1//===- InstCombineAddSub.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for add, fadd, sub, and fsub.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/Support/GetElementPtrTypeIterator.h"
19#include "llvm/Support/PatternMatch.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23namespace {
24
25  /// Class representing coefficient of floating-point addend.
26  /// This class needs to be highly efficient, which is especially true for
27  /// the constructor. As of I write this comment, the cost of the default
28  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
29  /// perform write-merging).
30  ///
31  class FAddendCoef {
32  public:
33    // The constructor has to initialize a APFloat, which is uncessary for
34    // most addends which have coefficient either 1 or -1. So, the constructor
35    // is expensive. In order to avoid the cost of the constructor, we should
36    // reuse some instances whenever possible. The pre-created instances
37    // FAddCombine::Add[0-5] embodies this idea.
38    //
39    FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
40    ~FAddendCoef();
41
42    void set(short C) {
43      assert(!insaneIntVal(C) && "Insane coefficient");
44      IsFp = false; IntVal = C;
45    }
46
47    void set(const APFloat& C);
48
49    void negate();
50
51    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
52    Value *getValue(Type *) const;
53
54    // If possible, don't define operator+/operator- etc because these
55    // operators inevitably call FAddendCoef's constructor which is not cheap.
56    void operator=(const FAddendCoef &A);
57    void operator+=(const FAddendCoef &A);
58    void operator-=(const FAddendCoef &A);
59    void operator*=(const FAddendCoef &S);
60
61    bool isOne() const { return isInt() && IntVal == 1; }
62    bool isTwo() const { return isInt() && IntVal == 2; }
63    bool isMinusOne() const { return isInt() && IntVal == -1; }
64    bool isMinusTwo() const { return isInt() && IntVal == -2; }
65
66  private:
67    bool insaneIntVal(int V) { return V > 4 || V < -4; }
68    APFloat *getFpValPtr(void)
69      { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
70    const APFloat *getFpValPtr(void) const
71      { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
72
73    const APFloat &getFpVal(void) const {
74      assert(IsFp && BufHasFpVal && "Incorret state");
75      return *getFpValPtr();
76    }
77
78    APFloat &getFpVal(void) {
79      assert(IsFp && BufHasFpVal && "Incorret state");
80      return *getFpValPtr();
81    }
82
83    bool isInt() const { return !IsFp; }
84
85    // If the coefficient is represented by an integer, promote it to a
86    // floating point.
87    void convertToFpType(const fltSemantics &Sem);
88
89    // Construct an APFloat from a signed integer.
90    // TODO: We should get rid of this function when APFloat can be constructed
91    //       from an *SIGNED* integer.
92    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
93  private:
94
95    bool IsFp;
96
97    // True iff FpValBuf contains an instance of APFloat.
98    bool BufHasFpVal;
99
100    // The integer coefficient of an individual addend is either 1 or -1,
101    // and we try to simplify at most 4 addends from neighboring at most
102    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
103    // is overkill of this end.
104    short IntVal;
105
106    AlignedCharArrayUnion<APFloat> FpValBuf;
107  };
108
109  /// FAddend is used to represent floating-point addend. An addend is
110  /// represented as <C, V>, where the V is a symbolic value, and C is a
111  /// constant coefficient. A constant addend is represented as <C, 0>.
112  ///
113  class FAddend {
114  public:
115    FAddend() { Val = 0; }
116
117    Value *getSymVal (void) const { return Val; }
118    const FAddendCoef &getCoef(void) const { return Coeff; }
119
120    bool isConstant() const { return Val == 0; }
121    bool isZero() const { return Coeff.isZero(); }
122
123    void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
124    void set(const APFloat& Coefficient, Value *V)
125      { Coeff.set(Coefficient); Val = V; }
126    void set(const ConstantFP* Coefficient, Value *V)
127      { Coeff.set(Coefficient->getValueAPF()); Val = V; }
128
129    void negate() { Coeff.negate(); }
130
131    /// Drill down the U-D chain one step to find the definition of V, and
132    /// try to break the definition into one or two addends.
133    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
134
135    /// Similar to FAddend::drillDownOneStep() except that the value being
136    /// splitted is the addend itself.
137    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
138
139    void operator+=(const FAddend &T) {
140      assert((Val == T.Val) && "Symbolic-values disagree");
141      Coeff += T.Coeff;
142    }
143
144  private:
145    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
146
147    // This addend has the value of "Coeff * Val".
148    Value *Val;
149    FAddendCoef Coeff;
150  };
151
152  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
153  /// with its neighboring at most two instructions.
154  ///
155  class FAddCombine {
156  public:
157    FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
158    Value *simplify(Instruction *FAdd);
159
160  private:
161    typedef SmallVector<const FAddend*, 4> AddendVect;
162
163    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
164
165    Value *performFactorization(Instruction *I);
166
167    /// Convert given addend to a Value
168    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
169
170    /// Return the number of instructions needed to emit the N-ary addition.
171    unsigned calcInstrNumber(const AddendVect& Vect);
172    Value *createFSub(Value *Opnd0, Value *Opnd1);
173    Value *createFAdd(Value *Opnd0, Value *Opnd1);
174    Value *createFMul(Value *Opnd0, Value *Opnd1);
175    Value *createFDiv(Value *Opnd0, Value *Opnd1);
176    Value *createFNeg(Value *V);
177    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
178    void createInstPostProc(Instruction *NewInst);
179
180    InstCombiner::BuilderTy *Builder;
181    Instruction *Instr;
182
183  private:
184     // Debugging stuff are clustered here.
185    #ifndef NDEBUG
186      unsigned CreateInstrNum;
187      void initCreateInstNum() { CreateInstrNum = 0; }
188      void incCreateInstNum() { CreateInstrNum++; }
189    #else
190      void initCreateInstNum() {}
191      void incCreateInstNum() {}
192    #endif
193  };
194}
195
196//===----------------------------------------------------------------------===//
197//
198// Implementation of
199//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
200//
201//===----------------------------------------------------------------------===//
202FAddendCoef::~FAddendCoef() {
203  if (BufHasFpVal)
204    getFpValPtr()->~APFloat();
205}
206
207void FAddendCoef::set(const APFloat& C) {
208  APFloat *P = getFpValPtr();
209
210  if (isInt()) {
211    // As the buffer is meanless byte stream, we cannot call
212    // APFloat::operator=().
213    new(P) APFloat(C);
214  } else
215    *P = C;
216
217  IsFp = BufHasFpVal = true;
218}
219
220void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
221  if (!isInt())
222    return;
223
224  APFloat *P = getFpValPtr();
225  if (IntVal > 0)
226    new(P) APFloat(Sem, IntVal);
227  else {
228    new(P) APFloat(Sem, 0 - IntVal);
229    P->changeSign();
230  }
231  IsFp = BufHasFpVal = true;
232}
233
234APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
235  if (Val >= 0)
236    return APFloat(Sem, Val);
237
238  APFloat T(Sem, 0 - Val);
239  T.changeSign();
240
241  return T;
242}
243
244void FAddendCoef::operator=(const FAddendCoef &That) {
245  if (That.isInt())
246    set(That.IntVal);
247  else
248    set(That.getFpVal());
249}
250
251void FAddendCoef::operator+=(const FAddendCoef &That) {
252  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
253  if (isInt() == That.isInt()) {
254    if (isInt())
255      IntVal += That.IntVal;
256    else
257      getFpVal().add(That.getFpVal(), RndMode);
258    return;
259  }
260
261  if (isInt()) {
262    const APFloat &T = That.getFpVal();
263    convertToFpType(T.getSemantics());
264    getFpVal().add(T, RndMode);
265    return;
266  }
267
268  APFloat &T = getFpVal();
269  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
270}
271
272void FAddendCoef::operator-=(const FAddendCoef &That) {
273  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274  if (isInt() == That.isInt()) {
275    if (isInt())
276      IntVal -= That.IntVal;
277    else
278      getFpVal().subtract(That.getFpVal(), RndMode);
279    return;
280  }
281
282  if (isInt()) {
283    const APFloat &T = That.getFpVal();
284    convertToFpType(T.getSemantics());
285    getFpVal().subtract(T, RndMode);
286    return;
287  }
288
289  APFloat &T = getFpVal();
290  T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
291}
292
293void FAddendCoef::operator*=(const FAddendCoef &That) {
294  if (That.isOne())
295    return;
296
297  if (That.isMinusOne()) {
298    negate();
299    return;
300  }
301
302  if (isInt() && That.isInt()) {
303    int Res = IntVal * (int)That.IntVal;
304    assert(!insaneIntVal(Res) && "Insane int value");
305    IntVal = Res;
306    return;
307  }
308
309  const fltSemantics &Semantic =
310    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311
312  if (isInt())
313    convertToFpType(Semantic);
314  APFloat &F0 = getFpVal();
315
316  if (That.isInt())
317    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                APFloat::rmNearestTiesToEven);
319  else
320    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321
322  return;
323}
324
325void FAddendCoef::negate() {
326  if (isInt())
327    IntVal = 0 - IntVal;
328  else
329    getFpVal().changeSign();
330}
331
332Value *FAddendCoef::getValue(Type *Ty) const {
333  return isInt() ?
334    ConstantFP::get(Ty, float(IntVal)) :
335    ConstantFP::get(Ty->getContext(), getFpVal());
336}
337
338// The definition of <Val>     Addends
339// =========================================
340//  A + B                     <1, A>, <1,B>
341//  A - B                     <1, A>, <1,B>
342//  0 - B                     <-1, B>
343//  C * A,                    <C, A>
344//  A + C                     <1, A> <C, NULL>
345//  0 +/- 0                   <0, NULL> (corner case)
346//
347// Legend: A and B are not constant, C is constant
348//
349unsigned FAddend::drillValueDownOneStep
350  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
351  Instruction *I = 0;
352  if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
353    return 0;
354
355  unsigned Opcode = I->getOpcode();
356
357  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
358    ConstantFP *C0, *C1;
359    Value *Opnd0 = I->getOperand(0);
360    Value *Opnd1 = I->getOperand(1);
361    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
362      Opnd0 = 0;
363
364    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
365      Opnd1 = 0;
366
367    if (Opnd0) {
368      if (!C0)
369        Addend0.set(1, Opnd0);
370      else
371        Addend0.set(C0, 0);
372    }
373
374    if (Opnd1) {
375      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
376      if (!C1)
377        Addend.set(1, Opnd1);
378      else
379        Addend.set(C1, 0);
380      if (Opcode == Instruction::FSub)
381        Addend.negate();
382    }
383
384    if (Opnd0 || Opnd1)
385      return Opnd0 && Opnd1 ? 2 : 1;
386
387    // Both operands are zero. Weird!
388    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
389    return 1;
390  }
391
392  if (I->getOpcode() == Instruction::FMul) {
393    Value *V0 = I->getOperand(0);
394    Value *V1 = I->getOperand(1);
395    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
396      Addend0.set(C, V1);
397      return 1;
398    }
399
400    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
401      Addend0.set(C, V0);
402      return 1;
403    }
404  }
405
406  return 0;
407}
408
409// Try to break *this* addend into two addends. e.g. Suppose this addend is
410// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
411// i.e. <2.3, X> and <2.3, Y>.
412//
413unsigned FAddend::drillAddendDownOneStep
414  (FAddend &Addend0, FAddend &Addend1) const {
415  if (isConstant())
416    return 0;
417
418  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
419  if (!BreakNum || Coeff.isOne())
420    return BreakNum;
421
422  Addend0.Scale(Coeff);
423
424  if (BreakNum == 2)
425    Addend1.Scale(Coeff);
426
427  return BreakNum;
428}
429
430// Try to perform following optimization on the input instruction I. Return the
431// simplified expression if was successful; otherwise, return 0.
432//
433//   Instruction "I" is                Simplified into
434// -------------------------------------------------------
435//   (x * y) +/- (x * z)               x * (y +/- z)
436//   (y / x) +/- (z / x)               (y +/- z) / x
437//
438Value *FAddCombine::performFactorization(Instruction *I) {
439  assert((I->getOpcode() == Instruction::FAdd ||
440          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
441
442  Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
443  Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
444
445  if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
446    return 0;
447
448  bool isMpy = false;
449  if (I0->getOpcode() == Instruction::FMul)
450    isMpy = true;
451  else if (I0->getOpcode() != Instruction::FDiv)
452    return 0;
453
454  Value *Opnd0_0 = I0->getOperand(0);
455  Value *Opnd0_1 = I0->getOperand(1);
456  Value *Opnd1_0 = I1->getOperand(0);
457  Value *Opnd1_1 = I1->getOperand(1);
458
459  //  Input Instr I       Factor   AddSub0  AddSub1
460  //  ----------------------------------------------
461  // (x*y) +/- (x*z)        x        y         z
462  // (y/x) +/- (z/x)        x        y         z
463  //
464  Value *Factor = 0;
465  Value *AddSub0 = 0, *AddSub1 = 0;
466
467  if (isMpy) {
468    if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
469      Factor = Opnd0_0;
470    else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
471      Factor = Opnd0_1;
472
473    if (Factor) {
474      AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
475      AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
476    }
477  } else if (Opnd0_1 == Opnd1_1) {
478    Factor = Opnd0_1;
479    AddSub0 = Opnd0_0;
480    AddSub1 = Opnd1_0;
481  }
482
483  if (!Factor)
484    return 0;
485
486  // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
487  Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
488                      createFAdd(AddSub0, AddSub1) :
489                      createFSub(AddSub0, AddSub1);
490  if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
491    const APFloat &F = CFP->getValueAPF();
492    if (!F.isNormal())
493      return 0;
494  }
495
496  if (isMpy)
497    return createFMul(Factor, NewAddSub);
498
499  return createFDiv(NewAddSub, Factor);
500}
501
502Value *FAddCombine::simplify(Instruction *I) {
503  assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
504
505  // Currently we are not able to handle vector type.
506  if (I->getType()->isVectorTy())
507    return 0;
508
509  assert((I->getOpcode() == Instruction::FAdd ||
510          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
511
512  // Save the instruction before calling other member-functions.
513  Instr = I;
514
515  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
516
517  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
518
519  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
520  unsigned Opnd0_ExpNum = 0;
521  unsigned Opnd1_ExpNum = 0;
522
523  if (!Opnd0.isConstant())
524    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
525
526  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
527  if (OpndNum == 2 && !Opnd1.isConstant())
528    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
529
530  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
531  if (Opnd0_ExpNum && Opnd1_ExpNum) {
532    AddendVect AllOpnds;
533    AllOpnds.push_back(&Opnd0_0);
534    AllOpnds.push_back(&Opnd1_0);
535    if (Opnd0_ExpNum == 2)
536      AllOpnds.push_back(&Opnd0_1);
537    if (Opnd1_ExpNum == 2)
538      AllOpnds.push_back(&Opnd1_1);
539
540    // Compute instruction quota. We should save at least one instruction.
541    unsigned InstQuota = 0;
542
543    Value *V0 = I->getOperand(0);
544    Value *V1 = I->getOperand(1);
545    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
546                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
547
548    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
549      return R;
550  }
551
552  if (OpndNum != 2) {
553    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
554    // splitted into two addends, say "V = X - Y", the instruction would have
555    // been optimized into "I = Y - X" in the previous steps.
556    //
557    const FAddendCoef &CE = Opnd0.getCoef();
558    return CE.isOne() ? Opnd0.getSymVal() : 0;
559  }
560
561  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
562  if (Opnd1_ExpNum) {
563    AddendVect AllOpnds;
564    AllOpnds.push_back(&Opnd0);
565    AllOpnds.push_back(&Opnd1_0);
566    if (Opnd1_ExpNum == 2)
567      AllOpnds.push_back(&Opnd1_1);
568
569    if (Value *R = simplifyFAdd(AllOpnds, 1))
570      return R;
571  }
572
573  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
574  if (Opnd0_ExpNum) {
575    AddendVect AllOpnds;
576    AllOpnds.push_back(&Opnd1);
577    AllOpnds.push_back(&Opnd0_0);
578    if (Opnd0_ExpNum == 2)
579      AllOpnds.push_back(&Opnd0_1);
580
581    if (Value *R = simplifyFAdd(AllOpnds, 1))
582      return R;
583  }
584
585  // step 6: Try factorization as the last resort,
586  return performFactorization(I);
587}
588
589Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
590
591  unsigned AddendNum = Addends.size();
592  assert(AddendNum <= 4 && "Too many addends");
593
594  // For saving intermediate results;
595  unsigned NextTmpIdx = 0;
596  FAddend TmpResult[3];
597
598  // Points to the constant addend of the resulting simplified expression.
599  // If the resulting expr has constant-addend, this constant-addend is
600  // desirable to reside at the top of the resulting expression tree. Placing
601  // constant close to supper-expr(s) will potentially reveal some optimization
602  // opportunities in super-expr(s).
603  //
604  const FAddend *ConstAdd = 0;
605
606  // Simplified addends are placed <SimpVect>.
607  AddendVect SimpVect;
608
609  // The outer loop works on one symbolic-value at a time. Suppose the input
610  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
611  // The symbolic-values will be processed in this order: x, y, z.
612  //
613  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
614
615    const FAddend *ThisAddend = Addends[SymIdx];
616    if (!ThisAddend) {
617      // This addend was processed before.
618      continue;
619    }
620
621    Value *Val = ThisAddend->getSymVal();
622    unsigned StartIdx = SimpVect.size();
623    SimpVect.push_back(ThisAddend);
624
625    // The inner loop collects addends sharing same symbolic-value, and these
626    // addends will be later on folded into a single addend. Following above
627    // example, if the symbolic value "y" is being processed, the inner loop
628    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
629    // be later on folded into "<b1+b2, y>".
630    //
631    for (unsigned SameSymIdx = SymIdx + 1;
632         SameSymIdx < AddendNum; SameSymIdx++) {
633      const FAddend *T = Addends[SameSymIdx];
634      if (T && T->getSymVal() == Val) {
635        // Set null such that next iteration of the outer loop will not process
636        // this addend again.
637        Addends[SameSymIdx] = 0;
638        SimpVect.push_back(T);
639      }
640    }
641
642    // If multiple addends share same symbolic value, fold them together.
643    if (StartIdx + 1 != SimpVect.size()) {
644      FAddend &R = TmpResult[NextTmpIdx ++];
645      R = *SimpVect[StartIdx];
646      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
647        R += *SimpVect[Idx];
648
649      // Pop all addends being folded and push the resulting folded addend.
650      SimpVect.resize(StartIdx);
651      if (Val != 0) {
652        if (!R.isZero()) {
653          SimpVect.push_back(&R);
654        }
655      } else {
656        // Don't push constant addend at this time. It will be the last element
657        // of <SimpVect>.
658        ConstAdd = &R;
659      }
660    }
661  }
662
663  assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
664         "out-of-bound access");
665
666  if (ConstAdd)
667    SimpVect.push_back(ConstAdd);
668
669  Value *Result;
670  if (!SimpVect.empty())
671    Result = createNaryFAdd(SimpVect, InstrQuota);
672  else {
673    // The addition is folded to 0.0.
674    Result = ConstantFP::get(Instr->getType(), 0.0);
675  }
676
677  return Result;
678}
679
680Value *FAddCombine::createNaryFAdd
681  (const AddendVect &Opnds, unsigned InstrQuota) {
682  assert(!Opnds.empty() && "Expect at least one addend");
683
684  // Step 1: Check if the # of instructions needed exceeds the quota.
685  //
686  unsigned InstrNeeded = calcInstrNumber(Opnds);
687  if (InstrNeeded > InstrQuota)
688    return 0;
689
690  initCreateInstNum();
691
692  // step 2: Emit the N-ary addition.
693  // Note that at most three instructions are involved in Fadd-InstCombine: the
694  // addition in question, and at most two neighboring instructions.
695  // The resulting optimized addition should have at least one less instruction
696  // than the original addition expression tree. This implies that the resulting
697  // N-ary addition has at most two instructions, and we don't need to worry
698  // about tree-height when constructing the N-ary addition.
699
700  Value *LastVal = 0;
701  bool LastValNeedNeg = false;
702
703  // Iterate the addends, creating fadd/fsub using adjacent two addends.
704  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
705       I != E; I++) {
706    bool NeedNeg;
707    Value *V = createAddendVal(**I, NeedNeg);
708    if (!LastVal) {
709      LastVal = V;
710      LastValNeedNeg = NeedNeg;
711      continue;
712    }
713
714    if (LastValNeedNeg == NeedNeg) {
715      LastVal = createFAdd(LastVal, V);
716      continue;
717    }
718
719    if (LastValNeedNeg)
720      LastVal = createFSub(V, LastVal);
721    else
722      LastVal = createFSub(LastVal, V);
723
724    LastValNeedNeg = false;
725  }
726
727  if (LastValNeedNeg) {
728    LastVal = createFNeg(LastVal);
729  }
730
731  #ifndef NDEBUG
732    assert(CreateInstrNum == InstrNeeded &&
733           "Inconsistent in instruction numbers");
734  #endif
735
736  return LastVal;
737}
738
739Value *FAddCombine::createFSub
740  (Value *Opnd0, Value *Opnd1) {
741  Value *V = Builder->CreateFSub(Opnd0, Opnd1);
742  if (Instruction *I = dyn_cast<Instruction>(V))
743    createInstPostProc(I);
744  return V;
745}
746
747Value *FAddCombine::createFNeg(Value *V) {
748  Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
749  return createFSub(Zero, V);
750}
751
752Value *FAddCombine::createFAdd
753  (Value *Opnd0, Value *Opnd1) {
754  Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
755  if (Instruction *I = dyn_cast<Instruction>(V))
756    createInstPostProc(I);
757  return V;
758}
759
760Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
761  Value *V = Builder->CreateFMul(Opnd0, Opnd1);
762  if (Instruction *I = dyn_cast<Instruction>(V))
763    createInstPostProc(I);
764  return V;
765}
766
767Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
768  Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
769  if (Instruction *I = dyn_cast<Instruction>(V))
770    createInstPostProc(I);
771  return V;
772}
773
774void FAddCombine::createInstPostProc(Instruction *NewInstr) {
775  NewInstr->setDebugLoc(Instr->getDebugLoc());
776
777  // Keep track of the number of instruction created.
778  incCreateInstNum();
779
780  // Propagate fast-math flags
781  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
782}
783
784// Return the number of instruction needed to emit the N-ary addition.
785// NOTE: Keep this function in sync with createAddendVal().
786unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
787  unsigned OpndNum = Opnds.size();
788  unsigned InstrNeeded = OpndNum - 1;
789
790  // The number of addends in the form of "(-1)*x".
791  unsigned NegOpndNum = 0;
792
793  // Adjust the number of instructions needed to emit the N-ary add.
794  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
795       I != E; I++) {
796    const FAddend *Opnd = *I;
797    if (Opnd->isConstant())
798      continue;
799
800    const FAddendCoef &CE = Opnd->getCoef();
801    if (CE.isMinusOne() || CE.isMinusTwo())
802      NegOpndNum++;
803
804    // Let the addend be "c * x". If "c == +/-1", the value of the addend
805    // is immediately available; otherwise, it needs exactly one instruction
806    // to evaluate the value.
807    if (!CE.isMinusOne() && !CE.isOne())
808      InstrNeeded++;
809  }
810  if (NegOpndNum == OpndNum)
811    InstrNeeded++;
812  return InstrNeeded;
813}
814
815// Input Addend        Value           NeedNeg(output)
816// ================================================================
817// Constant C          C               false
818// <+/-1, V>           V               coefficient is -1
819// <2/-2, V>          "fadd V, V"      coefficient is -2
820// <C, V>             "fmul V, C"      false
821//
822// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
823Value *FAddCombine::createAddendVal
824  (const FAddend &Opnd, bool &NeedNeg) {
825  const FAddendCoef &Coeff = Opnd.getCoef();
826
827  if (Opnd.isConstant()) {
828    NeedNeg = false;
829    return Coeff.getValue(Instr->getType());
830  }
831
832  Value *OpndVal = Opnd.getSymVal();
833
834  if (Coeff.isMinusOne() || Coeff.isOne()) {
835    NeedNeg = Coeff.isMinusOne();
836    return OpndVal;
837  }
838
839  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
840    NeedNeg = Coeff.isMinusTwo();
841    return createFAdd(OpndVal, OpndVal);
842  }
843
844  NeedNeg = false;
845  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
846}
847
848/// AddOne - Add one to a ConstantInt.
849static Constant *AddOne(Constant *C) {
850  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
851}
852
853/// SubOne - Subtract one from a ConstantInt.
854static Constant *SubOne(ConstantInt *C) {
855  return ConstantInt::get(C->getContext(), C->getValue()-1);
856}
857
858
859// dyn_castFoldableMul - If this value is a multiply that can be folded into
860// other computations (because it has a constant operand), return the
861// non-constant operand of the multiply, and set CST to point to the multiplier.
862// Otherwise, return null.
863//
864static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
865  if (!V->hasOneUse() || !V->getType()->isIntegerTy())
866    return 0;
867
868  Instruction *I = dyn_cast<Instruction>(V);
869  if (I == 0) return 0;
870
871  if (I->getOpcode() == Instruction::Mul)
872    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
873      return I->getOperand(0);
874  if (I->getOpcode() == Instruction::Shl)
875    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
876      // The multiplier is really 1 << CST.
877      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
878      uint32_t CSTVal = CST->getLimitedValue(BitWidth);
879      CST = ConstantInt::get(V->getType()->getContext(),
880                             APInt::getOneBitSet(BitWidth, CSTVal));
881      return I->getOperand(0);
882    }
883  return 0;
884}
885
886
887/// WillNotOverflowSignedAdd - Return true if we can prove that:
888///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
889/// This basically requires proving that the add in the original type would not
890/// overflow to change the sign bit or have a carry out.
891bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
892  // There are different heuristics we can use for this.  Here are some simple
893  // ones.
894
895  // Add has the property that adding any two 2's complement numbers can only
896  // have one carry bit which can change a sign.  As such, if LHS and RHS each
897  // have at least two sign bits, we know that the addition of the two values
898  // will sign extend fine.
899  if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
900    return true;
901
902
903  // If one of the operands only has one non-zero bit, and if the other operand
904  // has a known-zero bit in a more significant place than it (not including the
905  // sign bit) the ripple may go up to and fill the zero, but won't change the
906  // sign.  For example, (X & ~4) + 1.
907
908  // TODO: Implement.
909
910  return false;
911}
912
913Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
914  bool Changed = SimplifyAssociativeOrCommutative(I);
915  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
916
917  if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
918                                 I.hasNoUnsignedWrap(), TD))
919    return ReplaceInstUsesWith(I, V);
920
921  // (A*B)+(A*C) -> A*(B+C) etc
922  if (Value *V = SimplifyUsingDistributiveLaws(I))
923    return ReplaceInstUsesWith(I, V);
924
925  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
926    // X + (signbit) --> X ^ signbit
927    const APInt &Val = CI->getValue();
928    if (Val.isSignBit())
929      return BinaryOperator::CreateXor(LHS, RHS);
930
931    // See if SimplifyDemandedBits can simplify this.  This handles stuff like
932    // (X & 254)+1 -> (X&254)|1
933    if (SimplifyDemandedInstructionBits(I))
934      return &I;
935
936    // zext(bool) + C -> bool ? C + 1 : C
937    if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
938      if (ZI->getSrcTy()->isIntegerTy(1))
939        return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
940
941    Value *XorLHS = 0; ConstantInt *XorRHS = 0;
942    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
943      uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
944      const APInt &RHSVal = CI->getValue();
945      unsigned ExtendAmt = 0;
946      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
947      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
948      if (XorRHS->getValue() == -RHSVal) {
949        if (RHSVal.isPowerOf2())
950          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
951        else if (XorRHS->getValue().isPowerOf2())
952          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
953      }
954
955      if (ExtendAmt) {
956        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
957        if (!MaskedValueIsZero(XorLHS, Mask))
958          ExtendAmt = 0;
959      }
960
961      if (ExtendAmt) {
962        Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
963        Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
964        return BinaryOperator::CreateAShr(NewShl, ShAmt);
965      }
966
967      // If this is a xor that was canonicalized from a sub, turn it back into
968      // a sub and fuse this add with it.
969      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
970        IntegerType *IT = cast<IntegerType>(I.getType());
971        APInt LHSKnownOne(IT->getBitWidth(), 0);
972        APInt LHSKnownZero(IT->getBitWidth(), 0);
973        ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
974        if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
975          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
976                                           XorLHS);
977      }
978      // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
979      // transform them into (X + (signbit ^ C))
980      if (XorRHS->getValue().isSignBit())
981          return BinaryOperator::CreateAdd(XorLHS,
982                                           ConstantExpr::getXor(XorRHS, CI));
983    }
984  }
985
986  if (isa<Constant>(RHS) && isa<PHINode>(LHS))
987    if (Instruction *NV = FoldOpIntoPhi(I))
988      return NV;
989
990  if (I.getType()->isIntegerTy(1))
991    return BinaryOperator::CreateXor(LHS, RHS);
992
993  // X + X --> X << 1
994  if (LHS == RHS) {
995    BinaryOperator *New =
996      BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
997    New->setHasNoSignedWrap(I.hasNoSignedWrap());
998    New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
999    return New;
1000  }
1001
1002  // -A + B  -->  B - A
1003  // -A + -B  -->  -(A + B)
1004  if (Value *LHSV = dyn_castNegVal(LHS)) {
1005    if (!isa<Constant>(RHS))
1006      if (Value *RHSV = dyn_castNegVal(RHS)) {
1007        Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1008        return BinaryOperator::CreateNeg(NewAdd);
1009      }
1010
1011    return BinaryOperator::CreateSub(RHS, LHSV);
1012  }
1013
1014  // A + -B  -->  A - B
1015  if (!isa<Constant>(RHS))
1016    if (Value *V = dyn_castNegVal(RHS))
1017      return BinaryOperator::CreateSub(LHS, V);
1018
1019
1020  ConstantInt *C2;
1021  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
1022    if (X == RHS)   // X*C + X --> X * (C+1)
1023      return BinaryOperator::CreateMul(RHS, AddOne(C2));
1024
1025    // X*C1 + X*C2 --> X * (C1+C2)
1026    ConstantInt *C1;
1027    if (X == dyn_castFoldableMul(RHS, C1))
1028      return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
1029  }
1030
1031  // X + X*C --> X * (C+1)
1032  if (dyn_castFoldableMul(RHS, C2) == LHS)
1033    return BinaryOperator::CreateMul(LHS, AddOne(C2));
1034
1035  // A+B --> A|B iff A and B have no bits set in common.
1036  if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
1037    APInt LHSKnownOne(IT->getBitWidth(), 0);
1038    APInt LHSKnownZero(IT->getBitWidth(), 0);
1039    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
1040    if (LHSKnownZero != 0) {
1041      APInt RHSKnownOne(IT->getBitWidth(), 0);
1042      APInt RHSKnownZero(IT->getBitWidth(), 0);
1043      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
1044
1045      // No bits in common -> bitwise or.
1046      if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
1047        return BinaryOperator::CreateOr(LHS, RHS);
1048    }
1049  }
1050
1051  // W*X + Y*Z --> W * (X+Z)  iff W == Y
1052  {
1053    Value *W, *X, *Y, *Z;
1054    if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
1055        match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
1056      if (W != Y) {
1057        if (W == Z) {
1058          std::swap(Y, Z);
1059        } else if (Y == X) {
1060          std::swap(W, X);
1061        } else if (X == Z) {
1062          std::swap(Y, Z);
1063          std::swap(W, X);
1064        }
1065      }
1066
1067      if (W == Y) {
1068        Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
1069        return BinaryOperator::CreateMul(W, NewAdd);
1070      }
1071    }
1072  }
1073
1074  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1075    Value *X = 0;
1076    if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
1077      return BinaryOperator::CreateSub(SubOne(CRHS), X);
1078
1079    // (X & FF00) + xx00  -> (X+xx00) & FF00
1080    if (LHS->hasOneUse() &&
1081        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1082        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1083      // See if all bits from the first bit set in the Add RHS up are included
1084      // in the mask.  First, get the rightmost bit.
1085      const APInt &AddRHSV = CRHS->getValue();
1086
1087      // Form a mask of all bits from the lowest bit added through the top.
1088      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1089
1090      // See if the and mask includes all of these bits.
1091      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1092
1093      if (AddRHSHighBits == AddRHSHighBitsAnd) {
1094        // Okay, the xform is safe.  Insert the new add pronto.
1095        Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1096        return BinaryOperator::CreateAnd(NewAdd, C2);
1097      }
1098    }
1099
1100    // Try to fold constant add into select arguments.
1101    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1102      if (Instruction *R = FoldOpIntoSelect(I, SI))
1103        return R;
1104  }
1105
1106  // add (select X 0 (sub n A)) A  -->  select X A n
1107  {
1108    SelectInst *SI = dyn_cast<SelectInst>(LHS);
1109    Value *A = RHS;
1110    if (!SI) {
1111      SI = dyn_cast<SelectInst>(RHS);
1112      A = LHS;
1113    }
1114    if (SI && SI->hasOneUse()) {
1115      Value *TV = SI->getTrueValue();
1116      Value *FV = SI->getFalseValue();
1117      Value *N;
1118
1119      // Can we fold the add into the argument of the select?
1120      // We check both true and false select arguments for a matching subtract.
1121      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1122        // Fold the add into the true select value.
1123        return SelectInst::Create(SI->getCondition(), N, A);
1124
1125      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1126        // Fold the add into the false select value.
1127        return SelectInst::Create(SI->getCondition(), A, N);
1128    }
1129  }
1130
1131  // Check for (add (sext x), y), see if we can merge this into an
1132  // integer add followed by a sext.
1133  if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1134    // (add (sext x), cst) --> (sext (add x, cst'))
1135    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1136      Constant *CI =
1137        ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1138      if (LHSConv->hasOneUse() &&
1139          ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1140          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1141        // Insert the new, smaller add.
1142        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1143                                              CI, "addconv");
1144        return new SExtInst(NewAdd, I.getType());
1145      }
1146    }
1147
1148    // (add (sext x), (sext y)) --> (sext (add int x, y))
1149    if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1150      // Only do this if x/y have the same type, if at last one of them has a
1151      // single use (so we don't increase the number of sexts), and if the
1152      // integer add will not overflow.
1153      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1154          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1155          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1156                                   RHSConv->getOperand(0))) {
1157        // Insert the new integer add.
1158        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1159                                             RHSConv->getOperand(0), "addconv");
1160        return new SExtInst(NewAdd, I.getType());
1161      }
1162    }
1163  }
1164
1165  // Check for (x & y) + (x ^ y)
1166  {
1167    Value *A = 0, *B = 0;
1168    if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1169        (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1170         match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1171      return BinaryOperator::CreateOr(A, B);
1172
1173    if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1174        (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1175         match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1176      return BinaryOperator::CreateOr(A, B);
1177  }
1178
1179  return Changed ? &I : 0;
1180}
1181
1182Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1183  bool Changed = SimplifyAssociativeOrCommutative(I);
1184  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1185
1186  if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
1187    return ReplaceInstUsesWith(I, V);
1188
1189  if (isa<Constant>(RHS)) {
1190    if (isa<PHINode>(LHS))
1191      if (Instruction *NV = FoldOpIntoPhi(I))
1192        return NV;
1193
1194    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1195      if (Instruction *NV = FoldOpIntoSelect(I, SI))
1196        return NV;
1197  }
1198
1199  // -A + B  -->  B - A
1200  // -A + -B  -->  -(A + B)
1201  if (Value *LHSV = dyn_castFNegVal(LHS))
1202    return BinaryOperator::CreateFSub(RHS, LHSV);
1203
1204  // A + -B  -->  A - B
1205  if (!isa<Constant>(RHS))
1206    if (Value *V = dyn_castFNegVal(RHS))
1207      return BinaryOperator::CreateFSub(LHS, V);
1208
1209  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1210  // integer add followed by a promotion.
1211  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1212    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1213    // ... if the constant fits in the integer value.  This is useful for things
1214    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1215    // requires a constant pool load, and generally allows the add to be better
1216    // instcombined.
1217    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1218      Constant *CI =
1219      ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1220      if (LHSConv->hasOneUse() &&
1221          ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1222          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1223        // Insert the new integer add.
1224        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1225                                              CI, "addconv");
1226        return new SIToFPInst(NewAdd, I.getType());
1227      }
1228    }
1229
1230    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1231    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1232      // Only do this if x/y have the same type, if at last one of them has a
1233      // single use (so we don't increase the number of int->fp conversions),
1234      // and if the integer add will not overflow.
1235      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1236          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1237          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1238                                   RHSConv->getOperand(0))) {
1239        // Insert the new integer add.
1240        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1241                                              RHSConv->getOperand(0),"addconv");
1242        return new SIToFPInst(NewAdd, I.getType());
1243      }
1244    }
1245  }
1246
1247  // select C, 0, B + select C, A, 0 -> select C, A, B
1248  {
1249    Value *A1, *B1, *C1, *A2, *B2, *C2;
1250    if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1251        match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1252      if (C1 == C2) {
1253        Constant *Z1=0, *Z2=0;
1254        Value *A, *B, *C=C1;
1255        if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1256            Z1 = dyn_cast<Constant>(A1); A = A2;
1257            Z2 = dyn_cast<Constant>(B2); B = B1;
1258        } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1259            Z1 = dyn_cast<Constant>(B1); B = B2;
1260            Z2 = dyn_cast<Constant>(A2); A = A1;
1261        }
1262
1263        if (Z1 && Z2 &&
1264            (I.hasNoSignedZeros() ||
1265             (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1266          return SelectInst::Create(C, A, B);
1267        }
1268      }
1269    }
1270  }
1271
1272  if (I.hasUnsafeAlgebra()) {
1273    if (Value *V = FAddCombine(Builder).simplify(&I))
1274      return ReplaceInstUsesWith(I, V);
1275  }
1276
1277  return Changed ? &I : 0;
1278}
1279
1280
1281/// Optimize pointer differences into the same array into a size.  Consider:
1282///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1283/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1284///
1285Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1286                                               Type *Ty) {
1287  assert(TD && "Must have target data info for this");
1288
1289  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1290  // this.
1291  bool Swapped = false;
1292  GEPOperator *GEP1 = 0, *GEP2 = 0;
1293
1294  // For now we require one side to be the base pointer "A" or a constant
1295  // GEP derived from it.
1296  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1297    // (gep X, ...) - X
1298    if (LHSGEP->getOperand(0) == RHS) {
1299      GEP1 = LHSGEP;
1300      Swapped = false;
1301    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1302      // (gep X, ...) - (gep X, ...)
1303      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1304            RHSGEP->getOperand(0)->stripPointerCasts()) {
1305        GEP2 = RHSGEP;
1306        GEP1 = LHSGEP;
1307        Swapped = false;
1308      }
1309    }
1310  }
1311
1312  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1313    // X - (gep X, ...)
1314    if (RHSGEP->getOperand(0) == LHS) {
1315      GEP1 = RHSGEP;
1316      Swapped = true;
1317    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1318      // (gep X, ...) - (gep X, ...)
1319      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1320            LHSGEP->getOperand(0)->stripPointerCasts()) {
1321        GEP2 = LHSGEP;
1322        GEP1 = RHSGEP;
1323        Swapped = true;
1324      }
1325    }
1326  }
1327
1328  // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1329  // multiple users.
1330  if (GEP1 == 0 ||
1331      (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1332    return 0;
1333
1334  // Emit the offset of the GEP and an intptr_t.
1335  Value *Result = EmitGEPOffset(GEP1);
1336
1337  // If we had a constant expression GEP on the other side offsetting the
1338  // pointer, subtract it from the offset we have.
1339  if (GEP2) {
1340    Value *Offset = EmitGEPOffset(GEP2);
1341    Result = Builder->CreateSub(Result, Offset);
1342  }
1343
1344  // If we have p - gep(p, ...)  then we have to negate the result.
1345  if (Swapped)
1346    Result = Builder->CreateNeg(Result, "diff.neg");
1347
1348  return Builder->CreateIntCast(Result, Ty, true);
1349}
1350
1351
1352Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1353  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1354
1355  if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1356                                 I.hasNoUnsignedWrap(), TD))
1357    return ReplaceInstUsesWith(I, V);
1358
1359  // (A*B)-(A*C) -> A*(B-C) etc
1360  if (Value *V = SimplifyUsingDistributiveLaws(I))
1361    return ReplaceInstUsesWith(I, V);
1362
1363  // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
1364  if (Value *V = dyn_castNegVal(Op1)) {
1365    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1366    Res->setHasNoSignedWrap(I.hasNoSignedWrap());
1367    Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1368    return Res;
1369  }
1370
1371  if (I.getType()->isIntegerTy(1))
1372    return BinaryOperator::CreateXor(Op0, Op1);
1373
1374  // Replace (-1 - A) with (~A).
1375  if (match(Op0, m_AllOnes()))
1376    return BinaryOperator::CreateNot(Op1);
1377
1378  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1379    // C - ~X == X + (1+C)
1380    Value *X = 0;
1381    if (match(Op1, m_Not(m_Value(X))))
1382      return BinaryOperator::CreateAdd(X, AddOne(C));
1383
1384    // -(X >>u 31) -> (X >>s 31)
1385    // -(X >>s 31) -> (X >>u 31)
1386    if (C->isZero()) {
1387      Value *X; ConstantInt *CI;
1388      if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1389          // Verify we are shifting out everything but the sign bit.
1390          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1391        return BinaryOperator::CreateAShr(X, CI);
1392
1393      if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1394          // Verify we are shifting out everything but the sign bit.
1395          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1396        return BinaryOperator::CreateLShr(X, CI);
1397    }
1398
1399    // Try to fold constant sub into select arguments.
1400    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1401      if (Instruction *R = FoldOpIntoSelect(I, SI))
1402        return R;
1403
1404    // C-(X+C2) --> (C-C2)-X
1405    ConstantInt *C2;
1406    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
1407      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1408
1409    if (SimplifyDemandedInstructionBits(I))
1410      return &I;
1411
1412    // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1413    if (C->isZero() && match(Op1, m_ZExt(m_Value(X))))
1414      if (X->getType()->isIntegerTy(1))
1415        return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1416
1417    // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1418    if (C->isZero() && match(Op1, m_SExt(m_Value(X))))
1419      if (X->getType()->isIntegerTy(1))
1420        return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1421  }
1422
1423
1424  { Value *Y;
1425    // X-(X+Y) == -Y    X-(Y+X) == -Y
1426    if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1427        match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1428      return BinaryOperator::CreateNeg(Y);
1429
1430    // (X-Y)-X == -Y
1431    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1432      return BinaryOperator::CreateNeg(Y);
1433  }
1434
1435  if (Op1->hasOneUse()) {
1436    Value *X = 0, *Y = 0, *Z = 0;
1437    Constant *C = 0;
1438    ConstantInt *CI = 0;
1439
1440    // (X - (Y - Z))  -->  (X + (Z - Y)).
1441    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1442      return BinaryOperator::CreateAdd(Op0,
1443                                      Builder->CreateSub(Z, Y, Op1->getName()));
1444
1445    // (X - (X & Y))   -->   (X & ~Y)
1446    //
1447    if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1448        match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1449      return BinaryOperator::CreateAnd(Op0,
1450                                  Builder->CreateNot(Y, Y->getName() + ".not"));
1451
1452    // 0 - (X sdiv C)  -> (X sdiv -C)
1453    if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
1454        match(Op0, m_Zero()))
1455      return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1456
1457    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1458    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1459      if (Value *XNeg = dyn_castNegVal(X))
1460        return BinaryOperator::CreateShl(XNeg, Y);
1461
1462    // X - X*C --> X * (1-C)
1463    if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
1464      Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
1465      return BinaryOperator::CreateMul(Op0, CP1);
1466    }
1467
1468    // X - X<<C --> X * (1-(1<<C))
1469    if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
1470      Constant *One = ConstantInt::get(I.getType(), 1);
1471      C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
1472      return BinaryOperator::CreateMul(Op0, C);
1473    }
1474
1475    // X - A*-B -> X + A*B
1476    // X - -A*B -> X + A*B
1477    Value *A, *B;
1478    if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1479        match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1480      return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1481
1482    // X - A*CI -> X + A*-CI
1483    // X - CI*A -> X + A*-CI
1484    if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
1485        match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
1486      Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1487      return BinaryOperator::CreateAdd(Op0, NewMul);
1488    }
1489  }
1490
1491  ConstantInt *C1;
1492  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1493    if (X == Op1)  // X*C - X --> X * (C-1)
1494      return BinaryOperator::CreateMul(Op1, SubOne(C1));
1495
1496    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
1497    if (X == dyn_castFoldableMul(Op1, C2))
1498      return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
1499  }
1500
1501  // Optimize pointer differences into the same array into a size.  Consider:
1502  //  &A[10] - &A[0]: we should compile this to "10".
1503  if (TD) {
1504    Value *LHSOp, *RHSOp;
1505    if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1506        match(Op1, m_PtrToInt(m_Value(RHSOp))))
1507      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1508        return ReplaceInstUsesWith(I, Res);
1509
1510    // trunc(p)-trunc(q) -> trunc(p-q)
1511    if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1512        match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1513      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1514        return ReplaceInstUsesWith(I, Res);
1515  }
1516
1517  return 0;
1518}
1519
1520Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1521  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1522
1523  if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
1524    return ReplaceInstUsesWith(I, V);
1525
1526  if (isa<Constant>(Op0))
1527    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1528      if (Instruction *NV = FoldOpIntoSelect(I, SI))
1529        return NV;
1530
1531  // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1532  // through FP extensions/truncations along the way.
1533  if (Value *V = dyn_castFNegVal(Op1)) {
1534    Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1535    NewI->copyFastMathFlags(&I);
1536    return NewI;
1537  }
1538  if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1539    if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1540      Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1541      Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1542      NewI->copyFastMathFlags(&I);
1543      return NewI;
1544    }
1545  } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1546    if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1547      Value *NewExt = Builder->CreateFPExt(V, I.getType());
1548      Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1549      NewI->copyFastMathFlags(&I);
1550      return NewI;
1551    }
1552  }
1553
1554  if (I.hasUnsafeAlgebra()) {
1555    if (Value *V = FAddCombine(Builder).simplify(&I))
1556      return ReplaceInstUsesWith(I, V);
1557  }
1558
1559  return 0;
1560}
1561