1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28#include "llvm/Transforms/Scalar.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/LoopInfo.h"
34#include "llvm/Analysis/LoopPass.h"
35#include "llvm/Analysis/ScalarEvolutionExpander.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Type.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetLibraryInfo.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
51using namespace llvm;
52
53STATISTIC(NumWidened     , "Number of indvars widened");
54STATISTIC(NumReplaced    , "Number of exit values replaced");
55STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
56STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
57STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
58
59// Trip count verification can be enabled by default under NDEBUG if we
60// implement a strong expression equivalence checker in SCEV. Until then, we
61// use the verify-indvars flag, which may assert in some cases.
62static cl::opt<bool> VerifyIndvars(
63  "verify-indvars", cl::Hidden,
64  cl::desc("Verify the ScalarEvolution result after running indvars"));
65
66namespace {
67  class IndVarSimplify : public LoopPass {
68    LoopInfo        *LI;
69    ScalarEvolution *SE;
70    DominatorTree   *DT;
71    DataLayout      *TD;
72    TargetLibraryInfo *TLI;
73
74    SmallVector<WeakVH, 16> DeadInsts;
75    bool Changed;
76  public:
77
78    static char ID; // Pass identification, replacement for typeid
79    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
80                       Changed(false) {
81      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
82    }
83
84    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.addRequired<DominatorTree>();
88      AU.addRequired<LoopInfo>();
89      AU.addRequired<ScalarEvolution>();
90      AU.addRequiredID(LoopSimplifyID);
91      AU.addRequiredID(LCSSAID);
92      AU.addPreserved<ScalarEvolution>();
93      AU.addPreservedID(LoopSimplifyID);
94      AU.addPreservedID(LCSSAID);
95      AU.setPreservesCFG();
96    }
97
98  private:
99    virtual void releaseMemory() {
100      DeadInsts.clear();
101    }
102
103    bool isValidRewrite(Value *FromVal, Value *ToVal);
104
105    void HandleFloatingPointIV(Loop *L, PHINode *PH);
106    void RewriteNonIntegerIVs(Loop *L);
107
108    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
109
110    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
111
112    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
113                                     PHINode *IndVar, SCEVExpander &Rewriter);
114
115    void SinkUnusedInvariants(Loop *L);
116  };
117}
118
119char IndVarSimplify::ID = 0;
120INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
121                "Induction Variable Simplification", false, false)
122INITIALIZE_PASS_DEPENDENCY(DominatorTree)
123INITIALIZE_PASS_DEPENDENCY(LoopInfo)
124INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
125INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
126INITIALIZE_PASS_DEPENDENCY(LCSSA)
127INITIALIZE_PASS_END(IndVarSimplify, "indvars",
128                "Induction Variable Simplification", false, false)
129
130Pass *llvm::createIndVarSimplifyPass() {
131  return new IndVarSimplify();
132}
133
134/// isValidRewrite - Return true if the SCEV expansion generated by the
135/// rewriter can replace the original value. SCEV guarantees that it
136/// produces the same value, but the way it is produced may be illegal IR.
137/// Ideally, this function will only be called for verification.
138bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
139  // If an SCEV expression subsumed multiple pointers, its expansion could
140  // reassociate the GEP changing the base pointer. This is illegal because the
141  // final address produced by a GEP chain must be inbounds relative to its
142  // underlying object. Otherwise basic alias analysis, among other things,
143  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
144  // producing an expression involving multiple pointers. Until then, we must
145  // bail out here.
146  //
147  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
148  // because it understands lcssa phis while SCEV does not.
149  Value *FromPtr = FromVal;
150  Value *ToPtr = ToVal;
151  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
152    FromPtr = GEP->getPointerOperand();
153  }
154  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
155    ToPtr = GEP->getPointerOperand();
156  }
157  if (FromPtr != FromVal || ToPtr != ToVal) {
158    // Quickly check the common case
159    if (FromPtr == ToPtr)
160      return true;
161
162    // SCEV may have rewritten an expression that produces the GEP's pointer
163    // operand. That's ok as long as the pointer operand has the same base
164    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
165    // base of a recurrence. This handles the case in which SCEV expansion
166    // converts a pointer type recurrence into a nonrecurrent pointer base
167    // indexed by an integer recurrence.
168
169    // If the GEP base pointer is a vector of pointers, abort.
170    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
171      return false;
172
173    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175    if (FromBase == ToBase)
176      return true;
177
178    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179          << *FromBase << " != " << *ToBase << "\n");
180
181    return false;
182  }
183  return true;
184}
185
186/// Determine the insertion point for this user. By default, insert immediately
187/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
188/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
189/// common dominator for the incoming blocks.
190static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
191                                          DominatorTree *DT) {
192  PHINode *PHI = dyn_cast<PHINode>(User);
193  if (!PHI)
194    return User;
195
196  Instruction *InsertPt = 0;
197  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
198    if (PHI->getIncomingValue(i) != Def)
199      continue;
200
201    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
202    if (!InsertPt) {
203      InsertPt = InsertBB->getTerminator();
204      continue;
205    }
206    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
207    InsertPt = InsertBB->getTerminator();
208  }
209  assert(InsertPt && "Missing phi operand");
210  assert((!isa<Instruction>(Def) ||
211          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
212         "def does not dominate all uses");
213  return InsertPt;
214}
215
216//===----------------------------------------------------------------------===//
217// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
218//===----------------------------------------------------------------------===//
219
220/// ConvertToSInt - Convert APF to an integer, if possible.
221static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
222  bool isExact = false;
223  // See if we can convert this to an int64_t
224  uint64_t UIntVal;
225  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226                           &isExact) != APFloat::opOK || !isExact)
227    return false;
228  IntVal = UIntVal;
229  return true;
230}
231
232/// HandleFloatingPointIV - If the loop has floating induction variable
233/// then insert corresponding integer induction variable if possible.
234/// For example,
235/// for(double i = 0; i < 10000; ++i)
236///   bar(i)
237/// is converted into
238/// for(int i = 0; i < 10000; ++i)
239///   bar((double)i);
240///
241void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243  unsigned BackEdge     = IncomingEdge^1;
244
245  // Check incoming value.
246  ConstantFP *InitValueVal =
247    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
248
249  int64_t InitValue;
250  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251    return;
252
253  // Check IV increment. Reject this PN if increment operation is not
254  // an add or increment value can not be represented by an integer.
255  BinaryOperator *Incr =
256    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
258
259  // If this is not an add of the PHI with a constantfp, or if the constant fp
260  // is not an integer, bail out.
261  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262  int64_t IncValue;
263  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265    return;
266
267  // Check Incr uses. One user is PN and the other user is an exit condition
268  // used by the conditional terminator.
269  Value::use_iterator IncrUse = Incr->use_begin();
270  Instruction *U1 = cast<Instruction>(*IncrUse++);
271  if (IncrUse == Incr->use_end()) return;
272  Instruction *U2 = cast<Instruction>(*IncrUse++);
273  if (IncrUse != Incr->use_end()) return;
274
275  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
276  // only used by a branch, we can't transform it.
277  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
278  if (!Compare)
279    Compare = dyn_cast<FCmpInst>(U2);
280  if (Compare == 0 || !Compare->hasOneUse() ||
281      !isa<BranchInst>(Compare->use_back()))
282    return;
283
284  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285
286  // We need to verify that the branch actually controls the iteration count
287  // of the loop.  If not, the new IV can overflow and no one will notice.
288  // The branch block must be in the loop and one of the successors must be out
289  // of the loop.
290  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291  if (!L->contains(TheBr->getParent()) ||
292      (L->contains(TheBr->getSuccessor(0)) &&
293       L->contains(TheBr->getSuccessor(1))))
294    return;
295
296
297  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298  // transform it.
299  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300  int64_t ExitValue;
301  if (ExitValueVal == 0 ||
302      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303    return;
304
305  // Find new predicate for integer comparison.
306  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
307  switch (Compare->getPredicate()) {
308  default: return;  // Unknown comparison.
309  case CmpInst::FCMP_OEQ:
310  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311  case CmpInst::FCMP_ONE:
312  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313  case CmpInst::FCMP_OGT:
314  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315  case CmpInst::FCMP_OGE:
316  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317  case CmpInst::FCMP_OLT:
318  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319  case CmpInst::FCMP_OLE:
320  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
321  }
322
323  // We convert the floating point induction variable to a signed i32 value if
324  // we can.  This is only safe if the comparison will not overflow in a way
325  // that won't be trapped by the integer equivalent operations.  Check for this
326  // now.
327  // TODO: We could use i64 if it is native and the range requires it.
328
329  // The start/stride/exit values must all fit in signed i32.
330  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331    return;
332
333  // If not actually striding (add x, 0.0), avoid touching the code.
334  if (IncValue == 0)
335    return;
336
337  // Positive and negative strides have different safety conditions.
338  if (IncValue > 0) {
339    // If we have a positive stride, we require the init to be less than the
340    // exit value.
341    if (InitValue >= ExitValue)
342      return;
343
344    uint32_t Range = uint32_t(ExitValue-InitValue);
345    // Check for infinite loop, either:
346    // while (i <= Exit) or until (i > Exit)
347    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
348      if (++Range == 0) return;  // Range overflows.
349    }
350
351    unsigned Leftover = Range % uint32_t(IncValue);
352
353    // If this is an equality comparison, we require that the strided value
354    // exactly land on the exit value, otherwise the IV condition will wrap
355    // around and do things the fp IV wouldn't.
356    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357        Leftover != 0)
358      return;
359
360    // If the stride would wrap around the i32 before exiting, we can't
361    // transform the IV.
362    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363      return;
364
365  } else {
366    // If we have a negative stride, we require the init to be greater than the
367    // exit value.
368    if (InitValue <= ExitValue)
369      return;
370
371    uint32_t Range = uint32_t(InitValue-ExitValue);
372    // Check for infinite loop, either:
373    // while (i >= Exit) or until (i < Exit)
374    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
375      if (++Range == 0) return;  // Range overflows.
376    }
377
378    unsigned Leftover = Range % uint32_t(-IncValue);
379
380    // If this is an equality comparison, we require that the strided value
381    // exactly land on the exit value, otherwise the IV condition will wrap
382    // around and do things the fp IV wouldn't.
383    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384        Leftover != 0)
385      return;
386
387    // If the stride would wrap around the i32 before exiting, we can't
388    // transform the IV.
389    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390      return;
391  }
392
393  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
394
395  // Insert new integer induction variable.
396  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398                      PN->getIncomingBlock(IncomingEdge));
399
400  Value *NewAdd =
401    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402                              Incr->getName()+".int", Incr);
403  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
404
405  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406                                      ConstantInt::get(Int32Ty, ExitValue),
407                                      Compare->getName());
408
409  // In the following deletions, PN may become dead and may be deleted.
410  // Use a WeakVH to observe whether this happens.
411  WeakVH WeakPH = PN;
412
413  // Delete the old floating point exit comparison.  The branch starts using the
414  // new comparison.
415  NewCompare->takeName(Compare);
416  Compare->replaceAllUsesWith(NewCompare);
417  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
418
419  // Delete the old floating point increment.
420  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
421  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
422
423  // If the FP induction variable still has uses, this is because something else
424  // in the loop uses its value.  In order to canonicalize the induction
425  // variable, we chose to eliminate the IV and rewrite it in terms of an
426  // int->fp cast.
427  //
428  // We give preference to sitofp over uitofp because it is faster on most
429  // platforms.
430  if (WeakPH) {
431    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
432                                 PN->getParent()->getFirstInsertionPt());
433    PN->replaceAllUsesWith(Conv);
434    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
435  }
436  Changed = true;
437}
438
439void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
440  // First step.  Check to see if there are any floating-point recurrences.
441  // If there are, change them into integer recurrences, permitting analysis by
442  // the SCEV routines.
443  //
444  BasicBlock *Header = L->getHeader();
445
446  SmallVector<WeakVH, 8> PHIs;
447  for (BasicBlock::iterator I = Header->begin();
448       PHINode *PN = dyn_cast<PHINode>(I); ++I)
449    PHIs.push_back(PN);
450
451  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
452    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
453      HandleFloatingPointIV(L, PN);
454
455  // If the loop previously had floating-point IV, ScalarEvolution
456  // may not have been able to compute a trip count. Now that we've done some
457  // re-writing, the trip count may be computable.
458  if (Changed)
459    SE->forgetLoop(L);
460}
461
462//===----------------------------------------------------------------------===//
463// RewriteLoopExitValues - Optimize IV users outside the loop.
464// As a side effect, reduces the amount of IV processing within the loop.
465//===----------------------------------------------------------------------===//
466
467/// RewriteLoopExitValues - Check to see if this loop has a computable
468/// loop-invariant execution count.  If so, this means that we can compute the
469/// final value of any expressions that are recurrent in the loop, and
470/// substitute the exit values from the loop into any instructions outside of
471/// the loop that use the final values of the current expressions.
472///
473/// This is mostly redundant with the regular IndVarSimplify activities that
474/// happen later, except that it's more powerful in some cases, because it's
475/// able to brute-force evaluate arbitrary instructions as long as they have
476/// constant operands at the beginning of the loop.
477void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
478  // Verify the input to the pass in already in LCSSA form.
479  assert(L->isLCSSAForm(*DT));
480
481  SmallVector<BasicBlock*, 8> ExitBlocks;
482  L->getUniqueExitBlocks(ExitBlocks);
483
484  // Find all values that are computed inside the loop, but used outside of it.
485  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
486  // the exit blocks of the loop to find them.
487  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
488    BasicBlock *ExitBB = ExitBlocks[i];
489
490    // If there are no PHI nodes in this exit block, then no values defined
491    // inside the loop are used on this path, skip it.
492    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
493    if (!PN) continue;
494
495    unsigned NumPreds = PN->getNumIncomingValues();
496
497    // Iterate over all of the PHI nodes.
498    BasicBlock::iterator BBI = ExitBB->begin();
499    while ((PN = dyn_cast<PHINode>(BBI++))) {
500      if (PN->use_empty())
501        continue; // dead use, don't replace it
502
503      // SCEV only supports integer expressions for now.
504      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
505        continue;
506
507      // It's necessary to tell ScalarEvolution about this explicitly so that
508      // it can walk the def-use list and forget all SCEVs, as it may not be
509      // watching the PHI itself. Once the new exit value is in place, there
510      // may not be a def-use connection between the loop and every instruction
511      // which got a SCEVAddRecExpr for that loop.
512      SE->forgetValue(PN);
513
514      // Iterate over all of the values in all the PHI nodes.
515      for (unsigned i = 0; i != NumPreds; ++i) {
516        // If the value being merged in is not integer or is not defined
517        // in the loop, skip it.
518        Value *InVal = PN->getIncomingValue(i);
519        if (!isa<Instruction>(InVal))
520          continue;
521
522        // If this pred is for a subloop, not L itself, skip it.
523        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
524          continue; // The Block is in a subloop, skip it.
525
526        // Check that InVal is defined in the loop.
527        Instruction *Inst = cast<Instruction>(InVal);
528        if (!L->contains(Inst))
529          continue;
530
531        // Okay, this instruction has a user outside of the current loop
532        // and varies predictably *inside* the loop.  Evaluate the value it
533        // contains when the loop exits, if possible.
534        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
535        if (!SE->isLoopInvariant(ExitValue, L) ||
536            !isSafeToExpand(ExitValue, *SE))
537          continue;
538
539        // Computing the value outside of the loop brings no benefit if :
540        //  - it is definitely used inside the loop in a way which can not be
541        //    optimized away.
542        //  - no use outside of the loop can take advantage of hoisting the
543        //    computation out of the loop
544        if (ExitValue->getSCEVType()>=scMulExpr) {
545          unsigned NumHardInternalUses = 0;
546          unsigned NumSoftExternalUses = 0;
547          unsigned NumUses = 0;
548          for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end();
549               IB!=IE && NumUses<=6 ; ++IB) {
550            Instruction *UseInstr = cast<Instruction>(*IB);
551            unsigned Opc = UseInstr->getOpcode();
552            NumUses++;
553            if (L->contains(UseInstr)) {
554              if (Opc == Instruction::Call || Opc == Instruction::Ret)
555                NumHardInternalUses++;
556            } else {
557              if (Opc == Instruction::PHI) {
558                // Do not count the Phi as a use. LCSSA may have inserted
559                // plenty of trivial ones.
560                NumUses--;
561                for (Value::use_iterator PB=UseInstr->use_begin(),
562                                         PE=UseInstr->use_end();
563                     PB!=PE && NumUses<=6 ; ++PB, ++NumUses) {
564                  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
565                  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
566                    NumSoftExternalUses++;
567                }
568                continue;
569              }
570              if (Opc != Instruction::Call && Opc != Instruction::Ret)
571                NumSoftExternalUses++;
572            }
573          }
574          if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
575            continue;
576        }
577
578        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
579
580        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
581                     << "  LoopVal = " << *Inst << "\n");
582
583        if (!isValidRewrite(Inst, ExitVal)) {
584          DeadInsts.push_back(ExitVal);
585          continue;
586        }
587        Changed = true;
588        ++NumReplaced;
589
590        PN->setIncomingValue(i, ExitVal);
591
592        // If this instruction is dead now, delete it. Don't do it now to avoid
593        // invalidating iterators.
594        if (isInstructionTriviallyDead(Inst, TLI))
595          DeadInsts.push_back(Inst);
596
597        if (NumPreds == 1) {
598          // Completely replace a single-pred PHI. This is safe, because the
599          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
600          // node anymore.
601          PN->replaceAllUsesWith(ExitVal);
602          PN->eraseFromParent();
603        }
604      }
605      if (NumPreds != 1) {
606        // Clone the PHI and delete the original one. This lets IVUsers and
607        // any other maps purge the original user from their records.
608        PHINode *NewPN = cast<PHINode>(PN->clone());
609        NewPN->takeName(PN);
610        NewPN->insertBefore(PN);
611        PN->replaceAllUsesWith(NewPN);
612        PN->eraseFromParent();
613      }
614    }
615  }
616
617  // The insertion point instruction may have been deleted; clear it out
618  // so that the rewriter doesn't trip over it later.
619  Rewriter.clearInsertPoint();
620}
621
622//===----------------------------------------------------------------------===//
623//  IV Widening - Extend the width of an IV to cover its widest uses.
624//===----------------------------------------------------------------------===//
625
626namespace {
627  // Collect information about induction variables that are used by sign/zero
628  // extend operations. This information is recorded by CollectExtend and
629  // provides the input to WidenIV.
630  struct WideIVInfo {
631    PHINode *NarrowIV;
632    Type *WidestNativeType; // Widest integer type created [sz]ext
633    bool IsSigned;          // Was an sext user seen before a zext?
634
635    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
636  };
637
638  class WideIVVisitor : public IVVisitor {
639    ScalarEvolution *SE;
640    const DataLayout *TD;
641
642  public:
643    WideIVInfo WI;
644
645    WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
646                  const DataLayout *TData) :
647      SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
648
649    // Implement the interface used by simplifyUsersOfIV.
650    virtual void visitCast(CastInst *Cast);
651  };
652}
653
654/// visitCast - Update information about the induction variable that is
655/// extended by this sign or zero extend operation. This is used to determine
656/// the final width of the IV before actually widening it.
657void WideIVVisitor::visitCast(CastInst *Cast) {
658  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
659  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
660    return;
661
662  Type *Ty = Cast->getType();
663  uint64_t Width = SE->getTypeSizeInBits(Ty);
664  if (TD && !TD->isLegalInteger(Width))
665    return;
666
667  if (!WI.WidestNativeType) {
668    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
669    WI.IsSigned = IsSigned;
670    return;
671  }
672
673  // We extend the IV to satisfy the sign of its first user, arbitrarily.
674  if (WI.IsSigned != IsSigned)
675    return;
676
677  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
678    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
679}
680
681namespace {
682
683/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
684/// WideIV that computes the same value as the Narrow IV def.  This avoids
685/// caching Use* pointers.
686struct NarrowIVDefUse {
687  Instruction *NarrowDef;
688  Instruction *NarrowUse;
689  Instruction *WideDef;
690
691  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
692
693  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
694    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
695};
696
697/// WidenIV - The goal of this transform is to remove sign and zero extends
698/// without creating any new induction variables. To do this, it creates a new
699/// phi of the wider type and redirects all users, either removing extends or
700/// inserting truncs whenever we stop propagating the type.
701///
702class WidenIV {
703  // Parameters
704  PHINode *OrigPhi;
705  Type *WideType;
706  bool IsSigned;
707
708  // Context
709  LoopInfo        *LI;
710  Loop            *L;
711  ScalarEvolution *SE;
712  DominatorTree   *DT;
713
714  // Result
715  PHINode *WidePhi;
716  Instruction *WideInc;
717  const SCEV *WideIncExpr;
718  SmallVectorImpl<WeakVH> &DeadInsts;
719
720  SmallPtrSet<Instruction*,16> Widened;
721  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
722
723public:
724  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
725          ScalarEvolution *SEv, DominatorTree *DTree,
726          SmallVectorImpl<WeakVH> &DI) :
727    OrigPhi(WI.NarrowIV),
728    WideType(WI.WidestNativeType),
729    IsSigned(WI.IsSigned),
730    LI(LInfo),
731    L(LI->getLoopFor(OrigPhi->getParent())),
732    SE(SEv),
733    DT(DTree),
734    WidePhi(0),
735    WideInc(0),
736    WideIncExpr(0),
737    DeadInsts(DI) {
738    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
739  }
740
741  PHINode *CreateWideIV(SCEVExpander &Rewriter);
742
743protected:
744  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
745                   Instruction *Use);
746
747  Instruction *CloneIVUser(NarrowIVDefUse DU);
748
749  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
750
751  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
752
753  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
754
755  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
756};
757} // anonymous namespace
758
759/// isLoopInvariant - Perform a quick domtree based check for loop invariance
760/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
761/// gratuitous for this purpose.
762static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
763  Instruction *Inst = dyn_cast<Instruction>(V);
764  if (!Inst)
765    return true;
766
767  return DT->properlyDominates(Inst->getParent(), L->getHeader());
768}
769
770Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
771                          Instruction *Use) {
772  // Set the debug location and conservative insertion point.
773  IRBuilder<> Builder(Use);
774  // Hoist the insertion point into loop preheaders as far as possible.
775  for (const Loop *L = LI->getLoopFor(Use->getParent());
776       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
777       L = L->getParentLoop())
778    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
779
780  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
781                    Builder.CreateZExt(NarrowOper, WideType);
782}
783
784/// CloneIVUser - Instantiate a wide operation to replace a narrow
785/// operation. This only needs to handle operations that can evaluation to
786/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
787Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
788  unsigned Opcode = DU.NarrowUse->getOpcode();
789  switch (Opcode) {
790  default:
791    return 0;
792  case Instruction::Add:
793  case Instruction::Mul:
794  case Instruction::UDiv:
795  case Instruction::Sub:
796  case Instruction::And:
797  case Instruction::Or:
798  case Instruction::Xor:
799  case Instruction::Shl:
800  case Instruction::LShr:
801  case Instruction::AShr:
802    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
803
804    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
805    // anything about the narrow operand yet so must insert a [sz]ext. It is
806    // probably loop invariant and will be folded or hoisted. If it actually
807    // comes from a widened IV, it should be removed during a future call to
808    // WidenIVUse.
809    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
810      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
811    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
812      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
813
814    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
815    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
816                                                    LHS, RHS,
817                                                    NarrowBO->getName());
818    IRBuilder<> Builder(DU.NarrowUse);
819    Builder.Insert(WideBO);
820    if (const OverflowingBinaryOperator *OBO =
821        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
822      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
823      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
824    }
825    return WideBO;
826  }
827}
828
829/// No-wrap operations can transfer sign extension of their result to their
830/// operands. Generate the SCEV value for the widened operation without
831/// actually modifying the IR yet. If the expression after extending the
832/// operands is an AddRec for this loop, return it.
833const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
834  // Handle the common case of add<nsw/nuw>
835  if (DU.NarrowUse->getOpcode() != Instruction::Add)
836    return 0;
837
838  // One operand (NarrowDef) has already been extended to WideDef. Now determine
839  // if extending the other will lead to a recurrence.
840  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
841  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
842
843  const SCEV *ExtendOperExpr = 0;
844  const OverflowingBinaryOperator *OBO =
845    cast<OverflowingBinaryOperator>(DU.NarrowUse);
846  if (IsSigned && OBO->hasNoSignedWrap())
847    ExtendOperExpr = SE->getSignExtendExpr(
848      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
849  else if(!IsSigned && OBO->hasNoUnsignedWrap())
850    ExtendOperExpr = SE->getZeroExtendExpr(
851      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
852  else
853    return 0;
854
855  // When creating this AddExpr, don't apply the current operations NSW or NUW
856  // flags. This instruction may be guarded by control flow that the no-wrap
857  // behavior depends on. Non-control-equivalent instructions can be mapped to
858  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
859  // semantics to those operations.
860  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
861    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
862
863  if (!AddRec || AddRec->getLoop() != L)
864    return 0;
865  return AddRec;
866}
867
868/// GetWideRecurrence - Is this instruction potentially interesting from
869/// IVUsers' perspective after widening it's type? In other words, can the
870/// extend be safely hoisted out of the loop with SCEV reducing the value to a
871/// recurrence on the same loop. If so, return the sign or zero extended
872/// recurrence. Otherwise return NULL.
873const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
874  if (!SE->isSCEVable(NarrowUse->getType()))
875    return 0;
876
877  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
878  if (SE->getTypeSizeInBits(NarrowExpr->getType())
879      >= SE->getTypeSizeInBits(WideType)) {
880    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
881    // index. So don't follow this use.
882    return 0;
883  }
884
885  const SCEV *WideExpr = IsSigned ?
886    SE->getSignExtendExpr(NarrowExpr, WideType) :
887    SE->getZeroExtendExpr(NarrowExpr, WideType);
888  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
889  if (!AddRec || AddRec->getLoop() != L)
890    return 0;
891  return AddRec;
892}
893
894/// WidenIVUse - Determine whether an individual user of the narrow IV can be
895/// widened. If so, return the wide clone of the user.
896Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
897
898  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
899  if (isa<PHINode>(DU.NarrowUse) &&
900      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
901    return 0;
902
903  // Our raison d'etre! Eliminate sign and zero extension.
904  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
905    Value *NewDef = DU.WideDef;
906    if (DU.NarrowUse->getType() != WideType) {
907      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
908      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
909      if (CastWidth < IVWidth) {
910        // The cast isn't as wide as the IV, so insert a Trunc.
911        IRBuilder<> Builder(DU.NarrowUse);
912        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
913      }
914      else {
915        // A wider extend was hidden behind a narrower one. This may induce
916        // another round of IV widening in which the intermediate IV becomes
917        // dead. It should be very rare.
918        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
919              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
920        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
921        NewDef = DU.NarrowUse;
922      }
923    }
924    if (NewDef != DU.NarrowUse) {
925      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
926            << " replaced by " << *DU.WideDef << "\n");
927      ++NumElimExt;
928      DU.NarrowUse->replaceAllUsesWith(NewDef);
929      DeadInsts.push_back(DU.NarrowUse);
930    }
931    // Now that the extend is gone, we want to expose it's uses for potential
932    // further simplification. We don't need to directly inform SimplifyIVUsers
933    // of the new users, because their parent IV will be processed later as a
934    // new loop phi. If we preserved IVUsers analysis, we would also want to
935    // push the uses of WideDef here.
936
937    // No further widening is needed. The deceased [sz]ext had done it for us.
938    return 0;
939  }
940
941  // Does this user itself evaluate to a recurrence after widening?
942  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
943  if (!WideAddRec) {
944      WideAddRec = GetExtendedOperandRecurrence(DU);
945  }
946  if (!WideAddRec) {
947    // This user does not evaluate to a recurence after widening, so don't
948    // follow it. Instead insert a Trunc to kill off the original use,
949    // eventually isolating the original narrow IV so it can be removed.
950    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
951    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
952    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
953    return 0;
954  }
955  // Assume block terminators cannot evaluate to a recurrence. We can't to
956  // insert a Trunc after a terminator if there happens to be a critical edge.
957  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
958         "SCEV is not expected to evaluate a block terminator");
959
960  // Reuse the IV increment that SCEVExpander created as long as it dominates
961  // NarrowUse.
962  Instruction *WideUse = 0;
963  if (WideAddRec == WideIncExpr
964      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
965    WideUse = WideInc;
966  else {
967    WideUse = CloneIVUser(DU);
968    if (!WideUse)
969      return 0;
970  }
971  // Evaluation of WideAddRec ensured that the narrow expression could be
972  // extended outside the loop without overflow. This suggests that the wide use
973  // evaluates to the same expression as the extended narrow use, but doesn't
974  // absolutely guarantee it. Hence the following failsafe check. In rare cases
975  // where it fails, we simply throw away the newly created wide use.
976  if (WideAddRec != SE->getSCEV(WideUse)) {
977    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
978          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
979    DeadInsts.push_back(WideUse);
980    return 0;
981  }
982
983  // Returning WideUse pushes it on the worklist.
984  return WideUse;
985}
986
987/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
988///
989void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
990  for (Value::use_iterator UI = NarrowDef->use_begin(),
991         UE = NarrowDef->use_end(); UI != UE; ++UI) {
992    Instruction *NarrowUse = cast<Instruction>(*UI);
993
994    // Handle data flow merges and bizarre phi cycles.
995    if (!Widened.insert(NarrowUse))
996      continue;
997
998    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
999  }
1000}
1001
1002/// CreateWideIV - Process a single induction variable. First use the
1003/// SCEVExpander to create a wide induction variable that evaluates to the same
1004/// recurrence as the original narrow IV. Then use a worklist to forward
1005/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1006/// interesting IV users, the narrow IV will be isolated for removal by
1007/// DeleteDeadPHIs.
1008///
1009/// It would be simpler to delete uses as they are processed, but we must avoid
1010/// invalidating SCEV expressions.
1011///
1012PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1013  // Is this phi an induction variable?
1014  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1015  if (!AddRec)
1016    return NULL;
1017
1018  // Widen the induction variable expression.
1019  const SCEV *WideIVExpr = IsSigned ?
1020    SE->getSignExtendExpr(AddRec, WideType) :
1021    SE->getZeroExtendExpr(AddRec, WideType);
1022
1023  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1024         "Expect the new IV expression to preserve its type");
1025
1026  // Can the IV be extended outside the loop without overflow?
1027  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1028  if (!AddRec || AddRec->getLoop() != L)
1029    return NULL;
1030
1031  // An AddRec must have loop-invariant operands. Since this AddRec is
1032  // materialized by a loop header phi, the expression cannot have any post-loop
1033  // operands, so they must dominate the loop header.
1034  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1035         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1036         && "Loop header phi recurrence inputs do not dominate the loop");
1037
1038  // The rewriter provides a value for the desired IV expression. This may
1039  // either find an existing phi or materialize a new one. Either way, we
1040  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1041  // of the phi-SCC dominates the loop entry.
1042  Instruction *InsertPt = L->getHeader()->begin();
1043  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1044
1045  // Remembering the WideIV increment generated by SCEVExpander allows
1046  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1047  // employ a general reuse mechanism because the call above is the only call to
1048  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1049  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1050    WideInc =
1051      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1052    WideIncExpr = SE->getSCEV(WideInc);
1053  }
1054
1055  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1056  ++NumWidened;
1057
1058  // Traverse the def-use chain using a worklist starting at the original IV.
1059  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1060
1061  Widened.insert(OrigPhi);
1062  pushNarrowIVUsers(OrigPhi, WidePhi);
1063
1064  while (!NarrowIVUsers.empty()) {
1065    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1066
1067    // Process a def-use edge. This may replace the use, so don't hold a
1068    // use_iterator across it.
1069    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1070
1071    // Follow all def-use edges from the previous narrow use.
1072    if (WideUse)
1073      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1074
1075    // WidenIVUse may have removed the def-use edge.
1076    if (DU.NarrowDef->use_empty())
1077      DeadInsts.push_back(DU.NarrowDef);
1078  }
1079  return WidePhi;
1080}
1081
1082//===----------------------------------------------------------------------===//
1083//  Simplification of IV users based on SCEV evaluation.
1084//===----------------------------------------------------------------------===//
1085
1086
1087/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1088/// users. Each successive simplification may push more users which may
1089/// themselves be candidates for simplification.
1090///
1091/// Sign/Zero extend elimination is interleaved with IV simplification.
1092///
1093void IndVarSimplify::SimplifyAndExtend(Loop *L,
1094                                       SCEVExpander &Rewriter,
1095                                       LPPassManager &LPM) {
1096  SmallVector<WideIVInfo, 8> WideIVs;
1097
1098  SmallVector<PHINode*, 8> LoopPhis;
1099  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1100    LoopPhis.push_back(cast<PHINode>(I));
1101  }
1102  // Each round of simplification iterates through the SimplifyIVUsers worklist
1103  // for all current phis, then determines whether any IVs can be
1104  // widened. Widening adds new phis to LoopPhis, inducing another round of
1105  // simplification on the wide IVs.
1106  while (!LoopPhis.empty()) {
1107    // Evaluate as many IV expressions as possible before widening any IVs. This
1108    // forces SCEV to set no-wrap flags before evaluating sign/zero
1109    // extension. The first time SCEV attempts to normalize sign/zero extension,
1110    // the result becomes final. So for the most predictable results, we delay
1111    // evaluation of sign/zero extend evaluation until needed, and avoid running
1112    // other SCEV based analysis prior to SimplifyAndExtend.
1113    do {
1114      PHINode *CurrIV = LoopPhis.pop_back_val();
1115
1116      // Information about sign/zero extensions of CurrIV.
1117      WideIVVisitor WIV(CurrIV, SE, TD);
1118
1119      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1120
1121      if (WIV.WI.WidestNativeType) {
1122        WideIVs.push_back(WIV.WI);
1123      }
1124    } while(!LoopPhis.empty());
1125
1126    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1127      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1128      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1129        Changed = true;
1130        LoopPhis.push_back(WidePhi);
1131      }
1132    }
1133  }
1134}
1135
1136//===----------------------------------------------------------------------===//
1137//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1138//===----------------------------------------------------------------------===//
1139
1140/// Check for expressions that ScalarEvolution generates to compute
1141/// BackedgeTakenInfo. If these expressions have not been reduced, then
1142/// expanding them may incur additional cost (albeit in the loop preheader).
1143static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1144                                SmallPtrSet<const SCEV*, 8> &Processed,
1145                                ScalarEvolution *SE) {
1146  if (!Processed.insert(S))
1147    return false;
1148
1149  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1150  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1151  // precise expression, rather than a UDiv from the user's code. If we can't
1152  // find a UDiv in the code with some simple searching, assume the former and
1153  // forego rewriting the loop.
1154  if (isa<SCEVUDivExpr>(S)) {
1155    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1156    if (!OrigCond) return true;
1157    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1158    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1159    if (R != S) {
1160      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1161      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1162      if (L != S)
1163        return true;
1164    }
1165  }
1166
1167  // Recurse past add expressions, which commonly occur in the
1168  // BackedgeTakenCount. They may already exist in program code, and if not,
1169  // they are not too expensive rematerialize.
1170  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1171    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1172         I != E; ++I) {
1173      if (isHighCostExpansion(*I, BI, Processed, SE))
1174        return true;
1175    }
1176    return false;
1177  }
1178
1179  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1180  // the exit condition.
1181  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1182    return true;
1183
1184  // If we haven't recognized an expensive SCEV pattern, assume it's an
1185  // expression produced by program code.
1186  return false;
1187}
1188
1189/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1190/// count expression can be safely and cheaply expanded into an instruction
1191/// sequence that can be used by LinearFunctionTestReplace.
1192///
1193/// TODO: This fails for pointer-type loop counters with greater than one byte
1194/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1195/// we could skip this check in the case that the LFTR loop counter (chosen by
1196/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1197/// the loop test to an inequality test by checking the target data's alignment
1198/// of element types (given that the initial pointer value originates from or is
1199/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1200/// However, we don't yet have a strong motivation for converting loop tests
1201/// into inequality tests.
1202static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1203  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1204  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1205      BackedgeTakenCount->isZero())
1206    return false;
1207
1208  if (!L->getExitingBlock())
1209    return false;
1210
1211  // Can't rewrite non-branch yet.
1212  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1213  if (!BI)
1214    return false;
1215
1216  SmallPtrSet<const SCEV*, 8> Processed;
1217  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1218    return false;
1219
1220  return true;
1221}
1222
1223/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1224/// invariant value to the phi.
1225static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1226  Instruction *IncI = dyn_cast<Instruction>(IncV);
1227  if (!IncI)
1228    return 0;
1229
1230  switch (IncI->getOpcode()) {
1231  case Instruction::Add:
1232  case Instruction::Sub:
1233    break;
1234  case Instruction::GetElementPtr:
1235    // An IV counter must preserve its type.
1236    if (IncI->getNumOperands() == 2)
1237      break;
1238  default:
1239    return 0;
1240  }
1241
1242  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1243  if (Phi && Phi->getParent() == L->getHeader()) {
1244    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1245      return Phi;
1246    return 0;
1247  }
1248  if (IncI->getOpcode() == Instruction::GetElementPtr)
1249    return 0;
1250
1251  // Allow add/sub to be commuted.
1252  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1253  if (Phi && Phi->getParent() == L->getHeader()) {
1254    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1255      return Phi;
1256  }
1257  return 0;
1258}
1259
1260/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1261static ICmpInst *getLoopTest(Loop *L) {
1262  assert(L->getExitingBlock() && "expected loop exit");
1263
1264  BasicBlock *LatchBlock = L->getLoopLatch();
1265  // Don't bother with LFTR if the loop is not properly simplified.
1266  if (!LatchBlock)
1267    return 0;
1268
1269  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1270  assert(BI && "expected exit branch");
1271
1272  return dyn_cast<ICmpInst>(BI->getCondition());
1273}
1274
1275/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1276/// that the current exit test is already sufficiently canonical.
1277static bool needsLFTR(Loop *L, DominatorTree *DT) {
1278  // Do LFTR to simplify the exit condition to an ICMP.
1279  ICmpInst *Cond = getLoopTest(L);
1280  if (!Cond)
1281    return true;
1282
1283  // Do LFTR to simplify the exit ICMP to EQ/NE
1284  ICmpInst::Predicate Pred = Cond->getPredicate();
1285  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1286    return true;
1287
1288  // Look for a loop invariant RHS
1289  Value *LHS = Cond->getOperand(0);
1290  Value *RHS = Cond->getOperand(1);
1291  if (!isLoopInvariant(RHS, L, DT)) {
1292    if (!isLoopInvariant(LHS, L, DT))
1293      return true;
1294    std::swap(LHS, RHS);
1295  }
1296  // Look for a simple IV counter LHS
1297  PHINode *Phi = dyn_cast<PHINode>(LHS);
1298  if (!Phi)
1299    Phi = getLoopPhiForCounter(LHS, L, DT);
1300
1301  if (!Phi)
1302    return true;
1303
1304  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1305  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1306  if (Idx < 0)
1307    return true;
1308
1309  // Do LFTR if the exit condition's IV is *not* a simple counter.
1310  Value *IncV = Phi->getIncomingValue(Idx);
1311  return Phi != getLoopPhiForCounter(IncV, L, DT);
1312}
1313
1314/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1315/// down to checking that all operands are constant and listing instructions
1316/// that may hide undef.
1317static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1318                               unsigned Depth) {
1319  if (isa<Constant>(V))
1320    return !isa<UndefValue>(V);
1321
1322  if (Depth >= 6)
1323    return false;
1324
1325  // Conservatively handle non-constant non-instructions. For example, Arguments
1326  // may be undef.
1327  Instruction *I = dyn_cast<Instruction>(V);
1328  if (!I)
1329    return false;
1330
1331  // Load and return values may be undef.
1332  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1333    return false;
1334
1335  // Optimistically handle other instructions.
1336  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1337    if (!Visited.insert(*OI))
1338      continue;
1339    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1340      return false;
1341  }
1342  return true;
1343}
1344
1345/// Return true if the given value is concrete. We must prove that undef can
1346/// never reach it.
1347///
1348/// TODO: If we decide that this is a good approach to checking for undef, we
1349/// may factor it into a common location.
1350static bool hasConcreteDef(Value *V) {
1351  SmallPtrSet<Value*, 8> Visited;
1352  Visited.insert(V);
1353  return hasConcreteDefImpl(V, Visited, 0);
1354}
1355
1356/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1357/// be rewritten) loop exit test.
1358static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1359  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1360  Value *IncV = Phi->getIncomingValue(LatchIdx);
1361
1362  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1363       UI != UE; ++UI) {
1364    if (*UI != Cond && *UI != IncV) return false;
1365  }
1366
1367  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1368       UI != UE; ++UI) {
1369    if (*UI != Cond && *UI != Phi) return false;
1370  }
1371  return true;
1372}
1373
1374/// FindLoopCounter - Find an affine IV in canonical form.
1375///
1376/// BECount may be an i8* pointer type. The pointer difference is already
1377/// valid count without scaling the address stride, so it remains a pointer
1378/// expression as far as SCEV is concerned.
1379///
1380/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1381///
1382/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1383///
1384/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1385/// This is difficult in general for SCEV because of potential overflow. But we
1386/// could at least handle constant BECounts.
1387static PHINode *
1388FindLoopCounter(Loop *L, const SCEV *BECount,
1389                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
1390  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1391
1392  Value *Cond =
1393    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1394
1395  // Loop over all of the PHI nodes, looking for a simple counter.
1396  PHINode *BestPhi = 0;
1397  const SCEV *BestInit = 0;
1398  BasicBlock *LatchBlock = L->getLoopLatch();
1399  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1400
1401  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1402    PHINode *Phi = cast<PHINode>(I);
1403    if (!SE->isSCEVable(Phi->getType()))
1404      continue;
1405
1406    // Avoid comparing an integer IV against a pointer Limit.
1407    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1408      continue;
1409
1410    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1411    if (!AR || AR->getLoop() != L || !AR->isAffine())
1412      continue;
1413
1414    // AR may be a pointer type, while BECount is an integer type.
1415    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1416    // AR may not be a narrower type, or we may never exit.
1417    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1418    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1419      continue;
1420
1421    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1422    if (!Step || !Step->isOne())
1423      continue;
1424
1425    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1426    Value *IncV = Phi->getIncomingValue(LatchIdx);
1427    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1428      continue;
1429
1430    // Avoid reusing a potentially undef value to compute other values that may
1431    // have originally had a concrete definition.
1432    if (!hasConcreteDef(Phi)) {
1433      // We explicitly allow unknown phis as long as they are already used by
1434      // the loop test. In this case we assume that performing LFTR could not
1435      // increase the number of undef users.
1436      if (ICmpInst *Cond = getLoopTest(L)) {
1437        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1438            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1439          continue;
1440        }
1441      }
1442    }
1443    const SCEV *Init = AR->getStart();
1444
1445    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1446      // Don't force a live loop counter if another IV can be used.
1447      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1448        continue;
1449
1450      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1451      // also prefers integer to pointer IVs.
1452      if (BestInit->isZero() != Init->isZero()) {
1453        if (BestInit->isZero())
1454          continue;
1455      }
1456      // If two IVs both count from zero or both count from nonzero then the
1457      // narrower is likely a dead phi that has been widened. Use the wider phi
1458      // to allow the other to be eliminated.
1459      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1460        continue;
1461    }
1462    BestPhi = Phi;
1463    BestInit = Init;
1464  }
1465  return BestPhi;
1466}
1467
1468/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1469/// holds the RHS of the new loop test.
1470static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1471                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1472  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1473  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1474  const SCEV *IVInit = AR->getStart();
1475
1476  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1477  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1478  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1479  // the existing GEPs whenever possible.
1480  if (IndVar->getType()->isPointerTy()
1481      && !IVCount->getType()->isPointerTy()) {
1482
1483    // IVOffset will be the new GEP offset that is interpreted by GEP as a
1484    // signed value. IVCount on the other hand represents the loop trip count,
1485    // which is an unsigned value. FindLoopCounter only allows induction
1486    // variables that have a positive unit stride of one. This means we don't
1487    // have to handle the case of negative offsets (yet) and just need to zero
1488    // extend IVCount.
1489    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1490    const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1491
1492    // Expand the code for the iteration count.
1493    assert(SE->isLoopInvariant(IVOffset, L) &&
1494           "Computed iteration count is not loop invariant!");
1495    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1496    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1497
1498    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1499    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1500    // We could handle pointer IVs other than i8*, but we need to compensate for
1501    // gep index scaling. See canExpandBackedgeTakenCount comments.
1502    assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1503             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1504           && "unit stride pointer IV must be i8*");
1505
1506    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1507    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1508  }
1509  else {
1510    // In any other case, convert both IVInit and IVCount to integers before
1511    // comparing. This may result in SCEV expension of pointers, but in practice
1512    // SCEV will fold the pointer arithmetic away as such:
1513    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1514    //
1515    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1516    // for simple memset-style loops.
1517    //
1518    // IVInit integer and IVCount pointer would only occur if a canonical IV
1519    // were generated on top of case #2, which is not expected.
1520
1521    const SCEV *IVLimit = 0;
1522    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1523    // For non-zero Start, compute IVCount here.
1524    if (AR->getStart()->isZero())
1525      IVLimit = IVCount;
1526    else {
1527      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1528      const SCEV *IVInit = AR->getStart();
1529
1530      // For integer IVs, truncate the IV before computing IVInit + BECount.
1531      if (SE->getTypeSizeInBits(IVInit->getType())
1532          > SE->getTypeSizeInBits(IVCount->getType()))
1533        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1534
1535      IVLimit = SE->getAddExpr(IVInit, IVCount);
1536    }
1537    // Expand the code for the iteration count.
1538    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1539    IRBuilder<> Builder(BI);
1540    assert(SE->isLoopInvariant(IVLimit, L) &&
1541           "Computed iteration count is not loop invariant!");
1542    // Ensure that we generate the same type as IndVar, or a smaller integer
1543    // type. In the presence of null pointer values, we have an integer type
1544    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1545    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1546      IndVar->getType() : IVCount->getType();
1547    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1548  }
1549}
1550
1551/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1552/// loop to be a canonical != comparison against the incremented loop induction
1553/// variable.  This pass is able to rewrite the exit tests of any loop where the
1554/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1555/// is actually a much broader range than just linear tests.
1556Value *IndVarSimplify::
1557LinearFunctionTestReplace(Loop *L,
1558                          const SCEV *BackedgeTakenCount,
1559                          PHINode *IndVar,
1560                          SCEVExpander &Rewriter) {
1561  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1562
1563  // Initialize CmpIndVar and IVCount to their preincremented values.
1564  Value *CmpIndVar = IndVar;
1565  const SCEV *IVCount = BackedgeTakenCount;
1566
1567  // If the exiting block is the same as the backedge block, we prefer to
1568  // compare against the post-incremented value, otherwise we must compare
1569  // against the preincremented value.
1570  if (L->getExitingBlock() == L->getLoopLatch()) {
1571    // Add one to the "backedge-taken" count to get the trip count.
1572    // This addition may overflow, which is valid as long as the comparison is
1573    // truncated to BackedgeTakenCount->getType().
1574    IVCount = SE->getAddExpr(BackedgeTakenCount,
1575                             SE->getConstant(BackedgeTakenCount->getType(), 1));
1576    // The BackedgeTaken expression contains the number of times that the
1577    // backedge branches to the loop header.  This is one less than the
1578    // number of times the loop executes, so use the incremented indvar.
1579    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1580  }
1581
1582  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1583  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1584         && "genLoopLimit missed a cast");
1585
1586  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1587  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1588  ICmpInst::Predicate P;
1589  if (L->contains(BI->getSuccessor(0)))
1590    P = ICmpInst::ICMP_NE;
1591  else
1592    P = ICmpInst::ICMP_EQ;
1593
1594  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1595               << "      LHS:" << *CmpIndVar << '\n'
1596               << "       op:\t"
1597               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1598               << "      RHS:\t" << *ExitCnt << "\n"
1599               << "  IVCount:\t" << *IVCount << "\n");
1600
1601  IRBuilder<> Builder(BI);
1602
1603  // LFTR can ignore IV overflow and truncate to the width of
1604  // BECount. This avoids materializing the add(zext(add)) expression.
1605  unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1606  unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1607  if (CmpIndVarSize > ExitCntSize) {
1608    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1609    const SCEV *ARStart = AR->getStart();
1610    const SCEV *ARStep = AR->getStepRecurrence(*SE);
1611    // For constant IVCount, avoid truncation.
1612    if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1613      const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1614      APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1615      // Note that the post-inc value of BackedgeTakenCount may have overflowed
1616      // above such that IVCount is now zero.
1617      if (IVCount != BackedgeTakenCount && Count == 0) {
1618        Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1619        ++Count;
1620      }
1621      else
1622        Count = Count.zext(CmpIndVarSize);
1623      APInt NewLimit;
1624      if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1625        NewLimit = Start - Count;
1626      else
1627        NewLimit = Start + Count;
1628      ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1629
1630      DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1631    } else {
1632      CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1633                                      "lftr.wideiv");
1634    }
1635  }
1636  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1637  Value *OrigCond = BI->getCondition();
1638  // It's tempting to use replaceAllUsesWith here to fully replace the old
1639  // comparison, but that's not immediately safe, since users of the old
1640  // comparison may not be dominated by the new comparison. Instead, just
1641  // update the branch to use the new comparison; in the common case this
1642  // will make old comparison dead.
1643  BI->setCondition(Cond);
1644  DeadInsts.push_back(OrigCond);
1645
1646  ++NumLFTR;
1647  Changed = true;
1648  return Cond;
1649}
1650
1651//===----------------------------------------------------------------------===//
1652//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1653//===----------------------------------------------------------------------===//
1654
1655/// If there's a single exit block, sink any loop-invariant values that
1656/// were defined in the preheader but not used inside the loop into the
1657/// exit block to reduce register pressure in the loop.
1658void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1659  BasicBlock *ExitBlock = L->getExitBlock();
1660  if (!ExitBlock) return;
1661
1662  BasicBlock *Preheader = L->getLoopPreheader();
1663  if (!Preheader) return;
1664
1665  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1666  BasicBlock::iterator I = Preheader->getTerminator();
1667  while (I != Preheader->begin()) {
1668    --I;
1669    // New instructions were inserted at the end of the preheader.
1670    if (isa<PHINode>(I))
1671      break;
1672
1673    // Don't move instructions which might have side effects, since the side
1674    // effects need to complete before instructions inside the loop.  Also don't
1675    // move instructions which might read memory, since the loop may modify
1676    // memory. Note that it's okay if the instruction might have undefined
1677    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1678    // block.
1679    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1680      continue;
1681
1682    // Skip debug info intrinsics.
1683    if (isa<DbgInfoIntrinsic>(I))
1684      continue;
1685
1686    // Skip landingpad instructions.
1687    if (isa<LandingPadInst>(I))
1688      continue;
1689
1690    // Don't sink alloca: we never want to sink static alloca's out of the
1691    // entry block, and correctly sinking dynamic alloca's requires
1692    // checks for stacksave/stackrestore intrinsics.
1693    // FIXME: Refactor this check somehow?
1694    if (isa<AllocaInst>(I))
1695      continue;
1696
1697    // Determine if there is a use in or before the loop (direct or
1698    // otherwise).
1699    bool UsedInLoop = false;
1700    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1701         UI != UE; ++UI) {
1702      User *U = *UI;
1703      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1704      if (PHINode *P = dyn_cast<PHINode>(U)) {
1705        unsigned i =
1706          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1707        UseBB = P->getIncomingBlock(i);
1708      }
1709      if (UseBB == Preheader || L->contains(UseBB)) {
1710        UsedInLoop = true;
1711        break;
1712      }
1713    }
1714
1715    // If there is, the def must remain in the preheader.
1716    if (UsedInLoop)
1717      continue;
1718
1719    // Otherwise, sink it to the exit block.
1720    Instruction *ToMove = I;
1721    bool Done = false;
1722
1723    if (I != Preheader->begin()) {
1724      // Skip debug info intrinsics.
1725      do {
1726        --I;
1727      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1728
1729      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1730        Done = true;
1731    } else {
1732      Done = true;
1733    }
1734
1735    ToMove->moveBefore(InsertPt);
1736    if (Done) break;
1737    InsertPt = ToMove;
1738  }
1739}
1740
1741//===----------------------------------------------------------------------===//
1742//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1743//===----------------------------------------------------------------------===//
1744
1745bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1746  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1747  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1748  //    canonicalization can be a pessimization without LSR to "clean up"
1749  //    afterwards.
1750  //  - We depend on having a preheader; in particular,
1751  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1752  //    and we're in trouble if we can't find the induction variable even when
1753  //    we've manually inserted one.
1754  if (!L->isLoopSimplifyForm())
1755    return false;
1756
1757  LI = &getAnalysis<LoopInfo>();
1758  SE = &getAnalysis<ScalarEvolution>();
1759  DT = &getAnalysis<DominatorTree>();
1760  TD = getAnalysisIfAvailable<DataLayout>();
1761  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1762
1763  DeadInsts.clear();
1764  Changed = false;
1765
1766  // If there are any floating-point recurrences, attempt to
1767  // transform them to use integer recurrences.
1768  RewriteNonIntegerIVs(L);
1769
1770  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1771
1772  // Create a rewriter object which we'll use to transform the code with.
1773  SCEVExpander Rewriter(*SE, "indvars");
1774#ifndef NDEBUG
1775  Rewriter.setDebugType(DEBUG_TYPE);
1776#endif
1777
1778  // Eliminate redundant IV users.
1779  //
1780  // Simplification works best when run before other consumers of SCEV. We
1781  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1782  // other expressions involving loop IVs have been evaluated. This helps SCEV
1783  // set no-wrap flags before normalizing sign/zero extension.
1784  Rewriter.disableCanonicalMode();
1785  SimplifyAndExtend(L, Rewriter, LPM);
1786
1787  // Check to see if this loop has a computable loop-invariant execution count.
1788  // If so, this means that we can compute the final value of any expressions
1789  // that are recurrent in the loop, and substitute the exit values from the
1790  // loop into any instructions outside of the loop that use the final values of
1791  // the current expressions.
1792  //
1793  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1794    RewriteLoopExitValues(L, Rewriter);
1795
1796  // Eliminate redundant IV cycles.
1797  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1798
1799  // If we have a trip count expression, rewrite the loop's exit condition
1800  // using it.  We can currently only handle loops with a single exit.
1801  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1802    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1803    if (IndVar) {
1804      // Check preconditions for proper SCEVExpander operation. SCEV does not
1805      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1806      // pass that uses the SCEVExpander must do it. This does not work well for
1807      // loop passes because SCEVExpander makes assumptions about all loops, while
1808      // LoopPassManager only forces the current loop to be simplified.
1809      //
1810      // FIXME: SCEV expansion has no way to bail out, so the caller must
1811      // explicitly check any assumptions made by SCEV. Brittle.
1812      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1813      if (!AR || AR->getLoop()->getLoopPreheader())
1814        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1815                                        Rewriter);
1816    }
1817  }
1818  // Clear the rewriter cache, because values that are in the rewriter's cache
1819  // can be deleted in the loop below, causing the AssertingVH in the cache to
1820  // trigger.
1821  Rewriter.clear();
1822
1823  // Now that we're done iterating through lists, clean up any instructions
1824  // which are now dead.
1825  while (!DeadInsts.empty())
1826    if (Instruction *Inst =
1827          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1828      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1829
1830  // The Rewriter may not be used from this point on.
1831
1832  // Loop-invariant instructions in the preheader that aren't used in the
1833  // loop may be sunk below the loop to reduce register pressure.
1834  SinkUnusedInvariants(L);
1835
1836  // Clean up dead instructions.
1837  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1838  // Check a post-condition.
1839  assert(L->isLCSSAForm(*DT) &&
1840         "Indvars did not leave the loop in lcssa form!");
1841
1842  // Verify that LFTR, and any other change have not interfered with SCEV's
1843  // ability to compute trip count.
1844#ifndef NDEBUG
1845  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1846    SE->forgetLoop(L);
1847    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1848    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1849        SE->getTypeSizeInBits(NewBECount->getType()))
1850      NewBECount = SE->getTruncateOrNoop(NewBECount,
1851                                         BackedgeTakenCount->getType());
1852    else
1853      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1854                                                 NewBECount->getType());
1855    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1856  }
1857#endif
1858
1859  return Changed;
1860}
1861