1//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a trivial dead store elimination that only considers
11// basic-block local redundant stores.
12//
13// FIXME: This should eventually be extended to be a post-dominator tree
14// traversal.  Doing so would be pretty trivial.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "dse"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/CaptureTracking.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Analysis/MemoryDependenceAnalysis.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Target/TargetLibraryInfo.h"
38#include "llvm/Transforms/Utils/Local.h"
39using namespace llvm;
40
41STATISTIC(NumFastStores, "Number of stores deleted");
42STATISTIC(NumFastOther , "Number of other instrs removed");
43
44namespace {
45  struct DSE : public FunctionPass {
46    AliasAnalysis *AA;
47    MemoryDependenceAnalysis *MD;
48    DominatorTree *DT;
49    const TargetLibraryInfo *TLI;
50
51    static char ID; // Pass identification, replacement for typeid
52    DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) {
53      initializeDSEPass(*PassRegistry::getPassRegistry());
54    }
55
56    virtual bool runOnFunction(Function &F) {
57      AA = &getAnalysis<AliasAnalysis>();
58      MD = &getAnalysis<MemoryDependenceAnalysis>();
59      DT = &getAnalysis<DominatorTree>();
60      TLI = AA->getTargetLibraryInfo();
61
62      bool Changed = false;
63      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
64        // Only check non-dead blocks.  Dead blocks may have strange pointer
65        // cycles that will confuse alias analysis.
66        if (DT->isReachableFromEntry(I))
67          Changed |= runOnBasicBlock(*I);
68
69      AA = 0; MD = 0; DT = 0;
70      return Changed;
71    }
72
73    bool runOnBasicBlock(BasicBlock &BB);
74    bool HandleFree(CallInst *F);
75    bool handleEndBlock(BasicBlock &BB);
76    void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
77                               SmallSetVector<Value*, 16> &DeadStackObjects);
78
79    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80      AU.setPreservesCFG();
81      AU.addRequired<DominatorTree>();
82      AU.addRequired<AliasAnalysis>();
83      AU.addRequired<MemoryDependenceAnalysis>();
84      AU.addPreserved<AliasAnalysis>();
85      AU.addPreserved<DominatorTree>();
86      AU.addPreserved<MemoryDependenceAnalysis>();
87    }
88  };
89}
90
91char DSE::ID = 0;
92INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
93INITIALIZE_PASS_DEPENDENCY(DominatorTree)
94INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
95INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
96INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
97
98FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
99
100//===----------------------------------------------------------------------===//
101// Helper functions
102//===----------------------------------------------------------------------===//
103
104/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
105/// and zero out all the operands of this instruction.  If any of them become
106/// dead, delete them and the computation tree that feeds them.
107///
108/// If ValueSet is non-null, remove any deleted instructions from it as well.
109///
110static void DeleteDeadInstruction(Instruction *I,
111                                  MemoryDependenceAnalysis &MD,
112                                  const TargetLibraryInfo *TLI,
113                                  SmallSetVector<Value*, 16> *ValueSet = 0) {
114  SmallVector<Instruction*, 32> NowDeadInsts;
115
116  NowDeadInsts.push_back(I);
117  --NumFastOther;
118
119  // Before we touch this instruction, remove it from memdep!
120  do {
121    Instruction *DeadInst = NowDeadInsts.pop_back_val();
122    ++NumFastOther;
123
124    // This instruction is dead, zap it, in stages.  Start by removing it from
125    // MemDep, which needs to know the operands and needs it to be in the
126    // function.
127    MD.removeInstruction(DeadInst);
128
129    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
130      Value *Op = DeadInst->getOperand(op);
131      DeadInst->setOperand(op, 0);
132
133      // If this operand just became dead, add it to the NowDeadInsts list.
134      if (!Op->use_empty()) continue;
135
136      if (Instruction *OpI = dyn_cast<Instruction>(Op))
137        if (isInstructionTriviallyDead(OpI, TLI))
138          NowDeadInsts.push_back(OpI);
139    }
140
141    DeadInst->eraseFromParent();
142
143    if (ValueSet) ValueSet->remove(DeadInst);
144  } while (!NowDeadInsts.empty());
145}
146
147
148/// hasMemoryWrite - Does this instruction write some memory?  This only returns
149/// true for things that we can analyze with other helpers below.
150static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
151  if (isa<StoreInst>(I))
152    return true;
153  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
154    switch (II->getIntrinsicID()) {
155    default:
156      return false;
157    case Intrinsic::memset:
158    case Intrinsic::memmove:
159    case Intrinsic::memcpy:
160    case Intrinsic::init_trampoline:
161    case Intrinsic::lifetime_end:
162      return true;
163    }
164  }
165  if (CallSite CS = I) {
166    if (Function *F = CS.getCalledFunction()) {
167      if (TLI && TLI->has(LibFunc::strcpy) &&
168          F->getName() == TLI->getName(LibFunc::strcpy)) {
169        return true;
170      }
171      if (TLI && TLI->has(LibFunc::strncpy) &&
172          F->getName() == TLI->getName(LibFunc::strncpy)) {
173        return true;
174      }
175      if (TLI && TLI->has(LibFunc::strcat) &&
176          F->getName() == TLI->getName(LibFunc::strcat)) {
177        return true;
178      }
179      if (TLI && TLI->has(LibFunc::strncat) &&
180          F->getName() == TLI->getName(LibFunc::strncat)) {
181        return true;
182      }
183    }
184  }
185  return false;
186}
187
188/// getLocForWrite - Return a Location stored to by the specified instruction.
189/// If isRemovable returns true, this function and getLocForRead completely
190/// describe the memory operations for this instruction.
191static AliasAnalysis::Location
192getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
193  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
194    return AA.getLocation(SI);
195
196  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
197    // memcpy/memmove/memset.
198    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
199    // If we don't have target data around, an unknown size in Location means
200    // that we should use the size of the pointee type.  This isn't valid for
201    // memset/memcpy, which writes more than an i8.
202    if (Loc.Size == AliasAnalysis::UnknownSize && AA.getDataLayout() == 0)
203      return AliasAnalysis::Location();
204    return Loc;
205  }
206
207  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
208  if (II == 0) return AliasAnalysis::Location();
209
210  switch (II->getIntrinsicID()) {
211  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
212  case Intrinsic::init_trampoline:
213    // If we don't have target data around, an unknown size in Location means
214    // that we should use the size of the pointee type.  This isn't valid for
215    // init.trampoline, which writes more than an i8.
216    if (AA.getDataLayout() == 0) return AliasAnalysis::Location();
217
218    // FIXME: We don't know the size of the trampoline, so we can't really
219    // handle it here.
220    return AliasAnalysis::Location(II->getArgOperand(0));
221  case Intrinsic::lifetime_end: {
222    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
223    return AliasAnalysis::Location(II->getArgOperand(1), Len);
224  }
225  }
226}
227
228/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
229/// instruction if any.
230static AliasAnalysis::Location
231getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
232  assert(hasMemoryWrite(Inst, AA.getTargetLibraryInfo()) &&
233         "Unknown instruction case");
234
235  // The only instructions that both read and write are the mem transfer
236  // instructions (memcpy/memmove).
237  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
238    return AA.getLocationForSource(MTI);
239  return AliasAnalysis::Location();
240}
241
242
243/// isRemovable - If the value of this instruction and the memory it writes to
244/// is unused, may we delete this instruction?
245static bool isRemovable(Instruction *I) {
246  // Don't remove volatile/atomic stores.
247  if (StoreInst *SI = dyn_cast<StoreInst>(I))
248    return SI->isUnordered();
249
250  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
251    switch (II->getIntrinsicID()) {
252    default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
253    case Intrinsic::lifetime_end:
254      // Never remove dead lifetime_end's, e.g. because it is followed by a
255      // free.
256      return false;
257    case Intrinsic::init_trampoline:
258      // Always safe to remove init_trampoline.
259      return true;
260
261    case Intrinsic::memset:
262    case Intrinsic::memmove:
263    case Intrinsic::memcpy:
264      // Don't remove volatile memory intrinsics.
265      return !cast<MemIntrinsic>(II)->isVolatile();
266    }
267  }
268
269  if (CallSite CS = I)
270    return CS.getInstruction()->use_empty();
271
272  return false;
273}
274
275
276/// isShortenable - Returns true if this instruction can be safely shortened in
277/// length.
278static bool isShortenable(Instruction *I) {
279  // Don't shorten stores for now
280  if (isa<StoreInst>(I))
281    return false;
282
283  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
284    switch (II->getIntrinsicID()) {
285      default: return false;
286      case Intrinsic::memset:
287      case Intrinsic::memcpy:
288        // Do shorten memory intrinsics.
289        return true;
290    }
291  }
292
293  // Don't shorten libcalls calls for now.
294
295  return false;
296}
297
298/// getStoredPointerOperand - Return the pointer that is being written to.
299static Value *getStoredPointerOperand(Instruction *I) {
300  if (StoreInst *SI = dyn_cast<StoreInst>(I))
301    return SI->getPointerOperand();
302  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
303    return MI->getDest();
304
305  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
306    switch (II->getIntrinsicID()) {
307    default: llvm_unreachable("Unexpected intrinsic!");
308    case Intrinsic::init_trampoline:
309      return II->getArgOperand(0);
310    }
311  }
312
313  CallSite CS = I;
314  // All the supported functions so far happen to have dest as their first
315  // argument.
316  return CS.getArgument(0);
317}
318
319static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
320  uint64_t Size;
321  if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
322    return Size;
323  return AliasAnalysis::UnknownSize;
324}
325
326namespace {
327  enum OverwriteResult
328  {
329    OverwriteComplete,
330    OverwriteEnd,
331    OverwriteUnknown
332  };
333}
334
335/// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
336/// completely overwrites a store to the 'Earlier' location.
337/// 'OverwriteEnd' if the end of the 'Earlier' location is completely
338/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
339static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
340                                   const AliasAnalysis::Location &Earlier,
341                                   AliasAnalysis &AA,
342                                   int64_t &EarlierOff,
343                                   int64_t &LaterOff) {
344  const Value *P1 = Earlier.Ptr->stripPointerCasts();
345  const Value *P2 = Later.Ptr->stripPointerCasts();
346
347  // If the start pointers are the same, we just have to compare sizes to see if
348  // the later store was larger than the earlier store.
349  if (P1 == P2) {
350    // If we don't know the sizes of either access, then we can't do a
351    // comparison.
352    if (Later.Size == AliasAnalysis::UnknownSize ||
353        Earlier.Size == AliasAnalysis::UnknownSize) {
354      // If we have no DataLayout information around, then the size of the store
355      // is inferrable from the pointee type.  If they are the same type, then
356      // we know that the store is safe.
357      if (AA.getDataLayout() == 0 &&
358          Later.Ptr->getType() == Earlier.Ptr->getType())
359        return OverwriteComplete;
360
361      return OverwriteUnknown;
362    }
363
364    // Make sure that the Later size is >= the Earlier size.
365    if (Later.Size >= Earlier.Size)
366      return OverwriteComplete;
367  }
368
369  // Otherwise, we have to have size information, and the later store has to be
370  // larger than the earlier one.
371  if (Later.Size == AliasAnalysis::UnknownSize ||
372      Earlier.Size == AliasAnalysis::UnknownSize ||
373      AA.getDataLayout() == 0)
374    return OverwriteUnknown;
375
376  // Check to see if the later store is to the entire object (either a global,
377  // an alloca, or a byval argument).  If so, then it clearly overwrites any
378  // other store to the same object.
379  const DataLayout *TD = AA.getDataLayout();
380
381  const Value *UO1 = GetUnderlyingObject(P1, TD),
382              *UO2 = GetUnderlyingObject(P2, TD);
383
384  // If we can't resolve the same pointers to the same object, then we can't
385  // analyze them at all.
386  if (UO1 != UO2)
387    return OverwriteUnknown;
388
389  // If the "Later" store is to a recognizable object, get its size.
390  uint64_t ObjectSize = getPointerSize(UO2, AA);
391  if (ObjectSize != AliasAnalysis::UnknownSize)
392    if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
393      return OverwriteComplete;
394
395  // Okay, we have stores to two completely different pointers.  Try to
396  // decompose the pointer into a "base + constant_offset" form.  If the base
397  // pointers are equal, then we can reason about the two stores.
398  EarlierOff = 0;
399  LaterOff = 0;
400  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
401  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
402
403  // If the base pointers still differ, we have two completely different stores.
404  if (BP1 != BP2)
405    return OverwriteUnknown;
406
407  // The later store completely overlaps the earlier store if:
408  //
409  // 1. Both start at the same offset and the later one's size is greater than
410  //    or equal to the earlier one's, or
411  //
412  //      |--earlier--|
413  //      |--   later   --|
414  //
415  // 2. The earlier store has an offset greater than the later offset, but which
416  //    still lies completely within the later store.
417  //
418  //        |--earlier--|
419  //    |-----  later  ------|
420  //
421  // We have to be careful here as *Off is signed while *.Size is unsigned.
422  if (EarlierOff >= LaterOff &&
423      Later.Size >= Earlier.Size &&
424      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
425    return OverwriteComplete;
426
427  // The other interesting case is if the later store overwrites the end of
428  // the earlier store
429  //
430  //      |--earlier--|
431  //                |--   later   --|
432  //
433  // In this case we may want to trim the size of earlier to avoid generating
434  // writes to addresses which will definitely be overwritten later
435  if (LaterOff > EarlierOff &&
436      LaterOff < int64_t(EarlierOff + Earlier.Size) &&
437      int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
438    return OverwriteEnd;
439
440  // Otherwise, they don't completely overlap.
441  return OverwriteUnknown;
442}
443
444/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
445/// memory region into an identical pointer) then it doesn't actually make its
446/// input dead in the traditional sense.  Consider this case:
447///
448///   memcpy(A <- B)
449///   memcpy(A <- A)
450///
451/// In this case, the second store to A does not make the first store to A dead.
452/// The usual situation isn't an explicit A<-A store like this (which can be
453/// trivially removed) but a case where two pointers may alias.
454///
455/// This function detects when it is unsafe to remove a dependent instruction
456/// because the DSE inducing instruction may be a self-read.
457static bool isPossibleSelfRead(Instruction *Inst,
458                               const AliasAnalysis::Location &InstStoreLoc,
459                               Instruction *DepWrite, AliasAnalysis &AA) {
460  // Self reads can only happen for instructions that read memory.  Get the
461  // location read.
462  AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
463  if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
464
465  // If the read and written loc obviously don't alias, it isn't a read.
466  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
467
468  // Okay, 'Inst' may copy over itself.  However, we can still remove a the
469  // DepWrite instruction if we can prove that it reads from the same location
470  // as Inst.  This handles useful cases like:
471  //   memcpy(A <- B)
472  //   memcpy(A <- B)
473  // Here we don't know if A/B may alias, but we do know that B/B are must
474  // aliases, so removing the first memcpy is safe (assuming it writes <= #
475  // bytes as the second one.
476  AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
477
478  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
479    return false;
480
481  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
482  // then it can't be considered dead.
483  return true;
484}
485
486
487//===----------------------------------------------------------------------===//
488// DSE Pass
489//===----------------------------------------------------------------------===//
490
491bool DSE::runOnBasicBlock(BasicBlock &BB) {
492  bool MadeChange = false;
493
494  // Do a top-down walk on the BB.
495  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
496    Instruction *Inst = BBI++;
497
498    // Handle 'free' calls specially.
499    if (CallInst *F = isFreeCall(Inst, TLI)) {
500      MadeChange |= HandleFree(F);
501      continue;
502    }
503
504    // If we find something that writes memory, get its memory dependence.
505    if (!hasMemoryWrite(Inst, TLI))
506      continue;
507
508    MemDepResult InstDep = MD->getDependency(Inst);
509
510    // Ignore any store where we can't find a local dependence.
511    // FIXME: cross-block DSE would be fun. :)
512    if (!InstDep.isDef() && !InstDep.isClobber())
513      continue;
514
515    // If we're storing the same value back to a pointer that we just
516    // loaded from, then the store can be removed.
517    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
518      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
519        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
520            SI->getOperand(0) == DepLoad && isRemovable(SI)) {
521          DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
522                       << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
523
524          // DeleteDeadInstruction can delete the current instruction.  Save BBI
525          // in case we need it.
526          WeakVH NextInst(BBI);
527
528          DeleteDeadInstruction(SI, *MD, TLI);
529
530          if (NextInst == 0)  // Next instruction deleted.
531            BBI = BB.begin();
532          else if (BBI != BB.begin())  // Revisit this instruction if possible.
533            --BBI;
534          ++NumFastStores;
535          MadeChange = true;
536          continue;
537        }
538      }
539    }
540
541    // Figure out what location is being stored to.
542    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
543
544    // If we didn't get a useful location, fail.
545    if (Loc.Ptr == 0)
546      continue;
547
548    while (InstDep.isDef() || InstDep.isClobber()) {
549      // Get the memory clobbered by the instruction we depend on.  MemDep will
550      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
551      // end up depending on a may- or must-aliased load, then we can't optimize
552      // away the store and we bail out.  However, if we depend on on something
553      // that overwrites the memory location we *can* potentially optimize it.
554      //
555      // Find out what memory location the dependent instruction stores.
556      Instruction *DepWrite = InstDep.getInst();
557      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
558      // If we didn't get a useful location, or if it isn't a size, bail out.
559      if (DepLoc.Ptr == 0)
560        break;
561
562      // If we find a write that is a) removable (i.e., non-volatile), b) is
563      // completely obliterated by the store to 'Loc', and c) which we know that
564      // 'Inst' doesn't load from, then we can remove it.
565      if (isRemovable(DepWrite) &&
566          !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
567        int64_t InstWriteOffset, DepWriteOffset;
568        OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
569                                         DepWriteOffset, InstWriteOffset);
570        if (OR == OverwriteComplete) {
571          DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
572                << *DepWrite << "\n  KILLER: " << *Inst << '\n');
573
574          // Delete the store and now-dead instructions that feed it.
575          DeleteDeadInstruction(DepWrite, *MD, TLI);
576          ++NumFastStores;
577          MadeChange = true;
578
579          // DeleteDeadInstruction can delete the current instruction in loop
580          // cases, reset BBI.
581          BBI = Inst;
582          if (BBI != BB.begin())
583            --BBI;
584          break;
585        } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
586          // TODO: base this on the target vector size so that if the earlier
587          // store was too small to get vector writes anyway then its likely
588          // a good idea to shorten it
589          // Power of 2 vector writes are probably always a bad idea to optimize
590          // as any store/memset/memcpy is likely using vector instructions so
591          // shortening it to not vector size is likely to be slower
592          MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
593          unsigned DepWriteAlign = DepIntrinsic->getAlignment();
594          if (llvm::isPowerOf2_64(InstWriteOffset) ||
595              ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
596
597            DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
598                  << *DepWrite << "\n  KILLER (offset "
599                  << InstWriteOffset << ", "
600                  << DepLoc.Size << ")"
601                  << *Inst << '\n');
602
603            Value* DepWriteLength = DepIntrinsic->getLength();
604            Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
605                                                    InstWriteOffset -
606                                                    DepWriteOffset);
607            DepIntrinsic->setLength(TrimmedLength);
608            MadeChange = true;
609          }
610        }
611      }
612
613      // If this is a may-aliased store that is clobbering the store value, we
614      // can keep searching past it for another must-aliased pointer that stores
615      // to the same location.  For example, in:
616      //   store -> P
617      //   store -> Q
618      //   store -> P
619      // we can remove the first store to P even though we don't know if P and Q
620      // alias.
621      if (DepWrite == &BB.front()) break;
622
623      // Can't look past this instruction if it might read 'Loc'.
624      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
625        break;
626
627      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
628    }
629  }
630
631  // If this block ends in a return, unwind, or unreachable, all allocas are
632  // dead at its end, which means stores to them are also dead.
633  if (BB.getTerminator()->getNumSuccessors() == 0)
634    MadeChange |= handleEndBlock(BB);
635
636  return MadeChange;
637}
638
639/// Find all blocks that will unconditionally lead to the block BB and append
640/// them to F.
641static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
642                                   BasicBlock *BB, DominatorTree *DT) {
643  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
644    BasicBlock *Pred = *I;
645    if (Pred == BB) continue;
646    TerminatorInst *PredTI = Pred->getTerminator();
647    if (PredTI->getNumSuccessors() != 1)
648      continue;
649
650    if (DT->isReachableFromEntry(Pred))
651      Blocks.push_back(Pred);
652  }
653}
654
655/// HandleFree - Handle frees of entire structures whose dependency is a store
656/// to a field of that structure.
657bool DSE::HandleFree(CallInst *F) {
658  bool MadeChange = false;
659
660  AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
661  SmallVector<BasicBlock *, 16> Blocks;
662  Blocks.push_back(F->getParent());
663
664  while (!Blocks.empty()) {
665    BasicBlock *BB = Blocks.pop_back_val();
666    Instruction *InstPt = BB->getTerminator();
667    if (BB == F->getParent()) InstPt = F;
668
669    MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
670    while (Dep.isDef() || Dep.isClobber()) {
671      Instruction *Dependency = Dep.getInst();
672      if (!hasMemoryWrite(Dependency, TLI) || !isRemovable(Dependency))
673        break;
674
675      Value *DepPointer =
676        GetUnderlyingObject(getStoredPointerOperand(Dependency));
677
678      // Check for aliasing.
679      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
680        break;
681
682      Instruction *Next = llvm::next(BasicBlock::iterator(Dependency));
683
684      // DCE instructions only used to calculate that store
685      DeleteDeadInstruction(Dependency, *MD, TLI);
686      ++NumFastStores;
687      MadeChange = true;
688
689      // Inst's old Dependency is now deleted. Compute the next dependency,
690      // which may also be dead, as in
691      //    s[0] = 0;
692      //    s[1] = 0; // This has just been deleted.
693      //    free(s);
694      Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
695    }
696
697    if (Dep.isNonLocal())
698      FindUnconditionalPreds(Blocks, BB, DT);
699  }
700
701  return MadeChange;
702}
703
704namespace {
705  struct CouldRef {
706    typedef Value *argument_type;
707    const CallSite CS;
708    AliasAnalysis *AA;
709
710    bool operator()(Value *I) {
711      // See if the call site touches the value.
712      AliasAnalysis::ModRefResult A =
713        AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
714
715      return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
716    }
717  };
718}
719
720/// handleEndBlock - Remove dead stores to stack-allocated locations in the
721/// function end block.  Ex:
722/// %A = alloca i32
723/// ...
724/// store i32 1, i32* %A
725/// ret void
726bool DSE::handleEndBlock(BasicBlock &BB) {
727  bool MadeChange = false;
728
729  // Keep track of all of the stack objects that are dead at the end of the
730  // function.
731  SmallSetVector<Value*, 16> DeadStackObjects;
732
733  // Find all of the alloca'd pointers in the entry block.
734  BasicBlock *Entry = BB.getParent()->begin();
735  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
736    if (isa<AllocaInst>(I))
737      DeadStackObjects.insert(I);
738
739    // Okay, so these are dead heap objects, but if the pointer never escapes
740    // then it's leaked by this function anyways.
741    else if (isAllocLikeFn(I, TLI) && !PointerMayBeCaptured(I, true, true))
742      DeadStackObjects.insert(I);
743  }
744
745  // Treat byval arguments the same, stores to them are dead at the end of the
746  // function.
747  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
748       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
749    if (AI->hasByValAttr())
750      DeadStackObjects.insert(AI);
751
752  // Scan the basic block backwards
753  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
754    --BBI;
755
756    // If we find a store, check to see if it points into a dead stack value.
757    if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
758      // See through pointer-to-pointer bitcasts
759      SmallVector<Value *, 4> Pointers;
760      GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
761
762      // Stores to stack values are valid candidates for removal.
763      bool AllDead = true;
764      for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
765           E = Pointers.end(); I != E; ++I)
766        if (!DeadStackObjects.count(*I)) {
767          AllDead = false;
768          break;
769        }
770
771      if (AllDead) {
772        Instruction *Dead = BBI++;
773
774        DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
775                     << *Dead << "\n  Objects: ";
776              for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
777                   E = Pointers.end(); I != E; ++I) {
778                dbgs() << **I;
779                if (llvm::next(I) != E)
780                  dbgs() << ", ";
781              }
782              dbgs() << '\n');
783
784        // DCE instructions only used to calculate that store.
785        DeleteDeadInstruction(Dead, *MD, TLI, &DeadStackObjects);
786        ++NumFastStores;
787        MadeChange = true;
788        continue;
789      }
790    }
791
792    // Remove any dead non-memory-mutating instructions.
793    if (isInstructionTriviallyDead(BBI, TLI)) {
794      Instruction *Inst = BBI++;
795      DeleteDeadInstruction(Inst, *MD, TLI, &DeadStackObjects);
796      ++NumFastOther;
797      MadeChange = true;
798      continue;
799    }
800
801    if (isa<AllocaInst>(BBI)) {
802      // Remove allocas from the list of dead stack objects; there can't be
803      // any references before the definition.
804      DeadStackObjects.remove(BBI);
805      continue;
806    }
807
808    if (CallSite CS = cast<Value>(BBI)) {
809      // Remove allocation function calls from the list of dead stack objects;
810      // there can't be any references before the definition.
811      if (isAllocLikeFn(BBI, TLI))
812        DeadStackObjects.remove(BBI);
813
814      // If this call does not access memory, it can't be loading any of our
815      // pointers.
816      if (AA->doesNotAccessMemory(CS))
817        continue;
818
819      // If the call might load from any of our allocas, then any store above
820      // the call is live.
821      CouldRef Pred = { CS, AA };
822      DeadStackObjects.remove_if(Pred);
823
824      // If all of the allocas were clobbered by the call then we're not going
825      // to find anything else to process.
826      if (DeadStackObjects.empty())
827        break;
828
829      continue;
830    }
831
832    AliasAnalysis::Location LoadedLoc;
833
834    // If we encounter a use of the pointer, it is no longer considered dead
835    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
836      if (!L->isUnordered()) // Be conservative with atomic/volatile load
837        break;
838      LoadedLoc = AA->getLocation(L);
839    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
840      LoadedLoc = AA->getLocation(V);
841    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
842      LoadedLoc = AA->getLocationForSource(MTI);
843    } else if (!BBI->mayReadFromMemory()) {
844      // Instruction doesn't read memory.  Note that stores that weren't removed
845      // above will hit this case.
846      continue;
847    } else {
848      // Unknown inst; assume it clobbers everything.
849      break;
850    }
851
852    // Remove any allocas from the DeadPointer set that are loaded, as this
853    // makes any stores above the access live.
854    RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
855
856    // If all of the allocas were clobbered by the access then we're not going
857    // to find anything else to process.
858    if (DeadStackObjects.empty())
859      break;
860  }
861
862  return MadeChange;
863}
864
865namespace {
866  struct CouldAlias {
867    typedef Value *argument_type;
868    const AliasAnalysis::Location &LoadedLoc;
869    AliasAnalysis *AA;
870
871    bool operator()(Value *I) {
872      // See if the loaded location could alias the stack location.
873      AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
874      return !AA->isNoAlias(StackLoc, LoadedLoc);
875    }
876  };
877}
878
879/// RemoveAccessedObjects - Check to see if the specified location may alias any
880/// of the stack objects in the DeadStackObjects set.  If so, they become live
881/// because the location is being loaded.
882void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
883                                SmallSetVector<Value*, 16> &DeadStackObjects) {
884  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
885
886  // A constant can't be in the dead pointer set.
887  if (isa<Constant>(UnderlyingPointer))
888    return;
889
890  // If the kill pointer can be easily reduced to an alloca, don't bother doing
891  // extraneous AA queries.
892  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
893    DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
894    return;
895  }
896
897  // Remove objects that could alias LoadedLoc.
898  CouldAlias Pred = { LoadedLoc, AA };
899  DeadStackObjects.remove_if(Pred);
900}
901