1//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is part of the X86 Disassembler.
11// It contains code to translate the data produced by the decoder into
12//  MCInsts.
13// Documentation for the disassembler can be found in X86Disassembler.h.
14//
15//===----------------------------------------------------------------------===//
16
17#include "X86Disassembler.h"
18#include "X86DisassemblerDecoder.h"
19#include "llvm/MC/MCContext.h"
20#include "llvm/MC/MCDisassembler.h"
21#include "llvm/MC/MCExpr.h"
22#include "llvm/MC/MCInst.h"
23#include "llvm/MC/MCInstrInfo.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/MemoryObject.h"
27#include "llvm/Support/TargetRegistry.h"
28#include "llvm/Support/raw_ostream.h"
29
30#define GET_REGINFO_ENUM
31#include "X86GenRegisterInfo.inc"
32#define GET_INSTRINFO_ENUM
33#include "X86GenInstrInfo.inc"
34
35using namespace llvm;
36using namespace llvm::X86Disassembler;
37
38void x86DisassemblerDebug(const char *file,
39                          unsigned line,
40                          const char *s) {
41  dbgs() << file << ":" << line << ": " << s;
42}
43
44const char *x86DisassemblerGetInstrName(unsigned Opcode, const void *mii) {
45  const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
46  return MII->getName(Opcode);
47}
48
49#define debug(s) DEBUG(x86DisassemblerDebug(__FILE__, __LINE__, s));
50
51namespace llvm {
52
53// Fill-ins to make the compiler happy.  These constants are never actually
54//   assigned; they are just filler to make an automatically-generated switch
55//   statement work.
56namespace X86 {
57  enum {
58    BX_SI = 500,
59    BX_DI = 501,
60    BP_SI = 502,
61    BP_DI = 503,
62    sib   = 504,
63    sib64 = 505
64  };
65}
66
67extern Target TheX86_32Target, TheX86_64Target;
68
69}
70
71static bool translateInstruction(MCInst &target,
72                                InternalInstruction &source,
73                                const MCDisassembler *Dis);
74
75X86GenericDisassembler::X86GenericDisassembler(const MCSubtargetInfo &STI,
76                                               DisassemblerMode mode,
77                                               const MCInstrInfo *MII)
78  : MCDisassembler(STI), MII(MII), fMode(mode) {}
79
80X86GenericDisassembler::~X86GenericDisassembler() {
81  delete MII;
82}
83
84/// regionReader - a callback function that wraps the readByte method from
85///   MemoryObject.
86///
87/// @param arg      - The generic callback parameter.  In this case, this should
88///                   be a pointer to a MemoryObject.
89/// @param byte     - A pointer to the byte to be read.
90/// @param address  - The address to be read.
91static int regionReader(const void* arg, uint8_t* byte, uint64_t address) {
92  const MemoryObject* region = static_cast<const MemoryObject*>(arg);
93  return region->readByte(address, byte);
94}
95
96/// logger - a callback function that wraps the operator<< method from
97///   raw_ostream.
98///
99/// @param arg      - The generic callback parameter.  This should be a pointe
100///                   to a raw_ostream.
101/// @param log      - A string to be logged.  logger() adds a newline.
102static void logger(void* arg, const char* log) {
103  if (!arg)
104    return;
105
106  raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
107  vStream << log << "\n";
108}
109
110//
111// Public interface for the disassembler
112//
113
114MCDisassembler::DecodeStatus
115X86GenericDisassembler::getInstruction(MCInst &instr,
116                                       uint64_t &size,
117                                       const MemoryObject &region,
118                                       uint64_t address,
119                                       raw_ostream &vStream,
120                                       raw_ostream &cStream) const {
121  CommentStream = &cStream;
122
123  InternalInstruction internalInstr;
124
125  dlog_t loggerFn = logger;
126  if (&vStream == &nulls())
127    loggerFn = 0; // Disable logging completely if it's going to nulls().
128
129  int ret = decodeInstruction(&internalInstr,
130                              regionReader,
131                              (const void*)&region,
132                              loggerFn,
133                              (void*)&vStream,
134                              (const void*)MII,
135                              address,
136                              fMode);
137
138  if (ret) {
139    size = internalInstr.readerCursor - address;
140    return Fail;
141  }
142  else {
143    size = internalInstr.length;
144    return (!translateInstruction(instr, internalInstr, this)) ?
145            Success : Fail;
146  }
147}
148
149//
150// Private code that translates from struct InternalInstructions to MCInsts.
151//
152
153/// translateRegister - Translates an internal register to the appropriate LLVM
154///   register, and appends it as an operand to an MCInst.
155///
156/// @param mcInst     - The MCInst to append to.
157/// @param reg        - The Reg to append.
158static void translateRegister(MCInst &mcInst, Reg reg) {
159#define ENTRY(x) X86::x,
160  uint8_t llvmRegnums[] = {
161    ALL_REGS
162    0
163  };
164#undef ENTRY
165
166  uint8_t llvmRegnum = llvmRegnums[reg];
167  mcInst.addOperand(MCOperand::CreateReg(llvmRegnum));
168}
169
170/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
171/// immediate Value in the MCInst.
172///
173/// @param Value      - The immediate Value, has had any PC adjustment made by
174///                     the caller.
175/// @param isBranch   - If the instruction is a branch instruction
176/// @param Address    - The starting address of the instruction
177/// @param Offset     - The byte offset to this immediate in the instruction
178/// @param Width      - The byte width of this immediate in the instruction
179///
180/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
181/// called then that function is called to get any symbolic information for the
182/// immediate in the instruction using the Address, Offset and Width.  If that
183/// returns non-zero then the symbolic information it returns is used to create
184/// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
185/// returns zero and isBranch is true then a symbol look up for immediate Value
186/// is done and if a symbol is found an MCExpr is created with that, else
187/// an MCExpr with the immediate Value is created.  This function returns true
188/// if it adds an operand to the MCInst and false otherwise.
189static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
190                                     uint64_t Address, uint64_t Offset,
191                                     uint64_t Width, MCInst &MI,
192                                     const MCDisassembler *Dis) {
193  return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
194                                       Offset, Width);
195}
196
197/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
198/// referenced by a load instruction with the base register that is the rip.
199/// These can often be addresses in a literal pool.  The Address of the
200/// instruction and its immediate Value are used to determine the address
201/// being referenced in the literal pool entry.  The SymbolLookUp call back will
202/// return a pointer to a literal 'C' string if the referenced address is an
203/// address into a section with 'C' string literals.
204static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
205                                            const void *Decoder) {
206  const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
207  Dis->tryAddingPcLoadReferenceComment(Value, Address);
208}
209
210/// translateImmediate  - Appends an immediate operand to an MCInst.
211///
212/// @param mcInst       - The MCInst to append to.
213/// @param immediate    - The immediate value to append.
214/// @param operand      - The operand, as stored in the descriptor table.
215/// @param insn         - The internal instruction.
216static void translateImmediate(MCInst &mcInst, uint64_t immediate,
217                               const OperandSpecifier &operand,
218                               InternalInstruction &insn,
219                               const MCDisassembler *Dis) {
220  // Sign-extend the immediate if necessary.
221
222  OperandType type = (OperandType)operand.type;
223
224  bool isBranch = false;
225  uint64_t pcrel = 0;
226  if (type == TYPE_RELv) {
227    isBranch = true;
228    pcrel = insn.startLocation +
229            insn.immediateOffset + insn.immediateSize;
230    switch (insn.displacementSize) {
231    default:
232      break;
233    case 1:
234      if(immediate & 0x80)
235        immediate |= ~(0xffull);
236      break;
237    case 2:
238      if(immediate & 0x8000)
239        immediate |= ~(0xffffull);
240      break;
241    case 4:
242      if(immediate & 0x80000000)
243        immediate |= ~(0xffffffffull);
244      break;
245    case 8:
246      break;
247    }
248  }
249  // By default sign-extend all X86 immediates based on their encoding.
250  else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
251           type == TYPE_IMM64) {
252    uint32_t Opcode = mcInst.getOpcode();
253    switch (operand.encoding) {
254    default:
255      break;
256    case ENCODING_IB:
257      // Special case those X86 instructions that use the imm8 as a set of
258      // bits, bit count, etc. and are not sign-extend.
259      if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri &&
260          Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri &&
261          Opcode != X86::DPPSrri && Opcode != X86::DPPDrri &&
262          Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri &&
263          Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri &&
264          Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri &&
265          Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri &&
266          Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri &&
267          Opcode != X86::VINSERTPSrr)
268        if(immediate & 0x80)
269          immediate |= ~(0xffull);
270      break;
271    case ENCODING_IW:
272      if(immediate & 0x8000)
273        immediate |= ~(0xffffull);
274      break;
275    case ENCODING_ID:
276      if(immediate & 0x80000000)
277        immediate |= ~(0xffffffffull);
278      break;
279    case ENCODING_IO:
280      break;
281    }
282  }
283
284  switch (type) {
285  case TYPE_XMM32:
286  case TYPE_XMM64:
287  case TYPE_XMM128:
288    mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4)));
289    return;
290  case TYPE_XMM256:
291    mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4)));
292    return;
293  case TYPE_XMM512:
294    mcInst.addOperand(MCOperand::CreateReg(X86::ZMM0 + (immediate >> 4)));
295    return;
296  case TYPE_REL8:
297    isBranch = true;
298    pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
299    if(immediate & 0x80)
300      immediate |= ~(0xffull);
301    break;
302  case TYPE_REL32:
303  case TYPE_REL64:
304    isBranch = true;
305    pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
306    if(immediate & 0x80000000)
307      immediate |= ~(0xffffffffull);
308    break;
309  default:
310    // operand is 64 bits wide.  Do nothing.
311    break;
312  }
313
314  if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
315                               insn.immediateOffset, insn.immediateSize,
316                               mcInst, Dis))
317    mcInst.addOperand(MCOperand::CreateImm(immediate));
318}
319
320/// translateRMRegister - Translates a register stored in the R/M field of the
321///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
322/// @param mcInst       - The MCInst to append to.
323/// @param insn         - The internal instruction to extract the R/M field
324///                       from.
325/// @return             - 0 on success; -1 otherwise
326static bool translateRMRegister(MCInst &mcInst,
327                                InternalInstruction &insn) {
328  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
329    debug("A R/M register operand may not have a SIB byte");
330    return true;
331  }
332
333  switch (insn.eaBase) {
334  default:
335    debug("Unexpected EA base register");
336    return true;
337  case EA_BASE_NONE:
338    debug("EA_BASE_NONE for ModR/M base");
339    return true;
340#define ENTRY(x) case EA_BASE_##x:
341  ALL_EA_BASES
342#undef ENTRY
343    debug("A R/M register operand may not have a base; "
344          "the operand must be a register.");
345    return true;
346#define ENTRY(x)                                                      \
347  case EA_REG_##x:                                                    \
348    mcInst.addOperand(MCOperand::CreateReg(X86::x)); break;
349  ALL_REGS
350#undef ENTRY
351  }
352
353  return false;
354}
355
356/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
357///   fields of an internal instruction (and possibly its SIB byte) to a memory
358///   operand in LLVM's format, and appends it to an MCInst.
359///
360/// @param mcInst       - The MCInst to append to.
361/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
362///                       from.
363/// @return             - 0 on success; nonzero otherwise
364static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
365                              const MCDisassembler *Dis) {
366  // Addresses in an MCInst are represented as five operands:
367  //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
368  //                                SIB base
369  //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
370  //                                scale amount
371  //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
372  //                                the index (which is multiplied by the
373  //                                scale amount)
374  //   4. displacement  (immediate) 0, or the displacement if there is one
375  //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
376  //                                if we have segment overrides
377
378  MCOperand baseReg;
379  MCOperand scaleAmount;
380  MCOperand indexReg;
381  MCOperand displacement;
382  MCOperand segmentReg;
383  uint64_t pcrel = 0;
384
385  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
386    if (insn.sibBase != SIB_BASE_NONE) {
387      switch (insn.sibBase) {
388      default:
389        debug("Unexpected sibBase");
390        return true;
391#define ENTRY(x)                                          \
392      case SIB_BASE_##x:                                  \
393        baseReg = MCOperand::CreateReg(X86::x); break;
394      ALL_SIB_BASES
395#undef ENTRY
396      }
397    } else {
398      baseReg = MCOperand::CreateReg(0);
399    }
400
401    // Check whether we are handling VSIB addressing mode for GATHER.
402    // If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
403    // we should use SIB_INDEX_XMM4|YMM4 for VSIB.
404    // I don't see a way to get the correct IndexReg in readSIB:
405    //   We can tell whether it is VSIB or SIB after instruction ID is decoded,
406    //   but instruction ID may not be decoded yet when calling readSIB.
407    uint32_t Opcode = mcInst.getOpcode();
408    bool IndexIs128 = (Opcode == X86::VGATHERDPDrm ||
409                       Opcode == X86::VGATHERDPDYrm ||
410                       Opcode == X86::VGATHERQPDrm ||
411                       Opcode == X86::VGATHERDPSrm ||
412                       Opcode == X86::VGATHERQPSrm ||
413                       Opcode == X86::VPGATHERDQrm ||
414                       Opcode == X86::VPGATHERDQYrm ||
415                       Opcode == X86::VPGATHERQQrm ||
416                       Opcode == X86::VPGATHERDDrm ||
417                       Opcode == X86::VPGATHERQDrm);
418    bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm ||
419                       Opcode == X86::VGATHERDPSYrm ||
420                       Opcode == X86::VGATHERQPSYrm ||
421                       Opcode == X86::VPGATHERQQYrm ||
422                       Opcode == X86::VPGATHERDDYrm ||
423                       Opcode == X86::VPGATHERQDYrm);
424    if (IndexIs128 || IndexIs256) {
425      unsigned IndexOffset = insn.sibIndex -
426                         (insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
427      SIBIndex IndexBase = IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
428      insn.sibIndex = (SIBIndex)(IndexBase +
429                           (insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
430    }
431
432    if (insn.sibIndex != SIB_INDEX_NONE) {
433      switch (insn.sibIndex) {
434      default:
435        debug("Unexpected sibIndex");
436        return true;
437#define ENTRY(x)                                          \
438      case SIB_INDEX_##x:                                 \
439        indexReg = MCOperand::CreateReg(X86::x); break;
440      EA_BASES_32BIT
441      EA_BASES_64BIT
442      REGS_XMM
443      REGS_YMM
444      REGS_ZMM
445#undef ENTRY
446      }
447    } else {
448      indexReg = MCOperand::CreateReg(0);
449    }
450
451    scaleAmount = MCOperand::CreateImm(insn.sibScale);
452  } else {
453    switch (insn.eaBase) {
454    case EA_BASE_NONE:
455      if (insn.eaDisplacement == EA_DISP_NONE) {
456        debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
457        return true;
458      }
459      if (insn.mode == MODE_64BIT){
460        pcrel = insn.startLocation +
461                insn.displacementOffset + insn.displacementSize;
462        tryAddingPcLoadReferenceComment(insn.startLocation +
463                                        insn.displacementOffset,
464                                        insn.displacement + pcrel, Dis);
465        baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6
466      }
467      else
468        baseReg = MCOperand::CreateReg(0);
469
470      indexReg = MCOperand::CreateReg(0);
471      break;
472    case EA_BASE_BX_SI:
473      baseReg = MCOperand::CreateReg(X86::BX);
474      indexReg = MCOperand::CreateReg(X86::SI);
475      break;
476    case EA_BASE_BX_DI:
477      baseReg = MCOperand::CreateReg(X86::BX);
478      indexReg = MCOperand::CreateReg(X86::DI);
479      break;
480    case EA_BASE_BP_SI:
481      baseReg = MCOperand::CreateReg(X86::BP);
482      indexReg = MCOperand::CreateReg(X86::SI);
483      break;
484    case EA_BASE_BP_DI:
485      baseReg = MCOperand::CreateReg(X86::BP);
486      indexReg = MCOperand::CreateReg(X86::DI);
487      break;
488    default:
489      indexReg = MCOperand::CreateReg(0);
490      switch (insn.eaBase) {
491      default:
492        debug("Unexpected eaBase");
493        return true;
494        // Here, we will use the fill-ins defined above.  However,
495        //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
496        //   sib and sib64 were handled in the top-level if, so they're only
497        //   placeholders to keep the compiler happy.
498#define ENTRY(x)                                        \
499      case EA_BASE_##x:                                 \
500        baseReg = MCOperand::CreateReg(X86::x); break;
501      ALL_EA_BASES
502#undef ENTRY
503#define ENTRY(x) case EA_REG_##x:
504      ALL_REGS
505#undef ENTRY
506        debug("A R/M memory operand may not be a register; "
507              "the base field must be a base.");
508        return true;
509      }
510    }
511
512    scaleAmount = MCOperand::CreateImm(1);
513  }
514
515  displacement = MCOperand::CreateImm(insn.displacement);
516
517  static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
518    0,        // SEG_OVERRIDE_NONE
519    X86::CS,
520    X86::SS,
521    X86::DS,
522    X86::ES,
523    X86::FS,
524    X86::GS
525  };
526
527  segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
528
529  mcInst.addOperand(baseReg);
530  mcInst.addOperand(scaleAmount);
531  mcInst.addOperand(indexReg);
532  if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
533                               insn.startLocation, insn.displacementOffset,
534                               insn.displacementSize, mcInst, Dis))
535    mcInst.addOperand(displacement);
536  mcInst.addOperand(segmentReg);
537  return false;
538}
539
540/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
541///   byte of an instruction to LLVM form, and appends it to an MCInst.
542///
543/// @param mcInst       - The MCInst to append to.
544/// @param operand      - The operand, as stored in the descriptor table.
545/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
546///                       from.
547/// @return             - 0 on success; nonzero otherwise
548static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
549                        InternalInstruction &insn, const MCDisassembler *Dis) {
550  switch (operand.type) {
551  default:
552    debug("Unexpected type for a R/M operand");
553    return true;
554  case TYPE_R8:
555  case TYPE_R16:
556  case TYPE_R32:
557  case TYPE_R64:
558  case TYPE_Rv:
559  case TYPE_MM:
560  case TYPE_MM32:
561  case TYPE_MM64:
562  case TYPE_XMM:
563  case TYPE_XMM32:
564  case TYPE_XMM64:
565  case TYPE_XMM128:
566  case TYPE_XMM256:
567  case TYPE_XMM512:
568  case TYPE_DEBUGREG:
569  case TYPE_CONTROLREG:
570    return translateRMRegister(mcInst, insn);
571  case TYPE_M:
572  case TYPE_M8:
573  case TYPE_M16:
574  case TYPE_M32:
575  case TYPE_M64:
576  case TYPE_M128:
577  case TYPE_M256:
578  case TYPE_M512:
579  case TYPE_Mv:
580  case TYPE_M32FP:
581  case TYPE_M64FP:
582  case TYPE_M80FP:
583  case TYPE_M16INT:
584  case TYPE_M32INT:
585  case TYPE_M64INT:
586  case TYPE_M1616:
587  case TYPE_M1632:
588  case TYPE_M1664:
589  case TYPE_LEA:
590    return translateRMMemory(mcInst, insn, Dis);
591  }
592}
593
594/// translateFPRegister - Translates a stack position on the FPU stack to its
595///   LLVM form, and appends it to an MCInst.
596///
597/// @param mcInst       - The MCInst to append to.
598/// @param stackPos     - The stack position to translate.
599/// @return             - 0 on success; nonzero otherwise.
600static bool translateFPRegister(MCInst &mcInst,
601                               uint8_t stackPos) {
602  if (stackPos >= 8) {
603    debug("Invalid FP stack position");
604    return true;
605  }
606
607  mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos));
608
609  return false;
610}
611
612/// translateOperand - Translates an operand stored in an internal instruction
613///   to LLVM's format and appends it to an MCInst.
614///
615/// @param mcInst       - The MCInst to append to.
616/// @param operand      - The operand, as stored in the descriptor table.
617/// @param insn         - The internal instruction.
618/// @return             - false on success; true otherwise.
619static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
620                             InternalInstruction &insn,
621                             const MCDisassembler *Dis) {
622  switch (operand.encoding) {
623  default:
624    debug("Unhandled operand encoding during translation");
625    return true;
626  case ENCODING_REG:
627    translateRegister(mcInst, insn.reg);
628    return false;
629  case ENCODING_RM:
630    return translateRM(mcInst, operand, insn, Dis);
631  case ENCODING_CB:
632  case ENCODING_CW:
633  case ENCODING_CD:
634  case ENCODING_CP:
635  case ENCODING_CO:
636  case ENCODING_CT:
637    debug("Translation of code offsets isn't supported.");
638    return true;
639  case ENCODING_IB:
640  case ENCODING_IW:
641  case ENCODING_ID:
642  case ENCODING_IO:
643  case ENCODING_Iv:
644  case ENCODING_Ia:
645    translateImmediate(mcInst,
646                       insn.immediates[insn.numImmediatesTranslated++],
647                       operand,
648                       insn,
649                       Dis);
650    return false;
651  case ENCODING_RB:
652  case ENCODING_RW:
653  case ENCODING_RD:
654  case ENCODING_RO:
655    translateRegister(mcInst, insn.opcodeRegister);
656    return false;
657  case ENCODING_I:
658    return translateFPRegister(mcInst, insn.opcodeModifier);
659  case ENCODING_Rv:
660    translateRegister(mcInst, insn.opcodeRegister);
661    return false;
662  case ENCODING_VVVV:
663    translateRegister(mcInst, insn.vvvv);
664    return false;
665  case ENCODING_DUP:
666    return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
667                            insn, Dis);
668  }
669}
670
671/// translateInstruction - Translates an internal instruction and all its
672///   operands to an MCInst.
673///
674/// @param mcInst       - The MCInst to populate with the instruction's data.
675/// @param insn         - The internal instruction.
676/// @return             - false on success; true otherwise.
677static bool translateInstruction(MCInst &mcInst,
678                                InternalInstruction &insn,
679                                const MCDisassembler *Dis) {
680  if (!insn.spec) {
681    debug("Instruction has no specification");
682    return true;
683  }
684
685  mcInst.setOpcode(insn.instructionID);
686  // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
687  // prefix bytes should be disassembled as xrelease and xacquire then set the
688  // opcode to those instead of the rep and repne opcodes.
689  if (insn.xAcquireRelease) {
690    if(mcInst.getOpcode() == X86::REP_PREFIX)
691      mcInst.setOpcode(X86::XRELEASE_PREFIX);
692    else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
693      mcInst.setOpcode(X86::XACQUIRE_PREFIX);
694  }
695
696  int index;
697
698  insn.numImmediatesTranslated = 0;
699
700  for (index = 0; index < X86_MAX_OPERANDS; ++index) {
701    if (insn.operands[index].encoding != ENCODING_NONE) {
702      if (translateOperand(mcInst, insn.operands[index], insn, Dis)) {
703        return true;
704      }
705    }
706  }
707
708  return false;
709}
710
711static MCDisassembler *createX86_32Disassembler(const Target &T,
712                                                const MCSubtargetInfo &STI) {
713  return new X86Disassembler::X86GenericDisassembler(STI, MODE_32BIT,
714                                                     T.createMCInstrInfo());
715}
716
717static MCDisassembler *createX86_64Disassembler(const Target &T,
718                                                const MCSubtargetInfo &STI) {
719  return new X86Disassembler::X86GenericDisassembler(STI, MODE_64BIT,
720                                                     T.createMCInstrInfo());
721}
722
723extern "C" void LLVMInitializeX86Disassembler() {
724  // Register the disassembler.
725  TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
726                                         createX86_32Disassembler);
727  TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
728                                         createX86_64Disassembler);
729}
730