1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/Mangle.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Lexer.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Sema/SemaDiagnostic.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstring>
37using namespace clang;
38
39const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40  const Expr *E = ignoreParenBaseCasts();
41
42  QualType DerivedType = E->getType();
43  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44    DerivedType = PTy->getPointeeType();
45
46  if (DerivedType->isDependentType())
47    return NULL;
48
49  const RecordType *Ty = DerivedType->castAs<RecordType>();
50  Decl *D = Ty->getDecl();
51  return cast<CXXRecordDecl>(D);
52}
53
54const Expr *Expr::skipRValueSubobjectAdjustments(
55    SmallVectorImpl<const Expr *> &CommaLHSs,
56    SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57  const Expr *E = this;
58  while (true) {
59    E = E->IgnoreParens();
60
61    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62      if ((CE->getCastKind() == CK_DerivedToBase ||
63           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64          E->getType()->isRecordType()) {
65        E = CE->getSubExpr();
66        CXXRecordDecl *Derived
67          = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69        continue;
70      }
71
72      if (CE->getCastKind() == CK_NoOp) {
73        E = CE->getSubExpr();
74        continue;
75      }
76    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77      if (!ME->isArrow()) {
78        assert(ME->getBase()->getType()->isRecordType());
79        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80          if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81            E = ME->getBase();
82            Adjustments.push_back(SubobjectAdjustment(Field));
83            continue;
84          }
85        }
86      }
87    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88      if (BO->isPtrMemOp()) {
89        assert(BO->getRHS()->isRValue());
90        E = BO->getLHS();
91        const MemberPointerType *MPT =
92          BO->getRHS()->getType()->getAs<MemberPointerType>();
93        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94        continue;
95      } else if (BO->getOpcode() == BO_Comma) {
96        CommaLHSs.push_back(BO->getLHS());
97        E = BO->getRHS();
98        continue;
99      }
100    }
101
102    // Nothing changed.
103    break;
104  }
105  return E;
106}
107
108const Expr *
109Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
110  const Expr *E = this;
111
112  // This might be a default initializer for a reference member. Walk over the
113  // wrapper node for that.
114  if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
115    E = DAE->getExpr();
116
117  // Look through single-element init lists that claim to be lvalues. They're
118  // just syntactic wrappers in this case.
119  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
120    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
121      E = ILE->getInit(0);
122      if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
123        E = DAE->getExpr();
124    }
125  }
126
127  // Look through expressions for materialized temporaries (for now).
128  if (const MaterializeTemporaryExpr *M
129      = dyn_cast<MaterializeTemporaryExpr>(E)) {
130    MTE = M;
131    E = M->GetTemporaryExpr();
132  }
133
134  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
135    E = DAE->getExpr();
136  return E;
137}
138
139/// isKnownToHaveBooleanValue - Return true if this is an integer expression
140/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
141/// but also int expressions which are produced by things like comparisons in
142/// C.
143bool Expr::isKnownToHaveBooleanValue() const {
144  const Expr *E = IgnoreParens();
145
146  // If this value has _Bool type, it is obvious 0/1.
147  if (E->getType()->isBooleanType()) return true;
148  // If this is a non-scalar-integer type, we don't care enough to try.
149  if (!E->getType()->isIntegralOrEnumerationType()) return false;
150
151  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
152    switch (UO->getOpcode()) {
153    case UO_Plus:
154      return UO->getSubExpr()->isKnownToHaveBooleanValue();
155    default:
156      return false;
157    }
158  }
159
160  // Only look through implicit casts.  If the user writes
161  // '(int) (a && b)' treat it as an arbitrary int.
162  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
163    return CE->getSubExpr()->isKnownToHaveBooleanValue();
164
165  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
166    switch (BO->getOpcode()) {
167    default: return false;
168    case BO_LT:   // Relational operators.
169    case BO_GT:
170    case BO_LE:
171    case BO_GE:
172    case BO_EQ:   // Equality operators.
173    case BO_NE:
174    case BO_LAnd: // AND operator.
175    case BO_LOr:  // Logical OR operator.
176      return true;
177
178    case BO_And:  // Bitwise AND operator.
179    case BO_Xor:  // Bitwise XOR operator.
180    case BO_Or:   // Bitwise OR operator.
181      // Handle things like (x==2)|(y==12).
182      return BO->getLHS()->isKnownToHaveBooleanValue() &&
183             BO->getRHS()->isKnownToHaveBooleanValue();
184
185    case BO_Comma:
186    case BO_Assign:
187      return BO->getRHS()->isKnownToHaveBooleanValue();
188    }
189  }
190
191  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
192    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
193           CO->getFalseExpr()->isKnownToHaveBooleanValue();
194
195  return false;
196}
197
198// Amusing macro metaprogramming hack: check whether a class provides
199// a more specific implementation of getExprLoc().
200//
201// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
202namespace {
203  /// This implementation is used when a class provides a custom
204  /// implementation of getExprLoc.
205  template <class E, class T>
206  SourceLocation getExprLocImpl(const Expr *expr,
207                                SourceLocation (T::*v)() const) {
208    return static_cast<const E*>(expr)->getExprLoc();
209  }
210
211  /// This implementation is used when a class doesn't provide
212  /// a custom implementation of getExprLoc.  Overload resolution
213  /// should pick it over the implementation above because it's
214  /// more specialized according to function template partial ordering.
215  template <class E>
216  SourceLocation getExprLocImpl(const Expr *expr,
217                                SourceLocation (Expr::*v)() const) {
218    return static_cast<const E*>(expr)->getLocStart();
219  }
220}
221
222SourceLocation Expr::getExprLoc() const {
223  switch (getStmtClass()) {
224  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
225#define ABSTRACT_STMT(type)
226#define STMT(type, base) \
227  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
228#define EXPR(type, base) \
229  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
230#include "clang/AST/StmtNodes.inc"
231  }
232  llvm_unreachable("unknown statement kind");
233}
234
235//===----------------------------------------------------------------------===//
236// Primary Expressions.
237//===----------------------------------------------------------------------===//
238
239/// \brief Compute the type-, value-, and instantiation-dependence of a
240/// declaration reference
241/// based on the declaration being referenced.
242static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
243                                     QualType T, bool &TypeDependent,
244                                     bool &ValueDependent,
245                                     bool &InstantiationDependent) {
246  TypeDependent = false;
247  ValueDependent = false;
248  InstantiationDependent = false;
249
250  // (TD) C++ [temp.dep.expr]p3:
251  //   An id-expression is type-dependent if it contains:
252  //
253  // and
254  //
255  // (VD) C++ [temp.dep.constexpr]p2:
256  //  An identifier is value-dependent if it is:
257
258  //  (TD)  - an identifier that was declared with dependent type
259  //  (VD)  - a name declared with a dependent type,
260  if (T->isDependentType()) {
261    TypeDependent = true;
262    ValueDependent = true;
263    InstantiationDependent = true;
264    return;
265  } else if (T->isInstantiationDependentType()) {
266    InstantiationDependent = true;
267  }
268
269  //  (TD)  - a conversion-function-id that specifies a dependent type
270  if (D->getDeclName().getNameKind()
271                                == DeclarationName::CXXConversionFunctionName) {
272    QualType T = D->getDeclName().getCXXNameType();
273    if (T->isDependentType()) {
274      TypeDependent = true;
275      ValueDependent = true;
276      InstantiationDependent = true;
277      return;
278    }
279
280    if (T->isInstantiationDependentType())
281      InstantiationDependent = true;
282  }
283
284  //  (VD)  - the name of a non-type template parameter,
285  if (isa<NonTypeTemplateParmDecl>(D)) {
286    ValueDependent = true;
287    InstantiationDependent = true;
288    return;
289  }
290
291  //  (VD) - a constant with integral or enumeration type and is
292  //         initialized with an expression that is value-dependent.
293  //  (VD) - a constant with literal type and is initialized with an
294  //         expression that is value-dependent [C++11].
295  //  (VD) - FIXME: Missing from the standard:
296  //       -  an entity with reference type and is initialized with an
297  //          expression that is value-dependent [C++11]
298  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
299    if ((Ctx.getLangOpts().CPlusPlus11 ?
300           Var->getType()->isLiteralType(Ctx) :
301           Var->getType()->isIntegralOrEnumerationType()) &&
302        (Var->getType().isConstQualified() ||
303         Var->getType()->isReferenceType())) {
304      if (const Expr *Init = Var->getAnyInitializer())
305        if (Init->isValueDependent()) {
306          ValueDependent = true;
307          InstantiationDependent = true;
308        }
309    }
310
311    // (VD) - FIXME: Missing from the standard:
312    //      -  a member function or a static data member of the current
313    //         instantiation
314    if (Var->isStaticDataMember() &&
315        Var->getDeclContext()->isDependentContext()) {
316      ValueDependent = true;
317      InstantiationDependent = true;
318      TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
319      if (TInfo->getType()->isIncompleteArrayType())
320        TypeDependent = true;
321    }
322
323    return;
324  }
325
326  // (VD) - FIXME: Missing from the standard:
327  //      -  a member function or a static data member of the current
328  //         instantiation
329  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
330    ValueDependent = true;
331    InstantiationDependent = true;
332  }
333}
334
335void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
336  bool TypeDependent = false;
337  bool ValueDependent = false;
338  bool InstantiationDependent = false;
339  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
340                           ValueDependent, InstantiationDependent);
341
342  // (TD) C++ [temp.dep.expr]p3:
343  //   An id-expression is type-dependent if it contains:
344  //
345  // and
346  //
347  // (VD) C++ [temp.dep.constexpr]p2:
348  //  An identifier is value-dependent if it is:
349  if (!TypeDependent && !ValueDependent &&
350      hasExplicitTemplateArgs() &&
351      TemplateSpecializationType::anyDependentTemplateArguments(
352                                                            getTemplateArgs(),
353                                                       getNumTemplateArgs(),
354                                                      InstantiationDependent)) {
355    TypeDependent = true;
356    ValueDependent = true;
357    InstantiationDependent = true;
358  }
359
360  ExprBits.TypeDependent = TypeDependent;
361  ExprBits.ValueDependent = ValueDependent;
362  ExprBits.InstantiationDependent = InstantiationDependent;
363
364  // Is the declaration a parameter pack?
365  if (getDecl()->isParameterPack())
366    ExprBits.ContainsUnexpandedParameterPack = true;
367}
368
369DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
370                         NestedNameSpecifierLoc QualifierLoc,
371                         SourceLocation TemplateKWLoc,
372                         ValueDecl *D, bool RefersToEnclosingLocal,
373                         const DeclarationNameInfo &NameInfo,
374                         NamedDecl *FoundD,
375                         const TemplateArgumentListInfo *TemplateArgs,
376                         QualType T, ExprValueKind VK)
377  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
378    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
379  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
380  if (QualifierLoc)
381    getInternalQualifierLoc() = QualifierLoc;
382  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
383  if (FoundD)
384    getInternalFoundDecl() = FoundD;
385  DeclRefExprBits.HasTemplateKWAndArgsInfo
386    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
387  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
388  if (TemplateArgs) {
389    bool Dependent = false;
390    bool InstantiationDependent = false;
391    bool ContainsUnexpandedParameterPack = false;
392    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
393                                               Dependent,
394                                               InstantiationDependent,
395                                               ContainsUnexpandedParameterPack);
396    if (InstantiationDependent)
397      setInstantiationDependent(true);
398  } else if (TemplateKWLoc.isValid()) {
399    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
400  }
401  DeclRefExprBits.HadMultipleCandidates = 0;
402
403  computeDependence(Ctx);
404}
405
406DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
407                                 NestedNameSpecifierLoc QualifierLoc,
408                                 SourceLocation TemplateKWLoc,
409                                 ValueDecl *D,
410                                 bool RefersToEnclosingLocal,
411                                 SourceLocation NameLoc,
412                                 QualType T,
413                                 ExprValueKind VK,
414                                 NamedDecl *FoundD,
415                                 const TemplateArgumentListInfo *TemplateArgs) {
416  return Create(Context, QualifierLoc, TemplateKWLoc, D,
417                RefersToEnclosingLocal,
418                DeclarationNameInfo(D->getDeclName(), NameLoc),
419                T, VK, FoundD, TemplateArgs);
420}
421
422DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
423                                 NestedNameSpecifierLoc QualifierLoc,
424                                 SourceLocation TemplateKWLoc,
425                                 ValueDecl *D,
426                                 bool RefersToEnclosingLocal,
427                                 const DeclarationNameInfo &NameInfo,
428                                 QualType T,
429                                 ExprValueKind VK,
430                                 NamedDecl *FoundD,
431                                 const TemplateArgumentListInfo *TemplateArgs) {
432  // Filter out cases where the found Decl is the same as the value refenenced.
433  if (D == FoundD)
434    FoundD = 0;
435
436  std::size_t Size = sizeof(DeclRefExpr);
437  if (QualifierLoc)
438    Size += sizeof(NestedNameSpecifierLoc);
439  if (FoundD)
440    Size += sizeof(NamedDecl *);
441  if (TemplateArgs)
442    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
443  else if (TemplateKWLoc.isValid())
444    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
445
446  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
447  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
448                               RefersToEnclosingLocal,
449                               NameInfo, FoundD, TemplateArgs, T, VK);
450}
451
452DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
453                                      bool HasQualifier,
454                                      bool HasFoundDecl,
455                                      bool HasTemplateKWAndArgsInfo,
456                                      unsigned NumTemplateArgs) {
457  std::size_t Size = sizeof(DeclRefExpr);
458  if (HasQualifier)
459    Size += sizeof(NestedNameSpecifierLoc);
460  if (HasFoundDecl)
461    Size += sizeof(NamedDecl *);
462  if (HasTemplateKWAndArgsInfo)
463    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
464
465  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
466  return new (Mem) DeclRefExpr(EmptyShell());
467}
468
469SourceLocation DeclRefExpr::getLocStart() const {
470  if (hasQualifier())
471    return getQualifierLoc().getBeginLoc();
472  return getNameInfo().getLocStart();
473}
474SourceLocation DeclRefExpr::getLocEnd() const {
475  if (hasExplicitTemplateArgs())
476    return getRAngleLoc();
477  return getNameInfo().getLocEnd();
478}
479
480// FIXME: Maybe this should use DeclPrinter with a special "print predefined
481// expr" policy instead.
482std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
483  ASTContext &Context = CurrentDecl->getASTContext();
484
485  if (IT == PredefinedExpr::FuncDName) {
486    if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
487      OwningPtr<MangleContext> MC;
488      MC.reset(Context.createMangleContext());
489
490      if (MC->shouldMangleDeclName(ND)) {
491        SmallString<256> Buffer;
492        llvm::raw_svector_ostream Out(Buffer);
493        if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
494          MC->mangleCXXCtor(CD, Ctor_Base, Out);
495        else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
496          MC->mangleCXXDtor(DD, Dtor_Base, Out);
497        else
498          MC->mangleName(ND, Out);
499
500        Out.flush();
501        if (!Buffer.empty() && Buffer.front() == '\01')
502          return Buffer.substr(1);
503        return Buffer.str();
504      } else
505        return ND->getIdentifier()->getName();
506    }
507    return "";
508  }
509  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
510    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
511      return FD->getNameAsString();
512
513    SmallString<256> Name;
514    llvm::raw_svector_ostream Out(Name);
515
516    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
517      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
518        Out << "virtual ";
519      if (MD->isStatic())
520        Out << "static ";
521    }
522
523    PrintingPolicy Policy(Context.getLangOpts());
524    std::string Proto;
525    llvm::raw_string_ostream POut(Proto);
526    FD->printQualifiedName(POut, Policy);
527
528    const FunctionDecl *Decl = FD;
529    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
530      Decl = Pattern;
531    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
532    const FunctionProtoType *FT = 0;
533    if (FD->hasWrittenPrototype())
534      FT = dyn_cast<FunctionProtoType>(AFT);
535
536    POut << "(";
537    if (FT) {
538      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
539        if (i) POut << ", ";
540        POut << Decl->getParamDecl(i)->getType().stream(Policy);
541      }
542
543      if (FT->isVariadic()) {
544        if (FD->getNumParams()) POut << ", ";
545        POut << "...";
546      }
547    }
548    POut << ")";
549
550    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
551      const FunctionType *FT = MD->getType()->castAs<FunctionType>();
552      if (FT->isConst())
553        POut << " const";
554      if (FT->isVolatile())
555        POut << " volatile";
556      RefQualifierKind Ref = MD->getRefQualifier();
557      if (Ref == RQ_LValue)
558        POut << " &";
559      else if (Ref == RQ_RValue)
560        POut << " &&";
561    }
562
563    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
564    SpecsTy Specs;
565    const DeclContext *Ctx = FD->getDeclContext();
566    while (Ctx && isa<NamedDecl>(Ctx)) {
567      const ClassTemplateSpecializationDecl *Spec
568                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
569      if (Spec && !Spec->isExplicitSpecialization())
570        Specs.push_back(Spec);
571      Ctx = Ctx->getParent();
572    }
573
574    std::string TemplateParams;
575    llvm::raw_string_ostream TOut(TemplateParams);
576    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
577         I != E; ++I) {
578      const TemplateParameterList *Params
579                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
580      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
581      assert(Params->size() == Args.size());
582      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
583        StringRef Param = Params->getParam(i)->getName();
584        if (Param.empty()) continue;
585        TOut << Param << " = ";
586        Args.get(i).print(Policy, TOut);
587        TOut << ", ";
588      }
589    }
590
591    FunctionTemplateSpecializationInfo *FSI
592                                          = FD->getTemplateSpecializationInfo();
593    if (FSI && !FSI->isExplicitSpecialization()) {
594      const TemplateParameterList* Params
595                                  = FSI->getTemplate()->getTemplateParameters();
596      const TemplateArgumentList* Args = FSI->TemplateArguments;
597      assert(Params->size() == Args->size());
598      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
599        StringRef Param = Params->getParam(i)->getName();
600        if (Param.empty()) continue;
601        TOut << Param << " = ";
602        Args->get(i).print(Policy, TOut);
603        TOut << ", ";
604      }
605    }
606
607    TOut.flush();
608    if (!TemplateParams.empty()) {
609      // remove the trailing comma and space
610      TemplateParams.resize(TemplateParams.size() - 2);
611      POut << " [" << TemplateParams << "]";
612    }
613
614    POut.flush();
615
616    // Print "auto" for all deduced return types. This includes C++1y return
617    // type deduction and lambdas. For trailing return types resolve the
618    // decltype expression. Otherwise print the real type when this is
619    // not a constructor or destructor.
620    if ((isa<CXXMethodDecl>(FD) &&
621         cast<CXXMethodDecl>(FD)->getParent()->isLambda()) ||
622        (FT && FT->getResultType()->getAs<AutoType>()))
623      Proto = "auto " + Proto;
624    else if (FT && FT->getResultType()->getAs<DecltypeType>())
625      FT->getResultType()->getAs<DecltypeType>()->getUnderlyingType()
626          .getAsStringInternal(Proto, Policy);
627    else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
628      AFT->getResultType().getAsStringInternal(Proto, Policy);
629
630    Out << Proto;
631
632    Out.flush();
633    return Name.str().str();
634  }
635  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
636    for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
637      // Skip to its enclosing function or method, but not its enclosing
638      // CapturedDecl.
639      if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
640        const Decl *D = Decl::castFromDeclContext(DC);
641        return ComputeName(IT, D);
642      }
643    llvm_unreachable("CapturedDecl not inside a function or method");
644  }
645  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
646    SmallString<256> Name;
647    llvm::raw_svector_ostream Out(Name);
648    Out << (MD->isInstanceMethod() ? '-' : '+');
649    Out << '[';
650
651    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
652    // a null check to avoid a crash.
653    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
654      Out << *ID;
655
656    if (const ObjCCategoryImplDecl *CID =
657        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
658      Out << '(' << *CID << ')';
659
660    Out <<  ' ';
661    Out << MD->getSelector().getAsString();
662    Out <<  ']';
663
664    Out.flush();
665    return Name.str().str();
666  }
667  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
668    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
669    return "top level";
670  }
671  return "";
672}
673
674void APNumericStorage::setIntValue(const ASTContext &C,
675                                   const llvm::APInt &Val) {
676  if (hasAllocation())
677    C.Deallocate(pVal);
678
679  BitWidth = Val.getBitWidth();
680  unsigned NumWords = Val.getNumWords();
681  const uint64_t* Words = Val.getRawData();
682  if (NumWords > 1) {
683    pVal = new (C) uint64_t[NumWords];
684    std::copy(Words, Words + NumWords, pVal);
685  } else if (NumWords == 1)
686    VAL = Words[0];
687  else
688    VAL = 0;
689}
690
691IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
692                               QualType type, SourceLocation l)
693  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
694         false, false),
695    Loc(l) {
696  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
697  assert(V.getBitWidth() == C.getIntWidth(type) &&
698         "Integer type is not the correct size for constant.");
699  setValue(C, V);
700}
701
702IntegerLiteral *
703IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
704                       QualType type, SourceLocation l) {
705  return new (C) IntegerLiteral(C, V, type, l);
706}
707
708IntegerLiteral *
709IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
710  return new (C) IntegerLiteral(Empty);
711}
712
713FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
714                                 bool isexact, QualType Type, SourceLocation L)
715  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
716         false, false), Loc(L) {
717  setSemantics(V.getSemantics());
718  FloatingLiteralBits.IsExact = isexact;
719  setValue(C, V);
720}
721
722FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
723  : Expr(FloatingLiteralClass, Empty) {
724  setRawSemantics(IEEEhalf);
725  FloatingLiteralBits.IsExact = false;
726}
727
728FloatingLiteral *
729FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
730                        bool isexact, QualType Type, SourceLocation L) {
731  return new (C) FloatingLiteral(C, V, isexact, Type, L);
732}
733
734FloatingLiteral *
735FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
736  return new (C) FloatingLiteral(C, Empty);
737}
738
739const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
740  switch(FloatingLiteralBits.Semantics) {
741  case IEEEhalf:
742    return llvm::APFloat::IEEEhalf;
743  case IEEEsingle:
744    return llvm::APFloat::IEEEsingle;
745  case IEEEdouble:
746    return llvm::APFloat::IEEEdouble;
747  case x87DoubleExtended:
748    return llvm::APFloat::x87DoubleExtended;
749  case IEEEquad:
750    return llvm::APFloat::IEEEquad;
751  case PPCDoubleDouble:
752    return llvm::APFloat::PPCDoubleDouble;
753  }
754  llvm_unreachable("Unrecognised floating semantics");
755}
756
757void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
758  if (&Sem == &llvm::APFloat::IEEEhalf)
759    FloatingLiteralBits.Semantics = IEEEhalf;
760  else if (&Sem == &llvm::APFloat::IEEEsingle)
761    FloatingLiteralBits.Semantics = IEEEsingle;
762  else if (&Sem == &llvm::APFloat::IEEEdouble)
763    FloatingLiteralBits.Semantics = IEEEdouble;
764  else if (&Sem == &llvm::APFloat::x87DoubleExtended)
765    FloatingLiteralBits.Semantics = x87DoubleExtended;
766  else if (&Sem == &llvm::APFloat::IEEEquad)
767    FloatingLiteralBits.Semantics = IEEEquad;
768  else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
769    FloatingLiteralBits.Semantics = PPCDoubleDouble;
770  else
771    llvm_unreachable("Unknown floating semantics");
772}
773
774/// getValueAsApproximateDouble - This returns the value as an inaccurate
775/// double.  Note that this may cause loss of precision, but is useful for
776/// debugging dumps, etc.
777double FloatingLiteral::getValueAsApproximateDouble() const {
778  llvm::APFloat V = getValue();
779  bool ignored;
780  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
781            &ignored);
782  return V.convertToDouble();
783}
784
785int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
786  int CharByteWidth = 0;
787  switch(k) {
788    case Ascii:
789    case UTF8:
790      CharByteWidth = target.getCharWidth();
791      break;
792    case Wide:
793      CharByteWidth = target.getWCharWidth();
794      break;
795    case UTF16:
796      CharByteWidth = target.getChar16Width();
797      break;
798    case UTF32:
799      CharByteWidth = target.getChar32Width();
800      break;
801  }
802  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
803  CharByteWidth /= 8;
804  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
805         && "character byte widths supported are 1, 2, and 4 only");
806  return CharByteWidth;
807}
808
809StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
810                                     StringKind Kind, bool Pascal, QualType Ty,
811                                     const SourceLocation *Loc,
812                                     unsigned NumStrs) {
813  // Allocate enough space for the StringLiteral plus an array of locations for
814  // any concatenated string tokens.
815  void *Mem = C.Allocate(sizeof(StringLiteral)+
816                         sizeof(SourceLocation)*(NumStrs-1),
817                         llvm::alignOf<StringLiteral>());
818  StringLiteral *SL = new (Mem) StringLiteral(Ty);
819
820  // OPTIMIZE: could allocate this appended to the StringLiteral.
821  SL->setString(C,Str,Kind,Pascal);
822
823  SL->TokLocs[0] = Loc[0];
824  SL->NumConcatenated = NumStrs;
825
826  if (NumStrs != 1)
827    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
828  return SL;
829}
830
831StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
832                                          unsigned NumStrs) {
833  void *Mem = C.Allocate(sizeof(StringLiteral)+
834                         sizeof(SourceLocation)*(NumStrs-1),
835                         llvm::alignOf<StringLiteral>());
836  StringLiteral *SL = new (Mem) StringLiteral(QualType());
837  SL->CharByteWidth = 0;
838  SL->Length = 0;
839  SL->NumConcatenated = NumStrs;
840  return SL;
841}
842
843void StringLiteral::outputString(raw_ostream &OS) const {
844  switch (getKind()) {
845  case Ascii: break; // no prefix.
846  case Wide:  OS << 'L'; break;
847  case UTF8:  OS << "u8"; break;
848  case UTF16: OS << 'u'; break;
849  case UTF32: OS << 'U'; break;
850  }
851  OS << '"';
852  static const char Hex[] = "0123456789ABCDEF";
853
854  unsigned LastSlashX = getLength();
855  for (unsigned I = 0, N = getLength(); I != N; ++I) {
856    switch (uint32_t Char = getCodeUnit(I)) {
857    default:
858      // FIXME: Convert UTF-8 back to codepoints before rendering.
859
860      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
861      // Leave invalid surrogates alone; we'll use \x for those.
862      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
863          Char <= 0xdbff) {
864        uint32_t Trail = getCodeUnit(I + 1);
865        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
866          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
867          ++I;
868        }
869      }
870
871      if (Char > 0xff) {
872        // If this is a wide string, output characters over 0xff using \x
873        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
874        // codepoint: use \x escapes for invalid codepoints.
875        if (getKind() == Wide ||
876            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
877          // FIXME: Is this the best way to print wchar_t?
878          OS << "\\x";
879          int Shift = 28;
880          while ((Char >> Shift) == 0)
881            Shift -= 4;
882          for (/**/; Shift >= 0; Shift -= 4)
883            OS << Hex[(Char >> Shift) & 15];
884          LastSlashX = I;
885          break;
886        }
887
888        if (Char > 0xffff)
889          OS << "\\U00"
890             << Hex[(Char >> 20) & 15]
891             << Hex[(Char >> 16) & 15];
892        else
893          OS << "\\u";
894        OS << Hex[(Char >> 12) & 15]
895           << Hex[(Char >>  8) & 15]
896           << Hex[(Char >>  4) & 15]
897           << Hex[(Char >>  0) & 15];
898        break;
899      }
900
901      // If we used \x... for the previous character, and this character is a
902      // hexadecimal digit, prevent it being slurped as part of the \x.
903      if (LastSlashX + 1 == I) {
904        switch (Char) {
905          case '0': case '1': case '2': case '3': case '4':
906          case '5': case '6': case '7': case '8': case '9':
907          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
908          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
909            OS << "\"\"";
910        }
911      }
912
913      assert(Char <= 0xff &&
914             "Characters above 0xff should already have been handled.");
915
916      if (isPrintable(Char))
917        OS << (char)Char;
918      else  // Output anything hard as an octal escape.
919        OS << '\\'
920           << (char)('0' + ((Char >> 6) & 7))
921           << (char)('0' + ((Char >> 3) & 7))
922           << (char)('0' + ((Char >> 0) & 7));
923      break;
924    // Handle some common non-printable cases to make dumps prettier.
925    case '\\': OS << "\\\\"; break;
926    case '"': OS << "\\\""; break;
927    case '\n': OS << "\\n"; break;
928    case '\t': OS << "\\t"; break;
929    case '\a': OS << "\\a"; break;
930    case '\b': OS << "\\b"; break;
931    }
932  }
933  OS << '"';
934}
935
936void StringLiteral::setString(const ASTContext &C, StringRef Str,
937                              StringKind Kind, bool IsPascal) {
938  //FIXME: we assume that the string data comes from a target that uses the same
939  // code unit size and endianess for the type of string.
940  this->Kind = Kind;
941  this->IsPascal = IsPascal;
942
943  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
944  assert((Str.size()%CharByteWidth == 0)
945         && "size of data must be multiple of CharByteWidth");
946  Length = Str.size()/CharByteWidth;
947
948  switch(CharByteWidth) {
949    case 1: {
950      char *AStrData = new (C) char[Length];
951      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
952      StrData.asChar = AStrData;
953      break;
954    }
955    case 2: {
956      uint16_t *AStrData = new (C) uint16_t[Length];
957      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
958      StrData.asUInt16 = AStrData;
959      break;
960    }
961    case 4: {
962      uint32_t *AStrData = new (C) uint32_t[Length];
963      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
964      StrData.asUInt32 = AStrData;
965      break;
966    }
967    default:
968      assert(false && "unsupported CharByteWidth");
969  }
970}
971
972/// getLocationOfByte - Return a source location that points to the specified
973/// byte of this string literal.
974///
975/// Strings are amazingly complex.  They can be formed from multiple tokens and
976/// can have escape sequences in them in addition to the usual trigraph and
977/// escaped newline business.  This routine handles this complexity.
978///
979SourceLocation StringLiteral::
980getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
981                  const LangOptions &Features, const TargetInfo &Target) const {
982  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
983         "Only narrow string literals are currently supported");
984
985  // Loop over all of the tokens in this string until we find the one that
986  // contains the byte we're looking for.
987  unsigned TokNo = 0;
988  while (1) {
989    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
990    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
991
992    // Get the spelling of the string so that we can get the data that makes up
993    // the string literal, not the identifier for the macro it is potentially
994    // expanded through.
995    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
996
997    // Re-lex the token to get its length and original spelling.
998    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
999    bool Invalid = false;
1000    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1001    if (Invalid)
1002      return StrTokSpellingLoc;
1003
1004    const char *StrData = Buffer.data()+LocInfo.second;
1005
1006    // Create a lexer starting at the beginning of this token.
1007    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1008                   Buffer.begin(), StrData, Buffer.end());
1009    Token TheTok;
1010    TheLexer.LexFromRawLexer(TheTok);
1011
1012    // Use the StringLiteralParser to compute the length of the string in bytes.
1013    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
1014    unsigned TokNumBytes = SLP.GetStringLength();
1015
1016    // If the byte is in this token, return the location of the byte.
1017    if (ByteNo < TokNumBytes ||
1018        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1019      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1020
1021      // Now that we know the offset of the token in the spelling, use the
1022      // preprocessor to get the offset in the original source.
1023      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1024    }
1025
1026    // Move to the next string token.
1027    ++TokNo;
1028    ByteNo -= TokNumBytes;
1029  }
1030}
1031
1032
1033
1034/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1035/// corresponds to, e.g. "sizeof" or "[pre]++".
1036StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1037  switch (Op) {
1038  case UO_PostInc: return "++";
1039  case UO_PostDec: return "--";
1040  case UO_PreInc:  return "++";
1041  case UO_PreDec:  return "--";
1042  case UO_AddrOf:  return "&";
1043  case UO_Deref:   return "*";
1044  case UO_Plus:    return "+";
1045  case UO_Minus:   return "-";
1046  case UO_Not:     return "~";
1047  case UO_LNot:    return "!";
1048  case UO_Real:    return "__real";
1049  case UO_Imag:    return "__imag";
1050  case UO_Extension: return "__extension__";
1051  }
1052  llvm_unreachable("Unknown unary operator");
1053}
1054
1055UnaryOperatorKind
1056UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1057  switch (OO) {
1058  default: llvm_unreachable("No unary operator for overloaded function");
1059  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1060  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1061  case OO_Amp:        return UO_AddrOf;
1062  case OO_Star:       return UO_Deref;
1063  case OO_Plus:       return UO_Plus;
1064  case OO_Minus:      return UO_Minus;
1065  case OO_Tilde:      return UO_Not;
1066  case OO_Exclaim:    return UO_LNot;
1067  }
1068}
1069
1070OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1071  switch (Opc) {
1072  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1073  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1074  case UO_AddrOf: return OO_Amp;
1075  case UO_Deref: return OO_Star;
1076  case UO_Plus: return OO_Plus;
1077  case UO_Minus: return OO_Minus;
1078  case UO_Not: return OO_Tilde;
1079  case UO_LNot: return OO_Exclaim;
1080  default: return OO_None;
1081  }
1082}
1083
1084
1085//===----------------------------------------------------------------------===//
1086// Postfix Operators.
1087//===----------------------------------------------------------------------===//
1088
1089CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1090                   unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1091                   ExprValueKind VK, SourceLocation rparenloc)
1092  : Expr(SC, t, VK, OK_Ordinary,
1093         fn->isTypeDependent(),
1094         fn->isValueDependent(),
1095         fn->isInstantiationDependent(),
1096         fn->containsUnexpandedParameterPack()),
1097    NumArgs(args.size()) {
1098
1099  SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1100  SubExprs[FN] = fn;
1101  for (unsigned i = 0; i != args.size(); ++i) {
1102    if (args[i]->isTypeDependent())
1103      ExprBits.TypeDependent = true;
1104    if (args[i]->isValueDependent())
1105      ExprBits.ValueDependent = true;
1106    if (args[i]->isInstantiationDependent())
1107      ExprBits.InstantiationDependent = true;
1108    if (args[i]->containsUnexpandedParameterPack())
1109      ExprBits.ContainsUnexpandedParameterPack = true;
1110
1111    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1112  }
1113
1114  CallExprBits.NumPreArgs = NumPreArgs;
1115  RParenLoc = rparenloc;
1116}
1117
1118CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1119                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
1120  : Expr(CallExprClass, t, VK, OK_Ordinary,
1121         fn->isTypeDependent(),
1122         fn->isValueDependent(),
1123         fn->isInstantiationDependent(),
1124         fn->containsUnexpandedParameterPack()),
1125    NumArgs(args.size()) {
1126
1127  SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1128  SubExprs[FN] = fn;
1129  for (unsigned i = 0; i != args.size(); ++i) {
1130    if (args[i]->isTypeDependent())
1131      ExprBits.TypeDependent = true;
1132    if (args[i]->isValueDependent())
1133      ExprBits.ValueDependent = true;
1134    if (args[i]->isInstantiationDependent())
1135      ExprBits.InstantiationDependent = true;
1136    if (args[i]->containsUnexpandedParameterPack())
1137      ExprBits.ContainsUnexpandedParameterPack = true;
1138
1139    SubExprs[i+PREARGS_START] = args[i];
1140  }
1141
1142  CallExprBits.NumPreArgs = 0;
1143  RParenLoc = rparenloc;
1144}
1145
1146CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1147  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1148  // FIXME: Why do we allocate this?
1149  SubExprs = new (C) Stmt*[PREARGS_START];
1150  CallExprBits.NumPreArgs = 0;
1151}
1152
1153CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1154                   EmptyShell Empty)
1155  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1156  // FIXME: Why do we allocate this?
1157  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1158  CallExprBits.NumPreArgs = NumPreArgs;
1159}
1160
1161Decl *CallExpr::getCalleeDecl() {
1162  Expr *CEE = getCallee()->IgnoreParenImpCasts();
1163
1164  while (SubstNonTypeTemplateParmExpr *NTTP
1165                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1166    CEE = NTTP->getReplacement()->IgnoreParenCasts();
1167  }
1168
1169  // If we're calling a dereference, look at the pointer instead.
1170  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1171    if (BO->isPtrMemOp())
1172      CEE = BO->getRHS()->IgnoreParenCasts();
1173  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1174    if (UO->getOpcode() == UO_Deref)
1175      CEE = UO->getSubExpr()->IgnoreParenCasts();
1176  }
1177  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1178    return DRE->getDecl();
1179  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1180    return ME->getMemberDecl();
1181
1182  return 0;
1183}
1184
1185FunctionDecl *CallExpr::getDirectCallee() {
1186  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1187}
1188
1189/// setNumArgs - This changes the number of arguments present in this call.
1190/// Any orphaned expressions are deleted by this, and any new operands are set
1191/// to null.
1192void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1193  // No change, just return.
1194  if (NumArgs == getNumArgs()) return;
1195
1196  // If shrinking # arguments, just delete the extras and forgot them.
1197  if (NumArgs < getNumArgs()) {
1198    this->NumArgs = NumArgs;
1199    return;
1200  }
1201
1202  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1203  unsigned NumPreArgs = getNumPreArgs();
1204  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1205  // Copy over args.
1206  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1207    NewSubExprs[i] = SubExprs[i];
1208  // Null out new args.
1209  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1210       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1211    NewSubExprs[i] = 0;
1212
1213  if (SubExprs) C.Deallocate(SubExprs);
1214  SubExprs = NewSubExprs;
1215  this->NumArgs = NumArgs;
1216}
1217
1218/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1219/// not, return 0.
1220unsigned CallExpr::isBuiltinCall() const {
1221  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1222  // function. As a result, we try and obtain the DeclRefExpr from the
1223  // ImplicitCastExpr.
1224  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1225  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1226    return 0;
1227
1228  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1229  if (!DRE)
1230    return 0;
1231
1232  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1233  if (!FDecl)
1234    return 0;
1235
1236  if (!FDecl->getIdentifier())
1237    return 0;
1238
1239  return FDecl->getBuiltinID();
1240}
1241
1242bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1243  if (unsigned BI = isBuiltinCall())
1244    return Ctx.BuiltinInfo.isUnevaluated(BI);
1245  return false;
1246}
1247
1248QualType CallExpr::getCallReturnType() const {
1249  QualType CalleeType = getCallee()->getType();
1250  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1251    CalleeType = FnTypePtr->getPointeeType();
1252  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1253    CalleeType = BPT->getPointeeType();
1254  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1255    // This should never be overloaded and so should never return null.
1256    CalleeType = Expr::findBoundMemberType(getCallee());
1257
1258  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1259  return FnType->getResultType();
1260}
1261
1262SourceLocation CallExpr::getLocStart() const {
1263  if (isa<CXXOperatorCallExpr>(this))
1264    return cast<CXXOperatorCallExpr>(this)->getLocStart();
1265
1266  SourceLocation begin = getCallee()->getLocStart();
1267  if (begin.isInvalid() && getNumArgs() > 0)
1268    begin = getArg(0)->getLocStart();
1269  return begin;
1270}
1271SourceLocation CallExpr::getLocEnd() const {
1272  if (isa<CXXOperatorCallExpr>(this))
1273    return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1274
1275  SourceLocation end = getRParenLoc();
1276  if (end.isInvalid() && getNumArgs() > 0)
1277    end = getArg(getNumArgs() - 1)->getLocEnd();
1278  return end;
1279}
1280
1281OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1282                                   SourceLocation OperatorLoc,
1283                                   TypeSourceInfo *tsi,
1284                                   ArrayRef<OffsetOfNode> comps,
1285                                   ArrayRef<Expr*> exprs,
1286                                   SourceLocation RParenLoc) {
1287  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1288                         sizeof(OffsetOfNode) * comps.size() +
1289                         sizeof(Expr*) * exprs.size());
1290
1291  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1292                                RParenLoc);
1293}
1294
1295OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1296                                        unsigned numComps, unsigned numExprs) {
1297  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1298                         sizeof(OffsetOfNode) * numComps +
1299                         sizeof(Expr*) * numExprs);
1300  return new (Mem) OffsetOfExpr(numComps, numExprs);
1301}
1302
1303OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1304                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1305                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1306                           SourceLocation RParenLoc)
1307  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1308         /*TypeDependent=*/false,
1309         /*ValueDependent=*/tsi->getType()->isDependentType(),
1310         tsi->getType()->isInstantiationDependentType(),
1311         tsi->getType()->containsUnexpandedParameterPack()),
1312    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1313    NumComps(comps.size()), NumExprs(exprs.size())
1314{
1315  for (unsigned i = 0; i != comps.size(); ++i) {
1316    setComponent(i, comps[i]);
1317  }
1318
1319  for (unsigned i = 0; i != exprs.size(); ++i) {
1320    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1321      ExprBits.ValueDependent = true;
1322    if (exprs[i]->containsUnexpandedParameterPack())
1323      ExprBits.ContainsUnexpandedParameterPack = true;
1324
1325    setIndexExpr(i, exprs[i]);
1326  }
1327}
1328
1329IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1330  assert(getKind() == Field || getKind() == Identifier);
1331  if (getKind() == Field)
1332    return getField()->getIdentifier();
1333
1334  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1335}
1336
1337MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow,
1338                               NestedNameSpecifierLoc QualifierLoc,
1339                               SourceLocation TemplateKWLoc,
1340                               ValueDecl *memberdecl,
1341                               DeclAccessPair founddecl,
1342                               DeclarationNameInfo nameinfo,
1343                               const TemplateArgumentListInfo *targs,
1344                               QualType ty,
1345                               ExprValueKind vk,
1346                               ExprObjectKind ok) {
1347  std::size_t Size = sizeof(MemberExpr);
1348
1349  bool hasQualOrFound = (QualifierLoc ||
1350                         founddecl.getDecl() != memberdecl ||
1351                         founddecl.getAccess() != memberdecl->getAccess());
1352  if (hasQualOrFound)
1353    Size += sizeof(MemberNameQualifier);
1354
1355  if (targs)
1356    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1357  else if (TemplateKWLoc.isValid())
1358    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1359
1360  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1361  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1362                                       ty, vk, ok);
1363
1364  if (hasQualOrFound) {
1365    // FIXME: Wrong. We should be looking at the member declaration we found.
1366    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1367      E->setValueDependent(true);
1368      E->setTypeDependent(true);
1369      E->setInstantiationDependent(true);
1370    }
1371    else if (QualifierLoc &&
1372             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1373      E->setInstantiationDependent(true);
1374
1375    E->HasQualifierOrFoundDecl = true;
1376
1377    MemberNameQualifier *NQ = E->getMemberQualifier();
1378    NQ->QualifierLoc = QualifierLoc;
1379    NQ->FoundDecl = founddecl;
1380  }
1381
1382  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1383
1384  if (targs) {
1385    bool Dependent = false;
1386    bool InstantiationDependent = false;
1387    bool ContainsUnexpandedParameterPack = false;
1388    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1389                                                  Dependent,
1390                                                  InstantiationDependent,
1391                                             ContainsUnexpandedParameterPack);
1392    if (InstantiationDependent)
1393      E->setInstantiationDependent(true);
1394  } else if (TemplateKWLoc.isValid()) {
1395    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1396  }
1397
1398  return E;
1399}
1400
1401SourceLocation MemberExpr::getLocStart() const {
1402  if (isImplicitAccess()) {
1403    if (hasQualifier())
1404      return getQualifierLoc().getBeginLoc();
1405    return MemberLoc;
1406  }
1407
1408  // FIXME: We don't want this to happen. Rather, we should be able to
1409  // detect all kinds of implicit accesses more cleanly.
1410  SourceLocation BaseStartLoc = getBase()->getLocStart();
1411  if (BaseStartLoc.isValid())
1412    return BaseStartLoc;
1413  return MemberLoc;
1414}
1415SourceLocation MemberExpr::getLocEnd() const {
1416  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1417  if (hasExplicitTemplateArgs())
1418    EndLoc = getRAngleLoc();
1419  else if (EndLoc.isInvalid())
1420    EndLoc = getBase()->getLocEnd();
1421  return EndLoc;
1422}
1423
1424void CastExpr::CheckCastConsistency() const {
1425  switch (getCastKind()) {
1426  case CK_DerivedToBase:
1427  case CK_UncheckedDerivedToBase:
1428  case CK_DerivedToBaseMemberPointer:
1429  case CK_BaseToDerived:
1430  case CK_BaseToDerivedMemberPointer:
1431    assert(!path_empty() && "Cast kind should have a base path!");
1432    break;
1433
1434  case CK_CPointerToObjCPointerCast:
1435    assert(getType()->isObjCObjectPointerType());
1436    assert(getSubExpr()->getType()->isPointerType());
1437    goto CheckNoBasePath;
1438
1439  case CK_BlockPointerToObjCPointerCast:
1440    assert(getType()->isObjCObjectPointerType());
1441    assert(getSubExpr()->getType()->isBlockPointerType());
1442    goto CheckNoBasePath;
1443
1444  case CK_ReinterpretMemberPointer:
1445    assert(getType()->isMemberPointerType());
1446    assert(getSubExpr()->getType()->isMemberPointerType());
1447    goto CheckNoBasePath;
1448
1449  case CK_BitCast:
1450    // Arbitrary casts to C pointer types count as bitcasts.
1451    // Otherwise, we should only have block and ObjC pointer casts
1452    // here if they stay within the type kind.
1453    if (!getType()->isPointerType()) {
1454      assert(getType()->isObjCObjectPointerType() ==
1455             getSubExpr()->getType()->isObjCObjectPointerType());
1456      assert(getType()->isBlockPointerType() ==
1457             getSubExpr()->getType()->isBlockPointerType());
1458    }
1459    goto CheckNoBasePath;
1460
1461  case CK_AnyPointerToBlockPointerCast:
1462    assert(getType()->isBlockPointerType());
1463    assert(getSubExpr()->getType()->isAnyPointerType() &&
1464           !getSubExpr()->getType()->isBlockPointerType());
1465    goto CheckNoBasePath;
1466
1467  case CK_CopyAndAutoreleaseBlockObject:
1468    assert(getType()->isBlockPointerType());
1469    assert(getSubExpr()->getType()->isBlockPointerType());
1470    goto CheckNoBasePath;
1471
1472  case CK_FunctionToPointerDecay:
1473    assert(getType()->isPointerType());
1474    assert(getSubExpr()->getType()->isFunctionType());
1475    goto CheckNoBasePath;
1476
1477  // These should not have an inheritance path.
1478  case CK_Dynamic:
1479  case CK_ToUnion:
1480  case CK_ArrayToPointerDecay:
1481  case CK_NullToMemberPointer:
1482  case CK_NullToPointer:
1483  case CK_ConstructorConversion:
1484  case CK_IntegralToPointer:
1485  case CK_PointerToIntegral:
1486  case CK_ToVoid:
1487  case CK_VectorSplat:
1488  case CK_IntegralCast:
1489  case CK_IntegralToFloating:
1490  case CK_FloatingToIntegral:
1491  case CK_FloatingCast:
1492  case CK_ObjCObjectLValueCast:
1493  case CK_FloatingRealToComplex:
1494  case CK_FloatingComplexToReal:
1495  case CK_FloatingComplexCast:
1496  case CK_FloatingComplexToIntegralComplex:
1497  case CK_IntegralRealToComplex:
1498  case CK_IntegralComplexToReal:
1499  case CK_IntegralComplexCast:
1500  case CK_IntegralComplexToFloatingComplex:
1501  case CK_ARCProduceObject:
1502  case CK_ARCConsumeObject:
1503  case CK_ARCReclaimReturnedObject:
1504  case CK_ARCExtendBlockObject:
1505  case CK_ZeroToOCLEvent:
1506    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1507    goto CheckNoBasePath;
1508
1509  case CK_Dependent:
1510  case CK_LValueToRValue:
1511  case CK_NoOp:
1512  case CK_AtomicToNonAtomic:
1513  case CK_NonAtomicToAtomic:
1514  case CK_PointerToBoolean:
1515  case CK_IntegralToBoolean:
1516  case CK_FloatingToBoolean:
1517  case CK_MemberPointerToBoolean:
1518  case CK_FloatingComplexToBoolean:
1519  case CK_IntegralComplexToBoolean:
1520  case CK_LValueBitCast:            // -> bool&
1521  case CK_UserDefinedConversion:    // operator bool()
1522  case CK_BuiltinFnToFnPtr:
1523  CheckNoBasePath:
1524    assert(path_empty() && "Cast kind should not have a base path!");
1525    break;
1526  }
1527}
1528
1529const char *CastExpr::getCastKindName() const {
1530  switch (getCastKind()) {
1531  case CK_Dependent:
1532    return "Dependent";
1533  case CK_BitCast:
1534    return "BitCast";
1535  case CK_LValueBitCast:
1536    return "LValueBitCast";
1537  case CK_LValueToRValue:
1538    return "LValueToRValue";
1539  case CK_NoOp:
1540    return "NoOp";
1541  case CK_BaseToDerived:
1542    return "BaseToDerived";
1543  case CK_DerivedToBase:
1544    return "DerivedToBase";
1545  case CK_UncheckedDerivedToBase:
1546    return "UncheckedDerivedToBase";
1547  case CK_Dynamic:
1548    return "Dynamic";
1549  case CK_ToUnion:
1550    return "ToUnion";
1551  case CK_ArrayToPointerDecay:
1552    return "ArrayToPointerDecay";
1553  case CK_FunctionToPointerDecay:
1554    return "FunctionToPointerDecay";
1555  case CK_NullToMemberPointer:
1556    return "NullToMemberPointer";
1557  case CK_NullToPointer:
1558    return "NullToPointer";
1559  case CK_BaseToDerivedMemberPointer:
1560    return "BaseToDerivedMemberPointer";
1561  case CK_DerivedToBaseMemberPointer:
1562    return "DerivedToBaseMemberPointer";
1563  case CK_ReinterpretMemberPointer:
1564    return "ReinterpretMemberPointer";
1565  case CK_UserDefinedConversion:
1566    return "UserDefinedConversion";
1567  case CK_ConstructorConversion:
1568    return "ConstructorConversion";
1569  case CK_IntegralToPointer:
1570    return "IntegralToPointer";
1571  case CK_PointerToIntegral:
1572    return "PointerToIntegral";
1573  case CK_PointerToBoolean:
1574    return "PointerToBoolean";
1575  case CK_ToVoid:
1576    return "ToVoid";
1577  case CK_VectorSplat:
1578    return "VectorSplat";
1579  case CK_IntegralCast:
1580    return "IntegralCast";
1581  case CK_IntegralToBoolean:
1582    return "IntegralToBoolean";
1583  case CK_IntegralToFloating:
1584    return "IntegralToFloating";
1585  case CK_FloatingToIntegral:
1586    return "FloatingToIntegral";
1587  case CK_FloatingCast:
1588    return "FloatingCast";
1589  case CK_FloatingToBoolean:
1590    return "FloatingToBoolean";
1591  case CK_MemberPointerToBoolean:
1592    return "MemberPointerToBoolean";
1593  case CK_CPointerToObjCPointerCast:
1594    return "CPointerToObjCPointerCast";
1595  case CK_BlockPointerToObjCPointerCast:
1596    return "BlockPointerToObjCPointerCast";
1597  case CK_AnyPointerToBlockPointerCast:
1598    return "AnyPointerToBlockPointerCast";
1599  case CK_ObjCObjectLValueCast:
1600    return "ObjCObjectLValueCast";
1601  case CK_FloatingRealToComplex:
1602    return "FloatingRealToComplex";
1603  case CK_FloatingComplexToReal:
1604    return "FloatingComplexToReal";
1605  case CK_FloatingComplexToBoolean:
1606    return "FloatingComplexToBoolean";
1607  case CK_FloatingComplexCast:
1608    return "FloatingComplexCast";
1609  case CK_FloatingComplexToIntegralComplex:
1610    return "FloatingComplexToIntegralComplex";
1611  case CK_IntegralRealToComplex:
1612    return "IntegralRealToComplex";
1613  case CK_IntegralComplexToReal:
1614    return "IntegralComplexToReal";
1615  case CK_IntegralComplexToBoolean:
1616    return "IntegralComplexToBoolean";
1617  case CK_IntegralComplexCast:
1618    return "IntegralComplexCast";
1619  case CK_IntegralComplexToFloatingComplex:
1620    return "IntegralComplexToFloatingComplex";
1621  case CK_ARCConsumeObject:
1622    return "ARCConsumeObject";
1623  case CK_ARCProduceObject:
1624    return "ARCProduceObject";
1625  case CK_ARCReclaimReturnedObject:
1626    return "ARCReclaimReturnedObject";
1627  case CK_ARCExtendBlockObject:
1628    return "ARCCExtendBlockObject";
1629  case CK_AtomicToNonAtomic:
1630    return "AtomicToNonAtomic";
1631  case CK_NonAtomicToAtomic:
1632    return "NonAtomicToAtomic";
1633  case CK_CopyAndAutoreleaseBlockObject:
1634    return "CopyAndAutoreleaseBlockObject";
1635  case CK_BuiltinFnToFnPtr:
1636    return "BuiltinFnToFnPtr";
1637  case CK_ZeroToOCLEvent:
1638    return "ZeroToOCLEvent";
1639  }
1640
1641  llvm_unreachable("Unhandled cast kind!");
1642}
1643
1644Expr *CastExpr::getSubExprAsWritten() {
1645  Expr *SubExpr = 0;
1646  CastExpr *E = this;
1647  do {
1648    SubExpr = E->getSubExpr();
1649
1650    // Skip through reference binding to temporary.
1651    if (MaterializeTemporaryExpr *Materialize
1652                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1653      SubExpr = Materialize->GetTemporaryExpr();
1654
1655    // Skip any temporary bindings; they're implicit.
1656    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1657      SubExpr = Binder->getSubExpr();
1658
1659    // Conversions by constructor and conversion functions have a
1660    // subexpression describing the call; strip it off.
1661    if (E->getCastKind() == CK_ConstructorConversion)
1662      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1663    else if (E->getCastKind() == CK_UserDefinedConversion)
1664      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1665
1666    // If the subexpression we're left with is an implicit cast, look
1667    // through that, too.
1668  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1669
1670  return SubExpr;
1671}
1672
1673CXXBaseSpecifier **CastExpr::path_buffer() {
1674  switch (getStmtClass()) {
1675#define ABSTRACT_STMT(x)
1676#define CASTEXPR(Type, Base) \
1677  case Stmt::Type##Class: \
1678    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1679#define STMT(Type, Base)
1680#include "clang/AST/StmtNodes.inc"
1681  default:
1682    llvm_unreachable("non-cast expressions not possible here");
1683  }
1684}
1685
1686void CastExpr::setCastPath(const CXXCastPath &Path) {
1687  assert(Path.size() == path_size());
1688  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1689}
1690
1691ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1692                                           CastKind Kind, Expr *Operand,
1693                                           const CXXCastPath *BasePath,
1694                                           ExprValueKind VK) {
1695  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1696  void *Buffer =
1697    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1698  ImplicitCastExpr *E =
1699    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1700  if (PathSize) E->setCastPath(*BasePath);
1701  return E;
1702}
1703
1704ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1705                                                unsigned PathSize) {
1706  void *Buffer =
1707    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1708  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1709}
1710
1711
1712CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1713                                       ExprValueKind VK, CastKind K, Expr *Op,
1714                                       const CXXCastPath *BasePath,
1715                                       TypeSourceInfo *WrittenTy,
1716                                       SourceLocation L, SourceLocation R) {
1717  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1718  void *Buffer =
1719    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1720  CStyleCastExpr *E =
1721    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1722  if (PathSize) E->setCastPath(*BasePath);
1723  return E;
1724}
1725
1726CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1727                                            unsigned PathSize) {
1728  void *Buffer =
1729    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1730  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1731}
1732
1733/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1734/// corresponds to, e.g. "<<=".
1735StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1736  switch (Op) {
1737  case BO_PtrMemD:   return ".*";
1738  case BO_PtrMemI:   return "->*";
1739  case BO_Mul:       return "*";
1740  case BO_Div:       return "/";
1741  case BO_Rem:       return "%";
1742  case BO_Add:       return "+";
1743  case BO_Sub:       return "-";
1744  case BO_Shl:       return "<<";
1745  case BO_Shr:       return ">>";
1746  case BO_LT:        return "<";
1747  case BO_GT:        return ">";
1748  case BO_LE:        return "<=";
1749  case BO_GE:        return ">=";
1750  case BO_EQ:        return "==";
1751  case BO_NE:        return "!=";
1752  case BO_And:       return "&";
1753  case BO_Xor:       return "^";
1754  case BO_Or:        return "|";
1755  case BO_LAnd:      return "&&";
1756  case BO_LOr:       return "||";
1757  case BO_Assign:    return "=";
1758  case BO_MulAssign: return "*=";
1759  case BO_DivAssign: return "/=";
1760  case BO_RemAssign: return "%=";
1761  case BO_AddAssign: return "+=";
1762  case BO_SubAssign: return "-=";
1763  case BO_ShlAssign: return "<<=";
1764  case BO_ShrAssign: return ">>=";
1765  case BO_AndAssign: return "&=";
1766  case BO_XorAssign: return "^=";
1767  case BO_OrAssign:  return "|=";
1768  case BO_Comma:     return ",";
1769  }
1770
1771  llvm_unreachable("Invalid OpCode!");
1772}
1773
1774BinaryOperatorKind
1775BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1776  switch (OO) {
1777  default: llvm_unreachable("Not an overloadable binary operator");
1778  case OO_Plus: return BO_Add;
1779  case OO_Minus: return BO_Sub;
1780  case OO_Star: return BO_Mul;
1781  case OO_Slash: return BO_Div;
1782  case OO_Percent: return BO_Rem;
1783  case OO_Caret: return BO_Xor;
1784  case OO_Amp: return BO_And;
1785  case OO_Pipe: return BO_Or;
1786  case OO_Equal: return BO_Assign;
1787  case OO_Less: return BO_LT;
1788  case OO_Greater: return BO_GT;
1789  case OO_PlusEqual: return BO_AddAssign;
1790  case OO_MinusEqual: return BO_SubAssign;
1791  case OO_StarEqual: return BO_MulAssign;
1792  case OO_SlashEqual: return BO_DivAssign;
1793  case OO_PercentEqual: return BO_RemAssign;
1794  case OO_CaretEqual: return BO_XorAssign;
1795  case OO_AmpEqual: return BO_AndAssign;
1796  case OO_PipeEqual: return BO_OrAssign;
1797  case OO_LessLess: return BO_Shl;
1798  case OO_GreaterGreater: return BO_Shr;
1799  case OO_LessLessEqual: return BO_ShlAssign;
1800  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1801  case OO_EqualEqual: return BO_EQ;
1802  case OO_ExclaimEqual: return BO_NE;
1803  case OO_LessEqual: return BO_LE;
1804  case OO_GreaterEqual: return BO_GE;
1805  case OO_AmpAmp: return BO_LAnd;
1806  case OO_PipePipe: return BO_LOr;
1807  case OO_Comma: return BO_Comma;
1808  case OO_ArrowStar: return BO_PtrMemI;
1809  }
1810}
1811
1812OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1813  static const OverloadedOperatorKind OverOps[] = {
1814    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1815    OO_Star, OO_Slash, OO_Percent,
1816    OO_Plus, OO_Minus,
1817    OO_LessLess, OO_GreaterGreater,
1818    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1819    OO_EqualEqual, OO_ExclaimEqual,
1820    OO_Amp,
1821    OO_Caret,
1822    OO_Pipe,
1823    OO_AmpAmp,
1824    OO_PipePipe,
1825    OO_Equal, OO_StarEqual,
1826    OO_SlashEqual, OO_PercentEqual,
1827    OO_PlusEqual, OO_MinusEqual,
1828    OO_LessLessEqual, OO_GreaterGreaterEqual,
1829    OO_AmpEqual, OO_CaretEqual,
1830    OO_PipeEqual,
1831    OO_Comma
1832  };
1833  return OverOps[Opc];
1834}
1835
1836InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1837                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1838  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1839         false, false),
1840    InitExprs(C, initExprs.size()),
1841    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1842{
1843  sawArrayRangeDesignator(false);
1844  for (unsigned I = 0; I != initExprs.size(); ++I) {
1845    if (initExprs[I]->isTypeDependent())
1846      ExprBits.TypeDependent = true;
1847    if (initExprs[I]->isValueDependent())
1848      ExprBits.ValueDependent = true;
1849    if (initExprs[I]->isInstantiationDependent())
1850      ExprBits.InstantiationDependent = true;
1851    if (initExprs[I]->containsUnexpandedParameterPack())
1852      ExprBits.ContainsUnexpandedParameterPack = true;
1853  }
1854
1855  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1856}
1857
1858void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1859  if (NumInits > InitExprs.size())
1860    InitExprs.reserve(C, NumInits);
1861}
1862
1863void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1864  InitExprs.resize(C, NumInits, 0);
1865}
1866
1867Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1868  if (Init >= InitExprs.size()) {
1869    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1870    InitExprs.back() = expr;
1871    return 0;
1872  }
1873
1874  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1875  InitExprs[Init] = expr;
1876  return Result;
1877}
1878
1879void InitListExpr::setArrayFiller(Expr *filler) {
1880  assert(!hasArrayFiller() && "Filler already set!");
1881  ArrayFillerOrUnionFieldInit = filler;
1882  // Fill out any "holes" in the array due to designated initializers.
1883  Expr **inits = getInits();
1884  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1885    if (inits[i] == 0)
1886      inits[i] = filler;
1887}
1888
1889bool InitListExpr::isStringLiteralInit() const {
1890  if (getNumInits() != 1)
1891    return false;
1892  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1893  if (!AT || !AT->getElementType()->isIntegerType())
1894    return false;
1895  // It is possible for getInit() to return null.
1896  const Expr *Init = getInit(0);
1897  if (!Init)
1898    return false;
1899  Init = Init->IgnoreParens();
1900  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1901}
1902
1903SourceLocation InitListExpr::getLocStart() const {
1904  if (InitListExpr *SyntacticForm = getSyntacticForm())
1905    return SyntacticForm->getLocStart();
1906  SourceLocation Beg = LBraceLoc;
1907  if (Beg.isInvalid()) {
1908    // Find the first non-null initializer.
1909    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1910                                     E = InitExprs.end();
1911      I != E; ++I) {
1912      if (Stmt *S = *I) {
1913        Beg = S->getLocStart();
1914        break;
1915      }
1916    }
1917  }
1918  return Beg;
1919}
1920
1921SourceLocation InitListExpr::getLocEnd() const {
1922  if (InitListExpr *SyntacticForm = getSyntacticForm())
1923    return SyntacticForm->getLocEnd();
1924  SourceLocation End = RBraceLoc;
1925  if (End.isInvalid()) {
1926    // Find the first non-null initializer from the end.
1927    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1928         E = InitExprs.rend();
1929         I != E; ++I) {
1930      if (Stmt *S = *I) {
1931        End = S->getLocEnd();
1932        break;
1933      }
1934    }
1935  }
1936  return End;
1937}
1938
1939/// getFunctionType - Return the underlying function type for this block.
1940///
1941const FunctionProtoType *BlockExpr::getFunctionType() const {
1942  // The block pointer is never sugared, but the function type might be.
1943  return cast<BlockPointerType>(getType())
1944           ->getPointeeType()->castAs<FunctionProtoType>();
1945}
1946
1947SourceLocation BlockExpr::getCaretLocation() const {
1948  return TheBlock->getCaretLocation();
1949}
1950const Stmt *BlockExpr::getBody() const {
1951  return TheBlock->getBody();
1952}
1953Stmt *BlockExpr::getBody() {
1954  return TheBlock->getBody();
1955}
1956
1957
1958//===----------------------------------------------------------------------===//
1959// Generic Expression Routines
1960//===----------------------------------------------------------------------===//
1961
1962/// isUnusedResultAWarning - Return true if this immediate expression should
1963/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1964/// with location to warn on and the source range[s] to report with the
1965/// warning.
1966bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1967                                  SourceRange &R1, SourceRange &R2,
1968                                  ASTContext &Ctx) const {
1969  // Don't warn if the expr is type dependent. The type could end up
1970  // instantiating to void.
1971  if (isTypeDependent())
1972    return false;
1973
1974  switch (getStmtClass()) {
1975  default:
1976    if (getType()->isVoidType())
1977      return false;
1978    WarnE = this;
1979    Loc = getExprLoc();
1980    R1 = getSourceRange();
1981    return true;
1982  case ParenExprClass:
1983    return cast<ParenExpr>(this)->getSubExpr()->
1984      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1985  case GenericSelectionExprClass:
1986    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1987      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1988  case ChooseExprClass:
1989    return cast<ChooseExpr>(this)->getChosenSubExpr()->
1990      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1991  case UnaryOperatorClass: {
1992    const UnaryOperator *UO = cast<UnaryOperator>(this);
1993
1994    switch (UO->getOpcode()) {
1995    case UO_Plus:
1996    case UO_Minus:
1997    case UO_AddrOf:
1998    case UO_Not:
1999    case UO_LNot:
2000    case UO_Deref:
2001      break;
2002    case UO_PostInc:
2003    case UO_PostDec:
2004    case UO_PreInc:
2005    case UO_PreDec:                 // ++/--
2006      return false;  // Not a warning.
2007    case UO_Real:
2008    case UO_Imag:
2009      // accessing a piece of a volatile complex is a side-effect.
2010      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2011          .isVolatileQualified())
2012        return false;
2013      break;
2014    case UO_Extension:
2015      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2016    }
2017    WarnE = this;
2018    Loc = UO->getOperatorLoc();
2019    R1 = UO->getSubExpr()->getSourceRange();
2020    return true;
2021  }
2022  case BinaryOperatorClass: {
2023    const BinaryOperator *BO = cast<BinaryOperator>(this);
2024    switch (BO->getOpcode()) {
2025      default:
2026        break;
2027      // Consider the RHS of comma for side effects. LHS was checked by
2028      // Sema::CheckCommaOperands.
2029      case BO_Comma:
2030        // ((foo = <blah>), 0) is an idiom for hiding the result (and
2031        // lvalue-ness) of an assignment written in a macro.
2032        if (IntegerLiteral *IE =
2033              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2034          if (IE->getValue() == 0)
2035            return false;
2036        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2037      // Consider '||', '&&' to have side effects if the LHS or RHS does.
2038      case BO_LAnd:
2039      case BO_LOr:
2040        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2041            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2042          return false;
2043        break;
2044    }
2045    if (BO->isAssignmentOp())
2046      return false;
2047    WarnE = this;
2048    Loc = BO->getOperatorLoc();
2049    R1 = BO->getLHS()->getSourceRange();
2050    R2 = BO->getRHS()->getSourceRange();
2051    return true;
2052  }
2053  case CompoundAssignOperatorClass:
2054  case VAArgExprClass:
2055  case AtomicExprClass:
2056    return false;
2057
2058  case ConditionalOperatorClass: {
2059    // If only one of the LHS or RHS is a warning, the operator might
2060    // be being used for control flow. Only warn if both the LHS and
2061    // RHS are warnings.
2062    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2063    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2064      return false;
2065    if (!Exp->getLHS())
2066      return true;
2067    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2068  }
2069
2070  case MemberExprClass:
2071    WarnE = this;
2072    Loc = cast<MemberExpr>(this)->getMemberLoc();
2073    R1 = SourceRange(Loc, Loc);
2074    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2075    return true;
2076
2077  case ArraySubscriptExprClass:
2078    WarnE = this;
2079    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2080    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2081    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2082    return true;
2083
2084  case CXXOperatorCallExprClass: {
2085    // We warn about operator== and operator!= even when user-defined operator
2086    // overloads as there is no reasonable way to define these such that they
2087    // have non-trivial, desirable side-effects. See the -Wunused-comparison
2088    // warning: these operators are commonly typo'ed, and so warning on them
2089    // provides additional value as well. If this list is updated,
2090    // DiagnoseUnusedComparison should be as well.
2091    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2092    if (Op->getOperator() == OO_EqualEqual ||
2093        Op->getOperator() == OO_ExclaimEqual) {
2094      WarnE = this;
2095      Loc = Op->getOperatorLoc();
2096      R1 = Op->getSourceRange();
2097      return true;
2098    }
2099
2100    // Fallthrough for generic call handling.
2101  }
2102  case CallExprClass:
2103  case CXXMemberCallExprClass:
2104  case UserDefinedLiteralClass: {
2105    // If this is a direct call, get the callee.
2106    const CallExpr *CE = cast<CallExpr>(this);
2107    if (const Decl *FD = CE->getCalleeDecl()) {
2108      // If the callee has attribute pure, const, or warn_unused_result, warn
2109      // about it. void foo() { strlen("bar"); } should warn.
2110      //
2111      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2112      // updated to match for QoI.
2113      if (FD->getAttr<WarnUnusedResultAttr>() ||
2114          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
2115        WarnE = this;
2116        Loc = CE->getCallee()->getLocStart();
2117        R1 = CE->getCallee()->getSourceRange();
2118
2119        if (unsigned NumArgs = CE->getNumArgs())
2120          R2 = SourceRange(CE->getArg(0)->getLocStart(),
2121                           CE->getArg(NumArgs-1)->getLocEnd());
2122        return true;
2123      }
2124    }
2125    return false;
2126  }
2127
2128  // If we don't know precisely what we're looking at, let's not warn.
2129  case UnresolvedLookupExprClass:
2130  case CXXUnresolvedConstructExprClass:
2131    return false;
2132
2133  case CXXTemporaryObjectExprClass:
2134  case CXXConstructExprClass: {
2135    if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2136      if (Type->hasAttr<WarnUnusedAttr>()) {
2137        WarnE = this;
2138        Loc = getLocStart();
2139        R1 = getSourceRange();
2140        return true;
2141      }
2142    }
2143    return false;
2144  }
2145
2146  case ObjCMessageExprClass: {
2147    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2148    if (Ctx.getLangOpts().ObjCAutoRefCount &&
2149        ME->isInstanceMessage() &&
2150        !ME->getType()->isVoidType() &&
2151        ME->getMethodFamily() == OMF_init) {
2152      WarnE = this;
2153      Loc = getExprLoc();
2154      R1 = ME->getSourceRange();
2155      return true;
2156    }
2157
2158    const ObjCMethodDecl *MD = ME->getMethodDecl();
2159    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2160      WarnE = this;
2161      Loc = getExprLoc();
2162      return true;
2163    }
2164    return false;
2165  }
2166
2167  case ObjCPropertyRefExprClass:
2168    WarnE = this;
2169    Loc = getExprLoc();
2170    R1 = getSourceRange();
2171    return true;
2172
2173  case PseudoObjectExprClass: {
2174    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2175
2176    // Only complain about things that have the form of a getter.
2177    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2178        isa<BinaryOperator>(PO->getSyntacticForm()))
2179      return false;
2180
2181    WarnE = this;
2182    Loc = getExprLoc();
2183    R1 = getSourceRange();
2184    return true;
2185  }
2186
2187  case StmtExprClass: {
2188    // Statement exprs don't logically have side effects themselves, but are
2189    // sometimes used in macros in ways that give them a type that is unused.
2190    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2191    // however, if the result of the stmt expr is dead, we don't want to emit a
2192    // warning.
2193    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2194    if (!CS->body_empty()) {
2195      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2196        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2197      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2198        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2199          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2200    }
2201
2202    if (getType()->isVoidType())
2203      return false;
2204    WarnE = this;
2205    Loc = cast<StmtExpr>(this)->getLParenLoc();
2206    R1 = getSourceRange();
2207    return true;
2208  }
2209  case CXXFunctionalCastExprClass:
2210  case CStyleCastExprClass: {
2211    // Ignore an explicit cast to void unless the operand is a non-trivial
2212    // volatile lvalue.
2213    const CastExpr *CE = cast<CastExpr>(this);
2214    if (CE->getCastKind() == CK_ToVoid) {
2215      if (CE->getSubExpr()->isGLValue() &&
2216          CE->getSubExpr()->getType().isVolatileQualified()) {
2217        const DeclRefExpr *DRE =
2218            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2219        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2220              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2221          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2222                                                          R1, R2, Ctx);
2223        }
2224      }
2225      return false;
2226    }
2227
2228    // If this is a cast to a constructor conversion, check the operand.
2229    // Otherwise, the result of the cast is unused.
2230    if (CE->getCastKind() == CK_ConstructorConversion)
2231      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2232
2233    WarnE = this;
2234    if (const CXXFunctionalCastExpr *CXXCE =
2235            dyn_cast<CXXFunctionalCastExpr>(this)) {
2236      Loc = CXXCE->getLocStart();
2237      R1 = CXXCE->getSubExpr()->getSourceRange();
2238    } else {
2239      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2240      Loc = CStyleCE->getLParenLoc();
2241      R1 = CStyleCE->getSubExpr()->getSourceRange();
2242    }
2243    return true;
2244  }
2245  case ImplicitCastExprClass: {
2246    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2247
2248    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2249    if (ICE->getCastKind() == CK_LValueToRValue &&
2250        ICE->getSubExpr()->getType().isVolatileQualified())
2251      return false;
2252
2253    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2254  }
2255  case CXXDefaultArgExprClass:
2256    return (cast<CXXDefaultArgExpr>(this)
2257            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2258  case CXXDefaultInitExprClass:
2259    return (cast<CXXDefaultInitExpr>(this)
2260            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2261
2262  case CXXNewExprClass:
2263    // FIXME: In theory, there might be new expressions that don't have side
2264    // effects (e.g. a placement new with an uninitialized POD).
2265  case CXXDeleteExprClass:
2266    return false;
2267  case CXXBindTemporaryExprClass:
2268    return (cast<CXXBindTemporaryExpr>(this)
2269            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2270  case ExprWithCleanupsClass:
2271    return (cast<ExprWithCleanups>(this)
2272            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2273  }
2274}
2275
2276/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2277/// returns true, if it is; false otherwise.
2278bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2279  const Expr *E = IgnoreParens();
2280  switch (E->getStmtClass()) {
2281  default:
2282    return false;
2283  case ObjCIvarRefExprClass:
2284    return true;
2285  case Expr::UnaryOperatorClass:
2286    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2287  case ImplicitCastExprClass:
2288    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2289  case MaterializeTemporaryExprClass:
2290    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2291                                                      ->isOBJCGCCandidate(Ctx);
2292  case CStyleCastExprClass:
2293    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2294  case DeclRefExprClass: {
2295    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2296
2297    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2298      if (VD->hasGlobalStorage())
2299        return true;
2300      QualType T = VD->getType();
2301      // dereferencing to a  pointer is always a gc'able candidate,
2302      // unless it is __weak.
2303      return T->isPointerType() &&
2304             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2305    }
2306    return false;
2307  }
2308  case MemberExprClass: {
2309    const MemberExpr *M = cast<MemberExpr>(E);
2310    return M->getBase()->isOBJCGCCandidate(Ctx);
2311  }
2312  case ArraySubscriptExprClass:
2313    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2314  }
2315}
2316
2317bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2318  if (isTypeDependent())
2319    return false;
2320  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2321}
2322
2323QualType Expr::findBoundMemberType(const Expr *expr) {
2324  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2325
2326  // Bound member expressions are always one of these possibilities:
2327  //   x->m      x.m      x->*y      x.*y
2328  // (possibly parenthesized)
2329
2330  expr = expr->IgnoreParens();
2331  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2332    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2333    return mem->getMemberDecl()->getType();
2334  }
2335
2336  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2337    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2338                      ->getPointeeType();
2339    assert(type->isFunctionType());
2340    return type;
2341  }
2342
2343  assert(isa<UnresolvedMemberExpr>(expr));
2344  return QualType();
2345}
2346
2347Expr* Expr::IgnoreParens() {
2348  Expr* E = this;
2349  while (true) {
2350    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2351      E = P->getSubExpr();
2352      continue;
2353    }
2354    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2355      if (P->getOpcode() == UO_Extension) {
2356        E = P->getSubExpr();
2357        continue;
2358      }
2359    }
2360    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2361      if (!P->isResultDependent()) {
2362        E = P->getResultExpr();
2363        continue;
2364      }
2365    }
2366    if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2367      if (!P->isConditionDependent()) {
2368        E = P->getChosenSubExpr();
2369        continue;
2370      }
2371    }
2372    return E;
2373  }
2374}
2375
2376/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2377/// or CastExprs or ImplicitCastExprs, returning their operand.
2378Expr *Expr::IgnoreParenCasts() {
2379  Expr *E = this;
2380  while (true) {
2381    E = E->IgnoreParens();
2382    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2383      E = P->getSubExpr();
2384      continue;
2385    }
2386    if (MaterializeTemporaryExpr *Materialize
2387                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2388      E = Materialize->GetTemporaryExpr();
2389      continue;
2390    }
2391    if (SubstNonTypeTemplateParmExpr *NTTP
2392                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2393      E = NTTP->getReplacement();
2394      continue;
2395    }
2396    return E;
2397  }
2398}
2399
2400/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2401/// casts.  This is intended purely as a temporary workaround for code
2402/// that hasn't yet been rewritten to do the right thing about those
2403/// casts, and may disappear along with the last internal use.
2404Expr *Expr::IgnoreParenLValueCasts() {
2405  Expr *E = this;
2406  while (true) {
2407    E = E->IgnoreParens();
2408    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2409      if (P->getCastKind() == CK_LValueToRValue) {
2410        E = P->getSubExpr();
2411        continue;
2412      }
2413    } else if (MaterializeTemporaryExpr *Materialize
2414                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2415      E = Materialize->GetTemporaryExpr();
2416      continue;
2417    } else if (SubstNonTypeTemplateParmExpr *NTTP
2418                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2419      E = NTTP->getReplacement();
2420      continue;
2421    }
2422    break;
2423  }
2424  return E;
2425}
2426
2427Expr *Expr::ignoreParenBaseCasts() {
2428  Expr *E = this;
2429  while (true) {
2430    E = E->IgnoreParens();
2431    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2432      if (CE->getCastKind() == CK_DerivedToBase ||
2433          CE->getCastKind() == CK_UncheckedDerivedToBase ||
2434          CE->getCastKind() == CK_NoOp) {
2435        E = CE->getSubExpr();
2436        continue;
2437      }
2438    }
2439
2440    return E;
2441  }
2442}
2443
2444Expr *Expr::IgnoreParenImpCasts() {
2445  Expr *E = this;
2446  while (true) {
2447    E = E->IgnoreParens();
2448    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2449      E = P->getSubExpr();
2450      continue;
2451    }
2452    if (MaterializeTemporaryExpr *Materialize
2453                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2454      E = Materialize->GetTemporaryExpr();
2455      continue;
2456    }
2457    if (SubstNonTypeTemplateParmExpr *NTTP
2458                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2459      E = NTTP->getReplacement();
2460      continue;
2461    }
2462    return E;
2463  }
2464}
2465
2466Expr *Expr::IgnoreConversionOperator() {
2467  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2468    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2469      return MCE->getImplicitObjectArgument();
2470  }
2471  return this;
2472}
2473
2474/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2475/// value (including ptr->int casts of the same size).  Strip off any
2476/// ParenExpr or CastExprs, returning their operand.
2477Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2478  Expr *E = this;
2479  while (true) {
2480    E = E->IgnoreParens();
2481
2482    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2483      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2484      // ptr<->int casts of the same width.  We also ignore all identity casts.
2485      Expr *SE = P->getSubExpr();
2486
2487      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2488        E = SE;
2489        continue;
2490      }
2491
2492      if ((E->getType()->isPointerType() ||
2493           E->getType()->isIntegralType(Ctx)) &&
2494          (SE->getType()->isPointerType() ||
2495           SE->getType()->isIntegralType(Ctx)) &&
2496          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2497        E = SE;
2498        continue;
2499      }
2500    }
2501
2502    if (SubstNonTypeTemplateParmExpr *NTTP
2503                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2504      E = NTTP->getReplacement();
2505      continue;
2506    }
2507
2508    return E;
2509  }
2510}
2511
2512bool Expr::isDefaultArgument() const {
2513  const Expr *E = this;
2514  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2515    E = M->GetTemporaryExpr();
2516
2517  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2518    E = ICE->getSubExprAsWritten();
2519
2520  return isa<CXXDefaultArgExpr>(E);
2521}
2522
2523/// \brief Skip over any no-op casts and any temporary-binding
2524/// expressions.
2525static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2526  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2527    E = M->GetTemporaryExpr();
2528
2529  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2530    if (ICE->getCastKind() == CK_NoOp)
2531      E = ICE->getSubExpr();
2532    else
2533      break;
2534  }
2535
2536  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2537    E = BE->getSubExpr();
2538
2539  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2540    if (ICE->getCastKind() == CK_NoOp)
2541      E = ICE->getSubExpr();
2542    else
2543      break;
2544  }
2545
2546  return E->IgnoreParens();
2547}
2548
2549/// isTemporaryObject - Determines if this expression produces a
2550/// temporary of the given class type.
2551bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2552  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2553    return false;
2554
2555  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2556
2557  // Temporaries are by definition pr-values of class type.
2558  if (!E->Classify(C).isPRValue()) {
2559    // In this context, property reference is a message call and is pr-value.
2560    if (!isa<ObjCPropertyRefExpr>(E))
2561      return false;
2562  }
2563
2564  // Black-list a few cases which yield pr-values of class type that don't
2565  // refer to temporaries of that type:
2566
2567  // - implicit derived-to-base conversions
2568  if (isa<ImplicitCastExpr>(E)) {
2569    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2570    case CK_DerivedToBase:
2571    case CK_UncheckedDerivedToBase:
2572      return false;
2573    default:
2574      break;
2575    }
2576  }
2577
2578  // - member expressions (all)
2579  if (isa<MemberExpr>(E))
2580    return false;
2581
2582  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2583    if (BO->isPtrMemOp())
2584      return false;
2585
2586  // - opaque values (all)
2587  if (isa<OpaqueValueExpr>(E))
2588    return false;
2589
2590  return true;
2591}
2592
2593bool Expr::isImplicitCXXThis() const {
2594  const Expr *E = this;
2595
2596  // Strip away parentheses and casts we don't care about.
2597  while (true) {
2598    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2599      E = Paren->getSubExpr();
2600      continue;
2601    }
2602
2603    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2604      if (ICE->getCastKind() == CK_NoOp ||
2605          ICE->getCastKind() == CK_LValueToRValue ||
2606          ICE->getCastKind() == CK_DerivedToBase ||
2607          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2608        E = ICE->getSubExpr();
2609        continue;
2610      }
2611    }
2612
2613    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2614      if (UnOp->getOpcode() == UO_Extension) {
2615        E = UnOp->getSubExpr();
2616        continue;
2617      }
2618    }
2619
2620    if (const MaterializeTemporaryExpr *M
2621                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2622      E = M->GetTemporaryExpr();
2623      continue;
2624    }
2625
2626    break;
2627  }
2628
2629  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2630    return This->isImplicit();
2631
2632  return false;
2633}
2634
2635/// hasAnyTypeDependentArguments - Determines if any of the expressions
2636/// in Exprs is type-dependent.
2637bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2638  for (unsigned I = 0; I < Exprs.size(); ++I)
2639    if (Exprs[I]->isTypeDependent())
2640      return true;
2641
2642  return false;
2643}
2644
2645bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2646  // This function is attempting whether an expression is an initializer
2647  // which can be evaluated at compile-time. It very closely parallels
2648  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2649  // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2650  // to isEvaluatable most of the time.
2651  //
2652  // If we ever capture reference-binding directly in the AST, we can
2653  // kill the second parameter.
2654
2655  if (IsForRef) {
2656    EvalResult Result;
2657    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2658  }
2659
2660  switch (getStmtClass()) {
2661  default: break;
2662  case StringLiteralClass:
2663  case ObjCEncodeExprClass:
2664    return true;
2665  case CXXTemporaryObjectExprClass:
2666  case CXXConstructExprClass: {
2667    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2668
2669    if (CE->getConstructor()->isTrivial() &&
2670        CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2671      // Trivial default constructor
2672      if (!CE->getNumArgs()) return true;
2673
2674      // Trivial copy constructor
2675      assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2676      return CE->getArg(0)->isConstantInitializer(Ctx, false);
2677    }
2678
2679    break;
2680  }
2681  case CompoundLiteralExprClass: {
2682    // This handles gcc's extension that allows global initializers like
2683    // "struct x {int x;} x = (struct x) {};".
2684    // FIXME: This accepts other cases it shouldn't!
2685    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2686    return Exp->isConstantInitializer(Ctx, false);
2687  }
2688  case InitListExprClass: {
2689    const InitListExpr *ILE = cast<InitListExpr>(this);
2690    if (ILE->getType()->isArrayType()) {
2691      unsigned numInits = ILE->getNumInits();
2692      for (unsigned i = 0; i < numInits; i++) {
2693        if (!ILE->getInit(i)->isConstantInitializer(Ctx, false))
2694          return false;
2695      }
2696      return true;
2697    }
2698
2699    if (ILE->getType()->isRecordType()) {
2700      unsigned ElementNo = 0;
2701      RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2702      for (RecordDecl::field_iterator Field = RD->field_begin(),
2703           FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
2704        // If this is a union, skip all the fields that aren't being initialized.
2705        if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
2706          continue;
2707
2708        // Don't emit anonymous bitfields, they just affect layout.
2709        if (Field->isUnnamedBitfield())
2710          continue;
2711
2712        if (ElementNo < ILE->getNumInits()) {
2713          const Expr *Elt = ILE->getInit(ElementNo++);
2714          if (Field->isBitField()) {
2715            // Bitfields have to evaluate to an integer.
2716            llvm::APSInt ResultTmp;
2717            if (!Elt->EvaluateAsInt(ResultTmp, Ctx))
2718              return false;
2719          } else {
2720            bool RefType = Field->getType()->isReferenceType();
2721            if (!Elt->isConstantInitializer(Ctx, RefType))
2722              return false;
2723          }
2724        }
2725      }
2726      return true;
2727    }
2728
2729    break;
2730  }
2731  case ImplicitValueInitExprClass:
2732    return true;
2733  case ParenExprClass:
2734    return cast<ParenExpr>(this)->getSubExpr()
2735      ->isConstantInitializer(Ctx, IsForRef);
2736  case GenericSelectionExprClass:
2737    return cast<GenericSelectionExpr>(this)->getResultExpr()
2738      ->isConstantInitializer(Ctx, IsForRef);
2739  case ChooseExprClass:
2740    if (cast<ChooseExpr>(this)->isConditionDependent())
2741      return false;
2742    return cast<ChooseExpr>(this)->getChosenSubExpr()
2743      ->isConstantInitializer(Ctx, IsForRef);
2744  case UnaryOperatorClass: {
2745    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2746    if (Exp->getOpcode() == UO_Extension)
2747      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2748    break;
2749  }
2750  case CXXFunctionalCastExprClass:
2751  case CXXStaticCastExprClass:
2752  case ImplicitCastExprClass:
2753  case CStyleCastExprClass:
2754  case ObjCBridgedCastExprClass:
2755  case CXXDynamicCastExprClass:
2756  case CXXReinterpretCastExprClass:
2757  case CXXConstCastExprClass: {
2758    const CastExpr *CE = cast<CastExpr>(this);
2759
2760    // Handle misc casts we want to ignore.
2761    if (CE->getCastKind() == CK_NoOp ||
2762        CE->getCastKind() == CK_LValueToRValue ||
2763        CE->getCastKind() == CK_ToUnion ||
2764        CE->getCastKind() == CK_ConstructorConversion ||
2765        CE->getCastKind() == CK_NonAtomicToAtomic ||
2766        CE->getCastKind() == CK_AtomicToNonAtomic)
2767      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2768
2769    break;
2770  }
2771  case MaterializeTemporaryExprClass:
2772    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2773                                            ->isConstantInitializer(Ctx, false);
2774
2775  case SubstNonTypeTemplateParmExprClass:
2776    return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2777                                            ->isConstantInitializer(Ctx, false);
2778  case CXXDefaultArgExprClass:
2779    return cast<CXXDefaultArgExpr>(this)->getExpr()
2780                                            ->isConstantInitializer(Ctx, false);
2781  case CXXDefaultInitExprClass:
2782    return cast<CXXDefaultInitExpr>(this)->getExpr()
2783                                            ->isConstantInitializer(Ctx, false);
2784  }
2785  return isEvaluatable(Ctx);
2786}
2787
2788bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2789  if (isInstantiationDependent())
2790    return true;
2791
2792  switch (getStmtClass()) {
2793  case NoStmtClass:
2794  #define ABSTRACT_STMT(Type)
2795  #define STMT(Type, Base) case Type##Class:
2796  #define EXPR(Type, Base)
2797  #include "clang/AST/StmtNodes.inc"
2798    llvm_unreachable("unexpected Expr kind");
2799
2800  case DependentScopeDeclRefExprClass:
2801  case CXXUnresolvedConstructExprClass:
2802  case CXXDependentScopeMemberExprClass:
2803  case UnresolvedLookupExprClass:
2804  case UnresolvedMemberExprClass:
2805  case PackExpansionExprClass:
2806  case SubstNonTypeTemplateParmPackExprClass:
2807  case FunctionParmPackExprClass:
2808    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2809
2810  case DeclRefExprClass:
2811  case ObjCIvarRefExprClass:
2812  case PredefinedExprClass:
2813  case IntegerLiteralClass:
2814  case FloatingLiteralClass:
2815  case ImaginaryLiteralClass:
2816  case StringLiteralClass:
2817  case CharacterLiteralClass:
2818  case OffsetOfExprClass:
2819  case ImplicitValueInitExprClass:
2820  case UnaryExprOrTypeTraitExprClass:
2821  case AddrLabelExprClass:
2822  case GNUNullExprClass:
2823  case CXXBoolLiteralExprClass:
2824  case CXXNullPtrLiteralExprClass:
2825  case CXXThisExprClass:
2826  case CXXScalarValueInitExprClass:
2827  case TypeTraitExprClass:
2828  case UnaryTypeTraitExprClass:
2829  case BinaryTypeTraitExprClass:
2830  case ArrayTypeTraitExprClass:
2831  case ExpressionTraitExprClass:
2832  case CXXNoexceptExprClass:
2833  case SizeOfPackExprClass:
2834  case ObjCStringLiteralClass:
2835  case ObjCEncodeExprClass:
2836  case ObjCBoolLiteralExprClass:
2837  case CXXUuidofExprClass:
2838  case OpaqueValueExprClass:
2839    // These never have a side-effect.
2840    return false;
2841
2842  case CallExprClass:
2843  case MSPropertyRefExprClass:
2844  case CompoundAssignOperatorClass:
2845  case VAArgExprClass:
2846  case AtomicExprClass:
2847  case StmtExprClass:
2848  case CXXOperatorCallExprClass:
2849  case CXXMemberCallExprClass:
2850  case UserDefinedLiteralClass:
2851  case CXXThrowExprClass:
2852  case CXXNewExprClass:
2853  case CXXDeleteExprClass:
2854  case ExprWithCleanupsClass:
2855  case CXXBindTemporaryExprClass:
2856  case BlockExprClass:
2857  case CUDAKernelCallExprClass:
2858    // These always have a side-effect.
2859    return true;
2860
2861  case ParenExprClass:
2862  case ArraySubscriptExprClass:
2863  case MemberExprClass:
2864  case ConditionalOperatorClass:
2865  case BinaryConditionalOperatorClass:
2866  case CompoundLiteralExprClass:
2867  case ExtVectorElementExprClass:
2868  case DesignatedInitExprClass:
2869  case ParenListExprClass:
2870  case CXXPseudoDestructorExprClass:
2871  case CXXStdInitializerListExprClass:
2872  case SubstNonTypeTemplateParmExprClass:
2873  case MaterializeTemporaryExprClass:
2874  case ShuffleVectorExprClass:
2875  case ConvertVectorExprClass:
2876  case AsTypeExprClass:
2877    // These have a side-effect if any subexpression does.
2878    break;
2879
2880  case UnaryOperatorClass:
2881    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2882      return true;
2883    break;
2884
2885  case BinaryOperatorClass:
2886    if (cast<BinaryOperator>(this)->isAssignmentOp())
2887      return true;
2888    break;
2889
2890  case InitListExprClass:
2891    // FIXME: The children for an InitListExpr doesn't include the array filler.
2892    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2893      if (E->HasSideEffects(Ctx))
2894        return true;
2895    break;
2896
2897  case GenericSelectionExprClass:
2898    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2899        HasSideEffects(Ctx);
2900
2901  case ChooseExprClass:
2902    return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
2903
2904  case CXXDefaultArgExprClass:
2905    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2906
2907  case CXXDefaultInitExprClass:
2908    if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
2909      return E->HasSideEffects(Ctx);
2910    // If we've not yet parsed the initializer, assume it has side-effects.
2911    return true;
2912
2913  case CXXDynamicCastExprClass: {
2914    // A dynamic_cast expression has side-effects if it can throw.
2915    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2916    if (DCE->getTypeAsWritten()->isReferenceType() &&
2917        DCE->getCastKind() == CK_Dynamic)
2918      return true;
2919  } // Fall through.
2920  case ImplicitCastExprClass:
2921  case CStyleCastExprClass:
2922  case CXXStaticCastExprClass:
2923  case CXXReinterpretCastExprClass:
2924  case CXXConstCastExprClass:
2925  case CXXFunctionalCastExprClass: {
2926    const CastExpr *CE = cast<CastExpr>(this);
2927    if (CE->getCastKind() == CK_LValueToRValue &&
2928        CE->getSubExpr()->getType().isVolatileQualified())
2929      return true;
2930    break;
2931  }
2932
2933  case CXXTypeidExprClass:
2934    // typeid might throw if its subexpression is potentially-evaluated, so has
2935    // side-effects in that case whether or not its subexpression does.
2936    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2937
2938  case CXXConstructExprClass:
2939  case CXXTemporaryObjectExprClass: {
2940    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2941    if (!CE->getConstructor()->isTrivial())
2942      return true;
2943    // A trivial constructor does not add any side-effects of its own. Just look
2944    // at its arguments.
2945    break;
2946  }
2947
2948  case LambdaExprClass: {
2949    const LambdaExpr *LE = cast<LambdaExpr>(this);
2950    for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2951                                      E = LE->capture_end(); I != E; ++I)
2952      if (I->getCaptureKind() == LCK_ByCopy)
2953        // FIXME: Only has a side-effect if the variable is volatile or if
2954        // the copy would invoke a non-trivial copy constructor.
2955        return true;
2956    return false;
2957  }
2958
2959  case PseudoObjectExprClass: {
2960    // Only look for side-effects in the semantic form, and look past
2961    // OpaqueValueExpr bindings in that form.
2962    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2963    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2964                                                    E = PO->semantics_end();
2965         I != E; ++I) {
2966      const Expr *Subexpr = *I;
2967      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2968        Subexpr = OVE->getSourceExpr();
2969      if (Subexpr->HasSideEffects(Ctx))
2970        return true;
2971    }
2972    return false;
2973  }
2974
2975  case ObjCBoxedExprClass:
2976  case ObjCArrayLiteralClass:
2977  case ObjCDictionaryLiteralClass:
2978  case ObjCMessageExprClass:
2979  case ObjCSelectorExprClass:
2980  case ObjCProtocolExprClass:
2981  case ObjCPropertyRefExprClass:
2982  case ObjCIsaExprClass:
2983  case ObjCIndirectCopyRestoreExprClass:
2984  case ObjCSubscriptRefExprClass:
2985  case ObjCBridgedCastExprClass:
2986    // FIXME: Classify these cases better.
2987    return true;
2988  }
2989
2990  // Recurse to children.
2991  for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2992    if (const Stmt *S = *SubStmts)
2993      if (cast<Expr>(S)->HasSideEffects(Ctx))
2994        return true;
2995
2996  return false;
2997}
2998
2999namespace {
3000  /// \brief Look for a call to a non-trivial function within an expression.
3001  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
3002  {
3003    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3004
3005    bool NonTrivial;
3006
3007  public:
3008    explicit NonTrivialCallFinder(ASTContext &Context)
3009      : Inherited(Context), NonTrivial(false) { }
3010
3011    bool hasNonTrivialCall() const { return NonTrivial; }
3012
3013    void VisitCallExpr(CallExpr *E) {
3014      if (CXXMethodDecl *Method
3015          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
3016        if (Method->isTrivial()) {
3017          // Recurse to children of the call.
3018          Inherited::VisitStmt(E);
3019          return;
3020        }
3021      }
3022
3023      NonTrivial = true;
3024    }
3025
3026    void VisitCXXConstructExpr(CXXConstructExpr *E) {
3027      if (E->getConstructor()->isTrivial()) {
3028        // Recurse to children of the call.
3029        Inherited::VisitStmt(E);
3030        return;
3031      }
3032
3033      NonTrivial = true;
3034    }
3035
3036    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3037      if (E->getTemporary()->getDestructor()->isTrivial()) {
3038        Inherited::VisitStmt(E);
3039        return;
3040      }
3041
3042      NonTrivial = true;
3043    }
3044  };
3045}
3046
3047bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
3048  NonTrivialCallFinder Finder(Ctx);
3049  Finder.Visit(this);
3050  return Finder.hasNonTrivialCall();
3051}
3052
3053/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3054/// pointer constant or not, as well as the specific kind of constant detected.
3055/// Null pointer constants can be integer constant expressions with the
3056/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3057/// (a GNU extension).
3058Expr::NullPointerConstantKind
3059Expr::isNullPointerConstant(ASTContext &Ctx,
3060                            NullPointerConstantValueDependence NPC) const {
3061  if (isValueDependent() &&
3062      (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MicrosoftMode)) {
3063    switch (NPC) {
3064    case NPC_NeverValueDependent:
3065      llvm_unreachable("Unexpected value dependent expression!");
3066    case NPC_ValueDependentIsNull:
3067      if (isTypeDependent() || getType()->isIntegralType(Ctx))
3068        return NPCK_ZeroExpression;
3069      else
3070        return NPCK_NotNull;
3071
3072    case NPC_ValueDependentIsNotNull:
3073      return NPCK_NotNull;
3074    }
3075  }
3076
3077  // Strip off a cast to void*, if it exists. Except in C++.
3078  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3079    if (!Ctx.getLangOpts().CPlusPlus) {
3080      // Check that it is a cast to void*.
3081      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3082        QualType Pointee = PT->getPointeeType();
3083        if (!Pointee.hasQualifiers() &&
3084            Pointee->isVoidType() &&                              // to void*
3085            CE->getSubExpr()->getType()->isIntegerType())         // from int.
3086          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3087      }
3088    }
3089  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3090    // Ignore the ImplicitCastExpr type entirely.
3091    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3092  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3093    // Accept ((void*)0) as a null pointer constant, as many other
3094    // implementations do.
3095    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3096  } else if (const GenericSelectionExpr *GE =
3097               dyn_cast<GenericSelectionExpr>(this)) {
3098    if (GE->isResultDependent())
3099      return NPCK_NotNull;
3100    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3101  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3102    if (CE->isConditionDependent())
3103      return NPCK_NotNull;
3104    return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3105  } else if (const CXXDefaultArgExpr *DefaultArg
3106               = dyn_cast<CXXDefaultArgExpr>(this)) {
3107    // See through default argument expressions.
3108    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3109  } else if (const CXXDefaultInitExpr *DefaultInit
3110               = dyn_cast<CXXDefaultInitExpr>(this)) {
3111    // See through default initializer expressions.
3112    return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3113  } else if (isa<GNUNullExpr>(this)) {
3114    // The GNU __null extension is always a null pointer constant.
3115    return NPCK_GNUNull;
3116  } else if (const MaterializeTemporaryExpr *M
3117                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
3118    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3119  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3120    if (const Expr *Source = OVE->getSourceExpr())
3121      return Source->isNullPointerConstant(Ctx, NPC);
3122  }
3123
3124  // C++11 nullptr_t is always a null pointer constant.
3125  if (getType()->isNullPtrType())
3126    return NPCK_CXX11_nullptr;
3127
3128  if (const RecordType *UT = getType()->getAsUnionType())
3129    if (!Ctx.getLangOpts().CPlusPlus11 &&
3130        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3131      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3132        const Expr *InitExpr = CLE->getInitializer();
3133        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3134          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3135      }
3136  // This expression must be an integer type.
3137  if (!getType()->isIntegerType() ||
3138      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3139    return NPCK_NotNull;
3140
3141  if (Ctx.getLangOpts().CPlusPlus11) {
3142    // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3143    // value zero or a prvalue of type std::nullptr_t.
3144    // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3145    const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3146    if (Lit && !Lit->getValue())
3147      return NPCK_ZeroLiteral;
3148    else if (!Ctx.getLangOpts().MicrosoftMode ||
3149             !isCXX98IntegralConstantExpr(Ctx))
3150      return NPCK_NotNull;
3151  } else {
3152    // If we have an integer constant expression, we need to *evaluate* it and
3153    // test for the value 0.
3154    if (!isIntegerConstantExpr(Ctx))
3155      return NPCK_NotNull;
3156  }
3157
3158  if (EvaluateKnownConstInt(Ctx) != 0)
3159    return NPCK_NotNull;
3160
3161  if (isa<IntegerLiteral>(this))
3162    return NPCK_ZeroLiteral;
3163  return NPCK_ZeroExpression;
3164}
3165
3166/// \brief If this expression is an l-value for an Objective C
3167/// property, find the underlying property reference expression.
3168const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3169  const Expr *E = this;
3170  while (true) {
3171    assert((E->getValueKind() == VK_LValue &&
3172            E->getObjectKind() == OK_ObjCProperty) &&
3173           "expression is not a property reference");
3174    E = E->IgnoreParenCasts();
3175    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3176      if (BO->getOpcode() == BO_Comma) {
3177        E = BO->getRHS();
3178        continue;
3179      }
3180    }
3181
3182    break;
3183  }
3184
3185  return cast<ObjCPropertyRefExpr>(E);
3186}
3187
3188bool Expr::isObjCSelfExpr() const {
3189  const Expr *E = IgnoreParenImpCasts();
3190
3191  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3192  if (!DRE)
3193    return false;
3194
3195  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3196  if (!Param)
3197    return false;
3198
3199  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3200  if (!M)
3201    return false;
3202
3203  return M->getSelfDecl() == Param;
3204}
3205
3206FieldDecl *Expr::getSourceBitField() {
3207  Expr *E = this->IgnoreParens();
3208
3209  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3210    if (ICE->getCastKind() == CK_LValueToRValue ||
3211        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3212      E = ICE->getSubExpr()->IgnoreParens();
3213    else
3214      break;
3215  }
3216
3217  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3218    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3219      if (Field->isBitField())
3220        return Field;
3221
3222  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3223    if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3224      if (Ivar->isBitField())
3225        return Ivar;
3226
3227  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3228    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3229      if (Field->isBitField())
3230        return Field;
3231
3232  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3233    if (BinOp->isAssignmentOp() && BinOp->getLHS())
3234      return BinOp->getLHS()->getSourceBitField();
3235
3236    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3237      return BinOp->getRHS()->getSourceBitField();
3238  }
3239
3240  return 0;
3241}
3242
3243bool Expr::refersToVectorElement() const {
3244  const Expr *E = this->IgnoreParens();
3245
3246  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3247    if (ICE->getValueKind() != VK_RValue &&
3248        ICE->getCastKind() == CK_NoOp)
3249      E = ICE->getSubExpr()->IgnoreParens();
3250    else
3251      break;
3252  }
3253
3254  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3255    return ASE->getBase()->getType()->isVectorType();
3256
3257  if (isa<ExtVectorElementExpr>(E))
3258    return true;
3259
3260  return false;
3261}
3262
3263/// isArrow - Return true if the base expression is a pointer to vector,
3264/// return false if the base expression is a vector.
3265bool ExtVectorElementExpr::isArrow() const {
3266  return getBase()->getType()->isPointerType();
3267}
3268
3269unsigned ExtVectorElementExpr::getNumElements() const {
3270  if (const VectorType *VT = getType()->getAs<VectorType>())
3271    return VT->getNumElements();
3272  return 1;
3273}
3274
3275/// containsDuplicateElements - Return true if any element access is repeated.
3276bool ExtVectorElementExpr::containsDuplicateElements() const {
3277  // FIXME: Refactor this code to an accessor on the AST node which returns the
3278  // "type" of component access, and share with code below and in Sema.
3279  StringRef Comp = Accessor->getName();
3280
3281  // Halving swizzles do not contain duplicate elements.
3282  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3283    return false;
3284
3285  // Advance past s-char prefix on hex swizzles.
3286  if (Comp[0] == 's' || Comp[0] == 'S')
3287    Comp = Comp.substr(1);
3288
3289  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3290    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3291        return true;
3292
3293  return false;
3294}
3295
3296/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3297void ExtVectorElementExpr::getEncodedElementAccess(
3298                                  SmallVectorImpl<unsigned> &Elts) const {
3299  StringRef Comp = Accessor->getName();
3300  if (Comp[0] == 's' || Comp[0] == 'S')
3301    Comp = Comp.substr(1);
3302
3303  bool isHi =   Comp == "hi";
3304  bool isLo =   Comp == "lo";
3305  bool isEven = Comp == "even";
3306  bool isOdd  = Comp == "odd";
3307
3308  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3309    uint64_t Index;
3310
3311    if (isHi)
3312      Index = e + i;
3313    else if (isLo)
3314      Index = i;
3315    else if (isEven)
3316      Index = 2 * i;
3317    else if (isOdd)
3318      Index = 2 * i + 1;
3319    else
3320      Index = ExtVectorType::getAccessorIdx(Comp[i]);
3321
3322    Elts.push_back(Index);
3323  }
3324}
3325
3326ObjCMessageExpr::ObjCMessageExpr(QualType T,
3327                                 ExprValueKind VK,
3328                                 SourceLocation LBracLoc,
3329                                 SourceLocation SuperLoc,
3330                                 bool IsInstanceSuper,
3331                                 QualType SuperType,
3332                                 Selector Sel,
3333                                 ArrayRef<SourceLocation> SelLocs,
3334                                 SelectorLocationsKind SelLocsK,
3335                                 ObjCMethodDecl *Method,
3336                                 ArrayRef<Expr *> Args,
3337                                 SourceLocation RBracLoc,
3338                                 bool isImplicit)
3339  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3340         /*TypeDependent=*/false, /*ValueDependent=*/false,
3341         /*InstantiationDependent=*/false,
3342         /*ContainsUnexpandedParameterPack=*/false),
3343    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3344                                                       : Sel.getAsOpaquePtr())),
3345    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3346    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3347    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3348{
3349  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3350  setReceiverPointer(SuperType.getAsOpaquePtr());
3351}
3352
3353ObjCMessageExpr::ObjCMessageExpr(QualType T,
3354                                 ExprValueKind VK,
3355                                 SourceLocation LBracLoc,
3356                                 TypeSourceInfo *Receiver,
3357                                 Selector Sel,
3358                                 ArrayRef<SourceLocation> SelLocs,
3359                                 SelectorLocationsKind SelLocsK,
3360                                 ObjCMethodDecl *Method,
3361                                 ArrayRef<Expr *> Args,
3362                                 SourceLocation RBracLoc,
3363                                 bool isImplicit)
3364  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3365         T->isDependentType(), T->isInstantiationDependentType(),
3366         T->containsUnexpandedParameterPack()),
3367    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3368                                                       : Sel.getAsOpaquePtr())),
3369    Kind(Class),
3370    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3371    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3372{
3373  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3374  setReceiverPointer(Receiver);
3375}
3376
3377ObjCMessageExpr::ObjCMessageExpr(QualType T,
3378                                 ExprValueKind VK,
3379                                 SourceLocation LBracLoc,
3380                                 Expr *Receiver,
3381                                 Selector Sel,
3382                                 ArrayRef<SourceLocation> SelLocs,
3383                                 SelectorLocationsKind SelLocsK,
3384                                 ObjCMethodDecl *Method,
3385                                 ArrayRef<Expr *> Args,
3386                                 SourceLocation RBracLoc,
3387                                 bool isImplicit)
3388  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3389         Receiver->isTypeDependent(),
3390         Receiver->isInstantiationDependent(),
3391         Receiver->containsUnexpandedParameterPack()),
3392    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3393                                                       : Sel.getAsOpaquePtr())),
3394    Kind(Instance),
3395    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3396    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3397{
3398  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3399  setReceiverPointer(Receiver);
3400}
3401
3402void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3403                                         ArrayRef<SourceLocation> SelLocs,
3404                                         SelectorLocationsKind SelLocsK) {
3405  setNumArgs(Args.size());
3406  Expr **MyArgs = getArgs();
3407  for (unsigned I = 0; I != Args.size(); ++I) {
3408    if (Args[I]->isTypeDependent())
3409      ExprBits.TypeDependent = true;
3410    if (Args[I]->isValueDependent())
3411      ExprBits.ValueDependent = true;
3412    if (Args[I]->isInstantiationDependent())
3413      ExprBits.InstantiationDependent = true;
3414    if (Args[I]->containsUnexpandedParameterPack())
3415      ExprBits.ContainsUnexpandedParameterPack = true;
3416
3417    MyArgs[I] = Args[I];
3418  }
3419
3420  SelLocsKind = SelLocsK;
3421  if (!isImplicit()) {
3422    if (SelLocsK == SelLoc_NonStandard)
3423      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3424  }
3425}
3426
3427ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3428                                         ExprValueKind VK,
3429                                         SourceLocation LBracLoc,
3430                                         SourceLocation SuperLoc,
3431                                         bool IsInstanceSuper,
3432                                         QualType SuperType,
3433                                         Selector Sel,
3434                                         ArrayRef<SourceLocation> SelLocs,
3435                                         ObjCMethodDecl *Method,
3436                                         ArrayRef<Expr *> Args,
3437                                         SourceLocation RBracLoc,
3438                                         bool isImplicit) {
3439  assert((!SelLocs.empty() || isImplicit) &&
3440         "No selector locs for non-implicit message");
3441  ObjCMessageExpr *Mem;
3442  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3443  if (isImplicit)
3444    Mem = alloc(Context, Args.size(), 0);
3445  else
3446    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3447  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3448                                   SuperType, Sel, SelLocs, SelLocsK,
3449                                   Method, Args, RBracLoc, isImplicit);
3450}
3451
3452ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3453                                         ExprValueKind VK,
3454                                         SourceLocation LBracLoc,
3455                                         TypeSourceInfo *Receiver,
3456                                         Selector Sel,
3457                                         ArrayRef<SourceLocation> SelLocs,
3458                                         ObjCMethodDecl *Method,
3459                                         ArrayRef<Expr *> Args,
3460                                         SourceLocation RBracLoc,
3461                                         bool isImplicit) {
3462  assert((!SelLocs.empty() || isImplicit) &&
3463         "No selector locs for non-implicit message");
3464  ObjCMessageExpr *Mem;
3465  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3466  if (isImplicit)
3467    Mem = alloc(Context, Args.size(), 0);
3468  else
3469    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3470  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3471                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3472                                   isImplicit);
3473}
3474
3475ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3476                                         ExprValueKind VK,
3477                                         SourceLocation LBracLoc,
3478                                         Expr *Receiver,
3479                                         Selector Sel,
3480                                         ArrayRef<SourceLocation> SelLocs,
3481                                         ObjCMethodDecl *Method,
3482                                         ArrayRef<Expr *> Args,
3483                                         SourceLocation RBracLoc,
3484                                         bool isImplicit) {
3485  assert((!SelLocs.empty() || isImplicit) &&
3486         "No selector locs for non-implicit message");
3487  ObjCMessageExpr *Mem;
3488  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3489  if (isImplicit)
3490    Mem = alloc(Context, Args.size(), 0);
3491  else
3492    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3493  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3494                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3495                                   isImplicit);
3496}
3497
3498ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
3499                                              unsigned NumArgs,
3500                                              unsigned NumStoredSelLocs) {
3501  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3502  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3503}
3504
3505ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3506                                        ArrayRef<Expr *> Args,
3507                                        SourceLocation RBraceLoc,
3508                                        ArrayRef<SourceLocation> SelLocs,
3509                                        Selector Sel,
3510                                        SelectorLocationsKind &SelLocsK) {
3511  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3512  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3513                                                               : 0;
3514  return alloc(C, Args.size(), NumStoredSelLocs);
3515}
3516
3517ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3518                                        unsigned NumArgs,
3519                                        unsigned NumStoredSelLocs) {
3520  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3521    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3522  return (ObjCMessageExpr *)C.Allocate(Size,
3523                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3524}
3525
3526void ObjCMessageExpr::getSelectorLocs(
3527                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3528  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3529    SelLocs.push_back(getSelectorLoc(i));
3530}
3531
3532SourceRange ObjCMessageExpr::getReceiverRange() const {
3533  switch (getReceiverKind()) {
3534  case Instance:
3535    return getInstanceReceiver()->getSourceRange();
3536
3537  case Class:
3538    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3539
3540  case SuperInstance:
3541  case SuperClass:
3542    return getSuperLoc();
3543  }
3544
3545  llvm_unreachable("Invalid ReceiverKind!");
3546}
3547
3548Selector ObjCMessageExpr::getSelector() const {
3549  if (HasMethod)
3550    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3551                                                               ->getSelector();
3552  return Selector(SelectorOrMethod);
3553}
3554
3555QualType ObjCMessageExpr::getReceiverType() const {
3556  switch (getReceiverKind()) {
3557  case Instance:
3558    return getInstanceReceiver()->getType();
3559  case Class:
3560    return getClassReceiver();
3561  case SuperInstance:
3562  case SuperClass:
3563    return getSuperType();
3564  }
3565
3566  llvm_unreachable("unexpected receiver kind");
3567}
3568
3569ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3570  QualType T = getReceiverType();
3571
3572  if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3573    return Ptr->getInterfaceDecl();
3574
3575  if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3576    return Ty->getInterface();
3577
3578  return 0;
3579}
3580
3581StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3582  switch (getBridgeKind()) {
3583  case OBC_Bridge:
3584    return "__bridge";
3585  case OBC_BridgeTransfer:
3586    return "__bridge_transfer";
3587  case OBC_BridgeRetained:
3588    return "__bridge_retained";
3589  }
3590
3591  llvm_unreachable("Invalid BridgeKind!");
3592}
3593
3594ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3595                                     QualType Type, SourceLocation BLoc,
3596                                     SourceLocation RP)
3597   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3598          Type->isDependentType(), Type->isDependentType(),
3599          Type->isInstantiationDependentType(),
3600          Type->containsUnexpandedParameterPack()),
3601     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3602{
3603  SubExprs = new (C) Stmt*[args.size()];
3604  for (unsigned i = 0; i != args.size(); i++) {
3605    if (args[i]->isTypeDependent())
3606      ExprBits.TypeDependent = true;
3607    if (args[i]->isValueDependent())
3608      ExprBits.ValueDependent = true;
3609    if (args[i]->isInstantiationDependent())
3610      ExprBits.InstantiationDependent = true;
3611    if (args[i]->containsUnexpandedParameterPack())
3612      ExprBits.ContainsUnexpandedParameterPack = true;
3613
3614    SubExprs[i] = args[i];
3615  }
3616}
3617
3618void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3619  if (SubExprs) C.Deallocate(SubExprs);
3620
3621  this->NumExprs = Exprs.size();
3622  SubExprs = new (C) Stmt*[NumExprs];
3623  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3624}
3625
3626GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3627                               SourceLocation GenericLoc, Expr *ControllingExpr,
3628                               ArrayRef<TypeSourceInfo*> AssocTypes,
3629                               ArrayRef<Expr*> AssocExprs,
3630                               SourceLocation DefaultLoc,
3631                               SourceLocation RParenLoc,
3632                               bool ContainsUnexpandedParameterPack,
3633                               unsigned ResultIndex)
3634  : Expr(GenericSelectionExprClass,
3635         AssocExprs[ResultIndex]->getType(),
3636         AssocExprs[ResultIndex]->getValueKind(),
3637         AssocExprs[ResultIndex]->getObjectKind(),
3638         AssocExprs[ResultIndex]->isTypeDependent(),
3639         AssocExprs[ResultIndex]->isValueDependent(),
3640         AssocExprs[ResultIndex]->isInstantiationDependent(),
3641         ContainsUnexpandedParameterPack),
3642    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3643    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3644    NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3645    GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3646  SubExprs[CONTROLLING] = ControllingExpr;
3647  assert(AssocTypes.size() == AssocExprs.size());
3648  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3649  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3650}
3651
3652GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3653                               SourceLocation GenericLoc, Expr *ControllingExpr,
3654                               ArrayRef<TypeSourceInfo*> AssocTypes,
3655                               ArrayRef<Expr*> AssocExprs,
3656                               SourceLocation DefaultLoc,
3657                               SourceLocation RParenLoc,
3658                               bool ContainsUnexpandedParameterPack)
3659  : Expr(GenericSelectionExprClass,
3660         Context.DependentTy,
3661         VK_RValue,
3662         OK_Ordinary,
3663         /*isTypeDependent=*/true,
3664         /*isValueDependent=*/true,
3665         /*isInstantiationDependent=*/true,
3666         ContainsUnexpandedParameterPack),
3667    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3668    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3669    NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3670    DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3671  SubExprs[CONTROLLING] = ControllingExpr;
3672  assert(AssocTypes.size() == AssocExprs.size());
3673  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3674  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3675}
3676
3677//===----------------------------------------------------------------------===//
3678//  DesignatedInitExpr
3679//===----------------------------------------------------------------------===//
3680
3681IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3682  assert(Kind == FieldDesignator && "Only valid on a field designator");
3683  if (Field.NameOrField & 0x01)
3684    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3685  else
3686    return getField()->getIdentifier();
3687}
3688
3689DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3690                                       unsigned NumDesignators,
3691                                       const Designator *Designators,
3692                                       SourceLocation EqualOrColonLoc,
3693                                       bool GNUSyntax,
3694                                       ArrayRef<Expr*> IndexExprs,
3695                                       Expr *Init)
3696  : Expr(DesignatedInitExprClass, Ty,
3697         Init->getValueKind(), Init->getObjectKind(),
3698         Init->isTypeDependent(), Init->isValueDependent(),
3699         Init->isInstantiationDependent(),
3700         Init->containsUnexpandedParameterPack()),
3701    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3702    NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3703  this->Designators = new (C) Designator[NumDesignators];
3704
3705  // Record the initializer itself.
3706  child_range Child = children();
3707  *Child++ = Init;
3708
3709  // Copy the designators and their subexpressions, computing
3710  // value-dependence along the way.
3711  unsigned IndexIdx = 0;
3712  for (unsigned I = 0; I != NumDesignators; ++I) {
3713    this->Designators[I] = Designators[I];
3714
3715    if (this->Designators[I].isArrayDesignator()) {
3716      // Compute type- and value-dependence.
3717      Expr *Index = IndexExprs[IndexIdx];
3718      if (Index->isTypeDependent() || Index->isValueDependent())
3719        ExprBits.ValueDependent = true;
3720      if (Index->isInstantiationDependent())
3721        ExprBits.InstantiationDependent = true;
3722      // Propagate unexpanded parameter packs.
3723      if (Index->containsUnexpandedParameterPack())
3724        ExprBits.ContainsUnexpandedParameterPack = true;
3725
3726      // Copy the index expressions into permanent storage.
3727      *Child++ = IndexExprs[IndexIdx++];
3728    } else if (this->Designators[I].isArrayRangeDesignator()) {
3729      // Compute type- and value-dependence.
3730      Expr *Start = IndexExprs[IndexIdx];
3731      Expr *End = IndexExprs[IndexIdx + 1];
3732      if (Start->isTypeDependent() || Start->isValueDependent() ||
3733          End->isTypeDependent() || End->isValueDependent()) {
3734        ExprBits.ValueDependent = true;
3735        ExprBits.InstantiationDependent = true;
3736      } else if (Start->isInstantiationDependent() ||
3737                 End->isInstantiationDependent()) {
3738        ExprBits.InstantiationDependent = true;
3739      }
3740
3741      // Propagate unexpanded parameter packs.
3742      if (Start->containsUnexpandedParameterPack() ||
3743          End->containsUnexpandedParameterPack())
3744        ExprBits.ContainsUnexpandedParameterPack = true;
3745
3746      // Copy the start/end expressions into permanent storage.
3747      *Child++ = IndexExprs[IndexIdx++];
3748      *Child++ = IndexExprs[IndexIdx++];
3749    }
3750  }
3751
3752  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3753}
3754
3755DesignatedInitExpr *
3756DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3757                           unsigned NumDesignators,
3758                           ArrayRef<Expr*> IndexExprs,
3759                           SourceLocation ColonOrEqualLoc,
3760                           bool UsesColonSyntax, Expr *Init) {
3761  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3762                         sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3763  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3764                                      ColonOrEqualLoc, UsesColonSyntax,
3765                                      IndexExprs, Init);
3766}
3767
3768DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3769                                                    unsigned NumIndexExprs) {
3770  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3771                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3772  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3773}
3774
3775void DesignatedInitExpr::setDesignators(const ASTContext &C,
3776                                        const Designator *Desigs,
3777                                        unsigned NumDesigs) {
3778  Designators = new (C) Designator[NumDesigs];
3779  NumDesignators = NumDesigs;
3780  for (unsigned I = 0; I != NumDesigs; ++I)
3781    Designators[I] = Desigs[I];
3782}
3783
3784SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3785  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3786  if (size() == 1)
3787    return DIE->getDesignator(0)->getSourceRange();
3788  return SourceRange(DIE->getDesignator(0)->getLocStart(),
3789                     DIE->getDesignator(size()-1)->getLocEnd());
3790}
3791
3792SourceLocation DesignatedInitExpr::getLocStart() const {
3793  SourceLocation StartLoc;
3794  Designator &First =
3795    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3796  if (First.isFieldDesignator()) {
3797    if (GNUSyntax)
3798      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3799    else
3800      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3801  } else
3802    StartLoc =
3803      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3804  return StartLoc;
3805}
3806
3807SourceLocation DesignatedInitExpr::getLocEnd() const {
3808  return getInit()->getLocEnd();
3809}
3810
3811Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3812  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3813  char *Ptr = static_cast<char *>(
3814                  const_cast<void *>(static_cast<const void *>(this)));
3815  Ptr += sizeof(DesignatedInitExpr);
3816  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3817  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3818}
3819
3820Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3821  assert(D.Kind == Designator::ArrayRangeDesignator &&
3822         "Requires array range designator");
3823  char *Ptr = static_cast<char *>(
3824                  const_cast<void *>(static_cast<const void *>(this)));
3825  Ptr += sizeof(DesignatedInitExpr);
3826  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3827  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3828}
3829
3830Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3831  assert(D.Kind == Designator::ArrayRangeDesignator &&
3832         "Requires array range designator");
3833  char *Ptr = static_cast<char *>(
3834                  const_cast<void *>(static_cast<const void *>(this)));
3835  Ptr += sizeof(DesignatedInitExpr);
3836  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3837  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3838}
3839
3840/// \brief Replaces the designator at index @p Idx with the series
3841/// of designators in [First, Last).
3842void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3843                                          const Designator *First,
3844                                          const Designator *Last) {
3845  unsigned NumNewDesignators = Last - First;
3846  if (NumNewDesignators == 0) {
3847    std::copy_backward(Designators + Idx + 1,
3848                       Designators + NumDesignators,
3849                       Designators + Idx);
3850    --NumNewDesignators;
3851    return;
3852  } else if (NumNewDesignators == 1) {
3853    Designators[Idx] = *First;
3854    return;
3855  }
3856
3857  Designator *NewDesignators
3858    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3859  std::copy(Designators, Designators + Idx, NewDesignators);
3860  std::copy(First, Last, NewDesignators + Idx);
3861  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3862            NewDesignators + Idx + NumNewDesignators);
3863  Designators = NewDesignators;
3864  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3865}
3866
3867ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3868                             ArrayRef<Expr*> exprs,
3869                             SourceLocation rparenloc)
3870  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3871         false, false, false, false),
3872    NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3873  Exprs = new (C) Stmt*[exprs.size()];
3874  for (unsigned i = 0; i != exprs.size(); ++i) {
3875    if (exprs[i]->isTypeDependent())
3876      ExprBits.TypeDependent = true;
3877    if (exprs[i]->isValueDependent())
3878      ExprBits.ValueDependent = true;
3879    if (exprs[i]->isInstantiationDependent())
3880      ExprBits.InstantiationDependent = true;
3881    if (exprs[i]->containsUnexpandedParameterPack())
3882      ExprBits.ContainsUnexpandedParameterPack = true;
3883
3884    Exprs[i] = exprs[i];
3885  }
3886}
3887
3888const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3889  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3890    e = ewc->getSubExpr();
3891  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3892    e = m->GetTemporaryExpr();
3893  e = cast<CXXConstructExpr>(e)->getArg(0);
3894  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3895    e = ice->getSubExpr();
3896  return cast<OpaqueValueExpr>(e);
3897}
3898
3899PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3900                                           EmptyShell sh,
3901                                           unsigned numSemanticExprs) {
3902  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3903                                    (1 + numSemanticExprs) * sizeof(Expr*),
3904                                  llvm::alignOf<PseudoObjectExpr>());
3905  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3906}
3907
3908PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3909  : Expr(PseudoObjectExprClass, shell) {
3910  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3911}
3912
3913PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3914                                           ArrayRef<Expr*> semantics,
3915                                           unsigned resultIndex) {
3916  assert(syntax && "no syntactic expression!");
3917  assert(semantics.size() && "no semantic expressions!");
3918
3919  QualType type;
3920  ExprValueKind VK;
3921  if (resultIndex == NoResult) {
3922    type = C.VoidTy;
3923    VK = VK_RValue;
3924  } else {
3925    assert(resultIndex < semantics.size());
3926    type = semantics[resultIndex]->getType();
3927    VK = semantics[resultIndex]->getValueKind();
3928    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3929  }
3930
3931  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3932                              (1 + semantics.size()) * sizeof(Expr*),
3933                            llvm::alignOf<PseudoObjectExpr>());
3934  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3935                                      resultIndex);
3936}
3937
3938PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3939                                   Expr *syntax, ArrayRef<Expr*> semantics,
3940                                   unsigned resultIndex)
3941  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3942         /*filled in at end of ctor*/ false, false, false, false) {
3943  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3944  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3945
3946  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3947    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3948    getSubExprsBuffer()[i] = E;
3949
3950    if (E->isTypeDependent())
3951      ExprBits.TypeDependent = true;
3952    if (E->isValueDependent())
3953      ExprBits.ValueDependent = true;
3954    if (E->isInstantiationDependent())
3955      ExprBits.InstantiationDependent = true;
3956    if (E->containsUnexpandedParameterPack())
3957      ExprBits.ContainsUnexpandedParameterPack = true;
3958
3959    if (isa<OpaqueValueExpr>(E))
3960      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3961             "opaque-value semantic expressions for pseudo-object "
3962             "operations must have sources");
3963  }
3964}
3965
3966//===----------------------------------------------------------------------===//
3967//  ExprIterator.
3968//===----------------------------------------------------------------------===//
3969
3970Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3971Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3972Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3973const Expr* ConstExprIterator::operator[](size_t idx) const {
3974  return cast<Expr>(I[idx]);
3975}
3976const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3977const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3978
3979//===----------------------------------------------------------------------===//
3980//  Child Iterators for iterating over subexpressions/substatements
3981//===----------------------------------------------------------------------===//
3982
3983// UnaryExprOrTypeTraitExpr
3984Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3985  // If this is of a type and the type is a VLA type (and not a typedef), the
3986  // size expression of the VLA needs to be treated as an executable expression.
3987  // Why isn't this weirdness documented better in StmtIterator?
3988  if (isArgumentType()) {
3989    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3990                                   getArgumentType().getTypePtr()))
3991      return child_range(child_iterator(T), child_iterator());
3992    return child_range();
3993  }
3994  return child_range(&Argument.Ex, &Argument.Ex + 1);
3995}
3996
3997// ObjCMessageExpr
3998Stmt::child_range ObjCMessageExpr::children() {
3999  Stmt **begin;
4000  if (getReceiverKind() == Instance)
4001    begin = reinterpret_cast<Stmt **>(this + 1);
4002  else
4003    begin = reinterpret_cast<Stmt **>(getArgs());
4004  return child_range(begin,
4005                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
4006}
4007
4008ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
4009                                   QualType T, ObjCMethodDecl *Method,
4010                                   SourceRange SR)
4011  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
4012         false, false, false, false),
4013    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
4014{
4015  Expr **SaveElements = getElements();
4016  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
4017    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
4018      ExprBits.ValueDependent = true;
4019    if (Elements[I]->isInstantiationDependent())
4020      ExprBits.InstantiationDependent = true;
4021    if (Elements[I]->containsUnexpandedParameterPack())
4022      ExprBits.ContainsUnexpandedParameterPack = true;
4023
4024    SaveElements[I] = Elements[I];
4025  }
4026}
4027
4028ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
4029                                           ArrayRef<Expr *> Elements,
4030                                           QualType T, ObjCMethodDecl * Method,
4031                                           SourceRange SR) {
4032  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4033                         + Elements.size() * sizeof(Expr *));
4034  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
4035}
4036
4037ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
4038                                                unsigned NumElements) {
4039
4040  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4041                         + NumElements * sizeof(Expr *));
4042  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
4043}
4044
4045ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4046                                             ArrayRef<ObjCDictionaryElement> VK,
4047                                             bool HasPackExpansions,
4048                                             QualType T, ObjCMethodDecl *method,
4049                                             SourceRange SR)
4050  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
4051         false, false),
4052    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
4053    DictWithObjectsMethod(method)
4054{
4055  KeyValuePair *KeyValues = getKeyValues();
4056  ExpansionData *Expansions = getExpansionData();
4057  for (unsigned I = 0; I < NumElements; I++) {
4058    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
4059        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
4060      ExprBits.ValueDependent = true;
4061    if (VK[I].Key->isInstantiationDependent() ||
4062        VK[I].Value->isInstantiationDependent())
4063      ExprBits.InstantiationDependent = true;
4064    if (VK[I].EllipsisLoc.isInvalid() &&
4065        (VK[I].Key->containsUnexpandedParameterPack() ||
4066         VK[I].Value->containsUnexpandedParameterPack()))
4067      ExprBits.ContainsUnexpandedParameterPack = true;
4068
4069    KeyValues[I].Key = VK[I].Key;
4070    KeyValues[I].Value = VK[I].Value;
4071    if (Expansions) {
4072      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4073      if (VK[I].NumExpansions)
4074        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4075      else
4076        Expansions[I].NumExpansionsPlusOne = 0;
4077    }
4078  }
4079}
4080
4081ObjCDictionaryLiteral *
4082ObjCDictionaryLiteral::Create(const ASTContext &C,
4083                              ArrayRef<ObjCDictionaryElement> VK,
4084                              bool HasPackExpansions,
4085                              QualType T, ObjCMethodDecl *method,
4086                              SourceRange SR) {
4087  unsigned ExpansionsSize = 0;
4088  if (HasPackExpansions)
4089    ExpansionsSize = sizeof(ExpansionData) * VK.size();
4090
4091  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4092                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4093  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4094}
4095
4096ObjCDictionaryLiteral *
4097ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
4098                                   bool HasPackExpansions) {
4099  unsigned ExpansionsSize = 0;
4100  if (HasPackExpansions)
4101    ExpansionsSize = sizeof(ExpansionData) * NumElements;
4102  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4103                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4104  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4105                                         HasPackExpansions);
4106}
4107
4108ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
4109                                                   Expr *base,
4110                                                   Expr *key, QualType T,
4111                                                   ObjCMethodDecl *getMethod,
4112                                                   ObjCMethodDecl *setMethod,
4113                                                   SourceLocation RB) {
4114  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4115  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4116                                        OK_ObjCSubscript,
4117                                        getMethod, setMethod, RB);
4118}
4119
4120AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4121                       QualType t, AtomicOp op, SourceLocation RP)
4122  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4123         false, false, false, false),
4124    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4125{
4126  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4127  for (unsigned i = 0; i != args.size(); i++) {
4128    if (args[i]->isTypeDependent())
4129      ExprBits.TypeDependent = true;
4130    if (args[i]->isValueDependent())
4131      ExprBits.ValueDependent = true;
4132    if (args[i]->isInstantiationDependent())
4133      ExprBits.InstantiationDependent = true;
4134    if (args[i]->containsUnexpandedParameterPack())
4135      ExprBits.ContainsUnexpandedParameterPack = true;
4136
4137    SubExprs[i] = args[i];
4138  }
4139}
4140
4141unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4142  switch (Op) {
4143  case AO__c11_atomic_init:
4144  case AO__c11_atomic_load:
4145  case AO__atomic_load_n:
4146    return 2;
4147
4148  case AO__c11_atomic_store:
4149  case AO__c11_atomic_exchange:
4150  case AO__atomic_load:
4151  case AO__atomic_store:
4152  case AO__atomic_store_n:
4153  case AO__atomic_exchange_n:
4154  case AO__c11_atomic_fetch_add:
4155  case AO__c11_atomic_fetch_sub:
4156  case AO__c11_atomic_fetch_and:
4157  case AO__c11_atomic_fetch_or:
4158  case AO__c11_atomic_fetch_xor:
4159  case AO__atomic_fetch_add:
4160  case AO__atomic_fetch_sub:
4161  case AO__atomic_fetch_and:
4162  case AO__atomic_fetch_or:
4163  case AO__atomic_fetch_xor:
4164  case AO__atomic_fetch_nand:
4165  case AO__atomic_add_fetch:
4166  case AO__atomic_sub_fetch:
4167  case AO__atomic_and_fetch:
4168  case AO__atomic_or_fetch:
4169  case AO__atomic_xor_fetch:
4170  case AO__atomic_nand_fetch:
4171    return 3;
4172
4173  case AO__atomic_exchange:
4174    return 4;
4175
4176  case AO__c11_atomic_compare_exchange_strong:
4177  case AO__c11_atomic_compare_exchange_weak:
4178    return 5;
4179
4180  case AO__atomic_compare_exchange:
4181  case AO__atomic_compare_exchange_n:
4182    return 6;
4183  }
4184  llvm_unreachable("unknown atomic op");
4185}
4186