, bufp, key, val))
446				return (-1);
447	}
448stats:
449	bufp->flags |= BUF_MOD;
450	/*
451	 * If the average number of keys per bucket exceeds the fill factor,
452	 * expand the table.
453	 */
454	hashp->NKEYS++;
455	if (do_expand ||
456	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
457		return (__expand_table(hashp));
458	return (0);
459}
460
461/*
462 *
463 * Returns:
464 *	pointer on success
465 *	NULL on error
466 */
467BUFHEAD *
468__add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
469{
470	u_int16_t *sp, ndx, ovfl_num;
471#ifdef DEBUG1
472	int tmp1, tmp2;
473#endif
474	sp = (u_int16_t *)bufp->page;
475
476	/* Check if we are dynamically determining the fill factor */
477	if (hashp->FFACTOR == DEF_FFACTOR) {
478		hashp->FFACTOR = sp[0] >> 1;
479		if (hashp->FFACTOR < MIN_FFACTOR)
480			hashp->FFACTOR = MIN_FFACTOR;
481	}
482	bufp->flags |= BUF_MOD;
483	ovfl_num = overflow_page(hashp);
484#ifdef DEBUG1
485	tmp1 = bufp->addr;
486	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
487#endif
488	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
489		return (NULL);
490	bufp->ovfl->flags |= BUF_MOD;
491#ifdef DEBUG1
492	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
493	    tmp1, tmp2, bufp->ovfl->addr);
494#endif
495	ndx = sp[0];
496	/*
497	 * Since a pair is allocated on a page only if there's room to add
498	 * an overflow page, we know that the OVFL information will fit on
499	 * the page.
500	 */
501	sp[ndx + 4] = OFFSET(sp);
502	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
503	sp[ndx + 1] = ovfl_num;
504	sp[ndx + 2] = OVFLPAGE;
505	sp[0] = ndx + 2;
506#ifdef HASH_STATISTICS
507	hash_overflows++;
508#endif
509	return (bufp->ovfl);
510}
511
512/*
513 * Returns:
514 *	 0 indicates SUCCESS
515 *	-1 indicates FAILURE
516 */
517int
518__get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk,
519    int is_bitmap)
520{
521	int fd, page, size, rsize;
522	u_int16_t *bp;
523
524	fd = hashp->fp;
525	size = hashp->BSIZE;
526
527	if ((fd == -1) || !is_disk) {
528		PAGE_INIT(p);
529		return (0);
530	}
531	if (is_bucket)
532		page = BUCKET_TO_PAGE(bucket);
533	else
534		page = OADDR_TO_PAGE(bucket);
535	if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
536		return (-1);
537	bp = (u_int16_t *)p;
538	if (!rsize)
539		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
540	else
541		if (rsize != size) {
542			errno = EFTYPE;
543			return (-1);
544		}
545	if (!is_bitmap && !bp[0]) {
546		PAGE_INIT(p);
547	} else
548		if (hashp->LORDER != BYTE_ORDER) {
549			int i, max;
550
551			if (is_bitmap) {
552				max = hashp->BSIZE >> 2; /* divide by 4 */
553				for (i = 0; i < max; i++)
554					M_32_SWAP(((int *)p)[i]);
555			} else {
556				M_16_SWAP(bp[0]);
557				max = bp[0] + 2;
558				for (i = 1; i <= max; i++)
559					M_16_SWAP(bp[i]);
560			}
561		}
562	return (0);
563}
564
565/*
566 * Write page p to disk
567 *
568 * Returns:
569 *	 0 ==> OK
570 *	-1 ==>failure
571 */
572int
573__put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap)
574{
575	int fd, page, size;
576	ssize_t wsize;
577	char pbuf[MAX_BSIZE];
578
579	size = hashp->BSIZE;
580	if ((hashp->fp == -1) && open_temp(hashp))
581		return (-1);
582	fd = hashp->fp;
583
584	if (hashp->LORDER != BYTE_ORDER) {
585		int i, max;
586
587		memcpy(pbuf, p, size);
588		if (is_bitmap) {
589			max = hashp->BSIZE >> 2;	/* divide by 4 */
590			for (i = 0; i < max; i++)
591				M_32_SWAP(((int *)pbuf)[i]);
592		} else {
593			uint16_t *bp = (uint16_t *)(void *)pbuf;
594			max = bp[0] + 2;
595			for (i = 0; i <= max; i++)
596				M_16_SWAP(bp[i]);
597		}
598		p = pbuf;
599	}
600	if (is_bucket)
601		page = BUCKET_TO_PAGE(bucket);
602	else
603		page = OADDR_TO_PAGE(bucket);
604	if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
605		/* Errno is set */
606		return (-1);
607	if (wsize != size) {
608		errno = EFTYPE;
609		return (-1);
610	}
611	return (0);
612}
613
614#define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
615/*
616 * Initialize a new bitmap page.  Bitmap pages are left in memory
617 * once they are read in.
618 */
619int
620__ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
621{
622	u_int32_t *ip;
623	int clearbytes, clearints;
624
625	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
626		return (1);
627	hashp->nmaps++;
628	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
629	clearbytes = clearints << INT_TO_BYTE;
630	(void)memset((char *)ip, 0, clearbytes);
631	(void)memset(((char *)ip) + clearbytes, 0xFF,
632	    hashp->BSIZE - clearbytes);
633	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
634	SETBIT(ip, 0);
635	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
636	hashp->mapp[ndx] = ip;
637	return (0);
638}
639
640static u_int32_t
641first_free(u_int32_t map)
642{
643	u_int32_t i, mask;
644
645	mask = 0x1;
646	for (i = 0; i < BITS_PER_MAP; i++) {
647		if (!(mask & map))
648			return (i);
649		mask = mask << 1;
650	}
651	return (i);
652}
653
654static u_int16_t
655overflow_page(HTAB *hashp)
656{
657	u_int32_t *freep;
658	int max_free, offset, splitnum;
659	u_int16_t addr;
660	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
661#ifdef DEBUG2
662	int tmp1, tmp2;
663#endif
664	splitnum = hashp->OVFL_POINT;
665	max_free = hashp->SPARES[splitnum];
666
667	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
668	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
669
670	/* Look through all the free maps to find the first free block */
671	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
672	for ( i = first_page; i <= free_page; i++ ) {
673		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
674		    !(freep = fetch_bitmap(hashp, i)))
675			return (0);
676		if (i == free_page)
677			in_use_bits = free_bit;
678		else
679			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
680
681		if (i == first_page) {
682			bit = hashp->LAST_FREED &
683			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
684			j = bit / BITS_PER_MAP;
685			bit = bit & ~(BITS_PER_MAP - 1);
686		} else {
687			bit = 0;
688			j = 0;
689		}
690		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
691			if (freep[j] != ALL_SET)
692				goto found;
693	}
694
695	/* No Free Page Found */
696	hashp->LAST_FREED = hashp->SPARES[splitnum];
697	hashp->SPARES[splitnum]++;
698	offset = hashp->SPARES[splitnum] -
699	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
700
701#define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
702	if (offset > SPLITMASK) {
703		if (++splitnum >= NCACHED) {
704			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
705			errno = EFBIG;
706			return (0);
707		}
708		hashp->OVFL_POINT = splitnum;
709		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
710		hashp->SPARES[splitnum-1]--;
711		offset = 1;
712	}
713
714	/* Check if we need to allocate a new bitmap page */
715	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
716		free_page++;
717		if (free_page >= NCACHED) {
718			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
719			errno = EFBIG;
720			return (0);
721		}
722		/*
723		 * This is tricky.  The 1 indicates that you want the new page
724		 * allocated with 1 clear bit.  Actually, you are going to
725		 * allocate 2 pages from this map.  The first is going to be
726		 * the map page, the second is the overflow page we were
727		 * looking for.  The init_bitmap routine automatically, sets
728		 * the first bit of itself to indicate that the bitmap itself
729		 * is in use.  We would explicitly set the second bit, but
730		 * don't have to if we tell init_bitmap not to leave it clear
731		 * in the first place.
732		 */
733		if (__ibitmap(hashp,
734		    (int)OADDR_OF(splitnum, offset), 1, free_page))
735			return (0);
736		hashp->SPARES[splitnum]++;
737#ifdef DEBUG2
738		free_bit = 2;
739#endif
740		offset++;
741		if (offset > SPLITMASK) {
742			if (++splitnum >= NCACHED) {
743				(void)_write(STDERR_FILENO, OVMSG,
744				    sizeof(OVMSG) - 1);
745				errno = EFBIG;
746				return (0);
747			}
748			hashp->OVFL_POINT = splitnum;
749			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
750			hashp->SPARES[splitnum-1]--;
751			offset = 0;
752		}
753	} else {
754		/*
755		 * Free_bit addresses the last used bit.  Bump it to address
756		 * the first available bit.
757		 */
758		free_bit++;
759		SETBIT(freep, free_bit);
760	}
761
762	/* Calculate address of the new overflow page */
763	addr = OADDR_OF(splitnum, offset);
764#ifdef DEBUG2
765	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
766	    addr, free_bit, free_page);
767#endif
768	return (addr);
769
770found:
771	bit = bit + first_free(freep[j]);
772	SETBIT(freep, bit);
773#ifdef DEBUG2
774	tmp1 = bit;
775	tmp2 = i;
776#endif
777	/*
778	 * Bits are addressed starting with 0, but overflow pages are addressed
779	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
780	 * it to convert it to a page number.
781	 */
782	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
783	if (bit >= hashp->LAST_FREED)
784		hashp->LAST_FREED = bit - 1;
785
786	/* Calculate the split number for this page */
787	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
788	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
789	if (offset >= SPLITMASK) {
790		(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
791		errno = EFBIG;
792		return (0);	/* Out of overflow pages */
793	}
794	addr = OADDR_OF(i, offset);
795#ifdef DEBUG2
796	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
797	    addr, tmp1, tmp2);
798#endif
799
800	/* Allocate and return the overflow page */
801	return (addr);
802}
803
804/*
805 * Mark this overflow page as free.
806 */
807void
808__free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
809{
810	u_int16_t addr;
811	u_int32_t *freep;
812	int bit_address, free_page, free_bit;
813	u_int16_t ndx;
814
815	addr = obufp->addr;
816#ifdef DEBUG1
817	(void)fprintf(stderr, "Freeing %d\n", addr);
818#endif
819	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
820	bit_address =
821	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
822	 if (bit_address < hashp->LAST_FREED)
823		hashp->LAST_FREED = bit_address;
824	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
825	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
826
827	if (!(freep = hashp->mapp[free_page]))
828		freep = fetch_bitmap(hashp, free_page);
829#ifdef DEBUG
830	/*
831	 * This had better never happen.  It means we tried to read a bitmap
832	 * that has already had overflow pages allocated off it, and we
833	 * failed to read it from the file.
834	 */
835	if (!freep)
836		assert(0);
837#endif
838	CLRBIT(freep, free_bit);
839#ifdef DEBUG2
840	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
841	    obufp->addr, free_bit, free_page);
842#endif
843	__reclaim_buf(hashp, obufp);
844}
845
846/*
847 * Returns:
848 *	 0 success
849 *	-1 failure
850 */
851static int
852open_temp(HTAB *hashp)
853{
854	sigset_t set, oset;
855	int len;
856	char *envtmp = NULL;
857	char path[MAXPATHLEN];
858
859	if (issetugid() == 0)
860		envtmp = getenv("TMPDIR");
861	len = snprintf(path,
862	    sizeof(path), "%s/_hash.XXXXXX", envtmp ? envtmp : "/tmp");
863	if (len < 0 || len >= (int)sizeof(path)) {
864		errno = ENAMETOOLONG;
865		return (-1);
866	}
867
868	/* Block signals; make sure file goes away at process exit. */
869	(void)sigfillset(&set);
870	(void)__libc_sigprocmask(SIG_BLOCK, &set, &oset);
871	if ((hashp->fp = mkostemp(path, O_CLOEXEC)) != -1)
872		(void)unlink(path);
873	(void)__libc_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
874	return (hashp->fp != -1 ? 0 : -1);
875}
876
877/*
878 * We have to know that the key will fit, but the last entry on the page is
879 * an overflow pair, so we need to shift things.
880 */
881static void
882squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val)
883{
884	char *p;
885	u_int16_t free_space, n, off, pageno;
886
887	p = (char *)sp;
888	n = sp[0];
889	free_space = FREESPACE(sp);
890	off = OFFSET(sp);
891
892	pageno = sp[n - 1];
893	off -= key->size;
894	sp[n - 1] = off;
895	memmove(p + off, key->data, key->size);
896	off -= val->size;
897	sp[n] = off;
898	memmove(p + off, val->data, val->size);
899	sp[0] = n + 2;
900	sp[n + 1] = pageno;
901	sp[n + 2] = OVFLPAGE;
902	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
903	OFFSET(sp) = off;
904}
905
906static u_int32_t *
907fetch_bitmap(HTAB *hashp, int ndx)
908{
909	if (ndx >= hashp->nmaps)
910		return (NULL);
911	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
912		return (NULL);
913	if (__get_page(hashp,
914	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
915		free(hashp->mapp[ndx]);
916		return (NULL);
917	}
918	return (hashp->mapp[ndx]);
919}
920
921#ifdef DEBUG4
922int
923print_chain(int addr)
924{
925	BUFHEAD *bufp;
926	short *bp, oaddr;
927
928	(void)fprintf(stderr, "%d ", addr);
929	bufp = __get_buf(hashp, addr, NULL, 0);
930	bp = (short *)bufp->page;
931	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
932		((bp[0] > 2) && bp[2] < REAL_KEY))) {
933		oaddr = bp[bp[0] - 1];
934		(void)fprintf(stderr, "%d ", (int)oaddr);
935		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
936		bp = (short *)bufp->page;
937	}
938	(void)fprintf(stderr, "\n");
939}
940#endif
941