1/* Target-dependent code for GDB, the GNU debugger.
2
3   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5   Foundation, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330,
22   Boston, MA 02111-1307, USA.  */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "objfiles.h"
32#include "arch-utils.h"
33#include "regcache.h"
34#include "doublest.h"
35#include "value.h"
36#include "parser-defs.h"
37#include "osabi.h"
38
39#include "libbfd.h"		/* for bfd_default_set_arch_mach */
40#include "coff/internal.h"	/* for libcoff.h */
41#include "libcoff.h"		/* for xcoff_data */
42#include "coff/xcoff.h"
43#include "libxcoff.h"
44
45#include "elf-bfd.h"
46
47#include "solib-svr4.h"
48#include "ppc-tdep.h"
49
50#include "gdb_assert.h"
51#include "dis-asm.h"
52
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54   structure on the stack and then calls the signal handler, passing
55   the address of the sigcontext in an argument register. Usually
56   the signal handler doesn't save this register, so we have to
57   access the sigcontext structure via an offset from the signal handler
58   frame.
59   The following constants were determined by experimentation on AIX 3.2.  */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67  {
68    int offset;			/* total size of frame --- the distance
69				   by which we decrement sp to allocate
70				   the frame */
71    int saved_gpr;		/* smallest # of saved gpr */
72    int saved_fpr;		/* smallest # of saved fpr */
73    int saved_vr;               /* smallest # of saved vr */
74    int saved_ev;               /* smallest # of saved ev */
75    int alloca_reg;		/* alloca register number (frame ptr) */
76    char frameless;		/* true if frameless functions. */
77    char nosavedpc;		/* true if pc not saved. */
78    int gpr_offset;		/* offset of saved gprs from prev sp */
79    int fpr_offset;		/* offset of saved fprs from prev sp */
80    int vr_offset;              /* offset of saved vrs from prev sp */
81    int ev_offset;              /* offset of saved evs from prev sp */
82    int lr_offset;		/* offset of saved lr */
83    int cr_offset;		/* offset of saved cr */
84    int vrsave_offset;          /* offset of saved vrsave register */
85  };
86
87/* Description of a single register. */
88
89struct reg
90  {
91    char *name;			/* name of register */
92    unsigned char sz32;		/* size on 32-bit arch, 0 if nonextant */
93    unsigned char sz64;		/* size on 64-bit arch, 0 if nonextant */
94    unsigned char fpr;		/* whether register is floating-point */
95    unsigned char pseudo;       /* whether register is pseudo */
96  };
97
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
100static struct sstep_breaks
101  {
102    /* Address, or 0 if this is not in use.  */
103    CORE_ADDR address;
104    /* Shadow contents.  */
105    char data[4];
106  }
107stepBreaks[2];
108
109/* Hook for determining the TOC address when calling functions in the
110   inferior under AIX. The initialization code in rs6000-nat.c sets
111   this hook to point to find_toc_address.  */
112
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116   rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120/* Static function prototypes */
121
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123			      CORE_ADDR safety);
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125                                struct rs6000_framedata *);
126static void frame_get_saved_regs (struct frame_info * fi,
127				  struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130/* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
131int
132altivec_register_p (int regno)
133{
134  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135  if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136    return 0;
137  else
138    return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
141/* Use the architectures FP registers?  */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145  const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146  if (info->arch == bfd_arch_powerpc)
147    return (info->mach != bfd_mach_ppc_e500);
148  if (info->arch == bfd_arch_rs6000)
149    return 1;
150  return 0;
151}
152
153/* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158  return read_memory_unsigned_integer (memaddr, len);
159}
160
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
163{
164  struct rs6000_framedata frame;
165  pc = skip_prologue (pc, 0, &frame);
166  return pc;
167}
168
169
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174  /* Functions calling alloca() change the value of the stack
175     pointer. We need to use initial stack pointer (which is saved in
176     r31 by gcc) in such cases. If a compiler emits traceback table,
177     then we should use the alloca register specified in traceback
178     table. FIXME. */
179  CORE_ADDR initial_sp;		/* initial stack pointer. */
180};
181
182void
183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184{
185  struct frame_extra_info *extra_info =
186    frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187  extra_info->initial_sp = 0;
188  if (get_next_frame (fi) != NULL
189      && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190    /* We're in get_prev_frame */
191    /* and this is a special signal frame.  */
192    /* (fi->pc will be some low address in the kernel, */
193    /*  to which the signal handler returns).  */
194    deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195}
196
197/* Put here the code to store, into a struct frame_saved_regs,
198   the addresses of the saved registers of frame described by FRAME_INFO.
199   This includes special registers such as pc and fp saved in special
200   ways in the stack frame.  sp is even more special:
201   the address we return for it IS the sp for the next frame.  */
202
203/* In this implementation for RS/6000, we do *not* save sp. I am
204   not sure if it will be needed. The following function takes care of gpr's
205   and fpr's only. */
206
207void
208rs6000_frame_init_saved_regs (struct frame_info *fi)
209{
210  frame_get_saved_regs (fi, NULL);
211}
212
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
215{
216  struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217  if (extra_info->initial_sp != 0)
218    return extra_info->initial_sp;
219  else
220    return frame_initial_stack_address (fi);
221}
222
223/* Immediately after a function call, return the saved pc.
224   Can't go through the frames for this because on some machines
225   the new frame is not set up until the new function executes
226   some instructions.  */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
231  return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232}
233
234/* Get the ith function argument for the current function.  */
235static CORE_ADDR
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237			       struct type *type)
238{
239  CORE_ADDR addr;
240  get_frame_register (frame, 3 + argi, &addr);
241  return addr;
242}
243
244/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
245
246static CORE_ADDR
247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248{
249  CORE_ADDR dest;
250  int immediate;
251  int absolute;
252  int ext_op;
253
254  absolute = (int) ((instr >> 1) & 1);
255
256  switch (opcode)
257    {
258    case 18:
259      immediate = ((instr & ~3) << 6) >> 6;	/* br unconditional */
260      if (absolute)
261	dest = immediate;
262      else
263	dest = pc + immediate;
264      break;
265
266    case 16:
267      immediate = ((instr & ~3) << 16) >> 16;	/* br conditional */
268      if (absolute)
269	dest = immediate;
270      else
271	dest = pc + immediate;
272      break;
273
274    case 19:
275      ext_op = (instr >> 1) & 0x3ff;
276
277      if (ext_op == 16)		/* br conditional register */
278	{
279          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281	  /* If we are about to return from a signal handler, dest is
282	     something like 0x3c90.  The current frame is a signal handler
283	     caller frame, upon completion of the sigreturn system call
284	     execution will return to the saved PC in the frame.  */
285	  if (dest < TEXT_SEGMENT_BASE)
286	    {
287	      struct frame_info *fi;
288
289	      fi = get_current_frame ();
290	      if (fi != NULL)
291		dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292					 gdbarch_tdep (current_gdbarch)->wordsize);
293	    }
294	}
295
296      else if (ext_op == 528)	/* br cond to count reg */
297	{
298          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300	  /* If we are about to execute a system call, dest is something
301	     like 0x22fc or 0x3b00.  Upon completion the system call
302	     will return to the address in the link register.  */
303	  if (dest < TEXT_SEGMENT_BASE)
304            dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305	}
306      else
307	return -1;
308      break;
309
310    default:
311      return -1;
312    }
313  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction.  */
318
319const static unsigned char *
320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321{
322  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324  *bp_size = 4;
325  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326    return big_breakpoint;
327  else
328    return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
335rs6000_software_single_step (enum target_signal signal,
336			     int insert_breakpoints_p)
337{
338  CORE_ADDR dummy;
339  int breakp_sz;
340  const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341  int ii, insn;
342  CORE_ADDR loc;
343  CORE_ADDR breaks[2];
344  int opcode;
345
346  if (insert_breakpoints_p)
347    {
348
349      loc = read_pc ();
350
351      insn = read_memory_integer (loc, 4);
352
353      breaks[0] = loc + breakp_sz;
354      opcode = insn >> 26;
355      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357      /* Don't put two breakpoints on the same address. */
358      if (breaks[1] == breaks[0])
359	breaks[1] = -1;
360
361      stepBreaks[1].address = 0;
362
363      for (ii = 0; ii < 2; ++ii)
364	{
365
366	  /* ignore invalid breakpoint. */
367	  if (breaks[ii] == -1)
368	    continue;
369	  target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370	  stepBreaks[ii].address = breaks[ii];
371	}
372
373    }
374  else
375    {
376
377      /* remove step breakpoints. */
378      for (ii = 0; ii < 2; ++ii)
379	if (stepBreaks[ii].address != 0)
380	  target_remove_breakpoint (stepBreaks[ii].address,
381				    stepBreaks[ii].data);
382    }
383  errno = 0;			/* FIXME, don't ignore errors! */
384  /* What errors?  {read,write}_memory call error().  */
385}
386
387
388/* return pc value after skipping a function prologue and also return
389   information about a function frame.
390
391   in struct rs6000_framedata fdata:
392   - frameless is TRUE, if function does not have a frame.
393   - nosavedpc is TRUE, if function does not save %pc value in its frame.
394   - offset is the initial size of this stack frame --- the amount by
395   which we decrement the sp to allocate the frame.
396   - saved_gpr is the number of the first saved gpr.
397   - saved_fpr is the number of the first saved fpr.
398   - saved_vr is the number of the first saved vr.
399   - saved_ev is the number of the first saved ev.
400   - alloca_reg is the number of the register used for alloca() handling.
401   Otherwise -1.
402   - gpr_offset is the offset of the first saved gpr from the previous frame.
403   - fpr_offset is the offset of the first saved fpr from the previous frame.
404   - vr_offset is the offset of the first saved vr from the previous frame.
405   - ev_offset is the offset of the first saved ev from the previous frame.
406   - lr_offset is the offset of the saved lr
407   - cr_offset is the offset of the saved cr
408   - vrsave_offset is the offset of the saved vrsave register
409 */
410
411#define SIGNED_SHORT(x) 						\
412  ((sizeof (short) == 2)						\
413   ? ((int)(short)(x))							\
414   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418/* Limit the number of skipped non-prologue instructions, as the examining
419   of the prologue is expensive.  */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423   LIM_PC which is the (sloppy) limit to which to scan when looking
424   for a prologue, attempt to further refine this limit by using
425   the line data in the symbol table.  If successful, a better guess
426   on where the prologue ends is returned, otherwise the previous
427   value of lim_pc is returned.  */
428
429/* FIXME: cagney/2004-02-14: This function and logic have largely been
430   superseded by skip_prologue_using_sal.  */
431
432static CORE_ADDR
433refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
434{
435  struct symtab_and_line prologue_sal;
436
437  prologue_sal = find_pc_line (pc, 0);
438  if (prologue_sal.line != 0)
439    {
440      int i;
441      CORE_ADDR addr = prologue_sal.end;
442
443      /* Handle the case in which compiler's optimizer/scheduler
444         has moved instructions into the prologue.  We scan ahead
445	 in the function looking for address ranges whose corresponding
446	 line number is less than or equal to the first one that we
447	 found for the function.  (It can be less than when the
448	 scheduler puts a body instruction before the first prologue
449	 instruction.)  */
450      for (i = 2 * max_skip_non_prologue_insns;
451           i > 0 && (lim_pc == 0 || addr < lim_pc);
452	   i--)
453        {
454	  struct symtab_and_line sal;
455
456	  sal = find_pc_line (addr, 0);
457	  if (sal.line == 0)
458	    break;
459	  if (sal.line <= prologue_sal.line
460	      && sal.symtab == prologue_sal.symtab)
461	    {
462	      prologue_sal = sal;
463	    }
464	  addr = sal.end;
465	}
466
467      if (lim_pc == 0 || prologue_sal.end < lim_pc)
468	lim_pc = prologue_sal.end;
469    }
470  return lim_pc;
471}
472
473
474static CORE_ADDR
475skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
476{
477  CORE_ADDR orig_pc = pc;
478  CORE_ADDR last_prologue_pc = pc;
479  CORE_ADDR li_found_pc = 0;
480  char buf[4];
481  unsigned long op;
482  long offset = 0;
483  long vr_saved_offset = 0;
484  int lr_reg = -1;
485  int cr_reg = -1;
486  int vr_reg = -1;
487  int ev_reg = -1;
488  long ev_offset = 0;
489  int vrsave_reg = -1;
490  int reg;
491  int framep = 0;
492  int minimal_toc_loaded = 0;
493  int prev_insn_was_prologue_insn = 1;
494  int num_skip_non_prologue_insns = 0;
495  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
496  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
497
498  /* Attempt to find the end of the prologue when no limit is specified.
499     Note that refine_prologue_limit() has been written so that it may
500     be used to "refine" the limits of non-zero PC values too, but this
501     is only safe if we 1) trust the line information provided by the
502     compiler and 2) iterate enough to actually find the end of the
503     prologue.
504
505     It may become a good idea at some point (for both performance and
506     accuracy) to unconditionally call refine_prologue_limit().  But,
507     until we can make a clear determination that this is beneficial,
508     we'll play it safe and only use it to obtain a limit when none
509     has been specified.  */
510  if (lim_pc == 0)
511    lim_pc = refine_prologue_limit (pc, lim_pc);
512
513  memset (fdata, 0, sizeof (struct rs6000_framedata));
514  fdata->saved_gpr = -1;
515  fdata->saved_fpr = -1;
516  fdata->saved_vr = -1;
517  fdata->saved_ev = -1;
518  fdata->alloca_reg = -1;
519  fdata->frameless = 1;
520  fdata->nosavedpc = 1;
521
522  for (;; pc += 4)
523    {
524      /* Sometimes it isn't clear if an instruction is a prologue
525         instruction or not.  When we encounter one of these ambiguous
526	 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
527	 Otherwise, we'll assume that it really is a prologue instruction. */
528      if (prev_insn_was_prologue_insn)
529	last_prologue_pc = pc;
530
531      /* Stop scanning if we've hit the limit.  */
532      if (lim_pc != 0 && pc >= lim_pc)
533	break;
534
535      prev_insn_was_prologue_insn = 1;
536
537      /* Fetch the instruction and convert it to an integer.  */
538      if (target_read_memory (pc, buf, 4))
539	break;
540      op = extract_signed_integer (buf, 4);
541
542      if ((op & 0xfc1fffff) == 0x7c0802a6)
543	{			/* mflr Rx */
544	  lr_reg = (op & 0x03e00000);
545	  continue;
546
547	}
548      else if ((op & 0xfc1fffff) == 0x7c000026)
549	{			/* mfcr Rx */
550	  cr_reg = (op & 0x03e00000);
551	  continue;
552
553	}
554      else if ((op & 0xfc1f0000) == 0xd8010000)
555	{			/* stfd Rx,NUM(r1) */
556	  reg = GET_SRC_REG (op);
557	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
558	    {
559	      fdata->saved_fpr = reg;
560	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
561	    }
562	  continue;
563
564	}
565      else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
566	       (((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
567		 (op & 0xfc1f0003) == 0xf8010000) &&	/* std rx,NUM(r1) */
568		(op & 0x03e00000) >= 0x01a00000))	/* rx >= r13 */
569	{
570
571	  reg = GET_SRC_REG (op);
572	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
573	    {
574	      fdata->saved_gpr = reg;
575	      if ((op & 0xfc1f0003) == 0xf8010000)
576		op &= ~3UL;
577	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
578	    }
579	  continue;
580
581	}
582      else if ((op & 0xffff0000) == 0x60000000)
583        {
584	  /* nop */
585	  /* Allow nops in the prologue, but do not consider them to
586	     be part of the prologue unless followed by other prologue
587	     instructions. */
588	  prev_insn_was_prologue_insn = 0;
589	  continue;
590
591	}
592      else if ((op & 0xffff0000) == 0x3c000000)
593	{			/* addis 0,0,NUM, used
594				   for >= 32k frames */
595	  fdata->offset = (op & 0x0000ffff) << 16;
596	  fdata->frameless = 0;
597	  continue;
598
599	}
600      else if ((op & 0xffff0000) == 0x60000000)
601	{			/* ori 0,0,NUM, 2nd ha
602				   lf of >= 32k frames */
603	  fdata->offset |= (op & 0x0000ffff);
604	  fdata->frameless = 0;
605	  continue;
606
607	}
608      else if (lr_reg != -1 &&
609	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
610	       (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
611		/* stw Rx, NUM(r1) */
612		((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
613		/* stwu Rx, NUM(r1) */
614		((op & 0xffff0000) == (lr_reg | 0x94010000))))
615	{	/* where Rx == lr */
616	  fdata->lr_offset = offset;
617	  fdata->nosavedpc = 0;
618	  lr_reg = 0;
619	  if ((op & 0xfc000003) == 0xf8000000 ||	/* std */
620	      (op & 0xfc000000) == 0x90000000)		/* stw */
621	    {
622	      /* Does not update r1, so add displacement to lr_offset.  */
623	      fdata->lr_offset += SIGNED_SHORT (op);
624	    }
625	  continue;
626
627	}
628      else if (cr_reg != -1 &&
629	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
630	       (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
631		/* stw Rx, NUM(r1) */
632		((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
633		/* stwu Rx, NUM(r1) */
634		((op & 0xffff0000) == (cr_reg | 0x94010000))))
635	{	/* where Rx == cr */
636	  fdata->cr_offset = offset;
637	  cr_reg = 0;
638	  if ((op & 0xfc000003) == 0xf8000000 ||
639	      (op & 0xfc000000) == 0x90000000)
640	    {
641	      /* Does not update r1, so add displacement to cr_offset.  */
642	      fdata->cr_offset += SIGNED_SHORT (op);
643	    }
644	  continue;
645
646	}
647      else if (op == 0x48000005)
648	{			/* bl .+4 used in
649				   -mrelocatable */
650	  continue;
651
652	}
653      else if (op == 0x48000004)
654	{			/* b .+4 (xlc) */
655	  break;
656
657	}
658      else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
659						      in V.4 -mminimal-toc */
660	       (op & 0xffff0000) == 0x3bde0000)
661	{			/* addi 30,30,foo@l */
662	  continue;
663
664	}
665      else if ((op & 0xfc000001) == 0x48000001)
666	{			/* bl foo,
667				   to save fprs??? */
668
669	  fdata->frameless = 0;
670	  /* Don't skip over the subroutine call if it is not within
671	     the first three instructions of the prologue.  */
672	  if ((pc - orig_pc) > 8)
673	    break;
674
675	  op = read_memory_integer (pc + 4, 4);
676
677	  /* At this point, make sure this is not a trampoline
678	     function (a function that simply calls another functions,
679	     and nothing else).  If the next is not a nop, this branch
680	     was part of the function prologue. */
681
682	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
683	    break;		/* don't skip over
684				   this branch */
685	  continue;
686
687	}
688      /* update stack pointer */
689      else if ((op & 0xfc1f0000) == 0x94010000)
690	{		/* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
691	  fdata->frameless = 0;
692	  fdata->offset = SIGNED_SHORT (op);
693	  offset = fdata->offset;
694	  continue;
695	}
696      else if ((op & 0xfc1f016a) == 0x7c01016e)
697	{			/* stwux rX,r1,rY */
698	  /* no way to figure out what r1 is going to be */
699	  fdata->frameless = 0;
700	  offset = fdata->offset;
701	  continue;
702	}
703      else if ((op & 0xfc1f0003) == 0xf8010001)
704	{			/* stdu rX,NUM(r1) */
705	  fdata->frameless = 0;
706	  fdata->offset = SIGNED_SHORT (op & ~3UL);
707	  offset = fdata->offset;
708	  continue;
709	}
710      else if ((op & 0xfc1f016a) == 0x7c01016a)
711	{			/* stdux rX,r1,rY */
712	  /* no way to figure out what r1 is going to be */
713	  fdata->frameless = 0;
714	  offset = fdata->offset;
715	  continue;
716	}
717      /* Load up minimal toc pointer */
718      else if (((op >> 22) == 0x20f	||	/* l r31,... or l r30,... */
719	       (op >> 22) == 0x3af)		/* ld r31,... or ld r30,... */
720	       && !minimal_toc_loaded)
721	{
722	  minimal_toc_loaded = 1;
723	  continue;
724
725	  /* move parameters from argument registers to local variable
726             registers */
727 	}
728      else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
729               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
730               (((op >> 21) & 31) <= 10) &&
731               ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
732	{
733	  continue;
734
735	  /* store parameters in stack */
736	}
737      else if ((op & 0xfc1f0003) == 0xf8010000 ||	/* std rx,NUM(r1) */
738	       (op & 0xfc1f0000) == 0xd8010000 ||	/* stfd Rx,NUM(r1) */
739	       (op & 0xfc1f0000) == 0xfc010000)		/* frsp, fp?,NUM(r1) */
740	{
741	  continue;
742
743	  /* store parameters in stack via frame pointer */
744	}
745      else if (framep &&
746	       ((op & 0xfc1f0000) == 0x901f0000 ||	/* st rx,NUM(r1) */
747		(op & 0xfc1f0000) == 0xd81f0000 ||	/* stfd Rx,NUM(r1) */
748		(op & 0xfc1f0000) == 0xfc1f0000))
749	{			/* frsp, fp?,NUM(r1) */
750	  continue;
751
752	  /* Set up frame pointer */
753	}
754      else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
755	       || op == 0x7c3f0b78)
756	{			/* mr r31, r1 */
757	  fdata->frameless = 0;
758	  framep = 1;
759	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
760	  continue;
761
762	  /* Another way to set up the frame pointer.  */
763	}
764      else if ((op & 0xfc1fffff) == 0x38010000)
765	{			/* addi rX, r1, 0x0 */
766	  fdata->frameless = 0;
767	  framep = 1;
768	  fdata->alloca_reg = (tdep->ppc_gp0_regnum
769			       + ((op & ~0x38010000) >> 21));
770	  continue;
771	}
772      /* AltiVec related instructions.  */
773      /* Store the vrsave register (spr 256) in another register for
774	 later manipulation, or load a register into the vrsave
775	 register.  2 instructions are used: mfvrsave and
776	 mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
777	 and mtspr SPR256, Rn.  */
778      /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
779	 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
780      else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
781	{
782          vrsave_reg = GET_SRC_REG (op);
783	  continue;
784	}
785      else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
786        {
787          continue;
788        }
789      /* Store the register where vrsave was saved to onto the stack:
790         rS is the register where vrsave was stored in a previous
791	 instruction.  */
792      /* 100100 sssss 00001 dddddddd dddddddd */
793      else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
794        {
795          if (vrsave_reg == GET_SRC_REG (op))
796	    {
797	      fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
798	      vrsave_reg = -1;
799	    }
800          continue;
801        }
802      /* Compute the new value of vrsave, by modifying the register
803         where vrsave was saved to.  */
804      else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
805	       || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
806	{
807	  continue;
808	}
809      /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
810	 in a pair of insns to save the vector registers on the
811	 stack.  */
812      /* 001110 00000 00000 iiii iiii iiii iiii  */
813      /* 001110 01110 00000 iiii iiii iiii iiii  */
814      else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
815               || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
816	{
817	  li_found_pc = pc;
818	  vr_saved_offset = SIGNED_SHORT (op);
819	}
820      /* Store vector register S at (r31+r0) aligned to 16 bytes.  */
821      /* 011111 sssss 11111 00000 00111001110 */
822      else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
823        {
824	  if (pc == (li_found_pc + 4))
825	    {
826	      vr_reg = GET_SRC_REG (op);
827	      /* If this is the first vector reg to be saved, or if
828		 it has a lower number than others previously seen,
829		 reupdate the frame info.  */
830	      if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
831		{
832		  fdata->saved_vr = vr_reg;
833		  fdata->vr_offset = vr_saved_offset + offset;
834		}
835	      vr_saved_offset = -1;
836	      vr_reg = -1;
837	      li_found_pc = 0;
838	    }
839	}
840      /* End AltiVec related instructions.  */
841
842      /* Start BookE related instructions.  */
843      /* Store gen register S at (r31+uimm).
844         Any register less than r13 is volatile, so we don't care.  */
845      /* 000100 sssss 11111 iiiii 01100100001 */
846      else if (arch_info->mach == bfd_mach_ppc_e500
847	       && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
848	{
849          if ((op & 0x03e00000) >= 0x01a00000)	/* Rs >= r13 */
850	    {
851              unsigned int imm;
852	      ev_reg = GET_SRC_REG (op);
853              imm = (op >> 11) & 0x1f;
854	      ev_offset = imm * 8;
855	      /* If this is the first vector reg to be saved, or if
856		 it has a lower number than others previously seen,
857		 reupdate the frame info.  */
858	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
859		{
860		  fdata->saved_ev = ev_reg;
861		  fdata->ev_offset = ev_offset + offset;
862		}
863	    }
864          continue;
865        }
866      /* Store gen register rS at (r1+rB).  */
867      /* 000100 sssss 00001 bbbbb 01100100000 */
868      else if (arch_info->mach == bfd_mach_ppc_e500
869	       && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
870	{
871          if (pc == (li_found_pc + 4))
872            {
873              ev_reg = GET_SRC_REG (op);
874	      /* If this is the first vector reg to be saved, or if
875                 it has a lower number than others previously seen,
876                 reupdate the frame info.  */
877              /* We know the contents of rB from the previous instruction.  */
878	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
879		{
880                  fdata->saved_ev = ev_reg;
881                  fdata->ev_offset = vr_saved_offset + offset;
882		}
883	      vr_saved_offset = -1;
884	      ev_reg = -1;
885	      li_found_pc = 0;
886            }
887          continue;
888        }
889      /* Store gen register r31 at (rA+uimm).  */
890      /* 000100 11111 aaaaa iiiii 01100100001 */
891      else if (arch_info->mach == bfd_mach_ppc_e500
892	       && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
893        {
894          /* Wwe know that the source register is 31 already, but
895             it can't hurt to compute it.  */
896	  ev_reg = GET_SRC_REG (op);
897          ev_offset = ((op >> 11) & 0x1f) * 8;
898	  /* If this is the first vector reg to be saved, or if
899	     it has a lower number than others previously seen,
900	     reupdate the frame info.  */
901	  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
902	    {
903	      fdata->saved_ev = ev_reg;
904	      fdata->ev_offset = ev_offset + offset;
905	    }
906
907	  continue;
908      	}
909      /* Store gen register S at (r31+r0).
910         Store param on stack when offset from SP bigger than 4 bytes.  */
911      /* 000100 sssss 11111 00000 01100100000 */
912      else if (arch_info->mach == bfd_mach_ppc_e500
913	       && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
914	{
915          if (pc == (li_found_pc + 4))
916            {
917              if ((op & 0x03e00000) >= 0x01a00000)
918		{
919		  ev_reg = GET_SRC_REG (op);
920		  /* If this is the first vector reg to be saved, or if
921		     it has a lower number than others previously seen,
922		     reupdate the frame info.  */
923                  /* We know the contents of r0 from the previous
924                     instruction.  */
925		  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
926		    {
927		      fdata->saved_ev = ev_reg;
928		      fdata->ev_offset = vr_saved_offset + offset;
929		    }
930		  ev_reg = -1;
931		}
932	      vr_saved_offset = -1;
933	      li_found_pc = 0;
934	      continue;
935            }
936	}
937      /* End BookE related instructions.  */
938
939      else
940	{
941	  /* Not a recognized prologue instruction.
942	     Handle optimizer code motions into the prologue by continuing
943	     the search if we have no valid frame yet or if the return
944	     address is not yet saved in the frame.  */
945	  if (fdata->frameless == 0
946	      && (lr_reg == -1 || fdata->nosavedpc == 0))
947	    break;
948
949	  if (op == 0x4e800020		/* blr */
950	      || op == 0x4e800420)	/* bctr */
951	    /* Do not scan past epilogue in frameless functions or
952	       trampolines.  */
953	    break;
954	  if ((op & 0xf4000000) == 0x40000000) /* bxx */
955	    /* Never skip branches.  */
956	    break;
957
958	  if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
959	    /* Do not scan too many insns, scanning insns is expensive with
960	       remote targets.  */
961	    break;
962
963	  /* Continue scanning.  */
964	  prev_insn_was_prologue_insn = 0;
965	  continue;
966	}
967    }
968
969#if 0
970/* I have problems with skipping over __main() that I need to address
971 * sometime. Previously, I used to use misc_function_vector which
972 * didn't work as well as I wanted to be.  -MGO */
973
974  /* If the first thing after skipping a prolog is a branch to a function,
975     this might be a call to an initializer in main(), introduced by gcc2.
976     We'd like to skip over it as well.  Fortunately, xlc does some extra
977     work before calling a function right after a prologue, thus we can
978     single out such gcc2 behaviour.  */
979
980
981  if ((op & 0xfc000001) == 0x48000001)
982    {				/* bl foo, an initializer function? */
983      op = read_memory_integer (pc + 4, 4);
984
985      if (op == 0x4def7b82)
986	{			/* cror 0xf, 0xf, 0xf (nop) */
987
988	  /* Check and see if we are in main.  If so, skip over this
989	     initializer function as well.  */
990
991	  tmp = find_pc_misc_function (pc);
992	  if (tmp >= 0
993	      && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
994	    return pc + 8;
995	}
996    }
997#endif /* 0 */
998
999  fdata->offset = -fdata->offset;
1000  return last_prologue_pc;
1001}
1002
1003
1004/*************************************************************************
1005  Support for creating pushing a dummy frame into the stack, and popping
1006  frames, etc.
1007*************************************************************************/
1008
1009
1010/* Pop the innermost frame, go back to the caller.  */
1011
1012static void
1013rs6000_pop_frame (void)
1014{
1015  CORE_ADDR pc, lr, sp, prev_sp, addr;	/* %pc, %lr, %sp */
1016  struct rs6000_framedata fdata;
1017  struct frame_info *frame = get_current_frame ();
1018  int ii, wordsize;
1019
1020  pc = read_pc ();
1021  sp = get_frame_base (frame);
1022
1023  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1024				   get_frame_base (frame),
1025				   get_frame_base (frame)))
1026    {
1027      generic_pop_dummy_frame ();
1028      flush_cached_frames ();
1029      return;
1030    }
1031
1032  /* Make sure that all registers are valid.  */
1033  deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1034
1035  /* Figure out previous %pc value.  If the function is frameless, it is
1036     still in the link register, otherwise walk the frames and retrieve the
1037     saved %pc value in the previous frame.  */
1038
1039  addr = get_frame_func (frame);
1040  (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1041
1042  wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1043  if (fdata.frameless)
1044    prev_sp = sp;
1045  else
1046    prev_sp = read_memory_addr (sp, wordsize);
1047  if (fdata.lr_offset == 0)
1048     lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1049  else
1050    lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1051
1052  /* reset %pc value. */
1053  write_register (PC_REGNUM, lr);
1054
1055  /* reset register values if any was saved earlier.  */
1056
1057  if (fdata.saved_gpr != -1)
1058    {
1059      addr = prev_sp + fdata.gpr_offset;
1060      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1061	{
1062	  read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1063		       wordsize);
1064	  addr += wordsize;
1065	}
1066    }
1067
1068  if (fdata.saved_fpr != -1)
1069    {
1070      addr = prev_sp + fdata.fpr_offset;
1071      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1072	{
1073	  read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1074	  addr += 8;
1075	}
1076    }
1077
1078  write_register (SP_REGNUM, prev_sp);
1079  target_store_registers (-1);
1080  flush_cached_frames ();
1081}
1082
1083/* All the ABI's require 16 byte alignment.  */
1084static CORE_ADDR
1085rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1086{
1087  return (addr & -16);
1088}
1089
1090/* Pass the arguments in either registers, or in the stack. In RS/6000,
1091   the first eight words of the argument list (that might be less than
1092   eight parameters if some parameters occupy more than one word) are
1093   passed in r3..r10 registers.  float and double parameters are
1094   passed in fpr's, in addition to that.  Rest of the parameters if any
1095   are passed in user stack.  There might be cases in which half of the
1096   parameter is copied into registers, the other half is pushed into
1097   stack.
1098
1099   Stack must be aligned on 64-bit boundaries when synthesizing
1100   function calls.
1101
1102   If the function is returning a structure, then the return address is passed
1103   in r3, then the first 7 words of the parameters can be passed in registers,
1104   starting from r4.  */
1105
1106static CORE_ADDR
1107rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1108			struct regcache *regcache, CORE_ADDR bp_addr,
1109			int nargs, struct value **args, CORE_ADDR sp,
1110			int struct_return, CORE_ADDR struct_addr)
1111{
1112  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1113  int ii;
1114  int len = 0;
1115  int argno;			/* current argument number */
1116  int argbytes;			/* current argument byte */
1117  char tmp_buffer[50];
1118  int f_argno = 0;		/* current floating point argno */
1119  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1120
1121  struct value *arg = 0;
1122  struct type *type;
1123
1124  CORE_ADDR saved_sp;
1125
1126  /* The first eight words of ther arguments are passed in registers.
1127     Copy them appropriately.  */
1128  ii = 0;
1129
1130  /* If the function is returning a `struct', then the first word
1131     (which will be passed in r3) is used for struct return address.
1132     In that case we should advance one word and start from r4
1133     register to copy parameters.  */
1134  if (struct_return)
1135    {
1136      regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1137				   struct_addr);
1138      ii++;
1139    }
1140
1141/*
1142   effectively indirect call... gcc does...
1143
1144   return_val example( float, int);
1145
1146   eabi:
1147   float in fp0, int in r3
1148   offset of stack on overflow 8/16
1149   for varargs, must go by type.
1150   power open:
1151   float in r3&r4, int in r5
1152   offset of stack on overflow different
1153   both:
1154   return in r3 or f0.  If no float, must study how gcc emulates floats;
1155   pay attention to arg promotion.
1156   User may have to cast\args to handle promotion correctly
1157   since gdb won't know if prototype supplied or not.
1158 */
1159
1160  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1161    {
1162      int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1163
1164      arg = args[argno];
1165      type = check_typedef (VALUE_TYPE (arg));
1166      len = TYPE_LENGTH (type);
1167
1168      if (TYPE_CODE (type) == TYPE_CODE_FLT)
1169	{
1170
1171	  /* Floating point arguments are passed in fpr's, as well as gpr's.
1172	     There are 13 fpr's reserved for passing parameters. At this point
1173	     there is no way we would run out of them.  */
1174
1175	  if (len > 8)
1176	    printf_unfiltered (
1177				"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1178
1179	  memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1180		  VALUE_CONTENTS (arg),
1181		  len);
1182	  ++f_argno;
1183	}
1184
1185      if (len > reg_size)
1186	{
1187
1188	  /* Argument takes more than one register.  */
1189	  while (argbytes < len)
1190	    {
1191	      memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1192		      reg_size);
1193	      memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1194		      ((char *) VALUE_CONTENTS (arg)) + argbytes,
1195		      (len - argbytes) > reg_size
1196		        ? reg_size : len - argbytes);
1197	      ++ii, argbytes += reg_size;
1198
1199	      if (ii >= 8)
1200		goto ran_out_of_registers_for_arguments;
1201	    }
1202	  argbytes = 0;
1203	  --ii;
1204	}
1205      else
1206	{
1207	  /* Argument can fit in one register.  No problem.  */
1208	  int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1209	  memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1210	  memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1211	          VALUE_CONTENTS (arg), len);
1212	}
1213      ++argno;
1214    }
1215
1216ran_out_of_registers_for_arguments:
1217
1218  saved_sp = read_sp ();
1219
1220  /* Location for 8 parameters are always reserved.  */
1221  sp -= wordsize * 8;
1222
1223  /* Another six words for back chain, TOC register, link register, etc.  */
1224  sp -= wordsize * 6;
1225
1226  /* Stack pointer must be quadword aligned.  */
1227  sp &= -16;
1228
1229  /* If there are more arguments, allocate space for them in
1230     the stack, then push them starting from the ninth one.  */
1231
1232  if ((argno < nargs) || argbytes)
1233    {
1234      int space = 0, jj;
1235
1236      if (argbytes)
1237	{
1238	  space += ((len - argbytes + 3) & -4);
1239	  jj = argno + 1;
1240	}
1241      else
1242	jj = argno;
1243
1244      for (; jj < nargs; ++jj)
1245	{
1246	  struct value *val = args[jj];
1247	  space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1248	}
1249
1250      /* Add location required for the rest of the parameters.  */
1251      space = (space + 15) & -16;
1252      sp -= space;
1253
1254      /* This is another instance we need to be concerned about
1255         securing our stack space. If we write anything underneath %sp
1256         (r1), we might conflict with the kernel who thinks he is free
1257         to use this area.  So, update %sp first before doing anything
1258         else.  */
1259
1260      regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1261
1262      /* If the last argument copied into the registers didn't fit there
1263         completely, push the rest of it into stack.  */
1264
1265      if (argbytes)
1266	{
1267	  write_memory (sp + 24 + (ii * 4),
1268			((char *) VALUE_CONTENTS (arg)) + argbytes,
1269			len - argbytes);
1270	  ++argno;
1271	  ii += ((len - argbytes + 3) & -4) / 4;
1272	}
1273
1274      /* Push the rest of the arguments into stack.  */
1275      for (; argno < nargs; ++argno)
1276	{
1277
1278	  arg = args[argno];
1279	  type = check_typedef (VALUE_TYPE (arg));
1280	  len = TYPE_LENGTH (type);
1281
1282
1283	  /* Float types should be passed in fpr's, as well as in the
1284             stack.  */
1285	  if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1286	    {
1287
1288	      if (len > 8)
1289		printf_unfiltered (
1290				    "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1291
1292	      memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1293		      VALUE_CONTENTS (arg),
1294		      len);
1295	      ++f_argno;
1296	    }
1297
1298	  write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1299	  ii += ((len + 3) & -4) / 4;
1300	}
1301    }
1302
1303  /* Set the stack pointer.  According to the ABI, the SP is meant to
1304     be set _before_ the corresponding stack space is used.  On AIX,
1305     this even applies when the target has been completely stopped!
1306     Not doing this can lead to conflicts with the kernel which thinks
1307     that it still has control over this not-yet-allocated stack
1308     region.  */
1309  regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1310
1311  /* Set back chain properly.  */
1312  store_unsigned_integer (tmp_buffer, 4, saved_sp);
1313  write_memory (sp, tmp_buffer, 4);
1314
1315  /* Point the inferior function call's return address at the dummy's
1316     breakpoint.  */
1317  regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1318
1319  /* Set the TOC register, get the value from the objfile reader
1320     which, in turn, gets it from the VMAP table.  */
1321  if (rs6000_find_toc_address_hook != NULL)
1322    {
1323      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1324      regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1325    }
1326
1327  target_store_registers (-1);
1328  return sp;
1329}
1330
1331/* PowerOpen always puts structures in memory.  Vectors, which were
1332   added later, do get returned in a register though.  */
1333
1334static int
1335rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1336{
1337  if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1338      && TYPE_VECTOR (value_type))
1339    return 0;
1340  return 1;
1341}
1342
1343static void
1344rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1345{
1346  int offset = 0;
1347  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1348
1349  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1350    {
1351
1352      double dd;
1353      float ff;
1354      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1355         We need to truncate the return value into float size (4 byte) if
1356         necessary.  */
1357
1358      if (TYPE_LENGTH (valtype) > 4)	/* this is a double */
1359	memcpy (valbuf,
1360		&regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1361		TYPE_LENGTH (valtype));
1362      else
1363	{			/* float */
1364	  memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1365	  ff = (float) dd;
1366	  memcpy (valbuf, &ff, sizeof (float));
1367	}
1368    }
1369  else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1370           && TYPE_LENGTH (valtype) == 16
1371           && TYPE_VECTOR (valtype))
1372    {
1373      memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1374	      TYPE_LENGTH (valtype));
1375    }
1376  else
1377    {
1378      /* return value is copied starting from r3. */
1379      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1380	  && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1381	offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1382
1383      memcpy (valbuf,
1384	      regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1385	      TYPE_LENGTH (valtype));
1386    }
1387}
1388
1389/* Return whether handle_inferior_event() should proceed through code
1390   starting at PC in function NAME when stepping.
1391
1392   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1393   handle memory references that are too distant to fit in instructions
1394   generated by the compiler.  For example, if 'foo' in the following
1395   instruction:
1396
1397     lwz r9,foo(r2)
1398
1399   is greater than 32767, the linker might replace the lwz with a branch to
1400   somewhere in @FIX1 that does the load in 2 instructions and then branches
1401   back to where execution should continue.
1402
1403   GDB should silently step over @FIX code, just like AIX dbx does.
1404   Unfortunately, the linker uses the "b" instruction for the branches,
1405   meaning that the link register doesn't get set.  Therefore, GDB's usual
1406   step_over_function() mechanism won't work.
1407
1408   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1409   in handle_inferior_event() to skip past @FIX code.  */
1410
1411int
1412rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1413{
1414  return name && !strncmp (name, "@FIX", 4);
1415}
1416
1417/* Skip code that the user doesn't want to see when stepping:
1418
1419   1. Indirect function calls use a piece of trampoline code to do context
1420   switching, i.e. to set the new TOC table.  Skip such code if we are on
1421   its first instruction (as when we have single-stepped to here).
1422
1423   2. Skip shared library trampoline code (which is different from
1424   indirect function call trampolines).
1425
1426   3. Skip bigtoc fixup code.
1427
1428   Result is desired PC to step until, or NULL if we are not in
1429   code that should be skipped.  */
1430
1431CORE_ADDR
1432rs6000_skip_trampoline_code (CORE_ADDR pc)
1433{
1434  unsigned int ii, op;
1435  int rel;
1436  CORE_ADDR solib_target_pc;
1437  struct minimal_symbol *msymbol;
1438
1439  static unsigned trampoline_code[] =
1440  {
1441    0x800b0000,			/*     l   r0,0x0(r11)  */
1442    0x90410014,			/*    st   r2,0x14(r1)  */
1443    0x7c0903a6,			/* mtctr   r0           */
1444    0x804b0004,			/*     l   r2,0x4(r11)  */
1445    0x816b0008,			/*     l  r11,0x8(r11)  */
1446    0x4e800420,			/*  bctr                */
1447    0x4e800020,			/*    br                */
1448    0
1449  };
1450
1451  /* Check for bigtoc fixup code.  */
1452  msymbol = lookup_minimal_symbol_by_pc (pc);
1453  if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1454    {
1455      /* Double-check that the third instruction from PC is relative "b".  */
1456      op = read_memory_integer (pc + 8, 4);
1457      if ((op & 0xfc000003) == 0x48000000)
1458	{
1459	  /* Extract bits 6-29 as a signed 24-bit relative word address and
1460	     add it to the containing PC.  */
1461	  rel = ((int)(op << 6) >> 6);
1462	  return pc + 8 + rel;
1463	}
1464    }
1465
1466  /* If pc is in a shared library trampoline, return its target.  */
1467  solib_target_pc = find_solib_trampoline_target (pc);
1468  if (solib_target_pc)
1469    return solib_target_pc;
1470
1471  for (ii = 0; trampoline_code[ii]; ++ii)
1472    {
1473      op = read_memory_integer (pc + (ii * 4), 4);
1474      if (op != trampoline_code[ii])
1475	return 0;
1476    }
1477  ii = read_register (11);	/* r11 holds destination addr   */
1478  pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1479  return pc;
1480}
1481
1482/* Determines whether the function FI has a frame on the stack or not.  */
1483
1484int
1485rs6000_frameless_function_invocation (struct frame_info *fi)
1486{
1487  CORE_ADDR func_start;
1488  struct rs6000_framedata fdata;
1489
1490  /* Don't even think about framelessness except on the innermost frame
1491     or if the function was interrupted by a signal.  */
1492  if (get_next_frame (fi) != NULL
1493      && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1494    return 0;
1495
1496  func_start = get_frame_func (fi);
1497
1498  /* If we failed to find the start of the function, it is a mistake
1499     to inspect the instructions.  */
1500
1501  if (!func_start)
1502    {
1503      /* A frame with a zero PC is usually created by dereferencing a NULL
1504         function pointer, normally causing an immediate core dump of the
1505         inferior.  Mark function as frameless, as the inferior has no chance
1506         of setting up a stack frame.  */
1507      if (get_frame_pc (fi) == 0)
1508	return 1;
1509      else
1510	return 0;
1511    }
1512
1513  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1514  return fdata.frameless;
1515}
1516
1517/* Return the PC saved in a frame.  */
1518
1519CORE_ADDR
1520rs6000_frame_saved_pc (struct frame_info *fi)
1521{
1522  CORE_ADDR func_start;
1523  struct rs6000_framedata fdata;
1524  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1525  int wordsize = tdep->wordsize;
1526
1527  if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1528    return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1529			     wordsize);
1530
1531  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1532				   get_frame_base (fi),
1533				   get_frame_base (fi)))
1534    return deprecated_read_register_dummy (get_frame_pc (fi),
1535					   get_frame_base (fi), PC_REGNUM);
1536
1537  func_start = get_frame_func (fi);
1538
1539  /* If we failed to find the start of the function, it is a mistake
1540     to inspect the instructions.  */
1541  if (!func_start)
1542    return 0;
1543
1544  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1545
1546  if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1547    {
1548      if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1549	return read_memory_addr ((get_frame_base (get_next_frame (fi))
1550				  + SIG_FRAME_LR_OFFSET),
1551				 wordsize);
1552      else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1553	/* The link register wasn't saved by this frame and the next
1554           (inner, newer) frame is a dummy.  Get the link register
1555           value by unwinding it from that [dummy] frame.  */
1556	{
1557	  ULONGEST lr;
1558	  frame_unwind_unsigned_register (get_next_frame (fi),
1559					  tdep->ppc_lr_regnum, &lr);
1560	  return lr;
1561	}
1562      else
1563	return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1564				 + tdep->lr_frame_offset,
1565				 wordsize);
1566    }
1567
1568  if (fdata.lr_offset == 0)
1569    return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1570
1571  return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1572			   wordsize);
1573}
1574
1575/* If saved registers of frame FI are not known yet, read and cache them.
1576   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1577   in which case the framedata are read.  */
1578
1579static void
1580frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1581{
1582  CORE_ADDR frame_addr;
1583  struct rs6000_framedata work_fdata;
1584  struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1585  int wordsize = tdep->wordsize;
1586
1587  if (deprecated_get_frame_saved_regs (fi))
1588    return;
1589
1590  if (fdatap == NULL)
1591    {
1592      fdatap = &work_fdata;
1593      (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1594    }
1595
1596  frame_saved_regs_zalloc (fi);
1597
1598  /* If there were any saved registers, figure out parent's stack
1599     pointer.  */
1600  /* The following is true only if the frame doesn't have a call to
1601     alloca(), FIXME.  */
1602
1603  if (fdatap->saved_fpr == 0
1604      && fdatap->saved_gpr == 0
1605      && fdatap->saved_vr == 0
1606      && fdatap->saved_ev == 0
1607      && fdatap->lr_offset == 0
1608      && fdatap->cr_offset == 0
1609      && fdatap->vr_offset == 0
1610      && fdatap->ev_offset == 0)
1611    frame_addr = 0;
1612  else
1613    /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1614       address of the current frame.  Things might be easier if the
1615       ->frame pointed to the outer-most address of the frame.  In the
1616       mean time, the address of the prev frame is used as the base
1617       address of this frame.  */
1618    frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1619
1620  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1621     All fpr's from saved_fpr to fp31 are saved.  */
1622
1623  if (fdatap->saved_fpr >= 0)
1624    {
1625      int i;
1626      CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1627      for (i = fdatap->saved_fpr; i < 32; i++)
1628	{
1629	  deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1630	  fpr_addr += 8;
1631	}
1632    }
1633
1634  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1635     All gpr's from saved_gpr to gpr31 are saved.  */
1636
1637  if (fdatap->saved_gpr >= 0)
1638    {
1639      int i;
1640      CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1641      for (i = fdatap->saved_gpr; i < 32; i++)
1642	{
1643	  deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1644	  gpr_addr += wordsize;
1645	}
1646    }
1647
1648  /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1649     All vr's from saved_vr to vr31 are saved.  */
1650  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1651    {
1652      if (fdatap->saved_vr >= 0)
1653	{
1654	  int i;
1655	  CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1656	  for (i = fdatap->saved_vr; i < 32; i++)
1657	    {
1658	      deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1659	      vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1660	    }
1661	}
1662    }
1663
1664  /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1665	All vr's from saved_ev to ev31 are saved. ?????	*/
1666  if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1667    {
1668      if (fdatap->saved_ev >= 0)
1669	{
1670	  int i;
1671	  CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1672	  for (i = fdatap->saved_ev; i < 32; i++)
1673	    {
1674	      deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1675              deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1676	      ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1677            }
1678	}
1679    }
1680
1681  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1682     the CR.  */
1683  if (fdatap->cr_offset != 0)
1684    deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1685
1686  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1687     the LR.  */
1688  if (fdatap->lr_offset != 0)
1689    deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1690
1691  /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1692     the VRSAVE.  */
1693  if (fdatap->vrsave_offset != 0)
1694    deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1695}
1696
1697/* Return the address of a frame. This is the inital %sp value when the frame
1698   was first allocated.  For functions calling alloca(), it might be saved in
1699   an alloca register.  */
1700
1701static CORE_ADDR
1702frame_initial_stack_address (struct frame_info *fi)
1703{
1704  CORE_ADDR tmpaddr;
1705  struct rs6000_framedata fdata;
1706  struct frame_info *callee_fi;
1707
1708  /* If the initial stack pointer (frame address) of this frame is known,
1709     just return it.  */
1710
1711  if (get_frame_extra_info (fi)->initial_sp)
1712    return get_frame_extra_info (fi)->initial_sp;
1713
1714  /* Find out if this function is using an alloca register.  */
1715
1716  (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1717
1718  /* If saved registers of this frame are not known yet, read and
1719     cache them.  */
1720
1721  if (!deprecated_get_frame_saved_regs (fi))
1722    frame_get_saved_regs (fi, &fdata);
1723
1724  /* If no alloca register used, then fi->frame is the value of the %sp for
1725     this frame, and it is good enough.  */
1726
1727  if (fdata.alloca_reg < 0)
1728    {
1729      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1730      return get_frame_extra_info (fi)->initial_sp;
1731    }
1732
1733  /* There is an alloca register, use its value, in the current frame,
1734     as the initial stack pointer.  */
1735  {
1736    char tmpbuf[MAX_REGISTER_SIZE];
1737    if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1738      {
1739	get_frame_extra_info (fi)->initial_sp
1740	  = extract_unsigned_integer (tmpbuf,
1741				      DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1742      }
1743    else
1744      /* NOTE: cagney/2002-04-17: At present the only time
1745         frame_register_read will fail is when the register isn't
1746         available.  If that does happen, use the frame.  */
1747      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1748  }
1749  return get_frame_extra_info (fi)->initial_sp;
1750}
1751
1752/* Describe the pointer in each stack frame to the previous stack frame
1753   (its caller).  */
1754
1755/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1756   the frame's chain-pointer.  */
1757
1758/* In the case of the RS/6000, the frame's nominal address
1759   is the address of a 4-byte word containing the calling frame's address.  */
1760
1761CORE_ADDR
1762rs6000_frame_chain (struct frame_info *thisframe)
1763{
1764  CORE_ADDR fp, fpp, lr;
1765  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1766
1767  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1768				   get_frame_base (thisframe),
1769				   get_frame_base (thisframe)))
1770    /* A dummy frame always correctly chains back to the previous
1771       frame.  */
1772    return read_memory_addr (get_frame_base (thisframe), wordsize);
1773
1774  if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1775      || get_frame_pc (thisframe) == entry_point_address ())
1776    return 0;
1777
1778  if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1779    fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1780			   wordsize);
1781  else if (get_next_frame (thisframe) != NULL
1782	   && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1783	   && (DEPRECATED_FRAMELESS_FUNCTION_INVOCATION_P ()
1784	       && DEPRECATED_FRAMELESS_FUNCTION_INVOCATION (thisframe)))
1785    /* A frameless function interrupted by a signal did not change the
1786       frame pointer.  */
1787    fp = get_frame_base (thisframe);
1788  else
1789    fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1790  return fp;
1791}
1792
1793/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
1794   isn't available with that word size, return 0.  */
1795
1796static int
1797regsize (const struct reg *reg, int wordsize)
1798{
1799  return wordsize == 8 ? reg->sz64 : reg->sz32;
1800}
1801
1802/* Return the name of register number N, or null if no such register exists
1803   in the current architecture.  */
1804
1805static const char *
1806rs6000_register_name (int n)
1807{
1808  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1809  const struct reg *reg = tdep->regs + n;
1810
1811  if (!regsize (reg, tdep->wordsize))
1812    return NULL;
1813  return reg->name;
1814}
1815
1816/* Index within `registers' of the first byte of the space for
1817   register N.  */
1818
1819static int
1820rs6000_register_byte (int n)
1821{
1822  return gdbarch_tdep (current_gdbarch)->regoff[n];
1823}
1824
1825/* Return the number of bytes of storage in the actual machine representation
1826   for register N if that register is available, else return 0.  */
1827
1828static int
1829rs6000_register_raw_size (int n)
1830{
1831  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1832  const struct reg *reg = tdep->regs + n;
1833  return regsize (reg, tdep->wordsize);
1834}
1835
1836/* Return the GDB type object for the "standard" data type
1837   of data in register N.  */
1838
1839static struct type *
1840rs6000_register_virtual_type (int n)
1841{
1842  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1843  const struct reg *reg = tdep->regs + n;
1844
1845  if (reg->fpr)
1846    return builtin_type_double;
1847  else
1848    {
1849      int size = regsize (reg, tdep->wordsize);
1850      switch (size)
1851	{
1852	case 0:
1853	  return builtin_type_int0;
1854	case 4:
1855	  return builtin_type_int32;
1856	case 8:
1857	  if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1858	    return builtin_type_vec64;
1859	  else
1860	    return builtin_type_int64;
1861	  break;
1862	case 16:
1863	  return builtin_type_vec128;
1864	  break;
1865	default:
1866	  internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1867			  n, size);
1868	}
1869    }
1870}
1871
1872/* Return whether register N requires conversion when moving from raw format
1873   to virtual format.
1874
1875   The register format for RS/6000 floating point registers is always
1876   double, we need a conversion if the memory format is float.  */
1877
1878static int
1879rs6000_register_convertible (int n)
1880{
1881  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1882  return reg->fpr;
1883}
1884
1885/* Convert data from raw format for register N in buffer FROM
1886   to virtual format with type TYPE in buffer TO.  */
1887
1888static void
1889rs6000_register_convert_to_virtual (int n, struct type *type,
1890				    char *from, char *to)
1891{
1892  if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1893    {
1894      double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1895      deprecated_store_floating (to, TYPE_LENGTH (type), val);
1896    }
1897  else
1898    memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1899}
1900
1901/* Convert data from virtual format with type TYPE in buffer FROM
1902   to raw format for register N in buffer TO.  */
1903
1904static void
1905rs6000_register_convert_to_raw (struct type *type, int n,
1906				const char *from, char *to)
1907{
1908  if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1909    {
1910      double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1911      deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1912    }
1913  else
1914    memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1915}
1916
1917static void
1918e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1919			   int reg_nr, void *buffer)
1920{
1921  int base_regnum;
1922  int offset = 0;
1923  char temp_buffer[MAX_REGISTER_SIZE];
1924  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1925
1926  if (reg_nr >= tdep->ppc_gp0_regnum
1927      && reg_nr <= tdep->ppc_gplast_regnum)
1928    {
1929      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1930
1931      /* Build the value in the provided buffer.  */
1932      /* Read the raw register of which this one is the lower portion.  */
1933      regcache_raw_read (regcache, base_regnum, temp_buffer);
1934      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1935	offset = 4;
1936      memcpy ((char *) buffer, temp_buffer + offset, 4);
1937    }
1938}
1939
1940static void
1941e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1942			    int reg_nr, const void *buffer)
1943{
1944  int base_regnum;
1945  int offset = 0;
1946  char temp_buffer[MAX_REGISTER_SIZE];
1947  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1948
1949  if (reg_nr >= tdep->ppc_gp0_regnum
1950      && reg_nr <= tdep->ppc_gplast_regnum)
1951    {
1952      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1953      /* reg_nr is 32 bit here, and base_regnum is 64 bits.  */
1954      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1955	offset = 4;
1956
1957      /* Let's read the value of the base register into a temporary
1958	 buffer, so that overwriting the last four bytes with the new
1959	 value of the pseudo will leave the upper 4 bytes unchanged.  */
1960      regcache_raw_read (regcache, base_regnum, temp_buffer);
1961
1962      /* Write as an 8 byte quantity.  */
1963      memcpy (temp_buffer + offset, (char *) buffer, 4);
1964      regcache_raw_write (regcache, base_regnum, temp_buffer);
1965    }
1966}
1967
1968/* Convert a dwarf2 register number to a gdb REGNUM.  */
1969static int
1970e500_dwarf2_reg_to_regnum (int num)
1971{
1972  int regnum;
1973  if (0 <= num && num <= 31)
1974    return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1975  else
1976    return num;
1977}
1978
1979/* Convert a dbx stab register number (from `r' declaration) to a gdb
1980   REGNUM.  */
1981static int
1982rs6000_stab_reg_to_regnum (int num)
1983{
1984  int regnum;
1985  switch (num)
1986    {
1987    case 64:
1988      regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1989      break;
1990    case 65:
1991      regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1992      break;
1993    case 66:
1994      regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1995      break;
1996    case 76:
1997      regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1998      break;
1999    default:
2000      regnum = num;
2001      break;
2002    }
2003  return regnum;
2004}
2005
2006static void
2007rs6000_store_return_value (struct type *type, char *valbuf)
2008{
2009  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2010
2011  if (TYPE_CODE (type) == TYPE_CODE_FLT)
2012
2013    /* Floating point values are returned starting from FPR1 and up.
2014       Say a double_double_double type could be returned in
2015       FPR1/FPR2/FPR3 triple.  */
2016
2017    deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2018				     TYPE_LENGTH (type));
2019  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2020    {
2021      if (TYPE_LENGTH (type) == 16
2022          && TYPE_VECTOR (type))
2023	deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2024					 valbuf, TYPE_LENGTH (type));
2025    }
2026  else
2027    /* Everything else is returned in GPR3 and up.  */
2028    deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2029				     valbuf, TYPE_LENGTH (type));
2030}
2031
2032/* Extract from an array REGBUF containing the (raw) register state
2033   the address in which a function should return its structure value,
2034   as a CORE_ADDR (or an expression that can be used as one).  */
2035
2036static CORE_ADDR
2037rs6000_extract_struct_value_address (struct regcache *regcache)
2038{
2039  /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2040     function call GDB knows the address of the struct return value
2041     and hence, should not need to call this function.  Unfortunately,
2042     the current call_function_by_hand() code only saves the most
2043     recent struct address leading to occasional calls.  The code
2044     should instead maintain a stack of such addresses (in the dummy
2045     frame object).  */
2046  /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2047     really got no idea where the return value is being stored.  While
2048     r3, on function entry, contained the address it will have since
2049     been reused (scratch) and hence wouldn't be valid */
2050  return 0;
2051}
2052
2053/* Hook called when a new child process is started.  */
2054
2055void
2056rs6000_create_inferior (int pid)
2057{
2058  if (rs6000_set_host_arch_hook)
2059    rs6000_set_host_arch_hook (pid);
2060}
2061
2062/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2063
2064   Usually a function pointer's representation is simply the address
2065   of the function. On the RS/6000 however, a function pointer is
2066   represented by a pointer to a TOC entry. This TOC entry contains
2067   three words, the first word is the address of the function, the
2068   second word is the TOC pointer (r2), and the third word is the
2069   static chain value.  Throughout GDB it is currently assumed that a
2070   function pointer contains the address of the function, which is not
2071   easy to fix.  In addition, the conversion of a function address to
2072   a function pointer would require allocation of a TOC entry in the
2073   inferior's memory space, with all its drawbacks.  To be able to
2074   call C++ virtual methods in the inferior (which are called via
2075   function pointers), find_function_addr uses this function to get the
2076   function address from a function pointer.  */
2077
2078/* Return real function address if ADDR (a function pointer) is in the data
2079   space and is therefore a special function pointer.  */
2080
2081static CORE_ADDR
2082rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2083				   CORE_ADDR addr,
2084				   struct target_ops *targ)
2085{
2086  struct obj_section *s;
2087
2088  s = find_pc_section (addr);
2089  if (s && s->the_bfd_section->flags & SEC_CODE)
2090    return addr;
2091
2092  /* ADDR is in the data space, so it's a special function pointer. */
2093  return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2094}
2095
2096
2097/* Handling the various POWER/PowerPC variants.  */
2098
2099
2100/* The arrays here called registers_MUMBLE hold information about available
2101   registers.
2102
2103   For each family of PPC variants, I've tried to isolate out the
2104   common registers and put them up front, so that as long as you get
2105   the general family right, GDB will correctly identify the registers
2106   common to that family.  The common register sets are:
2107
2108   For the 60x family: hid0 hid1 iabr dabr pir
2109
2110   For the 505 and 860 family: eie eid nri
2111
2112   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2113   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2114   pbu1 pbl2 pbu2
2115
2116   Most of these register groups aren't anything formal.  I arrived at
2117   them by looking at the registers that occurred in more than one
2118   processor.
2119
2120   Note: kevinb/2002-04-30: Support for the fpscr register was added
2121   during April, 2002.  Slot 70 is being used for PowerPC and slot 71
2122   for Power.  For PowerPC, slot 70 was unused and was already in the
2123   PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
2124   slot 70 was being used for "mq", so the next available slot (71)
2125   was chosen.  It would have been nice to be able to make the
2126   register numbers the same across processor cores, but this wasn't
2127   possible without either 1) renumbering some registers for some
2128   processors or 2) assigning fpscr to a really high slot that's
2129   larger than any current register number.  Doing (1) is bad because
2130   existing stubs would break.  Doing (2) is undesirable because it
2131   would introduce a really large gap between fpscr and the rest of
2132   the registers for most processors.  */
2133
2134/* Convenience macros for populating register arrays.  */
2135
2136/* Within another macro, convert S to a string.  */
2137
2138#define STR(s)	#s
2139
2140/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2141   and 64 bits on 64-bit systems.  */
2142#define R(name)		{ STR(name), 4, 8, 0, 0 }
2143
2144/* Return a struct reg defining register NAME that's 32 bits on all
2145   systems.  */
2146#define R4(name)	{ STR(name), 4, 4, 0, 0 }
2147
2148/* Return a struct reg defining register NAME that's 64 bits on all
2149   systems.  */
2150#define R8(name)	{ STR(name), 8, 8, 0, 0 }
2151
2152/* Return a struct reg defining register NAME that's 128 bits on all
2153   systems.  */
2154#define R16(name)       { STR(name), 16, 16, 0, 0 }
2155
2156/* Return a struct reg defining floating-point register NAME.  */
2157#define F(name)		{ STR(name), 8, 8, 1, 0 }
2158
2159/* Return a struct reg defining a pseudo register NAME.  */
2160#define P(name)		{ STR(name), 4, 8, 0, 1}
2161
2162/* Return a struct reg defining register NAME that's 32 bits on 32-bit
2163   systems and that doesn't exist on 64-bit systems.  */
2164#define R32(name)	{ STR(name), 4, 0, 0, 0 }
2165
2166/* Return a struct reg defining register NAME that's 64 bits on 64-bit
2167   systems and that doesn't exist on 32-bit systems.  */
2168#define R64(name)	{ STR(name), 0, 8, 0, 0 }
2169
2170/* Return a struct reg placeholder for a register that doesn't exist.  */
2171#define R0		{ 0, 0, 0, 0, 0 }
2172
2173/* UISA registers common across all architectures, including POWER.  */
2174
2175#define COMMON_UISA_REGS \
2176  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
2177  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2178  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2179  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2180  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
2181  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2182  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2183  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2184  /* 64 */ R(pc), R(ps)
2185
2186#define COMMON_UISA_NOFP_REGS \
2187  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
2188  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2189  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2190  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2191  /* 32 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2192  /* 40 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2193  /* 48 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2194  /* 56 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2195  /* 64 */ R(pc), R(ps)
2196
2197/* UISA-level SPRs for PowerPC.  */
2198#define PPC_UISA_SPRS \
2199  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R4(fpscr)
2200
2201/* UISA-level SPRs for PowerPC without floating point support.  */
2202#define PPC_UISA_NOFP_SPRS \
2203  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
2204
2205/* Segment registers, for PowerPC.  */
2206#define PPC_SEGMENT_REGS \
2207  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
2208  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
2209  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
2210  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2211
2212/* OEA SPRs for PowerPC.  */
2213#define PPC_OEA_SPRS \
2214  /*  87 */ R4(pvr), \
2215  /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2216  /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2217  /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2218  /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2219  /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
2220  /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
2221  /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
2222  /* 116 */ R4(dec),   R(dabr),   R4(ear)
2223
2224/* AltiVec registers.  */
2225#define PPC_ALTIVEC_REGS \
2226  /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
2227  /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2228  /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2229  /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2230  /*151*/R4(vscr), R4(vrsave)
2231
2232/* Vectors of hi-lo general purpose registers.  */
2233#define PPC_EV_REGS \
2234  /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7),  \
2235  /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2236  /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2237  /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2238
2239/* Lower half of the EV registers.  */
2240#define PPC_GPRS_PSEUDO_REGS \
2241  /*  0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7),  \
2242  /*  8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2243  /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2244  /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2245
2246/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
2247   user-level SPR's.  */
2248static const struct reg registers_power[] =
2249{
2250  COMMON_UISA_REGS,
2251  /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2252  /* 71 */ R4(fpscr)
2253};
2254
2255/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
2256   view of the PowerPC.  */
2257static const struct reg registers_powerpc[] =
2258{
2259  COMMON_UISA_REGS,
2260  PPC_UISA_SPRS,
2261  PPC_ALTIVEC_REGS
2262};
2263
2264/* PowerPC UISA - a PPC processor as viewed by user-level
2265   code, but without floating point registers.  */
2266static const struct reg registers_powerpc_nofp[] =
2267{
2268  COMMON_UISA_NOFP_REGS,
2269  PPC_UISA_SPRS
2270};
2271
2272/* IBM PowerPC 403.  */
2273static const struct reg registers_403[] =
2274{
2275  COMMON_UISA_REGS,
2276  PPC_UISA_SPRS,
2277  PPC_SEGMENT_REGS,
2278  PPC_OEA_SPRS,
2279  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
2280  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
2281  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
2282  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
2283  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
2284  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
2285};
2286
2287/* IBM PowerPC 403GC.  */
2288static const struct reg registers_403GC[] =
2289{
2290  COMMON_UISA_REGS,
2291  PPC_UISA_SPRS,
2292  PPC_SEGMENT_REGS,
2293  PPC_OEA_SPRS,
2294  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
2295  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
2296  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
2297  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
2298  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
2299  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
2300  /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
2301  /* 147 */ R(tbhu),   R(tblu)
2302};
2303
2304/* Motorola PowerPC 505.  */
2305static const struct reg registers_505[] =
2306{
2307  COMMON_UISA_REGS,
2308  PPC_UISA_SPRS,
2309  PPC_SEGMENT_REGS,
2310  PPC_OEA_SPRS,
2311  /* 119 */ R(eie), R(eid), R(nri)
2312};
2313
2314/* Motorola PowerPC 860 or 850.  */
2315static const struct reg registers_860[] =
2316{
2317  COMMON_UISA_REGS,
2318  PPC_UISA_SPRS,
2319  PPC_SEGMENT_REGS,
2320  PPC_OEA_SPRS,
2321  /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2322  /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2323  /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2324  /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2325  /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2326  /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2327  /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2328  /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2329  /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2330  /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2331  /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2332  /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2333};
2334
2335/* Motorola PowerPC 601.  Note that the 601 has different register numbers
2336   for reading and writing RTCU and RTCL.  However, how one reads and writes a
2337   register is the stub's problem.  */
2338static const struct reg registers_601[] =
2339{
2340  COMMON_UISA_REGS,
2341  PPC_UISA_SPRS,
2342  PPC_SEGMENT_REGS,
2343  PPC_OEA_SPRS,
2344  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2345  /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2346};
2347
2348/* Motorola PowerPC 602.  */
2349static const struct reg registers_602[] =
2350{
2351  COMMON_UISA_REGS,
2352  PPC_UISA_SPRS,
2353  PPC_SEGMENT_REGS,
2354  PPC_OEA_SPRS,
2355  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2356  /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2357  /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2358};
2359
2360/* Motorola/IBM PowerPC 603 or 603e.  */
2361static const struct reg registers_603[] =
2362{
2363  COMMON_UISA_REGS,
2364  PPC_UISA_SPRS,
2365  PPC_SEGMENT_REGS,
2366  PPC_OEA_SPRS,
2367  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2368  /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2369  /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2370};
2371
2372/* Motorola PowerPC 604 or 604e.  */
2373static const struct reg registers_604[] =
2374{
2375  COMMON_UISA_REGS,
2376  PPC_UISA_SPRS,
2377  PPC_SEGMENT_REGS,
2378  PPC_OEA_SPRS,
2379  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2380  /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2381  /* 127 */ R(sia), R(sda)
2382};
2383
2384/* Motorola/IBM PowerPC 750 or 740.  */
2385static const struct reg registers_750[] =
2386{
2387  COMMON_UISA_REGS,
2388  PPC_UISA_SPRS,
2389  PPC_SEGMENT_REGS,
2390  PPC_OEA_SPRS,
2391  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2392  /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2393  /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2394  /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2395  /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2396  /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2397};
2398
2399
2400/* Motorola PowerPC 7400.  */
2401static const struct reg registers_7400[] =
2402{
2403  /* gpr0-gpr31, fpr0-fpr31 */
2404  COMMON_UISA_REGS,
2405  /* ctr, xre, lr, cr */
2406  PPC_UISA_SPRS,
2407  /* sr0-sr15 */
2408  PPC_SEGMENT_REGS,
2409  PPC_OEA_SPRS,
2410  /* vr0-vr31, vrsave, vscr */
2411  PPC_ALTIVEC_REGS
2412  /* FIXME? Add more registers? */
2413};
2414
2415/* Motorola e500.  */
2416static const struct reg registers_e500[] =
2417{
2418  R(pc), R(ps),
2419  /* cr, lr, ctr, xer, "" */
2420  PPC_UISA_NOFP_SPRS,
2421  /* 7...38 */
2422  PPC_EV_REGS,
2423  R8(acc), R(spefscr),
2424  /* NOTE: Add new registers here the end of the raw register
2425     list and just before the first pseudo register.  */
2426  /* 39...70 */
2427  PPC_GPRS_PSEUDO_REGS
2428};
2429
2430/* Information about a particular processor variant.  */
2431
2432struct variant
2433  {
2434    /* Name of this variant.  */
2435    char *name;
2436
2437    /* English description of the variant.  */
2438    char *description;
2439
2440    /* bfd_arch_info.arch corresponding to variant.  */
2441    enum bfd_architecture arch;
2442
2443    /* bfd_arch_info.mach corresponding to variant.  */
2444    unsigned long mach;
2445
2446    /* Number of real registers.  */
2447    int nregs;
2448
2449    /* Number of pseudo registers.  */
2450    int npregs;
2451
2452    /* Number of total registers (the sum of nregs and npregs).  */
2453    int num_tot_regs;
2454
2455    /* Table of register names; registers[R] is the name of the register
2456       number R.  */
2457    const struct reg *regs;
2458  };
2459
2460#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2461
2462static int
2463num_registers (const struct reg *reg_list, int num_tot_regs)
2464{
2465  int i;
2466  int nregs = 0;
2467
2468  for (i = 0; i < num_tot_regs; i++)
2469    if (!reg_list[i].pseudo)
2470      nregs++;
2471
2472  return nregs;
2473}
2474
2475static int
2476num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2477{
2478  int i;
2479  int npregs = 0;
2480
2481  for (i = 0; i < num_tot_regs; i++)
2482    if (reg_list[i].pseudo)
2483      npregs ++;
2484
2485  return npregs;
2486}
2487
2488/* Information in this table comes from the following web sites:
2489   IBM:       http://www.chips.ibm.com:80/products/embedded/
2490   Motorola:  http://www.mot.com/SPS/PowerPC/
2491
2492   I'm sure I've got some of the variant descriptions not quite right.
2493   Please report any inaccuracies you find to GDB's maintainer.
2494
2495   If you add entries to this table, please be sure to allow the new
2496   value as an argument to the --with-cpu flag, in configure.in.  */
2497
2498static struct variant variants[] =
2499{
2500
2501  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2502   bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2503   registers_powerpc},
2504  {"power", "POWER user-level", bfd_arch_rs6000,
2505   bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2506   registers_power},
2507  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2508   bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2509   registers_403},
2510  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2511   bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2512   registers_601},
2513  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2514   bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2515   registers_602},
2516  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2517   bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2518   registers_603},
2519  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2520   604, -1, -1, tot_num_registers (registers_604),
2521   registers_604},
2522  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2523   bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2524   registers_403GC},
2525  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2526   bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2527   registers_505},
2528  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2529   bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2530   registers_860},
2531  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2532   bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2533   registers_750},
2534  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2535   bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2536   registers_7400},
2537  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2538   bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2539   registers_e500},
2540
2541  /* 64-bit */
2542  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2543   bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2544   registers_powerpc},
2545  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2546   bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2547   registers_powerpc},
2548  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2549   bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2550   registers_powerpc},
2551  {"a35", "PowerPC A35", bfd_arch_powerpc,
2552   bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2553   registers_powerpc},
2554  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2555   bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2556   registers_powerpc},
2557  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2558   bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2559   registers_powerpc},
2560
2561  /* FIXME: I haven't checked the register sets of the following.  */
2562  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2563   bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2564   registers_power},
2565  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2566   bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2567   registers_power},
2568  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2569   bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2570   registers_power},
2571
2572  {0, 0, 0, 0, 0, 0, 0, 0}
2573};
2574
2575/* Initialize the number of registers and pseudo registers in each variant.  */
2576
2577static void
2578init_variants (void)
2579{
2580  struct variant *v;
2581
2582  for (v = variants; v->name; v++)
2583    {
2584      if (v->nregs == -1)
2585        v->nregs = num_registers (v->regs, v->num_tot_regs);
2586      if (v->npregs == -1)
2587        v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2588    }
2589}
2590
2591/* Return the variant corresponding to architecture ARCH and machine number
2592   MACH.  If no such variant exists, return null.  */
2593
2594static const struct variant *
2595find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2596{
2597  const struct variant *v;
2598
2599  for (v = variants; v->name; v++)
2600    if (arch == v->arch && mach == v->mach)
2601      return v;
2602
2603  return NULL;
2604}
2605
2606static int
2607gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2608{
2609  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2610    return print_insn_big_powerpc (memaddr, info);
2611  else
2612    return print_insn_little_powerpc (memaddr, info);
2613}
2614
2615/* Initialize the current architecture based on INFO.  If possible, re-use an
2616   architecture from ARCHES, which is a list of architectures already created
2617   during this debugging session.
2618
2619   Called e.g. at program startup, when reading a core file, and when reading
2620   a binary file.  */
2621
2622static struct gdbarch *
2623rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2624{
2625  struct gdbarch *gdbarch;
2626  struct gdbarch_tdep *tdep;
2627  int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2628  struct reg *regs;
2629  const struct variant *v;
2630  enum bfd_architecture arch;
2631  unsigned long mach;
2632  bfd abfd;
2633  int sysv_abi;
2634  asection *sect;
2635
2636  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2637    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2638
2639  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2640    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2641
2642  sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2643
2644  /* Check word size.  If INFO is from a binary file, infer it from
2645     that, else choose a likely default.  */
2646  if (from_xcoff_exec)
2647    {
2648      if (bfd_xcoff_is_xcoff64 (info.abfd))
2649	wordsize = 8;
2650      else
2651	wordsize = 4;
2652    }
2653  else if (from_elf_exec)
2654    {
2655      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2656	wordsize = 8;
2657      else
2658	wordsize = 4;
2659    }
2660  else
2661    {
2662      if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2663	wordsize = info.bfd_arch_info->bits_per_word /
2664	  info.bfd_arch_info->bits_per_byte;
2665      else
2666	wordsize = 4;
2667    }
2668
2669  /* Find a candidate among extant architectures.  */
2670  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2671       arches != NULL;
2672       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2673    {
2674      /* Word size in the various PowerPC bfd_arch_info structs isn't
2675         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
2676         separate word size check.  */
2677      tdep = gdbarch_tdep (arches->gdbarch);
2678      if (tdep && tdep->wordsize == wordsize)
2679	return arches->gdbarch;
2680    }
2681
2682  /* None found, create a new architecture from INFO, whose bfd_arch_info
2683     validity depends on the source:
2684       - executable		useless
2685       - rs6000_host_arch()	good
2686       - core file		good
2687       - "set arch"		trust blindly
2688       - GDB startup		useless but harmless */
2689
2690  if (!from_xcoff_exec)
2691    {
2692      arch = info.bfd_arch_info->arch;
2693      mach = info.bfd_arch_info->mach;
2694    }
2695  else
2696    {
2697      arch = bfd_arch_powerpc;
2698      bfd_default_set_arch_mach (&abfd, arch, 0);
2699      info.bfd_arch_info = bfd_get_arch_info (&abfd);
2700      mach = info.bfd_arch_info->mach;
2701    }
2702  tdep = xmalloc (sizeof (struct gdbarch_tdep));
2703  tdep->wordsize = wordsize;
2704
2705  /* For e500 executables, the apuinfo section is of help here.  Such
2706     section contains the identifier and revision number of each
2707     Application-specific Processing Unit that is present on the
2708     chip.  The content of the section is determined by the assembler
2709     which looks at each instruction and determines which unit (and
2710     which version of it) can execute it. In our case we just look for
2711     the existance of the section.  */
2712
2713  if (info.abfd)
2714    {
2715      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2716      if (sect)
2717	{
2718	  arch = info.bfd_arch_info->arch;
2719	  mach = bfd_mach_ppc_e500;
2720	  bfd_default_set_arch_mach (&abfd, arch, mach);
2721	  info.bfd_arch_info = bfd_get_arch_info (&abfd);
2722	}
2723    }
2724
2725  gdbarch = gdbarch_alloc (&info, tdep);
2726  power = arch == bfd_arch_rs6000;
2727
2728  /* Initialize the number of real and pseudo registers in each variant.  */
2729  init_variants ();
2730
2731  /* Choose variant.  */
2732  v = find_variant_by_arch (arch, mach);
2733  if (!v)
2734    return NULL;
2735
2736  tdep->regs = v->regs;
2737
2738  tdep->ppc_gp0_regnum = 0;
2739  tdep->ppc_gplast_regnum = 31;
2740  tdep->ppc_toc_regnum = 2;
2741  tdep->ppc_ps_regnum = 65;
2742  tdep->ppc_cr_regnum = 66;
2743  tdep->ppc_lr_regnum = 67;
2744  tdep->ppc_ctr_regnum = 68;
2745  tdep->ppc_xer_regnum = 69;
2746  if (v->mach == bfd_mach_ppc_601)
2747    tdep->ppc_mq_regnum = 124;
2748  else if (power)
2749    tdep->ppc_mq_regnum = 70;
2750  else
2751    tdep->ppc_mq_regnum = -1;
2752  tdep->ppc_fpscr_regnum = power ? 71 : 70;
2753
2754  set_gdbarch_pc_regnum (gdbarch, 64);
2755  set_gdbarch_sp_regnum (gdbarch, 1);
2756  set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2757  if (sysv_abi && wordsize == 8)
2758    set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2759  else if (sysv_abi && wordsize == 4)
2760    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2761  else
2762    {
2763      set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2764      set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2765    }
2766
2767  if (v->arch == bfd_arch_powerpc)
2768    switch (v->mach)
2769      {
2770      case bfd_mach_ppc:
2771	tdep->ppc_vr0_regnum = 71;
2772	tdep->ppc_vrsave_regnum = 104;
2773	tdep->ppc_ev0_regnum = -1;
2774	tdep->ppc_ev31_regnum = -1;
2775	break;
2776      case bfd_mach_ppc_7400:
2777	tdep->ppc_vr0_regnum = 119;
2778	tdep->ppc_vrsave_regnum = 152;
2779	tdep->ppc_ev0_regnum = -1;
2780	tdep->ppc_ev31_regnum = -1;
2781	break;
2782      case bfd_mach_ppc_e500:
2783        tdep->ppc_gp0_regnum = 41;
2784        tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2785        tdep->ppc_toc_regnum = -1;
2786        tdep->ppc_ps_regnum = 1;
2787        tdep->ppc_cr_regnum = 2;
2788        tdep->ppc_lr_regnum = 3;
2789        tdep->ppc_ctr_regnum = 4;
2790        tdep->ppc_xer_regnum = 5;
2791	tdep->ppc_ev0_regnum = 7;
2792	tdep->ppc_ev31_regnum = 38;
2793        set_gdbarch_pc_regnum (gdbarch, 0);
2794        set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2795        set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2796        set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2797        set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2798        set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2799	break;
2800      default:
2801	tdep->ppc_vr0_regnum = -1;
2802	tdep->ppc_vrsave_regnum = -1;
2803	tdep->ppc_ev0_regnum = -1;
2804	tdep->ppc_ev31_regnum = -1;
2805	break;
2806      }
2807
2808  /* Sanity check on registers.  */
2809  gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2810
2811  /* Set lr_frame_offset.  */
2812  if (wordsize == 8)
2813    tdep->lr_frame_offset = 16;
2814  else if (sysv_abi)
2815    tdep->lr_frame_offset = 4;
2816  else
2817    tdep->lr_frame_offset = 8;
2818
2819  /* Calculate byte offsets in raw register array.  */
2820  tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2821  for (i = off = 0; i < v->num_tot_regs; i++)
2822    {
2823      tdep->regoff[i] = off;
2824      off += regsize (v->regs + i, wordsize);
2825    }
2826
2827  /* Select instruction printer.  */
2828  if (arch == power)
2829    set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2830  else
2831    set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2832
2833  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2834
2835  set_gdbarch_num_regs (gdbarch, v->nregs);
2836  set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2837  set_gdbarch_register_name (gdbarch, rs6000_register_name);
2838  set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2839  set_gdbarch_deprecated_register_bytes (gdbarch, off);
2840  set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2841  set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2842  set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2843
2844  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2845  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2846  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2847  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2848  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2849  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2850  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2851  if (sysv_abi)
2852    set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2853  else
2854    set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2855  set_gdbarch_char_signed (gdbarch, 0);
2856
2857  set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2858  if (sysv_abi && wordsize == 8)
2859    /* PPC64 SYSV.  */
2860    set_gdbarch_frame_red_zone_size (gdbarch, 288);
2861  else if (!sysv_abi && wordsize == 4)
2862    /* PowerOpen / AIX 32 bit.  The saved area or red zone consists of
2863       19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2864       Problem is, 220 isn't frame (16 byte) aligned.  Round it up to
2865       224.  */
2866    set_gdbarch_frame_red_zone_size (gdbarch, 224);
2867  set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2868  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2869
2870  set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2871  set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2872  set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2873  set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2874  /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2875     is correct for the SysV ABI when the wordsize is 8, but I'm also
2876     fairly certain that ppc_sysv_abi_push_arguments() will give even
2877     worse results since it only works for 32-bit code.  So, for the moment,
2878     we're better off calling rs6000_push_arguments() since it works for
2879     64-bit code.  At some point in the future, this matter needs to be
2880     revisited.  */
2881  if (sysv_abi && wordsize == 4)
2882    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2883  else if (sysv_abi && wordsize == 8)
2884    set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2885  else
2886    set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2887
2888  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2889  set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2890
2891  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2892  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2893  set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2894
2895  /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2896     for the descriptor and ".FN" for the entry-point -- a user
2897     specifying "break FN" will unexpectedly end up with a breakpoint
2898     on the descriptor and not the function.  This architecture method
2899     transforms any breakpoints on descriptors into breakpoints on the
2900     corresponding entry point.  */
2901  if (sysv_abi && wordsize == 8)
2902    set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2903
2904  /* Not sure on this. FIXMEmgo */
2905  set_gdbarch_frame_args_skip (gdbarch, 8);
2906
2907  if (!sysv_abi)
2908    set_gdbarch_use_struct_convention (gdbarch,
2909				       rs6000_use_struct_convention);
2910
2911  set_gdbarch_deprecated_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
2912  set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2913  set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2914
2915  set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2916  set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2917
2918  if (!sysv_abi)
2919    {
2920      /* Handle RS/6000 function pointers (which are really function
2921         descriptors).  */
2922      set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2923	rs6000_convert_from_func_ptr_addr);
2924    }
2925  set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2926  set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2927  set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2928
2929  /* Helpers for function argument information.  */
2930  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2931
2932  /* Hook in ABI-specific overrides, if they have been registered.  */
2933  gdbarch_init_osabi (info, gdbarch);
2934
2935  if (from_xcoff_exec)
2936    {
2937      /* NOTE: jimix/2003-06-09: This test should really check for
2938	 GDB_OSABI_AIX when that is defined and becomes
2939	 available. (Actually, once things are properly split apart,
2940	 the test goes away.) */
2941       /* RS6000/AIX does not support PT_STEP.  Has to be simulated.  */
2942       set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2943    }
2944
2945  return gdbarch;
2946}
2947
2948static void
2949rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2950{
2951  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2952
2953  if (tdep == NULL)
2954    return;
2955
2956  /* FIXME: Dump gdbarch_tdep.  */
2957}
2958
2959static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2960
2961static void
2962rs6000_info_powerpc_command (char *args, int from_tty)
2963{
2964  help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2965}
2966
2967/* Initialization code.  */
2968
2969extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2970
2971void
2972_initialize_rs6000_tdep (void)
2973{
2974  gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2975  gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2976
2977  /* Add root prefix command for "info powerpc" commands */
2978  add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2979		  "Various POWERPC info specific commands.",
2980		  &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2981}
2982