1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promotes memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using iterated dominator frontiers to place PHI nodes, then
13// traversing the function in depth-first order to rewrite loads and stores as
14// appropriate.
15//
16// The algorithm used here is based on:
17//
18//   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19//   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20//   Programming Languages
21//   POPL '95. ACM, New York, NY, 62-73.
22//
23// It has been modified to not explicitly use the DJ graph data structure and to
24// directly compute pruned SSA using per-variable liveness information.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "mem2reg"
29#include "llvm/Transforms/Utils/PromoteMemToReg.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/InstructionSimplify.h"
39#include "llvm/Analysis/ValueTracking.h"
40#include "llvm/DIBuilder.h"
41#include "llvm/DebugInfo.h"
42#include "llvm/IR/Constants.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Metadata.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include <algorithm>
51#include <queue>
52using namespace llvm;
53
54STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
55STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
56STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
57STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
58
59bool llvm::isAllocaPromotable(const AllocaInst *AI) {
60  // FIXME: If the memory unit is of pointer or integer type, we can permit
61  // assignments to subsections of the memory unit.
62
63  // Only allow direct and non-volatile loads and stores...
64  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
65       UI != UE; ++UI) { // Loop over all of the uses of the alloca
66    const User *U = *UI;
67    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68      // Note that atomic loads can be transformed; atomic semantics do
69      // not have any meaning for a local alloca.
70      if (LI->isVolatile())
71        return false;
72    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73      if (SI->getOperand(0) == AI)
74        return false; // Don't allow a store OF the AI, only INTO the AI.
75      // Note that atomic stores can be transformed; atomic semantics do
76      // not have any meaning for a local alloca.
77      if (SI->isVolatile())
78        return false;
79    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
81          II->getIntrinsicID() != Intrinsic::lifetime_end)
82        return false;
83    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
84      if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
85        return false;
86      if (!onlyUsedByLifetimeMarkers(BCI))
87        return false;
88    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
89      if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
90        return false;
91      if (!GEPI->hasAllZeroIndices())
92        return false;
93      if (!onlyUsedByLifetimeMarkers(GEPI))
94        return false;
95    } else {
96      return false;
97    }
98  }
99
100  return true;
101}
102
103namespace {
104
105struct AllocaInfo {
106  SmallVector<BasicBlock *, 32> DefiningBlocks;
107  SmallVector<BasicBlock *, 32> UsingBlocks;
108
109  StoreInst *OnlyStore;
110  BasicBlock *OnlyBlock;
111  bool OnlyUsedInOneBlock;
112
113  Value *AllocaPointerVal;
114  DbgDeclareInst *DbgDeclare;
115
116  void clear() {
117    DefiningBlocks.clear();
118    UsingBlocks.clear();
119    OnlyStore = 0;
120    OnlyBlock = 0;
121    OnlyUsedInOneBlock = true;
122    AllocaPointerVal = 0;
123    DbgDeclare = 0;
124  }
125
126  /// Scan the uses of the specified alloca, filling in the AllocaInfo used
127  /// by the rest of the pass to reason about the uses of this alloca.
128  void AnalyzeAlloca(AllocaInst *AI) {
129    clear();
130
131    // As we scan the uses of the alloca instruction, keep track of stores,
132    // and decide whether all of the loads and stores to the alloca are within
133    // the same basic block.
134    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
135         UI != E;) {
136      Instruction *User = cast<Instruction>(*UI++);
137
138      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
139        // Remember the basic blocks which define new values for the alloca
140        DefiningBlocks.push_back(SI->getParent());
141        AllocaPointerVal = SI->getOperand(0);
142        OnlyStore = SI;
143      } else {
144        LoadInst *LI = cast<LoadInst>(User);
145        // Otherwise it must be a load instruction, keep track of variable
146        // reads.
147        UsingBlocks.push_back(LI->getParent());
148        AllocaPointerVal = LI;
149      }
150
151      if (OnlyUsedInOneBlock) {
152        if (OnlyBlock == 0)
153          OnlyBlock = User->getParent();
154        else if (OnlyBlock != User->getParent())
155          OnlyUsedInOneBlock = false;
156      }
157    }
158
159    DbgDeclare = FindAllocaDbgDeclare(AI);
160  }
161};
162
163// Data package used by RenamePass()
164class RenamePassData {
165public:
166  typedef std::vector<Value *> ValVector;
167
168  RenamePassData() : BB(NULL), Pred(NULL), Values() {}
169  RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
170      : BB(B), Pred(P), Values(V) {}
171  BasicBlock *BB;
172  BasicBlock *Pred;
173  ValVector Values;
174
175  void swap(RenamePassData &RHS) {
176    std::swap(BB, RHS.BB);
177    std::swap(Pred, RHS.Pred);
178    Values.swap(RHS.Values);
179  }
180};
181
182/// \brief This assigns and keeps a per-bb relative ordering of load/store
183/// instructions in the block that directly load or store an alloca.
184///
185/// This functionality is important because it avoids scanning large basic
186/// blocks multiple times when promoting many allocas in the same block.
187class LargeBlockInfo {
188  /// \brief For each instruction that we track, keep the index of the
189  /// instruction.
190  ///
191  /// The index starts out as the number of the instruction from the start of
192  /// the block.
193  DenseMap<const Instruction *, unsigned> InstNumbers;
194
195public:
196
197  /// This code only looks at accesses to allocas.
198  static bool isInterestingInstruction(const Instruction *I) {
199    return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
200           (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
201  }
202
203  /// Get or calculate the index of the specified instruction.
204  unsigned getInstructionIndex(const Instruction *I) {
205    assert(isInterestingInstruction(I) &&
206           "Not a load/store to/from an alloca?");
207
208    // If we already have this instruction number, return it.
209    DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
210    if (It != InstNumbers.end())
211      return It->second;
212
213    // Scan the whole block to get the instruction.  This accumulates
214    // information for every interesting instruction in the block, in order to
215    // avoid gratuitus rescans.
216    const BasicBlock *BB = I->getParent();
217    unsigned InstNo = 0;
218    for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
219         ++BBI)
220      if (isInterestingInstruction(BBI))
221        InstNumbers[BBI] = InstNo++;
222    It = InstNumbers.find(I);
223
224    assert(It != InstNumbers.end() && "Didn't insert instruction?");
225    return It->second;
226  }
227
228  void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
229
230  void clear() { InstNumbers.clear(); }
231};
232
233struct PromoteMem2Reg {
234  /// The alloca instructions being promoted.
235  std::vector<AllocaInst *> Allocas;
236  DominatorTree &DT;
237  DIBuilder DIB;
238
239  /// An AliasSetTracker object to update.  If null, don't update it.
240  AliasSetTracker *AST;
241
242  /// Reverse mapping of Allocas.
243  DenseMap<AllocaInst *, unsigned> AllocaLookup;
244
245  /// \brief The PhiNodes we're adding.
246  ///
247  /// That map is used to simplify some Phi nodes as we iterate over it, so
248  /// it should have deterministic iterators.  We could use a MapVector, but
249  /// since we already maintain a map from BasicBlock* to a stable numbering
250  /// (BBNumbers), the DenseMap is more efficient (also supports removal).
251  DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
252
253  /// For each PHI node, keep track of which entry in Allocas it corresponds
254  /// to.
255  DenseMap<PHINode *, unsigned> PhiToAllocaMap;
256
257  /// If we are updating an AliasSetTracker, then for each alloca that is of
258  /// pointer type, we keep track of what to copyValue to the inserted PHI
259  /// nodes here.
260  std::vector<Value *> PointerAllocaValues;
261
262  /// For each alloca, we keep track of the dbg.declare intrinsic that
263  /// describes it, if any, so that we can convert it to a dbg.value
264  /// intrinsic if the alloca gets promoted.
265  SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
266
267  /// The set of basic blocks the renamer has already visited.
268  ///
269  SmallPtrSet<BasicBlock *, 16> Visited;
270
271  /// Contains a stable numbering of basic blocks to avoid non-determinstic
272  /// behavior.
273  DenseMap<BasicBlock *, unsigned> BBNumbers;
274
275  /// Maps DomTreeNodes to their level in the dominator tree.
276  DenseMap<DomTreeNode *, unsigned> DomLevels;
277
278  /// Lazily compute the number of predecessors a block has.
279  DenseMap<const BasicBlock *, unsigned> BBNumPreds;
280
281public:
282  PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
283                 AliasSetTracker *AST)
284      : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
285        DIB(*DT.getRoot()->getParent()->getParent()), AST(AST) {}
286
287  void run();
288
289private:
290  void RemoveFromAllocasList(unsigned &AllocaIdx) {
291    Allocas[AllocaIdx] = Allocas.back();
292    Allocas.pop_back();
293    --AllocaIdx;
294  }
295
296  unsigned getNumPreds(const BasicBlock *BB) {
297    unsigned &NP = BBNumPreds[BB];
298    if (NP == 0)
299      NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
300    return NP - 1;
301  }
302
303  void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
304                               AllocaInfo &Info);
305  void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
306                           const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
307                           SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
308  void RenamePass(BasicBlock *BB, BasicBlock *Pred,
309                  RenamePassData::ValVector &IncVals,
310                  std::vector<RenamePassData> &Worklist);
311  bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
312};
313
314} // end of anonymous namespace
315
316static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
317  // Knowing that this alloca is promotable, we know that it's safe to kill all
318  // instructions except for load and store.
319
320  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
321       UI != UE;) {
322    Instruction *I = cast<Instruction>(*UI);
323    ++UI;
324    if (isa<LoadInst>(I) || isa<StoreInst>(I))
325      continue;
326
327    if (!I->getType()->isVoidTy()) {
328      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
329      // Follow the use/def chain to erase them now instead of leaving it for
330      // dead code elimination later.
331      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
332           UI != UE;) {
333        Instruction *Inst = cast<Instruction>(*UI);
334        ++UI;
335        Inst->eraseFromParent();
336      }
337    }
338    I->eraseFromParent();
339  }
340}
341
342/// \brief Rewrite as many loads as possible given a single store.
343///
344/// When there is only a single store, we can use the domtree to trivially
345/// replace all of the dominated loads with the stored value. Do so, and return
346/// true if this has successfully promoted the alloca entirely. If this returns
347/// false there were some loads which were not dominated by the single store
348/// and thus must be phi-ed with undef. We fall back to the standard alloca
349/// promotion algorithm in that case.
350static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
351                                     LargeBlockInfo &LBI,
352                                     DominatorTree &DT,
353                                     AliasSetTracker *AST) {
354  StoreInst *OnlyStore = Info.OnlyStore;
355  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
356  BasicBlock *StoreBB = OnlyStore->getParent();
357  int StoreIndex = -1;
358
359  // Clear out UsingBlocks.  We will reconstruct it here if needed.
360  Info.UsingBlocks.clear();
361
362  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
363    Instruction *UserInst = cast<Instruction>(*UI++);
364    if (!isa<LoadInst>(UserInst)) {
365      assert(UserInst == OnlyStore && "Should only have load/stores");
366      continue;
367    }
368    LoadInst *LI = cast<LoadInst>(UserInst);
369
370    // Okay, if we have a load from the alloca, we want to replace it with the
371    // only value stored to the alloca.  We can do this if the value is
372    // dominated by the store.  If not, we use the rest of the mem2reg machinery
373    // to insert the phi nodes as needed.
374    if (!StoringGlobalVal) { // Non-instructions are always dominated.
375      if (LI->getParent() == StoreBB) {
376        // If we have a use that is in the same block as the store, compare the
377        // indices of the two instructions to see which one came first.  If the
378        // load came before the store, we can't handle it.
379        if (StoreIndex == -1)
380          StoreIndex = LBI.getInstructionIndex(OnlyStore);
381
382        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
383          // Can't handle this load, bail out.
384          Info.UsingBlocks.push_back(StoreBB);
385          continue;
386        }
387
388      } else if (LI->getParent() != StoreBB &&
389                 !DT.dominates(StoreBB, LI->getParent())) {
390        // If the load and store are in different blocks, use BB dominance to
391        // check their relationships.  If the store doesn't dom the use, bail
392        // out.
393        Info.UsingBlocks.push_back(LI->getParent());
394        continue;
395      }
396    }
397
398    // Otherwise, we *can* safely rewrite this load.
399    Value *ReplVal = OnlyStore->getOperand(0);
400    // If the replacement value is the load, this must occur in unreachable
401    // code.
402    if (ReplVal == LI)
403      ReplVal = UndefValue::get(LI->getType());
404    LI->replaceAllUsesWith(ReplVal);
405    if (AST && LI->getType()->isPointerTy())
406      AST->deleteValue(LI);
407    LI->eraseFromParent();
408    LBI.deleteValue(LI);
409  }
410
411  // Finally, after the scan, check to see if the store is all that is left.
412  if (!Info.UsingBlocks.empty())
413    return false; // If not, we'll have to fall back for the remainder.
414
415  // Record debuginfo for the store and remove the declaration's
416  // debuginfo.
417  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
418    DIBuilder DIB(*AI->getParent()->getParent()->getParent());
419    ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
420    DDI->eraseFromParent();
421    LBI.deleteValue(DDI);
422  }
423  // Remove the (now dead) store and alloca.
424  Info.OnlyStore->eraseFromParent();
425  LBI.deleteValue(Info.OnlyStore);
426
427  if (AST)
428    AST->deleteValue(AI);
429  AI->eraseFromParent();
430  LBI.deleteValue(AI);
431  return true;
432}
433
434/// Many allocas are only used within a single basic block.  If this is the
435/// case, avoid traversing the CFG and inserting a lot of potentially useless
436/// PHI nodes by just performing a single linear pass over the basic block
437/// using the Alloca.
438///
439/// If we cannot promote this alloca (because it is read before it is written),
440/// return true.  This is necessary in cases where, due to control flow, the
441/// alloca is potentially undefined on some control flow paths.  e.g. code like
442/// this is potentially correct:
443///
444///   for (...) { if (c) { A = undef; undef = B; } }
445///
446/// ... so long as A is not used before undef is set.
447static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
448                                     LargeBlockInfo &LBI,
449                                     AliasSetTracker *AST) {
450  // The trickiest case to handle is when we have large blocks. Because of this,
451  // this code is optimized assuming that large blocks happen.  This does not
452  // significantly pessimize the small block case.  This uses LargeBlockInfo to
453  // make it efficient to get the index of various operations in the block.
454
455  // Walk the use-def list of the alloca, getting the locations of all stores.
456  typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
457  StoresByIndexTy StoresByIndex;
458
459  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;
460       ++UI)
461    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
462      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
463
464  // Sort the stores by their index, making it efficient to do a lookup with a
465  // binary search.
466  std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
467
468  // Walk all of the loads from this alloca, replacing them with the nearest
469  // store above them, if any.
470  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
471    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
472    if (!LI)
473      continue;
474
475    unsigned LoadIdx = LBI.getInstructionIndex(LI);
476
477    // Find the nearest store that has a lower index than this load.
478    StoresByIndexTy::iterator I =
479        std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
480                         std::make_pair(LoadIdx, static_cast<StoreInst *>(0)),
481                         less_first());
482
483    if (I == StoresByIndex.begin())
484      // If there is no store before this load, the load takes the undef value.
485      LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
486    else
487      // Otherwise, there was a store before this load, the load takes its value.
488      LI->replaceAllUsesWith(llvm::prior(I)->second->getOperand(0));
489
490    if (AST && LI->getType()->isPointerTy())
491      AST->deleteValue(LI);
492    LI->eraseFromParent();
493    LBI.deleteValue(LI);
494  }
495
496  // Remove the (now dead) stores and alloca.
497  while (!AI->use_empty()) {
498    StoreInst *SI = cast<StoreInst>(AI->use_back());
499    // Record debuginfo for the store before removing it.
500    if (DbgDeclareInst *DDI = Info.DbgDeclare) {
501      DIBuilder DIB(*AI->getParent()->getParent()->getParent());
502      ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
503    }
504    SI->eraseFromParent();
505    LBI.deleteValue(SI);
506  }
507
508  if (AST)
509    AST->deleteValue(AI);
510  AI->eraseFromParent();
511  LBI.deleteValue(AI);
512
513  // The alloca's debuginfo can be removed as well.
514  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
515    DDI->eraseFromParent();
516    LBI.deleteValue(DDI);
517  }
518
519  ++NumLocalPromoted;
520}
521
522void PromoteMem2Reg::run() {
523  Function &F = *DT.getRoot()->getParent();
524
525  if (AST)
526    PointerAllocaValues.resize(Allocas.size());
527  AllocaDbgDeclares.resize(Allocas.size());
528
529  AllocaInfo Info;
530  LargeBlockInfo LBI;
531
532  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
533    AllocaInst *AI = Allocas[AllocaNum];
534
535    assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
536    assert(AI->getParent()->getParent() == &F &&
537           "All allocas should be in the same function, which is same as DF!");
538
539    removeLifetimeIntrinsicUsers(AI);
540
541    if (AI->use_empty()) {
542      // If there are no uses of the alloca, just delete it now.
543      if (AST)
544        AST->deleteValue(AI);
545      AI->eraseFromParent();
546
547      // Remove the alloca from the Allocas list, since it has been processed
548      RemoveFromAllocasList(AllocaNum);
549      ++NumDeadAlloca;
550      continue;
551    }
552
553    // Calculate the set of read and write-locations for each alloca.  This is
554    // analogous to finding the 'uses' and 'definitions' of each variable.
555    Info.AnalyzeAlloca(AI);
556
557    // If there is only a single store to this value, replace any loads of
558    // it that are directly dominated by the definition with the value stored.
559    if (Info.DefiningBlocks.size() == 1) {
560      if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
561        // The alloca has been processed, move on.
562        RemoveFromAllocasList(AllocaNum);
563        ++NumSingleStore;
564        continue;
565      }
566    }
567
568    // If the alloca is only read and written in one basic block, just perform a
569    // linear sweep over the block to eliminate it.
570    if (Info.OnlyUsedInOneBlock) {
571      promoteSingleBlockAlloca(AI, Info, LBI, AST);
572
573      // The alloca has been processed, move on.
574      RemoveFromAllocasList(AllocaNum);
575      continue;
576    }
577
578    // If we haven't computed dominator tree levels, do so now.
579    if (DomLevels.empty()) {
580      SmallVector<DomTreeNode *, 32> Worklist;
581
582      DomTreeNode *Root = DT.getRootNode();
583      DomLevels[Root] = 0;
584      Worklist.push_back(Root);
585
586      while (!Worklist.empty()) {
587        DomTreeNode *Node = Worklist.pop_back_val();
588        unsigned ChildLevel = DomLevels[Node] + 1;
589        for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
590             CI != CE; ++CI) {
591          DomLevels[*CI] = ChildLevel;
592          Worklist.push_back(*CI);
593        }
594      }
595    }
596
597    // If we haven't computed a numbering for the BB's in the function, do so
598    // now.
599    if (BBNumbers.empty()) {
600      unsigned ID = 0;
601      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
602        BBNumbers[I] = ID++;
603    }
604
605    // If we have an AST to keep updated, remember some pointer value that is
606    // stored into the alloca.
607    if (AST)
608      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
609
610    // Remember the dbg.declare intrinsic describing this alloca, if any.
611    if (Info.DbgDeclare)
612      AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
613
614    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
615    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
616
617    // At this point, we're committed to promoting the alloca using IDF's, and
618    // the standard SSA construction algorithm.  Determine which blocks need PHI
619    // nodes and see if we can optimize out some work by avoiding insertion of
620    // dead phi nodes.
621    DetermineInsertionPoint(AI, AllocaNum, Info);
622  }
623
624  if (Allocas.empty())
625    return; // All of the allocas must have been trivial!
626
627  LBI.clear();
628
629  // Set the incoming values for the basic block to be null values for all of
630  // the alloca's.  We do this in case there is a load of a value that has not
631  // been stored yet.  In this case, it will get this null value.
632  //
633  RenamePassData::ValVector Values(Allocas.size());
634  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
635    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
636
637  // Walks all basic blocks in the function performing the SSA rename algorithm
638  // and inserting the phi nodes we marked as necessary
639  //
640  std::vector<RenamePassData> RenamePassWorkList;
641  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
642  do {
643    RenamePassData RPD;
644    RPD.swap(RenamePassWorkList.back());
645    RenamePassWorkList.pop_back();
646    // RenamePass may add new worklist entries.
647    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
648  } while (!RenamePassWorkList.empty());
649
650  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
651  Visited.clear();
652
653  // Remove the allocas themselves from the function.
654  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
655    Instruction *A = Allocas[i];
656
657    // If there are any uses of the alloca instructions left, they must be in
658    // unreachable basic blocks that were not processed by walking the dominator
659    // tree. Just delete the users now.
660    if (!A->use_empty())
661      A->replaceAllUsesWith(UndefValue::get(A->getType()));
662    if (AST)
663      AST->deleteValue(A);
664    A->eraseFromParent();
665  }
666
667  // Remove alloca's dbg.declare instrinsics from the function.
668  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
669    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
670      DDI->eraseFromParent();
671
672  // Loop over all of the PHI nodes and see if there are any that we can get
673  // rid of because they merge all of the same incoming values.  This can
674  // happen due to undef values coming into the PHI nodes.  This process is
675  // iterative, because eliminating one PHI node can cause others to be removed.
676  bool EliminatedAPHI = true;
677  while (EliminatedAPHI) {
678    EliminatedAPHI = false;
679
680    // Iterating over NewPhiNodes is deterministic, so it is safe to try to
681    // simplify and RAUW them as we go.  If it was not, we could add uses to
682    // the values we replace with in a non deterministic order, thus creating
683    // non deterministic def->use chains.
684    for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
685             I = NewPhiNodes.begin(),
686             E = NewPhiNodes.end();
687         I != E;) {
688      PHINode *PN = I->second;
689
690      // If this PHI node merges one value and/or undefs, get the value.
691      if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
692        if (AST && PN->getType()->isPointerTy())
693          AST->deleteValue(PN);
694        PN->replaceAllUsesWith(V);
695        PN->eraseFromParent();
696        NewPhiNodes.erase(I++);
697        EliminatedAPHI = true;
698        continue;
699      }
700      ++I;
701    }
702  }
703
704  // At this point, the renamer has added entries to PHI nodes for all reachable
705  // code.  Unfortunately, there may be unreachable blocks which the renamer
706  // hasn't traversed.  If this is the case, the PHI nodes may not
707  // have incoming values for all predecessors.  Loop over all PHI nodes we have
708  // created, inserting undef values if they are missing any incoming values.
709  //
710  for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
711           I = NewPhiNodes.begin(),
712           E = NewPhiNodes.end();
713       I != E; ++I) {
714    // We want to do this once per basic block.  As such, only process a block
715    // when we find the PHI that is the first entry in the block.
716    PHINode *SomePHI = I->second;
717    BasicBlock *BB = SomePHI->getParent();
718    if (&BB->front() != SomePHI)
719      continue;
720
721    // Only do work here if there the PHI nodes are missing incoming values.  We
722    // know that all PHI nodes that were inserted in a block will have the same
723    // number of incoming values, so we can just check any of them.
724    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
725      continue;
726
727    // Get the preds for BB.
728    SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
729
730    // Ok, now we know that all of the PHI nodes are missing entries for some
731    // basic blocks.  Start by sorting the incoming predecessors for efficient
732    // access.
733    std::sort(Preds.begin(), Preds.end());
734
735    // Now we loop through all BB's which have entries in SomePHI and remove
736    // them from the Preds list.
737    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
738      // Do a log(n) search of the Preds list for the entry we want.
739      SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
740          Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
741      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
742             "PHI node has entry for a block which is not a predecessor!");
743
744      // Remove the entry
745      Preds.erase(EntIt);
746    }
747
748    // At this point, the blocks left in the preds list must have dummy
749    // entries inserted into every PHI nodes for the block.  Update all the phi
750    // nodes in this block that we are inserting (there could be phis before
751    // mem2reg runs).
752    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
753    BasicBlock::iterator BBI = BB->begin();
754    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
755           SomePHI->getNumIncomingValues() == NumBadPreds) {
756      Value *UndefVal = UndefValue::get(SomePHI->getType());
757      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
758        SomePHI->addIncoming(UndefVal, Preds[pred]);
759    }
760  }
761
762  NewPhiNodes.clear();
763}
764
765/// \brief Determine which blocks the value is live in.
766///
767/// These are blocks which lead to uses.  Knowing this allows us to avoid
768/// inserting PHI nodes into blocks which don't lead to uses (thus, the
769/// inserted phi nodes would be dead).
770void PromoteMem2Reg::ComputeLiveInBlocks(
771    AllocaInst *AI, AllocaInfo &Info,
772    const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
773    SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
774
775  // To determine liveness, we must iterate through the predecessors of blocks
776  // where the def is live.  Blocks are added to the worklist if we need to
777  // check their predecessors.  Start with all the using blocks.
778  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
779                                                    Info.UsingBlocks.end());
780
781  // If any of the using blocks is also a definition block, check to see if the
782  // definition occurs before or after the use.  If it happens before the use,
783  // the value isn't really live-in.
784  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
785    BasicBlock *BB = LiveInBlockWorklist[i];
786    if (!DefBlocks.count(BB))
787      continue;
788
789    // Okay, this is a block that both uses and defines the value.  If the first
790    // reference to the alloca is a def (store), then we know it isn't live-in.
791    for (BasicBlock::iterator I = BB->begin();; ++I) {
792      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
793        if (SI->getOperand(1) != AI)
794          continue;
795
796        // We found a store to the alloca before a load.  The alloca is not
797        // actually live-in here.
798        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
799        LiveInBlockWorklist.pop_back();
800        --i, --e;
801        break;
802      }
803
804      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
805        if (LI->getOperand(0) != AI)
806          continue;
807
808        // Okay, we found a load before a store to the alloca.  It is actually
809        // live into this block.
810        break;
811      }
812    }
813  }
814
815  // Now that we have a set of blocks where the phi is live-in, recursively add
816  // their predecessors until we find the full region the value is live.
817  while (!LiveInBlockWorklist.empty()) {
818    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
819
820    // The block really is live in here, insert it into the set.  If already in
821    // the set, then it has already been processed.
822    if (!LiveInBlocks.insert(BB))
823      continue;
824
825    // Since the value is live into BB, it is either defined in a predecessor or
826    // live into it to.  Add the preds to the worklist unless they are a
827    // defining block.
828    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
829      BasicBlock *P = *PI;
830
831      // The value is not live into a predecessor if it defines the value.
832      if (DefBlocks.count(P))
833        continue;
834
835      // Otherwise it is, add to the worklist.
836      LiveInBlockWorklist.push_back(P);
837    }
838  }
839}
840
841/// At this point, we're committed to promoting the alloca using IDF's, and the
842/// standard SSA construction algorithm.  Determine which blocks need phi nodes
843/// and see if we can optimize out some work by avoiding insertion of dead phi
844/// nodes.
845void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
846                                             AllocaInfo &Info) {
847  // Unique the set of defining blocks for efficient lookup.
848  SmallPtrSet<BasicBlock *, 32> DefBlocks;
849  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
850
851  // Determine which blocks the value is live in.  These are blocks which lead
852  // to uses.
853  SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
854  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
855
856  // Use a priority queue keyed on dominator tree level so that inserted nodes
857  // are handled from the bottom of the dominator tree upwards.
858  typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
859  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
860                              less_second> IDFPriorityQueue;
861  IDFPriorityQueue PQ;
862
863  for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
864                                                     E = DefBlocks.end();
865       I != E; ++I) {
866    if (DomTreeNode *Node = DT.getNode(*I))
867      PQ.push(std::make_pair(Node, DomLevels[Node]));
868  }
869
870  SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
871  SmallPtrSet<DomTreeNode *, 32> Visited;
872  SmallVector<DomTreeNode *, 32> Worklist;
873  while (!PQ.empty()) {
874    DomTreeNodePair RootPair = PQ.top();
875    PQ.pop();
876    DomTreeNode *Root = RootPair.first;
877    unsigned RootLevel = RootPair.second;
878
879    // Walk all dominator tree children of Root, inspecting their CFG edges with
880    // targets elsewhere on the dominator tree. Only targets whose level is at
881    // most Root's level are added to the iterated dominance frontier of the
882    // definition set.
883
884    Worklist.clear();
885    Worklist.push_back(Root);
886
887    while (!Worklist.empty()) {
888      DomTreeNode *Node = Worklist.pop_back_val();
889      BasicBlock *BB = Node->getBlock();
890
891      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
892           ++SI) {
893        DomTreeNode *SuccNode = DT.getNode(*SI);
894
895        // Quickly skip all CFG edges that are also dominator tree edges instead
896        // of catching them below.
897        if (SuccNode->getIDom() == Node)
898          continue;
899
900        unsigned SuccLevel = DomLevels[SuccNode];
901        if (SuccLevel > RootLevel)
902          continue;
903
904        if (!Visited.insert(SuccNode))
905          continue;
906
907        BasicBlock *SuccBB = SuccNode->getBlock();
908        if (!LiveInBlocks.count(SuccBB))
909          continue;
910
911        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
912        if (!DefBlocks.count(SuccBB))
913          PQ.push(std::make_pair(SuccNode, SuccLevel));
914      }
915
916      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
917           ++CI) {
918        if (!Visited.count(*CI))
919          Worklist.push_back(*CI);
920      }
921    }
922  }
923
924  if (DFBlocks.size() > 1)
925    std::sort(DFBlocks.begin(), DFBlocks.end());
926
927  unsigned CurrentVersion = 0;
928  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
929    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
930}
931
932/// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
933///
934/// Returns true if there wasn't already a phi-node for that variable
935bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
936                                  unsigned &Version) {
937  // Look up the basic-block in question.
938  PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
939
940  // If the BB already has a phi node added for the i'th alloca then we're done!
941  if (PN)
942    return false;
943
944  // Create a PhiNode using the dereferenced type... and add the phi-node to the
945  // BasicBlock.
946  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
947                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
948                       BB->begin());
949  ++NumPHIInsert;
950  PhiToAllocaMap[PN] = AllocaNo;
951
952  if (AST && PN->getType()->isPointerTy())
953    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
954
955  return true;
956}
957
958/// \brief Recursively traverse the CFG of the function, renaming loads and
959/// stores to the allocas which we are promoting.
960///
961/// IncomingVals indicates what value each Alloca contains on exit from the
962/// predecessor block Pred.
963void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
964                                RenamePassData::ValVector &IncomingVals,
965                                std::vector<RenamePassData> &Worklist) {
966NextIteration:
967  // If we are inserting any phi nodes into this BB, they will already be in the
968  // block.
969  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
970    // If we have PHI nodes to update, compute the number of edges from Pred to
971    // BB.
972    if (PhiToAllocaMap.count(APN)) {
973      // We want to be able to distinguish between PHI nodes being inserted by
974      // this invocation of mem2reg from those phi nodes that already existed in
975      // the IR before mem2reg was run.  We determine that APN is being inserted
976      // because it is missing incoming edges.  All other PHI nodes being
977      // inserted by this pass of mem2reg will have the same number of incoming
978      // operands so far.  Remember this count.
979      unsigned NewPHINumOperands = APN->getNumOperands();
980
981      unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
982      assert(NumEdges && "Must be at least one edge from Pred to BB!");
983
984      // Add entries for all the phis.
985      BasicBlock::iterator PNI = BB->begin();
986      do {
987        unsigned AllocaNo = PhiToAllocaMap[APN];
988
989        // Add N incoming values to the PHI node.
990        for (unsigned i = 0; i != NumEdges; ++i)
991          APN->addIncoming(IncomingVals[AllocaNo], Pred);
992
993        // The currently active variable for this block is now the PHI.
994        IncomingVals[AllocaNo] = APN;
995
996        // Get the next phi node.
997        ++PNI;
998        APN = dyn_cast<PHINode>(PNI);
999        if (APN == 0)
1000          break;
1001
1002        // Verify that it is missing entries.  If not, it is not being inserted
1003        // by this mem2reg invocation so we want to ignore it.
1004      } while (APN->getNumOperands() == NewPHINumOperands);
1005    }
1006  }
1007
1008  // Don't revisit blocks.
1009  if (!Visited.insert(BB))
1010    return;
1011
1012  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
1013    Instruction *I = II++; // get the instruction, increment iterator
1014
1015    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1016      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1017      if (!Src)
1018        continue;
1019
1020      DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1021      if (AI == AllocaLookup.end())
1022        continue;
1023
1024      Value *V = IncomingVals[AI->second];
1025
1026      // Anything using the load now uses the current value.
1027      LI->replaceAllUsesWith(V);
1028      if (AST && LI->getType()->isPointerTy())
1029        AST->deleteValue(LI);
1030      BB->getInstList().erase(LI);
1031    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1032      // Delete this instruction and mark the name as the current holder of the
1033      // value
1034      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1035      if (!Dest)
1036        continue;
1037
1038      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1039      if (ai == AllocaLookup.end())
1040        continue;
1041
1042      // what value were we writing?
1043      IncomingVals[ai->second] = SI->getOperand(0);
1044      // Record debuginfo for the store before removing it.
1045      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1046        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1047      BB->getInstList().erase(SI);
1048    }
1049  }
1050
1051  // 'Recurse' to our successors.
1052  succ_iterator I = succ_begin(BB), E = succ_end(BB);
1053  if (I == E)
1054    return;
1055
1056  // Keep track of the successors so we don't visit the same successor twice
1057  SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1058
1059  // Handle the first successor without using the worklist.
1060  VisitedSuccs.insert(*I);
1061  Pred = BB;
1062  BB = *I;
1063  ++I;
1064
1065  for (; I != E; ++I)
1066    if (VisitedSuccs.insert(*I))
1067      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1068
1069  goto NextIteration;
1070}
1071
1072void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1073                           AliasSetTracker *AST) {
1074  // If there is nothing to do, bail out...
1075  if (Allocas.empty())
1076    return;
1077
1078  PromoteMem2Reg(Allocas, DT, AST).run();
1079}
1080