1/*
2 * rbtree.c -- generic red black tree
3 *
4 * Copyright (c) 2001-2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 */
36
37/**
38 * \file
39 * Implementation of a redblack tree.
40 */
41
42#include "config.h"
43#include "log.h"
44#include "fptr_wlist.h"
45#include "util/rbtree.h"
46
47/** Node colour black */
48#define	BLACK	0
49/** Node colour red */
50#define	RED	1
51
52/** the NULL node, global alloc */
53rbnode_t	rbtree_null_node = {
54	RBTREE_NULL,		/* Parent.  */
55	RBTREE_NULL,		/* Left.  */
56	RBTREE_NULL,		/* Right.  */
57	NULL,			/* Key.  */
58	BLACK			/* Color.  */
59};
60
61/** rotate subtree left (to preserve redblack property) */
62static void rbtree_rotate_left(rbtree_t *rbtree, rbnode_t *node);
63/** rotate subtree right (to preserve redblack property) */
64static void rbtree_rotate_right(rbtree_t *rbtree, rbnode_t *node);
65/** Fixup node colours when insert happened */
66static void rbtree_insert_fixup(rbtree_t *rbtree, rbnode_t *node);
67/** Fixup node colours when delete happened */
68static void rbtree_delete_fixup(rbtree_t* rbtree, rbnode_t* child, rbnode_t* child_parent);
69
70/*
71 * Creates a new red black tree, initializes and returns a pointer to it.
72 *
73 * Return NULL on failure.
74 *
75 */
76rbtree_t *
77rbtree_create (int (*cmpf)(const void *, const void *))
78{
79	rbtree_t *rbtree;
80
81	/* Allocate memory for it */
82	rbtree = (rbtree_t *) malloc(sizeof(rbtree_t));
83	if (!rbtree) {
84		return NULL;
85	}
86
87	/* Initialize it */
88	rbtree_init(rbtree, cmpf);
89
90	return rbtree;
91}
92
93void
94rbtree_init(rbtree_t *rbtree, int (*cmpf)(const void *, const void *))
95{
96	/* Initialize it */
97	rbtree->root = RBTREE_NULL;
98	rbtree->count = 0;
99	rbtree->cmp = cmpf;
100}
101
102/*
103 * Rotates the node to the left.
104 *
105 */
106static void
107rbtree_rotate_left(rbtree_t *rbtree, rbnode_t *node)
108{
109	rbnode_t *right = node->right;
110	node->right = right->left;
111	if (right->left != RBTREE_NULL)
112		right->left->parent = node;
113
114	right->parent = node->parent;
115
116	if (node->parent != RBTREE_NULL) {
117		if (node == node->parent->left) {
118			node->parent->left = right;
119		} else  {
120			node->parent->right = right;
121		}
122	} else {
123		rbtree->root = right;
124	}
125	right->left = node;
126	node->parent = right;
127}
128
129/*
130 * Rotates the node to the right.
131 *
132 */
133static void
134rbtree_rotate_right(rbtree_t *rbtree, rbnode_t *node)
135{
136	rbnode_t *left = node->left;
137	node->left = left->right;
138	if (left->right != RBTREE_NULL)
139		left->right->parent = node;
140
141	left->parent = node->parent;
142
143	if (node->parent != RBTREE_NULL) {
144		if (node == node->parent->right) {
145			node->parent->right = left;
146		} else  {
147			node->parent->left = left;
148		}
149	} else {
150		rbtree->root = left;
151	}
152	left->right = node;
153	node->parent = left;
154}
155
156static void
157rbtree_insert_fixup(rbtree_t *rbtree, rbnode_t *node)
158{
159	rbnode_t	*uncle;
160
161	/* While not at the root and need fixing... */
162	while (node != rbtree->root && node->parent->color == RED) {
163		/* If our parent is left child of our grandparent... */
164		if (node->parent == node->parent->parent->left) {
165			uncle = node->parent->parent->right;
166
167			/* If our uncle is red... */
168			if (uncle->color == RED) {
169				/* Paint the parent and the uncle black... */
170				node->parent->color = BLACK;
171				uncle->color = BLACK;
172
173				/* And the grandparent red... */
174				node->parent->parent->color = RED;
175
176				/* And continue fixing the grandparent */
177				node = node->parent->parent;
178			} else {				/* Our uncle is black... */
179				/* Are we the right child? */
180				if (node == node->parent->right) {
181					node = node->parent;
182					rbtree_rotate_left(rbtree, node);
183				}
184				/* Now we're the left child, repaint and rotate... */
185				node->parent->color = BLACK;
186				node->parent->parent->color = RED;
187				rbtree_rotate_right(rbtree, node->parent->parent);
188			}
189		} else {
190			uncle = node->parent->parent->left;
191
192			/* If our uncle is red... */
193			if (uncle->color == RED) {
194				/* Paint the parent and the uncle black... */
195				node->parent->color = BLACK;
196				uncle->color = BLACK;
197
198				/* And the grandparent red... */
199				node->parent->parent->color = RED;
200
201				/* And continue fixing the grandparent */
202				node = node->parent->parent;
203			} else {				/* Our uncle is black... */
204				/* Are we the right child? */
205				if (node == node->parent->left) {
206					node = node->parent;
207					rbtree_rotate_right(rbtree, node);
208				}
209				/* Now we're the right child, repaint and rotate... */
210				node->parent->color = BLACK;
211				node->parent->parent->color = RED;
212				rbtree_rotate_left(rbtree, node->parent->parent);
213			}
214		}
215	}
216	rbtree->root->color = BLACK;
217}
218
219
220/*
221 * Inserts a node into a red black tree.
222 *
223 * Returns NULL on failure or the pointer to the newly added node
224 * otherwise.
225 */
226rbnode_t *
227rbtree_insert (rbtree_t *rbtree, rbnode_t *data)
228{
229	/* XXX Not necessary, but keeps compiler quiet... */
230	int r = 0;
231
232	/* We start at the root of the tree */
233	rbnode_t	*node = rbtree->root;
234	rbnode_t	*parent = RBTREE_NULL;
235
236	fptr_ok(fptr_whitelist_rbtree_cmp(rbtree->cmp));
237	/* Lets find the new parent... */
238	while (node != RBTREE_NULL) {
239		/* Compare two keys, do we have a duplicate? */
240		if ((r = rbtree->cmp(data->key, node->key)) == 0) {
241			return NULL;
242		}
243		parent = node;
244
245		if (r < 0) {
246			node = node->left;
247		} else {
248			node = node->right;
249		}
250	}
251
252	/* Initialize the new node */
253	data->parent = parent;
254	data->left = data->right = RBTREE_NULL;
255	data->color = RED;
256	rbtree->count++;
257
258	/* Insert it into the tree... */
259	if (parent != RBTREE_NULL) {
260		if (r < 0) {
261			parent->left = data;
262		} else {
263			parent->right = data;
264		}
265	} else {
266		rbtree->root = data;
267	}
268
269	/* Fix up the red-black properties... */
270	rbtree_insert_fixup(rbtree, data);
271
272	return data;
273}
274
275/*
276 * Searches the red black tree, returns the data if key is found or NULL otherwise.
277 *
278 */
279rbnode_t *
280rbtree_search (rbtree_t *rbtree, const void *key)
281{
282	rbnode_t *node;
283
284	if (rbtree_find_less_equal(rbtree, key, &node)) {
285		return node;
286	} else {
287		return NULL;
288	}
289}
290
291/** helpers for delete: swap node colours */
292static void swap_int8(uint8_t* x, uint8_t* y)
293{
294	uint8_t t = *x; *x = *y; *y = t;
295}
296
297/** helpers for delete: swap node pointers */
298static void swap_np(rbnode_t** x, rbnode_t** y)
299{
300	rbnode_t* t = *x; *x = *y; *y = t;
301}
302
303/** Update parent pointers of child trees of 'parent' */
304static void change_parent_ptr(rbtree_t* rbtree, rbnode_t* parent, rbnode_t* old, rbnode_t* new)
305{
306	if(parent == RBTREE_NULL)
307	{
308		log_assert(rbtree->root == old);
309		if(rbtree->root == old) rbtree->root = new;
310		return;
311	}
312	log_assert(parent->left == old || parent->right == old
313		|| parent->left == new || parent->right == new);
314	if(parent->left == old) parent->left = new;
315	if(parent->right == old) parent->right = new;
316}
317/** Update parent pointer of a node 'child' */
318static void change_child_ptr(rbnode_t* child, rbnode_t* old, rbnode_t* new)
319{
320	if(child == RBTREE_NULL) return;
321	log_assert(child->parent == old || child->parent == new);
322	if(child->parent == old) child->parent = new;
323}
324
325rbnode_t*
326rbtree_delete(rbtree_t *rbtree, const void *key)
327{
328	rbnode_t *to_delete;
329	rbnode_t *child;
330	if((to_delete = rbtree_search(rbtree, key)) == 0) return 0;
331	rbtree->count--;
332
333	/* make sure we have at most one non-leaf child */
334	if(to_delete->left != RBTREE_NULL && to_delete->right != RBTREE_NULL)
335	{
336		/* swap with smallest from right subtree (or largest from left) */
337		rbnode_t *smright = to_delete->right;
338		while(smright->left != RBTREE_NULL)
339			smright = smright->left;
340		/* swap the smright and to_delete elements in the tree,
341		 * but the rbnode_t is first part of user data struct
342		 * so cannot just swap the keys and data pointers. Instead
343		 * readjust the pointers left,right,parent */
344
345		/* swap colors - colors are tied to the position in the tree */
346		swap_int8(&to_delete->color, &smright->color);
347
348		/* swap child pointers in parents of smright/to_delete */
349		change_parent_ptr(rbtree, to_delete->parent, to_delete, smright);
350		if(to_delete->right != smright)
351			change_parent_ptr(rbtree, smright->parent, smright, to_delete);
352
353		/* swap parent pointers in children of smright/to_delete */
354		change_child_ptr(smright->left, smright, to_delete);
355		change_child_ptr(smright->left, smright, to_delete);
356		change_child_ptr(smright->right, smright, to_delete);
357		change_child_ptr(smright->right, smright, to_delete);
358		change_child_ptr(to_delete->left, to_delete, smright);
359		if(to_delete->right != smright)
360			change_child_ptr(to_delete->right, to_delete, smright);
361		if(to_delete->right == smright)
362		{
363			/* set up so after swap they work */
364			to_delete->right = to_delete;
365			smright->parent = smright;
366		}
367
368		/* swap pointers in to_delete/smright nodes */
369		swap_np(&to_delete->parent, &smright->parent);
370		swap_np(&to_delete->left, &smright->left);
371		swap_np(&to_delete->right, &smright->right);
372
373		/* now delete to_delete (which is at the location where the smright previously was) */
374	}
375	log_assert(to_delete->left == RBTREE_NULL || to_delete->right == RBTREE_NULL);
376
377	if(to_delete->left != RBTREE_NULL) child = to_delete->left;
378	else child = to_delete->right;
379
380	/* unlink to_delete from the tree, replace to_delete with child */
381	change_parent_ptr(rbtree, to_delete->parent, to_delete, child);
382	change_child_ptr(child, to_delete, to_delete->parent);
383
384	if(to_delete->color == RED)
385	{
386		/* if node is red then the child (black) can be swapped in */
387	}
388	else if(child->color == RED)
389	{
390		/* change child to BLACK, removing a RED node is no problem */
391		if(child!=RBTREE_NULL) child->color = BLACK;
392	}
393	else rbtree_delete_fixup(rbtree, child, to_delete->parent);
394
395	/* unlink completely */
396	to_delete->parent = RBTREE_NULL;
397	to_delete->left = RBTREE_NULL;
398	to_delete->right = RBTREE_NULL;
399	to_delete->color = BLACK;
400	return to_delete;
401}
402
403static void rbtree_delete_fixup(rbtree_t* rbtree, rbnode_t* child, rbnode_t* child_parent)
404{
405	rbnode_t* sibling;
406	int go_up = 1;
407
408	/* determine sibling to the node that is one-black short */
409	if(child_parent->right == child) sibling = child_parent->left;
410	else sibling = child_parent->right;
411
412	while(go_up)
413	{
414		if(child_parent == RBTREE_NULL)
415		{
416			/* removed parent==black from root, every path, so ok */
417			return;
418		}
419
420		if(sibling->color == RED)
421		{	/* rotate to get a black sibling */
422			child_parent->color = RED;
423			sibling->color = BLACK;
424			if(child_parent->right == child)
425				rbtree_rotate_right(rbtree, child_parent);
426			else	rbtree_rotate_left(rbtree, child_parent);
427			/* new sibling after rotation */
428			if(child_parent->right == child) sibling = child_parent->left;
429			else sibling = child_parent->right;
430		}
431
432		if(child_parent->color == BLACK
433			&& sibling->color == BLACK
434			&& sibling->left->color == BLACK
435			&& sibling->right->color == BLACK)
436		{	/* fixup local with recolor of sibling */
437			if(sibling != RBTREE_NULL)
438				sibling->color = RED;
439
440			child = child_parent;
441			child_parent = child_parent->parent;
442			/* prepare to go up, new sibling */
443			if(child_parent->right == child) sibling = child_parent->left;
444			else sibling = child_parent->right;
445		}
446		else go_up = 0;
447	}
448
449	if(child_parent->color == RED
450		&& sibling->color == BLACK
451		&& sibling->left->color == BLACK
452		&& sibling->right->color == BLACK)
453	{
454		/* move red to sibling to rebalance */
455		if(sibling != RBTREE_NULL)
456			sibling->color = RED;
457		child_parent->color = BLACK;
458		return;
459	}
460	log_assert(sibling != RBTREE_NULL);
461
462	/* get a new sibling, by rotating at sibling. See which child
463	   of sibling is red */
464	if(child_parent->right == child
465		&& sibling->color == BLACK
466		&& sibling->right->color == RED
467		&& sibling->left->color == BLACK)
468	{
469		sibling->color = RED;
470		sibling->right->color = BLACK;
471		rbtree_rotate_left(rbtree, sibling);
472		/* new sibling after rotation */
473		if(child_parent->right == child) sibling = child_parent->left;
474		else sibling = child_parent->right;
475	}
476	else if(child_parent->left == child
477		&& sibling->color == BLACK
478		&& sibling->left->color == RED
479		&& sibling->right->color == BLACK)
480	{
481		sibling->color = RED;
482		sibling->left->color = BLACK;
483		rbtree_rotate_right(rbtree, sibling);
484		/* new sibling after rotation */
485		if(child_parent->right == child) sibling = child_parent->left;
486		else sibling = child_parent->right;
487	}
488
489	/* now we have a black sibling with a red child. rotate and exchange colors. */
490	sibling->color = child_parent->color;
491	child_parent->color = BLACK;
492	if(child_parent->right == child)
493	{
494		log_assert(sibling->left->color == RED);
495		sibling->left->color = BLACK;
496		rbtree_rotate_right(rbtree, child_parent);
497	}
498	else
499	{
500		log_assert(sibling->right->color == RED);
501		sibling->right->color = BLACK;
502		rbtree_rotate_left(rbtree, child_parent);
503	}
504}
505
506int
507rbtree_find_less_equal(rbtree_t *rbtree, const void *key, rbnode_t **result)
508{
509	int r;
510	rbnode_t *node;
511
512	log_assert(result);
513
514	/* We start at root... */
515	node = rbtree->root;
516
517	*result = NULL;
518	fptr_ok(fptr_whitelist_rbtree_cmp(rbtree->cmp));
519
520	/* While there are children... */
521	while (node != RBTREE_NULL) {
522		r = rbtree->cmp(key, node->key);
523		if (r == 0) {
524			/* Exact match */
525			*result = node;
526			return 1;
527		}
528		if (r < 0) {
529			node = node->left;
530		} else {
531			/* Temporary match */
532			*result = node;
533			node = node->right;
534		}
535	}
536	return 0;
537}
538
539/*
540 * Finds the first element in the red black tree
541 *
542 */
543rbnode_t *
544rbtree_first (rbtree_t *rbtree)
545{
546	rbnode_t *node;
547
548	for (node = rbtree->root; node->left != RBTREE_NULL; node = node->left);
549	return node;
550}
551
552rbnode_t *
553rbtree_last (rbtree_t *rbtree)
554{
555	rbnode_t *node;
556
557	for (node = rbtree->root; node->right != RBTREE_NULL; node = node->right);
558	return node;
559}
560
561/*
562 * Returns the next node...
563 *
564 */
565rbnode_t *
566rbtree_next (rbnode_t *node)
567{
568	rbnode_t *parent;
569
570	if (node->right != RBTREE_NULL) {
571		/* One right, then keep on going left... */
572		for (node = node->right; node->left != RBTREE_NULL; node = node->left);
573	} else {
574		parent = node->parent;
575		while (parent != RBTREE_NULL && node == parent->right) {
576			node = parent;
577			parent = parent->parent;
578		}
579		node = parent;
580	}
581	return node;
582}
583
584rbnode_t *
585rbtree_previous(rbnode_t *node)
586{
587	rbnode_t *parent;
588
589	if (node->left != RBTREE_NULL) {
590		/* One left, then keep on going right... */
591		for (node = node->left; node->right != RBTREE_NULL; node = node->right);
592	} else {
593		parent = node->parent;
594		while (parent != RBTREE_NULL && node == parent->left) {
595			node = parent;
596			parent = parent->parent;
597		}
598		node = parent;
599	}
600	return node;
601}
602
603/** recursive descent traverse */
604static void
605traverse_post(void (*func)(rbnode_t*, void*), void* arg, rbnode_t* node)
606{
607	if(!node || node == RBTREE_NULL)
608		return;
609	/* recurse */
610	traverse_post(func, arg, node->left);
611	traverse_post(func, arg, node->right);
612	/* call user func */
613	(*func)(node, arg);
614}
615
616void
617traverse_postorder(rbtree_t* tree, void (*func)(rbnode_t*, void*), void* arg)
618{
619	traverse_post(func, arg, tree->root);
620}
621