1/*
2 * validator/val_nsec3.c - validator NSEC3 denial of existence functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains helper functions for the validator module.
40 * The functions help with NSEC3 checking, the different NSEC3 proofs
41 * for denial of existence, and proofs for presence of types.
42 */
43#include "config.h"
44#include <ctype.h>
45#include "validator/val_nsec3.h"
46#include "validator/val_secalgo.h"
47#include "validator/validator.h"
48#include "validator/val_kentry.h"
49#include "services/cache/rrset.h"
50#include "util/regional.h"
51#include "util/rbtree.h"
52#include "util/module.h"
53#include "util/net_help.h"
54#include "util/data/packed_rrset.h"
55#include "util/data/dname.h"
56#include "util/data/msgreply.h"
57/* we include nsec.h for the bitmap_has_type function */
58#include "validator/val_nsec.h"
59#include "sldns/sbuffer.h"
60
61/**
62 * This function we get from ldns-compat or from base system
63 * it returns the number of data bytes stored at the target, or <0 on error.
64 */
65int sldns_b32_ntop_extended_hex(uint8_t const *src, size_t srclength,
66	char *target, size_t targsize);
67/**
68 * This function we get from ldns-compat or from base system
69 * it returns the number of data bytes stored at the target, or <0 on error.
70 */
71int sldns_b32_pton_extended_hex(char const *src, size_t hashed_owner_str_len,
72	uint8_t *target, size_t targsize);
73
74/**
75 * Closest encloser (ce) proof results
76 * Contains the ce and the next-closer (nc) proof.
77 */
78struct ce_response {
79	/** the closest encloser name */
80	uint8_t* ce;
81	/** length of ce */
82	size_t ce_len;
83	/** NSEC3 record that proved ce. rrset */
84	struct ub_packed_rrset_key* ce_rrset;
85	/** NSEC3 record that proved ce. rr number */
86	int ce_rr;
87	/** NSEC3 record that proved nc. rrset */
88	struct ub_packed_rrset_key* nc_rrset;
89	/** NSEC3 record that proved nc. rr*/
90	int nc_rr;
91};
92
93/**
94 * Filter conditions for NSEC3 proof
95 * Used to iterate over the applicable NSEC3 RRs.
96 */
97struct nsec3_filter {
98	/** Zone name, only NSEC3 records for this zone are considered */
99	uint8_t* zone;
100	/** length of the zonename */
101	size_t zone_len;
102	/** the list of NSEC3s to filter; array */
103	struct ub_packed_rrset_key** list;
104	/** number of rrsets in list */
105	size_t num;
106	/** class of records for the NSEC3, only this class applies */
107	uint16_t fclass;
108};
109
110/** return number of rrs in an rrset */
111static size_t
112rrset_get_count(struct ub_packed_rrset_key* rrset)
113{
114        struct packed_rrset_data* d = (struct packed_rrset_data*)
115	        rrset->entry.data;
116        if(!d) return 0;
117        return d->count;
118}
119
120/** return if nsec3 RR has unknown flags */
121static int
122nsec3_unknown_flags(struct ub_packed_rrset_key* rrset, int r)
123{
124        struct packed_rrset_data* d = (struct packed_rrset_data*)
125	        rrset->entry.data;
126	log_assert(d && r < (int)d->count);
127	if(d->rr_len[r] < 2+2)
128		return 0; /* malformed */
129	return (int)(d->rr_data[r][2+1] & NSEC3_UNKNOWN_FLAGS);
130}
131
132int
133nsec3_has_optout(struct ub_packed_rrset_key* rrset, int r)
134{
135        struct packed_rrset_data* d = (struct packed_rrset_data*)
136	        rrset->entry.data;
137	log_assert(d && r < (int)d->count);
138	if(d->rr_len[r] < 2+2)
139		return 0; /* malformed */
140	return (int)(d->rr_data[r][2+1] & NSEC3_OPTOUT);
141}
142
143/** return nsec3 RR algorithm */
144static int
145nsec3_get_algo(struct ub_packed_rrset_key* rrset, int r)
146{
147        struct packed_rrset_data* d = (struct packed_rrset_data*)
148	        rrset->entry.data;
149	log_assert(d && r < (int)d->count);
150	if(d->rr_len[r] < 2+1)
151		return 0; /* malformed */
152	return (int)(d->rr_data[r][2+0]);
153}
154
155/** return if nsec3 RR has known algorithm */
156static int
157nsec3_known_algo(struct ub_packed_rrset_key* rrset, int r)
158{
159        struct packed_rrset_data* d = (struct packed_rrset_data*)
160	        rrset->entry.data;
161	log_assert(d && r < (int)d->count);
162	if(d->rr_len[r] < 2+1)
163		return 0; /* malformed */
164	switch(d->rr_data[r][2+0]) {
165		case NSEC3_HASH_SHA1:
166			return 1;
167	}
168	return 0;
169}
170
171/** return nsec3 RR iteration count */
172static size_t
173nsec3_get_iter(struct ub_packed_rrset_key* rrset, int r)
174{
175	uint16_t i;
176        struct packed_rrset_data* d = (struct packed_rrset_data*)
177	        rrset->entry.data;
178	log_assert(d && r < (int)d->count);
179	if(d->rr_len[r] < 2+4)
180		return 0; /* malformed */
181	memmove(&i, d->rr_data[r]+2+2, sizeof(i));
182	i = ntohs(i);
183	return (size_t)i;
184}
185
186/** return nsec3 RR salt */
187static int
188nsec3_get_salt(struct ub_packed_rrset_key* rrset, int r,
189	uint8_t** salt, size_t* saltlen)
190{
191        struct packed_rrset_data* d = (struct packed_rrset_data*)
192	        rrset->entry.data;
193	log_assert(d && r < (int)d->count);
194	if(d->rr_len[r] < 2+5) {
195		*salt = 0;
196		*saltlen = 0;
197		return 0; /* malformed */
198	}
199	*saltlen = (size_t)d->rr_data[r][2+4];
200	if(d->rr_len[r] < 2+5+(size_t)*saltlen) {
201		*salt = 0;
202		*saltlen = 0;
203		return 0; /* malformed */
204	}
205	*salt = d->rr_data[r]+2+5;
206	return 1;
207}
208
209int nsec3_get_params(struct ub_packed_rrset_key* rrset, int r,
210	int* algo, size_t* iter, uint8_t** salt, size_t* saltlen)
211{
212	if(!nsec3_known_algo(rrset, r) || nsec3_unknown_flags(rrset, r))
213		return 0;
214	if(!nsec3_get_salt(rrset, r, salt, saltlen))
215		return 0;
216	*algo = nsec3_get_algo(rrset, r);
217	*iter = nsec3_get_iter(rrset, r);
218	return 1;
219}
220
221int
222nsec3_get_nextowner(struct ub_packed_rrset_key* rrset, int r,
223	uint8_t** next, size_t* nextlen)
224{
225	size_t saltlen;
226        struct packed_rrset_data* d = (struct packed_rrset_data*)
227	        rrset->entry.data;
228	log_assert(d && r < (int)d->count);
229	if(d->rr_len[r] < 2+5) {
230		*next = 0;
231		*nextlen = 0;
232		return 0; /* malformed */
233	}
234	saltlen = (size_t)d->rr_data[r][2+4];
235	if(d->rr_len[r] < 2+5+saltlen+1) {
236		*next = 0;
237		*nextlen = 0;
238		return 0; /* malformed */
239	}
240	*nextlen = (size_t)d->rr_data[r][2+5+saltlen];
241	if(d->rr_len[r] < 2+5+saltlen+1+*nextlen) {
242		*next = 0;
243		*nextlen = 0;
244		return 0; /* malformed */
245	}
246	*next = d->rr_data[r]+2+5+saltlen+1;
247	return 1;
248}
249
250size_t nsec3_hash_to_b32(uint8_t* hash, size_t hashlen, uint8_t* zone,
251	size_t zonelen, uint8_t* buf, size_t max)
252{
253	/* write b32 of name, leave one for length */
254	int ret;
255	if(max < hashlen*2+1) /* quick approx of b32, as if hexb16 */
256		return 0;
257	ret = sldns_b32_ntop_extended_hex(hash, hashlen, (char*)buf+1, max-1);
258	if(ret < 1)
259		return 0;
260	buf[0] = (uint8_t)ret; /* length of b32 label */
261	ret++;
262	if(max - ret < zonelen)
263		return 0;
264	memmove(buf+ret, zone, zonelen);
265	return zonelen+(size_t)ret;
266}
267
268size_t nsec3_get_nextowner_b32(struct ub_packed_rrset_key* rrset, int r,
269	uint8_t* buf, size_t max)
270{
271	uint8_t* nm, *zone;
272	size_t nmlen, zonelen;
273	if(!nsec3_get_nextowner(rrset, r, &nm, &nmlen))
274		return 0;
275	/* append zone name; the owner name must be <b32>.zone */
276	zone = rrset->rk.dname;
277	zonelen = rrset->rk.dname_len;
278	dname_remove_label(&zone, &zonelen);
279	return nsec3_hash_to_b32(nm, nmlen, zone, zonelen, buf, max);
280}
281
282int
283nsec3_has_type(struct ub_packed_rrset_key* rrset, int r, uint16_t type)
284{
285	uint8_t* bitmap;
286	size_t bitlen, skiplen;
287        struct packed_rrset_data* d = (struct packed_rrset_data*)
288	        rrset->entry.data;
289	log_assert(d && r < (int)d->count);
290	skiplen = 2+4;
291	/* skip salt */
292	if(d->rr_len[r] < skiplen+1)
293		return 0; /* malformed, too short */
294	skiplen += 1+(size_t)d->rr_data[r][skiplen];
295	/* skip next hashed owner */
296	if(d->rr_len[r] < skiplen+1)
297		return 0; /* malformed, too short */
298	skiplen += 1+(size_t)d->rr_data[r][skiplen];
299	if(d->rr_len[r] < skiplen)
300		return 0; /* malformed, too short */
301	bitlen = d->rr_len[r] - skiplen;
302	bitmap = d->rr_data[r]+skiplen;
303	return nsecbitmap_has_type_rdata(bitmap, bitlen, type);
304}
305
306/**
307 * Iterate through NSEC3 list, per RR
308 * This routine gives the next RR in the list (or sets rrset null).
309 * Usage:
310 *
311 * size_t rrsetnum;
312 * int rrnum;
313 * struct ub_packed_rrset_key* rrset;
314 * for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset;
315 *	rrset=filter_next(filter, &rrsetnum, &rrnum))
316 *		do_stuff;
317 *
318 * Also filters out
319 * 	o unknown flag NSEC3s
320 * 	o unknown algorithm NSEC3s.
321 * @param filter: nsec3 filter structure.
322 * @param rrsetnum: in/out rrset number to look at.
323 * @param rrnum: in/out rr number in rrset to look at.
324 * @returns ptr to the next rrset (or NULL at end).
325 */
326static struct ub_packed_rrset_key*
327filter_next(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum)
328{
329	size_t i;
330	int r;
331	uint8_t* nm;
332	size_t nmlen;
333	if(!filter->zone) /* empty list */
334		return NULL;
335	for(i=*rrsetnum; i<filter->num; i++) {
336		/* see if RRset qualifies */
337		if(ntohs(filter->list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 ||
338			ntohs(filter->list[i]->rk.rrset_class) !=
339			filter->fclass)
340			continue;
341		/* check RRset zone */
342		nm = filter->list[i]->rk.dname;
343		nmlen = filter->list[i]->rk.dname_len;
344		dname_remove_label(&nm, &nmlen);
345		if(query_dname_compare(nm, filter->zone) != 0)
346			continue;
347		if(i == *rrsetnum)
348			r = (*rrnum) + 1; /* continue at next RR */
349		else	r = 0;		/* new RRset start at first RR */
350		for(; r < (int)rrset_get_count(filter->list[i]); r++) {
351			/* skip unknown flags, algo */
352			if(nsec3_unknown_flags(filter->list[i], r) ||
353				!nsec3_known_algo(filter->list[i], r))
354				continue;
355			/* this one is a good target */
356			*rrsetnum = i;
357			*rrnum = r;
358			return filter->list[i];
359		}
360	}
361	return NULL;
362}
363
364/**
365 * Start iterating over NSEC3 records.
366 * @param filter: the filter structure, must have been filter_init-ed.
367 * @param rrsetnum: can be undefined on call, initialised.
368 * @param rrnum: can be undefined on call, initialised.
369 * @return first rrset of an NSEC3, together with rrnum this points to
370 *	the first RR to examine. Is NULL on empty list.
371 */
372static struct ub_packed_rrset_key*
373filter_first(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum)
374{
375	*rrsetnum = 0;
376	*rrnum = -1;
377	return filter_next(filter, rrsetnum, rrnum);
378}
379
380/** see if at least one RR is known (flags, algo) */
381static int
382nsec3_rrset_has_known(struct ub_packed_rrset_key* s)
383{
384	int r;
385	for(r=0; r < (int)rrset_get_count(s); r++) {
386		if(!nsec3_unknown_flags(s, r) && nsec3_known_algo(s, r))
387			return 1;
388	}
389	return 0;
390}
391
392/**
393 * Initialize the filter structure.
394 * Finds the zone by looking at available NSEC3 records and best match.
395 * 	(skips the unknown flag and unknown algo NSEC3s).
396 *
397 * @param filter: nsec3 filter structure.
398 * @param list: list of rrsets, an array of them.
399 * @param num: number of rrsets in list.
400 * @param qinfo:
401 *	query name to match a zone for.
402 *	query type (if DS a higher zone must be chosen)
403 *	qclass, to filter NSEC3s with.
404 */
405static void
406filter_init(struct nsec3_filter* filter, struct ub_packed_rrset_key** list,
407	size_t num, struct query_info* qinfo)
408{
409	size_t i;
410	uint8_t* nm;
411	size_t nmlen;
412	filter->zone = NULL;
413	filter->zone_len = 0;
414	filter->list = list;
415	filter->num = num;
416	filter->fclass = qinfo->qclass;
417	for(i=0; i<num; i++) {
418		/* ignore other stuff in the list */
419		if(ntohs(list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 ||
420			ntohs(list[i]->rk.rrset_class) != qinfo->qclass)
421			continue;
422		/* skip unknown flags, algo */
423		if(!nsec3_rrset_has_known(list[i]))
424			continue;
425
426		/* since NSEC3s are base32.zonename, we can find the zone
427		 * name by stripping off the first label of the record */
428		nm = list[i]->rk.dname;
429		nmlen = list[i]->rk.dname_len;
430		dname_remove_label(&nm, &nmlen);
431		/* if we find a domain that can prove about the qname,
432		 * and if this domain is closer to the qname */
433		if(dname_subdomain_c(qinfo->qname, nm) && (!filter->zone ||
434			dname_subdomain_c(nm, filter->zone))) {
435			/* for a type DS do not accept a zone equal to qname*/
436			if(qinfo->qtype == LDNS_RR_TYPE_DS &&
437				query_dname_compare(qinfo->qname, nm) == 0 &&
438				!dname_is_root(qinfo->qname))
439				continue;
440			filter->zone = nm;
441			filter->zone_len = nmlen;
442		}
443	}
444}
445
446/**
447 * Find max iteration count using config settings and key size
448 * @param ve: validator environment with iteration count config settings.
449 * @param bits: key size
450 * @return max iteration count
451 */
452static size_t
453get_max_iter(struct val_env* ve, size_t bits)
454{
455	int i;
456	log_assert(ve->nsec3_keyiter_count > 0);
457	/* round up to nearest config keysize, linear search, keep it small */
458	for(i=0; i<ve->nsec3_keyiter_count; i++) {
459		if(bits <= ve->nsec3_keysize[i])
460			return ve->nsec3_maxiter[i];
461	}
462	/* else, use value for biggest key */
463	return ve->nsec3_maxiter[ve->nsec3_keyiter_count-1];
464}
465
466/**
467 * Determine if any of the NSEC3 rrs iteration count is too high, from key.
468 * @param ve: validator environment with iteration count config settings.
469 * @param filter: what NSEC3s to loop over.
470 * @param kkey: key entry used for verification; used for iteration counts.
471 * @return 1 if some nsec3s are above the max iteration count.
472 */
473static int
474nsec3_iteration_count_high(struct val_env* ve, struct nsec3_filter* filter,
475	struct key_entry_key* kkey)
476{
477	size_t rrsetnum;
478	int rrnum;
479	struct ub_packed_rrset_key* rrset;
480	/* first determine the max number of iterations */
481	size_t bits = key_entry_keysize(kkey);
482	size_t max_iter = get_max_iter(ve, bits);
483	verbose(VERB_ALGO, "nsec3: keysize %d bits, max iterations %d",
484		(int)bits, (int)max_iter);
485
486	for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset;
487		rrset=filter_next(filter, &rrsetnum, &rrnum)) {
488		if(nsec3_get_iter(rrset, rrnum) > max_iter)
489			return 1;
490	}
491	return 0;
492}
493
494/* nsec3_cache_compare for rbtree */
495int
496nsec3_hash_cmp(const void* c1, const void* c2)
497{
498	struct nsec3_cached_hash* h1 = (struct nsec3_cached_hash*)c1;
499	struct nsec3_cached_hash* h2 = (struct nsec3_cached_hash*)c2;
500	uint8_t* s1, *s2;
501	size_t s1len, s2len;
502	int c = query_dname_compare(h1->dname, h2->dname);
503	if(c != 0)
504		return c;
505	/* compare parameters */
506	/* if both malformed, its equal, robustness */
507	if(nsec3_get_algo(h1->nsec3, h1->rr) !=
508		nsec3_get_algo(h2->nsec3, h2->rr)) {
509		if(nsec3_get_algo(h1->nsec3, h1->rr) <
510			nsec3_get_algo(h2->nsec3, h2->rr))
511			return -1;
512		return 1;
513	}
514	if(nsec3_get_iter(h1->nsec3, h1->rr) !=
515		nsec3_get_iter(h2->nsec3, h2->rr)) {
516		if(nsec3_get_iter(h1->nsec3, h1->rr) <
517			nsec3_get_iter(h2->nsec3, h2->rr))
518			return -1;
519		return 1;
520	}
521	(void)nsec3_get_salt(h1->nsec3, h1->rr, &s1, &s1len);
522	(void)nsec3_get_salt(h2->nsec3, h2->rr, &s2, &s2len);
523	if(s1len != s2len) {
524		if(s1len < s2len)
525			return -1;
526		return 1;
527	}
528	return memcmp(s1, s2, s1len);
529}
530
531size_t
532nsec3_get_hashed(sldns_buffer* buf, uint8_t* nm, size_t nmlen, int algo,
533	size_t iter, uint8_t* salt, size_t saltlen, uint8_t* res, size_t max)
534{
535	size_t i, hash_len;
536	/* prepare buffer for first iteration */
537	sldns_buffer_clear(buf);
538	sldns_buffer_write(buf, nm, nmlen);
539	query_dname_tolower(sldns_buffer_begin(buf));
540	sldns_buffer_write(buf, salt, saltlen);
541	sldns_buffer_flip(buf);
542	hash_len = nsec3_hash_algo_size_supported(algo);
543	if(hash_len == 0) {
544		log_err("nsec3 hash of unknown algo %d", algo);
545		return 0;
546	}
547	if(hash_len > max)
548		return 0;
549	if(!secalgo_nsec3_hash(algo, (unsigned char*)sldns_buffer_begin(buf),
550		sldns_buffer_limit(buf), (unsigned char*)res))
551		return 0;
552	for(i=0; i<iter; i++) {
553		sldns_buffer_clear(buf);
554		sldns_buffer_write(buf, res, hash_len);
555		sldns_buffer_write(buf, salt, saltlen);
556		sldns_buffer_flip(buf);
557		if(!secalgo_nsec3_hash(algo,
558			(unsigned char*)sldns_buffer_begin(buf),
559			sldns_buffer_limit(buf), (unsigned char*)res))
560			return 0;
561	}
562	return hash_len;
563}
564
565/** perform hash of name */
566static int
567nsec3_calc_hash(struct regional* region, sldns_buffer* buf,
568	struct nsec3_cached_hash* c)
569{
570	int algo = nsec3_get_algo(c->nsec3, c->rr);
571	size_t iter = nsec3_get_iter(c->nsec3, c->rr);
572	uint8_t* salt;
573	size_t saltlen, i;
574	if(!nsec3_get_salt(c->nsec3, c->rr, &salt, &saltlen))
575		return -1;
576	/* prepare buffer for first iteration */
577	sldns_buffer_clear(buf);
578	sldns_buffer_write(buf, c->dname, c->dname_len);
579	query_dname_tolower(sldns_buffer_begin(buf));
580	sldns_buffer_write(buf, salt, saltlen);
581	sldns_buffer_flip(buf);
582	c->hash_len = nsec3_hash_algo_size_supported(algo);
583	if(c->hash_len == 0) {
584		log_err("nsec3 hash of unknown algo %d", algo);
585		return -1;
586	}
587	c->hash = (uint8_t*)regional_alloc(region, c->hash_len);
588	if(!c->hash)
589		return 0;
590	(void)secalgo_nsec3_hash(algo, (unsigned char*)sldns_buffer_begin(buf),
591		sldns_buffer_limit(buf), (unsigned char*)c->hash);
592	for(i=0; i<iter; i++) {
593		sldns_buffer_clear(buf);
594		sldns_buffer_write(buf, c->hash, c->hash_len);
595		sldns_buffer_write(buf, salt, saltlen);
596		sldns_buffer_flip(buf);
597		(void)secalgo_nsec3_hash(algo,
598			(unsigned char*)sldns_buffer_begin(buf),
599			sldns_buffer_limit(buf), (unsigned char*)c->hash);
600	}
601	return 1;
602}
603
604/** perform b32 encoding of hash */
605static int
606nsec3_calc_b32(struct regional* region, sldns_buffer* buf,
607	struct nsec3_cached_hash* c)
608{
609	int r;
610	sldns_buffer_clear(buf);
611	r = sldns_b32_ntop_extended_hex(c->hash, c->hash_len,
612		(char*)sldns_buffer_begin(buf), sldns_buffer_limit(buf));
613	if(r < 1) {
614		log_err("b32_ntop_extended_hex: error in encoding: %d", r);
615		return 0;
616	}
617	c->b32_len = (size_t)r;
618	c->b32 = regional_alloc_init(region, sldns_buffer_begin(buf),
619		c->b32_len);
620	if(!c->b32)
621		return 0;
622	return 1;
623}
624
625int
626nsec3_hash_name(rbtree_t* table, struct regional* region, sldns_buffer* buf,
627	struct ub_packed_rrset_key* nsec3, int rr, uint8_t* dname,
628	size_t dname_len, struct nsec3_cached_hash** hash)
629{
630	struct nsec3_cached_hash* c;
631	struct nsec3_cached_hash looki;
632#ifdef UNBOUND_DEBUG
633	rbnode_t* n;
634#endif
635	int r;
636	looki.node.key = &looki;
637	looki.nsec3 = nsec3;
638	looki.rr = rr;
639	looki.dname = dname;
640	looki.dname_len = dname_len;
641	/* lookup first in cache */
642	c = (struct nsec3_cached_hash*)rbtree_search(table, &looki);
643	if(c) {
644		*hash = c;
645		return 1;
646	}
647	/* create a new entry */
648	c = (struct nsec3_cached_hash*)regional_alloc(region, sizeof(*c));
649	if(!c) return 0;
650	c->node.key = c;
651	c->nsec3 = nsec3;
652	c->rr = rr;
653	c->dname = dname;
654	c->dname_len = dname_len;
655	r = nsec3_calc_hash(region, buf, c);
656	if(r != 1)
657		return r;
658	r = nsec3_calc_b32(region, buf, c);
659	if(r != 1)
660		return r;
661#ifdef UNBOUND_DEBUG
662	n =
663#else
664	(void)
665#endif
666	rbtree_insert(table, &c->node);
667	log_assert(n); /* cannot be duplicate, just did lookup */
668	*hash = c;
669	return 1;
670}
671
672/**
673 * compare a label lowercased
674 */
675static int
676label_compare_lower(uint8_t* lab1, uint8_t* lab2, size_t lablen)
677{
678	size_t i;
679	for(i=0; i<lablen; i++) {
680		if(tolower((unsigned char)*lab1) != tolower((unsigned char)*lab2)) {
681			if(tolower((unsigned char)*lab1) < tolower((unsigned char)*lab2))
682				return -1;
683			return 1;
684		}
685		lab1++;
686		lab2++;
687	}
688	return 0;
689}
690
691/**
692 * Compare a hashed name with the owner name of an NSEC3 RRset.
693 * @param flt: filter with zone name.
694 * @param hash: the hashed name.
695 * @param s: rrset with owner name.
696 * @return true if matches exactly, false if not.
697 */
698static int
699nsec3_hash_matches_owner(struct nsec3_filter* flt,
700	struct nsec3_cached_hash* hash, struct ub_packed_rrset_key* s)
701{
702	uint8_t* nm = s->rk.dname;
703	/* compare, does hash of name based on params in this NSEC3
704	 * match the owner name of this NSEC3?
705	 * name must be: <hashlength>base32 . zone name
706	 * so; first label must not be root label (not zero length),
707	 * and match the b32 encoded hash length,
708	 * and the label content match the b32 encoded hash
709	 * and the rest must be the zone name.
710	 */
711	if(hash->b32_len != 0 && (size_t)nm[0] == hash->b32_len &&
712		label_compare_lower(nm+1, hash->b32, hash->b32_len) == 0 &&
713		query_dname_compare(nm+(size_t)nm[0]+1, flt->zone) == 0) {
714		return 1;
715	}
716	return 0;
717}
718
719/**
720 * Find matching NSEC3
721 * Find the NSEC3Record that matches a hash of a name.
722 * @param env: module environment with temporary region and buffer.
723 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
724 * @param ct: cached hashes table.
725 * @param nm: name to look for.
726 * @param nmlen: length of name.
727 * @param rrset: nsec3 that matches is returned here.
728 * @param rr: rr number in nsec3 rrset that matches.
729 * @return true if a matching NSEC3 is found, false if not.
730 */
731static int
732find_matching_nsec3(struct module_env* env, struct nsec3_filter* flt,
733	rbtree_t* ct, uint8_t* nm, size_t nmlen,
734	struct ub_packed_rrset_key** rrset, int* rr)
735{
736	size_t i_rs;
737	int i_rr;
738	struct ub_packed_rrset_key* s;
739	struct nsec3_cached_hash* hash;
740	int r;
741
742	/* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */
743	for(s=filter_first(flt, &i_rs, &i_rr); s;
744		s=filter_next(flt, &i_rs, &i_rr)) {
745		/* get name hashed for this NSEC3 RR */
746		r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer,
747			s, i_rr, nm, nmlen, &hash);
748		if(r == 0) {
749			log_err("nsec3: malloc failure");
750			break; /* alloc failure */
751		} else if(r < 0)
752			continue; /* malformed NSEC3 */
753		else if(nsec3_hash_matches_owner(flt, hash, s)) {
754			*rrset = s; /* rrset with this name */
755			*rr = i_rr; /* matches hash with these parameters */
756			return 1;
757		}
758	}
759	*rrset = NULL;
760	*rr = 0;
761	return 0;
762}
763
764int
765nsec3_covers(uint8_t* zone, struct nsec3_cached_hash* hash,
766	struct ub_packed_rrset_key* rrset, int rr, sldns_buffer* buf)
767{
768	uint8_t* next, *owner;
769	size_t nextlen;
770	int len;
771	if(!nsec3_get_nextowner(rrset, rr, &next, &nextlen))
772		return 0; /* malformed RR proves nothing */
773
774	/* check the owner name is a hashed value . apex
775	 * base32 encoded values must have equal length.
776	 * hash_value and next hash value must have equal length. */
777	if(nextlen != hash->hash_len || hash->hash_len==0||hash->b32_len==0||
778		(size_t)*rrset->rk.dname != hash->b32_len ||
779		query_dname_compare(rrset->rk.dname+1+
780			(size_t)*rrset->rk.dname, zone) != 0)
781		return 0; /* bad lengths or owner name */
782
783	/* This is the "normal case: owner < next and owner < hash < next */
784	if(label_compare_lower(rrset->rk.dname+1, hash->b32,
785		hash->b32_len) < 0 &&
786		memcmp(hash->hash, next, nextlen) < 0)
787		return 1;
788
789	/* convert owner name from text to binary */
790	sldns_buffer_clear(buf);
791	owner = sldns_buffer_begin(buf);
792	len = sldns_b32_pton_extended_hex((char*)rrset->rk.dname+1,
793		hash->b32_len, owner, sldns_buffer_limit(buf));
794	if(len<1)
795		return 0; /* bad owner name in some way */
796	if((size_t)len != hash->hash_len || (size_t)len != nextlen)
797		return 0; /* wrong length */
798
799	/* this is the end of zone case: next <= owner &&
800	 * 	(hash > owner || hash < next)
801	 * this also covers the only-apex case of next==owner.
802	 */
803	if(memcmp(next, owner, nextlen) <= 0 &&
804		( memcmp(hash->hash, owner, nextlen) > 0 ||
805		  memcmp(hash->hash, next, nextlen) < 0)) {
806		return 1;
807	}
808	return 0;
809}
810
811/**
812 * findCoveringNSEC3
813 * Given a name, find a covering NSEC3 from among a list of NSEC3s.
814 *
815 * @param env: module environment with temporary region and buffer.
816 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
817 * @param ct: cached hashes table.
818 * @param nm: name to check if covered.
819 * @param nmlen: length of name.
820 * @param rrset: covering NSEC3 rrset is returned here.
821 * @param rr: rr of cover is returned here.
822 * @return true if a covering NSEC3 is found, false if not.
823 */
824static int
825find_covering_nsec3(struct module_env* env, struct nsec3_filter* flt,
826        rbtree_t* ct, uint8_t* nm, size_t nmlen,
827	struct ub_packed_rrset_key** rrset, int* rr)
828{
829	size_t i_rs;
830	int i_rr;
831	struct ub_packed_rrset_key* s;
832	struct nsec3_cached_hash* hash;
833	int r;
834
835	/* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */
836	for(s=filter_first(flt, &i_rs, &i_rr); s;
837		s=filter_next(flt, &i_rs, &i_rr)) {
838		/* get name hashed for this NSEC3 RR */
839		r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer,
840			s, i_rr, nm, nmlen, &hash);
841		if(r == 0) {
842			log_err("nsec3: malloc failure");
843			break; /* alloc failure */
844		} else if(r < 0)
845			continue; /* malformed NSEC3 */
846		else if(nsec3_covers(flt->zone, hash, s, i_rr,
847			env->scratch_buffer)) {
848			*rrset = s; /* rrset with this name */
849			*rr = i_rr; /* covers hash with these parameters */
850			return 1;
851		}
852	}
853	*rrset = NULL;
854	*rr = 0;
855	return 0;
856}
857
858/**
859 * findClosestEncloser
860 * Given a name and a list of NSEC3s, find the candidate closest encloser.
861 * This will be the first ancestor of 'name' (including itself) to have a
862 * matching NSEC3 RR.
863 * @param env: module environment with temporary region and buffer.
864 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
865 * @param ct: cached hashes table.
866 * @param qinfo: query that is verified for.
867 * @param ce: closest encloser information is returned in here.
868 * @return true if a closest encloser candidate is found, false if not.
869 */
870static int
871nsec3_find_closest_encloser(struct module_env* env, struct nsec3_filter* flt,
872	rbtree_t* ct, struct query_info* qinfo, struct ce_response* ce)
873{
874	uint8_t* nm = qinfo->qname;
875	size_t nmlen = qinfo->qname_len;
876
877	/* This scans from longest name to shortest, so the first match
878	 * we find is the only viable candidate. */
879
880	/* (David:) FIXME: modify so that the NSEC3 matching the zone apex need
881	 * not be present. (Mark Andrews idea).
882	 * (Wouter:) But make sure you check for DNAME bit in zone apex,
883	 * if the NSEC3 you find is the only NSEC3 in the zone, then this
884	 * may be the case. */
885
886	while(dname_subdomain_c(nm, flt->zone)) {
887		if(find_matching_nsec3(env, flt, ct, nm, nmlen,
888			&ce->ce_rrset, &ce->ce_rr)) {
889			ce->ce = nm;
890			ce->ce_len = nmlen;
891			return 1;
892		}
893		dname_remove_label(&nm, &nmlen);
894	}
895	return 0;
896}
897
898/**
899 * Given a qname and its proven closest encloser, calculate the "next
900 * closest" name. Basically, this is the name that is one label longer than
901 * the closest encloser that is still a subdomain of qname.
902 *
903 * @param qname: query name.
904 * @param qnamelen: length of qname.
905 * @param ce: closest encloser
906 * @param nm: result name.
907 * @param nmlen: length of nm.
908 */
909static void
910next_closer(uint8_t* qname, size_t qnamelen, uint8_t* ce,
911	uint8_t** nm, size_t* nmlen)
912{
913	int strip = dname_count_labels(qname) - dname_count_labels(ce) -1;
914	*nm = qname;
915	*nmlen = qnamelen;
916	if(strip>0)
917		dname_remove_labels(nm, nmlen, strip);
918}
919
920/**
921 * proveClosestEncloser
922 * Given a List of nsec3 RRs, find and prove the closest encloser to qname.
923 * @param env: module environment with temporary region and buffer.
924 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
925 * @param ct: cached hashes table.
926 * @param qinfo: query that is verified for.
927 * @param prove_does_not_exist: If true, then if the closest encloser
928 * 	turns out to be qname, then null is returned.
929 * 	If set true, and the return value is true, then you can be
930 * 	certain that the ce.nc_rrset and ce.nc_rr are set properly.
931 * @param ce: closest encloser information is returned in here.
932 * @return bogus if no closest encloser could be proven.
933 * 	secure if a closest encloser could be proven, ce is set.
934 * 	insecure if the closest-encloser candidate turns out to prove
935 * 		that an insecure delegation exists above the qname.
936 */
937static enum sec_status
938nsec3_prove_closest_encloser(struct module_env* env, struct nsec3_filter* flt,
939	rbtree_t* ct, struct query_info* qinfo, int prove_does_not_exist,
940	struct ce_response* ce)
941{
942	uint8_t* nc;
943	size_t nc_len;
944	/* robust: clean out ce, in case it gets abused later */
945	memset(ce, 0, sizeof(*ce));
946
947	if(!nsec3_find_closest_encloser(env, flt, ct, qinfo, ce)) {
948		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: could "
949			"not find a candidate for the closest encloser.");
950		return sec_status_bogus;
951	}
952	log_nametypeclass(VERB_ALGO, "ce candidate", ce->ce, 0, 0);
953
954	if(query_dname_compare(ce->ce, qinfo->qname) == 0) {
955		if(prove_does_not_exist) {
956			verbose(VERB_ALGO, "nsec3 proveClosestEncloser: "
957				"proved that qname existed, bad");
958			return sec_status_bogus;
959		}
960		/* otherwise, we need to nothing else to prove that qname
961		 * is its own closest encloser. */
962		return sec_status_secure;
963	}
964
965	/* If the closest encloser is actually a delegation, then the
966	 * response should have been a referral. If it is a DNAME, then
967	 * it should have been a DNAME response. */
968	if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_NS) &&
969		!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_SOA)) {
970		if(!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DS)) {
971			verbose(VERB_ALGO, "nsec3 proveClosestEncloser: "
972				"closest encloser is insecure delegation");
973			return sec_status_insecure;
974		}
975		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest "
976			"encloser was a delegation, bad");
977		return sec_status_bogus;
978	}
979	if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DNAME)) {
980		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest "
981			"encloser was a DNAME, bad");
982		return sec_status_bogus;
983	}
984
985	/* Otherwise, we need to show that the next closer name is covered. */
986	next_closer(qinfo->qname, qinfo->qname_len, ce->ce, &nc, &nc_len);
987	if(!find_covering_nsec3(env, flt, ct, nc, nc_len,
988		&ce->nc_rrset, &ce->nc_rr)) {
989		verbose(VERB_ALGO, "nsec3: Could not find proof that the "
990		          "candidate encloser was the closest encloser");
991		return sec_status_bogus;
992	}
993	return sec_status_secure;
994}
995
996/** allocate a wildcard for the closest encloser */
997static uint8_t*
998nsec3_ce_wildcard(struct regional* region, uint8_t* ce, size_t celen,
999	size_t* len)
1000{
1001	uint8_t* nm;
1002	if(celen > LDNS_MAX_DOMAINLEN - 2)
1003		return 0; /* too long */
1004	nm = (uint8_t*)regional_alloc(region, celen+2);
1005	if(!nm) {
1006		log_err("nsec3 wildcard: out of memory");
1007		return 0; /* alloc failure */
1008	}
1009	nm[0] = 1;
1010	nm[1] = (uint8_t)'*'; /* wildcard label */
1011	memmove(nm+2, ce, celen);
1012	*len = celen+2;
1013	return nm;
1014}
1015
1016/** Do the name error proof */
1017static enum sec_status
1018nsec3_do_prove_nameerror(struct module_env* env, struct nsec3_filter* flt,
1019	rbtree_t* ct, struct query_info* qinfo)
1020{
1021	struct ce_response ce;
1022	uint8_t* wc;
1023	size_t wclen;
1024	struct ub_packed_rrset_key* wc_rrset;
1025	int wc_rr;
1026	enum sec_status sec;
1027
1028	/* First locate and prove the closest encloser to qname. We will
1029	 * use the variant that fails if the closest encloser turns out
1030	 * to be qname. */
1031	sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce);
1032	if(sec != sec_status_secure) {
1033		if(sec == sec_status_bogus)
1034			verbose(VERB_ALGO, "nsec3 nameerror proof: failed "
1035				"to prove a closest encloser");
1036		else 	verbose(VERB_ALGO, "nsec3 nameerror proof: closest "
1037				"nsec3 is an insecure delegation");
1038		return sec;
1039	}
1040	log_nametypeclass(VERB_ALGO, "nsec3 namerror: proven ce=", ce.ce,0,0);
1041
1042	/* At this point, we know that qname does not exist. Now we need
1043	 * to prove that the wildcard does not exist. */
1044	log_assert(ce.ce);
1045	wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen);
1046	if(!wc || !find_covering_nsec3(env, flt, ct, wc, wclen,
1047		&wc_rrset, &wc_rr)) {
1048		verbose(VERB_ALGO, "nsec3 nameerror proof: could not prove "
1049			"that the applicable wildcard did not exist.");
1050		return sec_status_bogus;
1051	}
1052
1053	if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1054		verbose(VERB_ALGO, "nsec3 nameerror proof: nc has optout");
1055		return sec_status_insecure;
1056	}
1057	return sec_status_secure;
1058}
1059
1060enum sec_status
1061nsec3_prove_nameerror(struct module_env* env, struct val_env* ve,
1062	struct ub_packed_rrset_key** list, size_t num,
1063	struct query_info* qinfo, struct key_entry_key* kkey)
1064{
1065	rbtree_t ct;
1066	struct nsec3_filter flt;
1067
1068	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1069		return sec_status_bogus; /* no valid NSEC3s, bogus */
1070	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1071	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1072	if(!flt.zone)
1073		return sec_status_bogus; /* no RRs */
1074	if(nsec3_iteration_count_high(ve, &flt, kkey))
1075		return sec_status_insecure; /* iteration count too high */
1076	log_nametypeclass(VERB_ALGO, "start nsec3 nameerror proof, zone",
1077		flt.zone, 0, 0);
1078	return nsec3_do_prove_nameerror(env, &flt, &ct, qinfo);
1079}
1080
1081/*
1082 * No code to handle qtype=NSEC3 specially.
1083 * This existed in early drafts, but was later (-05) removed.
1084 */
1085
1086/** Do the nodata proof */
1087static enum sec_status
1088nsec3_do_prove_nodata(struct module_env* env, struct nsec3_filter* flt,
1089	rbtree_t* ct, struct query_info* qinfo)
1090{
1091	struct ce_response ce;
1092	uint8_t* wc;
1093	size_t wclen;
1094	struct ub_packed_rrset_key* rrset;
1095	int rr;
1096	enum sec_status sec;
1097
1098	if(find_matching_nsec3(env, flt, ct, qinfo->qname, qinfo->qname_len,
1099		&rrset, &rr)) {
1100		/* cases 1 and 2 */
1101		if(nsec3_has_type(rrset, rr, qinfo->qtype)) {
1102			verbose(VERB_ALGO, "proveNodata: Matching NSEC3 "
1103				"proved that type existed, bogus");
1104			return sec_status_bogus;
1105		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) {
1106			verbose(VERB_ALGO, "proveNodata: Matching NSEC3 "
1107				"proved that a CNAME existed, bogus");
1108			return sec_status_bogus;
1109		}
1110
1111		/*
1112		 * If type DS: filter_init zone find already found a parent
1113		 *   zone, so this nsec3 is from a parent zone.
1114		 *   o can be not a delegation (unusual query for normal name,
1115		 *   	no DS anyway, but we can verify that).
1116		 *   o can be a delegation (which is the usual DS check).
1117		 *   o may not have the SOA bit set (only the top of the
1118		 *   	zone, which must have been above the name, has that).
1119		 *   	Except for the root; which is checked by itself.
1120		 *
1121		 * If not type DS: matching nsec3 must not be a delegation.
1122		 */
1123		if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1
1124			&& nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) &&
1125			!dname_is_root(qinfo->qname)) {
1126			verbose(VERB_ALGO, "proveNodata: apex NSEC3 "
1127				"abused for no DS proof, bogus");
1128			return sec_status_bogus;
1129		} else if(qinfo->qtype != LDNS_RR_TYPE_DS &&
1130			nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) &&
1131			!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1132			if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) {
1133				verbose(VERB_ALGO, "proveNodata: matching "
1134					"NSEC3 is insecure delegation");
1135				return sec_status_insecure;
1136			}
1137			verbose(VERB_ALGO, "proveNodata: matching "
1138				"NSEC3 is a delegation, bogus");
1139			return sec_status_bogus;
1140		}
1141		return sec_status_secure;
1142	}
1143
1144	/* For cases 3 - 5, we need the proven closest encloser, and it
1145	 * can't match qname. Although, at this point, we know that it
1146	 * won't since we just checked that. */
1147	sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce);
1148	if(sec == sec_status_bogus) {
1149		verbose(VERB_ALGO, "proveNodata: did not match qname, "
1150		          "nor found a proven closest encloser.");
1151		return sec_status_bogus;
1152	} else if(sec==sec_status_insecure && qinfo->qtype!=LDNS_RR_TYPE_DS){
1153		verbose(VERB_ALGO, "proveNodata: closest nsec3 is insecure "
1154		          "delegation.");
1155		return sec_status_insecure;
1156	}
1157
1158	/* Case 3: removed */
1159
1160	/* Case 4: */
1161	log_assert(ce.ce);
1162	wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen);
1163	if(wc && find_matching_nsec3(env, flt, ct, wc, wclen, &rrset, &rr)) {
1164		/* found wildcard */
1165		if(nsec3_has_type(rrset, rr, qinfo->qtype)) {
1166			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1167				"wildcard had qtype, bogus");
1168			return sec_status_bogus;
1169		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) {
1170			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1171				"wildcard had a CNAME, bogus");
1172			return sec_status_bogus;
1173		}
1174		if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1
1175			&& nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1176			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1177				"wildcard for no DS proof has a SOA, bogus");
1178			return sec_status_bogus;
1179		} else if(qinfo->qtype != LDNS_RR_TYPE_DS &&
1180			nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) &&
1181			!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1182			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1183				"wilcard is a delegation, bogus");
1184			return sec_status_bogus;
1185		}
1186		/* everything is peachy keen, except for optout spans */
1187		if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1188			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1189				"wildcard is in optout range, insecure");
1190			return sec_status_insecure;
1191		}
1192		return sec_status_secure;
1193	}
1194
1195	/* Case 5: */
1196	/* Due to forwarders, cnames, and other collating effects, we
1197	 * can see the ordinary unsigned data from a zone beneath an
1198	 * insecure delegation under an optout here */
1199	if(!ce.nc_rrset) {
1200		verbose(VERB_ALGO, "nsec3 nodata proof: no next closer nsec3");
1201		return sec_status_bogus;
1202	}
1203
1204	/* We need to make sure that the covering NSEC3 is opt-out. */
1205	log_assert(ce.nc_rrset);
1206	if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1207		if(qinfo->qtype == LDNS_RR_TYPE_DS)
1208		  verbose(VERB_ALGO, "proveNodata: covering NSEC3 was not "
1209			"opt-out in an opt-out DS NOERROR/NODATA case.");
1210		else verbose(VERB_ALGO, "proveNodata: could not find matching "
1211			"NSEC3, nor matching wildcard, nor optout NSEC3 "
1212			"-- no more options, bogus.");
1213		return sec_status_bogus;
1214	}
1215	/* RFC5155 section 9.2: if nc has optout then no AD flag set */
1216	return sec_status_insecure;
1217}
1218
1219enum sec_status
1220nsec3_prove_nodata(struct module_env* env, struct val_env* ve,
1221	struct ub_packed_rrset_key** list, size_t num,
1222	struct query_info* qinfo, struct key_entry_key* kkey)
1223{
1224	rbtree_t ct;
1225	struct nsec3_filter flt;
1226
1227	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1228		return sec_status_bogus; /* no valid NSEC3s, bogus */
1229	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1230	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1231	if(!flt.zone)
1232		return sec_status_bogus; /* no RRs */
1233	if(nsec3_iteration_count_high(ve, &flt, kkey))
1234		return sec_status_insecure; /* iteration count too high */
1235	return nsec3_do_prove_nodata(env, &flt, &ct, qinfo);
1236}
1237
1238enum sec_status
1239nsec3_prove_wildcard(struct module_env* env, struct val_env* ve,
1240        struct ub_packed_rrset_key** list, size_t num,
1241	struct query_info* qinfo, struct key_entry_key* kkey, uint8_t* wc)
1242{
1243	rbtree_t ct;
1244	struct nsec3_filter flt;
1245	struct ce_response ce;
1246	uint8_t* nc;
1247	size_t nc_len;
1248	size_t wclen;
1249	(void)dname_count_size_labels(wc, &wclen);
1250
1251	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1252		return sec_status_bogus; /* no valid NSEC3s, bogus */
1253	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1254	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1255	if(!flt.zone)
1256		return sec_status_bogus; /* no RRs */
1257	if(nsec3_iteration_count_high(ve, &flt, kkey))
1258		return sec_status_insecure; /* iteration count too high */
1259
1260	/* We know what the (purported) closest encloser is by just
1261	 * looking at the supposed generating wildcard.
1262	 * The *. has already been removed from the wc name.
1263	 */
1264	memset(&ce, 0, sizeof(ce));
1265	ce.ce = wc;
1266	ce.ce_len = wclen;
1267
1268	/* Now we still need to prove that the original data did not exist.
1269	 * Otherwise, we need to show that the next closer name is covered. */
1270	next_closer(qinfo->qname, qinfo->qname_len, ce.ce, &nc, &nc_len);
1271	if(!find_covering_nsec3(env, &flt, &ct, nc, nc_len,
1272		&ce.nc_rrset, &ce.nc_rr)) {
1273		verbose(VERB_ALGO, "proveWildcard: did not find a covering "
1274			"NSEC3 that covered the next closer name.");
1275		return sec_status_bogus;
1276	}
1277	if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1278		verbose(VERB_ALGO, "proveWildcard: NSEC3 optout");
1279		return sec_status_insecure;
1280	}
1281	return sec_status_secure;
1282}
1283
1284/** test if list is all secure */
1285static int
1286list_is_secure(struct module_env* env, struct val_env* ve,
1287	struct ub_packed_rrset_key** list, size_t num,
1288	struct key_entry_key* kkey, char** reason)
1289{
1290	struct packed_rrset_data* d;
1291	size_t i;
1292	for(i=0; i<num; i++) {
1293		d = (struct packed_rrset_data*)list[i]->entry.data;
1294		if(list[i]->rk.type != htons(LDNS_RR_TYPE_NSEC3))
1295			continue;
1296		if(d->security == sec_status_secure)
1297			continue;
1298		rrset_check_sec_status(env->rrset_cache, list[i], *env->now);
1299		if(d->security == sec_status_secure)
1300			continue;
1301		d->security = val_verify_rrset_entry(env, ve, list[i], kkey,
1302			reason);
1303		if(d->security != sec_status_secure) {
1304			verbose(VERB_ALGO, "NSEC3 did not verify");
1305			return 0;
1306		}
1307		rrset_update_sec_status(env->rrset_cache, list[i], *env->now);
1308	}
1309	return 1;
1310}
1311
1312enum sec_status
1313nsec3_prove_nods(struct module_env* env, struct val_env* ve,
1314	struct ub_packed_rrset_key** list, size_t num,
1315	struct query_info* qinfo, struct key_entry_key* kkey, char** reason)
1316{
1317	rbtree_t ct;
1318	struct nsec3_filter flt;
1319	struct ce_response ce;
1320	struct ub_packed_rrset_key* rrset;
1321	int rr;
1322	log_assert(qinfo->qtype == LDNS_RR_TYPE_DS);
1323
1324	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) {
1325		*reason = "no valid NSEC3s";
1326		return sec_status_bogus; /* no valid NSEC3s, bogus */
1327	}
1328	if(!list_is_secure(env, ve, list, num, kkey, reason))
1329		return sec_status_bogus; /* not all NSEC3 records secure */
1330	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1331	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1332	if(!flt.zone) {
1333		*reason = "no NSEC3 records";
1334		return sec_status_bogus; /* no RRs */
1335	}
1336	if(nsec3_iteration_count_high(ve, &flt, kkey))
1337		return sec_status_insecure; /* iteration count too high */
1338
1339	/* Look for a matching NSEC3 to qname -- this is the normal
1340	 * NODATA case. */
1341	if(find_matching_nsec3(env, &flt, &ct, qinfo->qname, qinfo->qname_len,
1342		&rrset, &rr)) {
1343		/* If the matching NSEC3 has the SOA bit set, it is from
1344		 * the wrong zone (the child instead of the parent). If
1345		 * it has the DS bit set, then we were lied to. */
1346		if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) &&
1347			qinfo->qname_len != 1) {
1348			verbose(VERB_ALGO, "nsec3 provenods: NSEC3 is from"
1349				" child zone, bogus");
1350			*reason = "NSEC3 from child zone";
1351			return sec_status_bogus;
1352		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) {
1353			verbose(VERB_ALGO, "nsec3 provenods: NSEC3 has qtype"
1354				" DS, bogus");
1355			*reason = "NSEC3 has DS in bitmap";
1356			return sec_status_bogus;
1357		}
1358		/* If the NSEC3 RR doesn't have the NS bit set, then
1359		 * this wasn't a delegation point. */
1360		if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS))
1361			return sec_status_indeterminate;
1362		/* Otherwise, this proves no DS. */
1363		return sec_status_secure;
1364	}
1365
1366	/* Otherwise, we are probably in the opt-out case. */
1367	if(nsec3_prove_closest_encloser(env, &flt, &ct, qinfo, 1, &ce)
1368		!= sec_status_secure) {
1369		/* an insecure delegation *above* the qname does not prove
1370		 * anything about this qname exactly, and bogus is bogus */
1371		verbose(VERB_ALGO, "nsec3 provenods: did not match qname, "
1372		          "nor found a proven closest encloser.");
1373		*reason = "no NSEC3 closest encloser";
1374		return sec_status_bogus;
1375	}
1376
1377	/* robust extra check */
1378	if(!ce.nc_rrset) {
1379		verbose(VERB_ALGO, "nsec3 nods proof: no next closer nsec3");
1380		*reason = "no NSEC3 next closer";
1381		return sec_status_bogus;
1382	}
1383
1384	/* we had the closest encloser proof, then we need to check that the
1385	 * covering NSEC3 was opt-out -- the proveClosestEncloser step already
1386	 * checked to see if the closest encloser was a delegation or DNAME.
1387	 */
1388	log_assert(ce.nc_rrset);
1389	if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1390		verbose(VERB_ALGO, "nsec3 provenods: covering NSEC3 was not "
1391			"opt-out in an opt-out DS NOERROR/NODATA case.");
1392		*reason = "covering NSEC3 was not opt-out in an opt-out "
1393			"DS NOERROR/NODATA case";
1394		return sec_status_bogus;
1395	}
1396	/* RFC5155 section 9.2: if nc has optout then no AD flag set */
1397	return sec_status_insecure;
1398}
1399
1400enum sec_status
1401nsec3_prove_nxornodata(struct module_env* env, struct val_env* ve,
1402	struct ub_packed_rrset_key** list, size_t num,
1403	struct query_info* qinfo, struct key_entry_key* kkey, int* nodata)
1404{
1405	enum sec_status sec, secnx;
1406	rbtree_t ct;
1407	struct nsec3_filter flt;
1408	*nodata = 0;
1409
1410	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1411		return sec_status_bogus; /* no valid NSEC3s, bogus */
1412	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1413	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1414	if(!flt.zone)
1415		return sec_status_bogus; /* no RRs */
1416	if(nsec3_iteration_count_high(ve, &flt, kkey))
1417		return sec_status_insecure; /* iteration count too high */
1418
1419	/* try nxdomain and nodata after another, while keeping the
1420	 * hash cache intact */
1421
1422	secnx = nsec3_do_prove_nameerror(env, &flt, &ct, qinfo);
1423	if(secnx==sec_status_secure)
1424		return sec_status_secure;
1425	sec = nsec3_do_prove_nodata(env, &flt, &ct, qinfo);
1426	if(sec==sec_status_secure) {
1427		*nodata = 1;
1428	} else if(sec == sec_status_insecure) {
1429		*nodata = 1;
1430	} else if(secnx == sec_status_insecure) {
1431		sec = sec_status_insecure;
1432	}
1433	return sec;
1434}
1435