1/* An expandable hash tables datatype.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3   Free Software Foundation, Inc.
4   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB.  If
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* This package implements basic hash table functionality.  It is possible
23   to search for an entry, create an entry and destroy an entry.
24
25   Elements in the table are generic pointers.
26
27   The size of the table is not fixed; if the occupancy of the table
28   grows too high the hash table will be expanded.
29
30   The abstract data implementation is based on generalized Algorithm D
31   from Knuth's book "The art of computer programming".  Hash table is
32   expanded by creation of new hash table and transferring elements from
33   the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
56
57#include <stdio.h>
58
59#include "libiberty.h"
60#include "ansidecl.h"
61#include "hashtab.h"
62
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
67static unsigned int higher_prime_index (unsigned long);
68static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69static hashval_t htab_mod (hashval_t, htab_t);
70static hashval_t htab_mod_m2 (hashval_t, htab_t);
71static hashval_t hash_pointer (const void *);
72static int eq_pointer (const void *, const void *);
73static int htab_expand (htab_t);
74static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
75
76/* At some point, we could make these be NULL, and modify the
77   hash-table routines to handle NULL specially; that would avoid
78   function-call overhead for the common case of hashing pointers.  */
79htab_hash htab_hash_pointer = hash_pointer;
80htab_eq htab_eq_pointer = eq_pointer;
81
82/* Table of primes and multiplicative inverses.
83
84   Note that these are not minimally reduced inverses.  Unlike when generating
85   code to divide by a constant, we want to be able to use the same algorithm
86   all the time.  All of these inverses (are implied to) have bit 32 set.
87
88   For the record, here's the function that computed the table; it's a
89   vastly simplified version of the function of the same name from gcc.  */
90
91#if 0
92unsigned int
93ceil_log2 (unsigned int x)
94{
95  int i;
96  for (i = 31; i >= 0 ; --i)
97    if (x > (1u << i))
98      return i+1;
99  abort ();
100}
101
102unsigned int
103choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104{
105  unsigned long long mhigh;
106  double nx;
107  int lgup, post_shift;
108  int pow, pow2;
109  int n = 32, precision = 32;
110
111  lgup = ceil_log2 (d);
112  pow = n + lgup;
113  pow2 = n + lgup - precision;
114
115  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116  mhigh = nx / d;
117
118  *shiftp = lgup - 1;
119  *mlp = mhigh;
120  return mhigh >> 32;
121}
122#endif
123
124struct prime_ent
125{
126  hashval_t prime;
127  hashval_t inv;
128  hashval_t inv_m2;	/* inverse of prime-2 */
129  hashval_t shift;
130};
131
132static struct prime_ent const prime_tab[] = {
133  {          7, 0x24924925, 0x9999999b, 2 },
134  {         13, 0x3b13b13c, 0x745d1747, 3 },
135  {         31, 0x08421085, 0x1a7b9612, 4 },
136  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
137  {        127, 0x02040811, 0x0624dd30, 6 },
138  {        251, 0x05197f7e, 0x073260a5, 7 },
139  {        509, 0x01824366, 0x02864fc8, 8 },
140  {       1021, 0x00c0906d, 0x014191f7, 9 },
141  {       2039, 0x0121456f, 0x0161e69e, 10 },
142  {       4093, 0x00300902, 0x00501908, 11 },
143  {       8191, 0x00080041, 0x00180241, 12 },
144  {      16381, 0x000c0091, 0x00140191, 13 },
145  {      32749, 0x002605a5, 0x002a06e6, 14 },
146  {      65521, 0x000f00e2, 0x00110122, 15 },
147  {     131071, 0x00008001, 0x00018003, 16 },
148  {     262139, 0x00014002, 0x0001c004, 17 },
149  {     524287, 0x00002001, 0x00006001, 18 },
150  {    1048573, 0x00003001, 0x00005001, 19 },
151  {    2097143, 0x00004801, 0x00005801, 20 },
152  {    4194301, 0x00000c01, 0x00001401, 21 },
153  {    8388593, 0x00001e01, 0x00002201, 22 },
154  {   16777213, 0x00000301, 0x00000501, 23 },
155  {   33554393, 0x00001381, 0x00001481, 24 },
156  {   67108859, 0x00000141, 0x000001c1, 25 },
157  {  134217689, 0x000004e1, 0x00000521, 26 },
158  {  268435399, 0x00000391, 0x000003b1, 27 },
159  {  536870909, 0x00000019, 0x00000029, 28 },
160  { 1073741789, 0x0000008d, 0x00000095, 29 },
161  { 2147483647, 0x00000003, 0x00000007, 30 },
162  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
163  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164};
165
166/* The following function returns an index into the above table of the
167   nearest prime number which is greater than N, and near a power of two. */
168
169static unsigned int
170higher_prime_index (unsigned long n)
171{
172  unsigned int low = 0;
173  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
174
175  while (low != high)
176    {
177      unsigned int mid = low + (high - low) / 2;
178      if (n > prime_tab[mid].prime)
179	low = mid + 1;
180      else
181	high = mid;
182    }
183
184  /* If we've run out of primes, abort.  */
185  if (n > prime_tab[low].prime)
186    {
187      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188      abort ();
189    }
190
191  return low;
192}
193
194/* Returns a hash code for P.  */
195
196static hashval_t
197hash_pointer (const PTR p)
198{
199  return (hashval_t) ((long)p >> 3);
200}
201
202/* Returns non-zero if P1 and P2 are equal.  */
203
204static int
205eq_pointer (const PTR p1, const PTR p2)
206{
207  return p1 == p2;
208}
209
210
211/* The parens around the function names in the next two definitions
212   are essential in order to prevent macro expansions of the name.
213   The bodies, however, are expanded as expected, so they are not
214   recursive definitions.  */
215
216/* Return the current size of given hash table.  */
217
218#define htab_size(htab)  ((htab)->size)
219
220size_t
221(htab_size) (htab_t htab)
222{
223  return htab_size (htab);
224}
225
226/* Return the current number of elements in given hash table. */
227
228#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
229
230size_t
231(htab_elements) (htab_t htab)
232{
233  return htab_elements (htab);
234}
235
236/* Return X % Y.  */
237
238static inline hashval_t
239htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
240{
241  /* The multiplicative inverses computed above are for 32-bit types, and
242     requires that we be able to compute a highpart multiply.  */
243#ifdef UNSIGNED_64BIT_TYPE
244  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245  if (sizeof (hashval_t) * CHAR_BIT <= 32)
246    {
247      hashval_t t1, t2, t3, t4, q, r;
248
249      t1 = ((ull)x * inv) >> 32;
250      t2 = x - t1;
251      t3 = t2 >> 1;
252      t4 = t1 + t3;
253      q  = t4 >> shift;
254      r  = x - (q * y);
255
256      return r;
257    }
258#endif
259
260  /* Otherwise just use the native division routines.  */
261  return x % y;
262}
263
264/* Compute the primary hash for HASH given HTAB's current size.  */
265
266static inline hashval_t
267htab_mod (hashval_t hash, htab_t htab)
268{
269  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
271}
272
273/* Compute the secondary hash for HASH given HTAB's current size.  */
274
275static inline hashval_t
276htab_mod_m2 (hashval_t hash, htab_t htab)
277{
278  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
280}
281
282/* This function creates table with length slightly longer than given
283   source length.  Created hash table is initiated as empty (all the
284   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
285   created hash table, or NULL if memory allocation fails.  */
286
287htab_t
288htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
290{
291  htab_t result;
292  unsigned int size_prime_index;
293
294  size_prime_index = higher_prime_index (size);
295  size = prime_tab[size_prime_index].prime;
296
297  result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298  if (result == NULL)
299    return NULL;
300  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301  if (result->entries == NULL)
302    {
303      if (free_f != NULL)
304	(*free_f) (result);
305      return NULL;
306    }
307  result->size = size;
308  result->size_prime_index = size_prime_index;
309  result->hash_f = hash_f;
310  result->eq_f = eq_f;
311  result->del_f = del_f;
312  result->alloc_f = alloc_f;
313  result->free_f = free_f;
314  return result;
315}
316
317/* As above, but use the variants of alloc_f and free_f which accept
318   an extra argument.  */
319
320htab_t
321htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322                      htab_del del_f, void *alloc_arg,
323                      htab_alloc_with_arg alloc_f,
324		      htab_free_with_arg free_f)
325{
326  htab_t result;
327  unsigned int size_prime_index;
328
329  size_prime_index = higher_prime_index (size);
330  size = prime_tab[size_prime_index].prime;
331
332  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333  if (result == NULL)
334    return NULL;
335  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336  if (result->entries == NULL)
337    {
338      if (free_f != NULL)
339	(*free_f) (alloc_arg, result);
340      return NULL;
341    }
342  result->size = size;
343  result->size_prime_index = size_prime_index;
344  result->hash_f = hash_f;
345  result->eq_f = eq_f;
346  result->del_f = del_f;
347  result->alloc_arg = alloc_arg;
348  result->alloc_with_arg_f = alloc_f;
349  result->free_with_arg_f = free_f;
350  return result;
351}
352
353/* Update the function pointers and allocation parameter in the htab_t.  */
354
355void
356htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357                       htab_del del_f, PTR alloc_arg,
358                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
359{
360  htab->hash_f = hash_f;
361  htab->eq_f = eq_f;
362  htab->del_f = del_f;
363  htab->alloc_arg = alloc_arg;
364  htab->alloc_with_arg_f = alloc_f;
365  htab->free_with_arg_f = free_f;
366}
367
368/* These functions exist solely for backward compatibility.  */
369
370#undef htab_create
371htab_t
372htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
373{
374  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375}
376
377htab_t
378htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
379{
380  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381}
382
383/* This function frees all memory allocated for given hash table.
384   Naturally the hash table must already exist. */
385
386void
387htab_delete (htab_t htab)
388{
389  size_t size = htab_size (htab);
390  PTR *entries = htab->entries;
391  int i;
392
393  if (htab->del_f)
394    for (i = size - 1; i >= 0; i--)
395      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
396	(*htab->del_f) (entries[i]);
397
398  if (htab->free_f != NULL)
399    {
400      (*htab->free_f) (entries);
401      (*htab->free_f) (htab);
402    }
403  else if (htab->free_with_arg_f != NULL)
404    {
405      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
406      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407    }
408}
409
410/* This function clears all entries in the given hash table.  */
411
412void
413htab_empty (htab_t htab)
414{
415  size_t size = htab_size (htab);
416  PTR *entries = htab->entries;
417  int i;
418
419  if (htab->del_f)
420    for (i = size - 1; i >= 0; i--)
421      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422	(*htab->del_f) (entries[i]);
423
424  /* Instead of clearing megabyte, downsize the table.  */
425  if (size > 1024*1024 / sizeof (PTR))
426    {
427      int nindex = higher_prime_index (1024 / sizeof (PTR));
428      int nsize = prime_tab[nindex].prime;
429
430      if (htab->free_f != NULL)
431	(*htab->free_f) (htab->entries);
432      else if (htab->free_with_arg_f != NULL)
433	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
434      if (htab->alloc_with_arg_f != NULL)
435	htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
436						           sizeof (PTR *));
437      else
438	htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
439     htab->size = nsize;
440     htab->size_prime_index = nindex;
441    }
442  else
443    memset (entries, 0, size * sizeof (PTR));
444  htab->n_deleted = 0;
445  htab->n_elements = 0;
446}
447
448/* Similar to htab_find_slot, but without several unwanted side effects:
449    - Does not call htab->eq_f when it finds an existing entry.
450    - Does not change the count of elements/searches/collisions in the
451      hash table.
452   This function also assumes there are no deleted entries in the table.
453   HASH is the hash value for the element to be inserted.  */
454
455static PTR *
456find_empty_slot_for_expand (htab_t htab, hashval_t hash)
457{
458  hashval_t index = htab_mod (hash, htab);
459  size_t size = htab_size (htab);
460  PTR *slot = htab->entries + index;
461  hashval_t hash2;
462
463  if (*slot == HTAB_EMPTY_ENTRY)
464    return slot;
465  else if (*slot == HTAB_DELETED_ENTRY)
466    abort ();
467
468  hash2 = htab_mod_m2 (hash, htab);
469  for (;;)
470    {
471      index += hash2;
472      if (index >= size)
473	index -= size;
474
475      slot = htab->entries + index;
476      if (*slot == HTAB_EMPTY_ENTRY)
477	return slot;
478      else if (*slot == HTAB_DELETED_ENTRY)
479	abort ();
480    }
481}
482
483/* The following function changes size of memory allocated for the
484   entries and repeatedly inserts the table elements.  The occupancy
485   of the table after the call will be about 50%.  Naturally the hash
486   table must already exist.  Remember also that the place of the
487   table entries is changed.  If memory allocation failures are allowed,
488   this function will return zero, indicating that the table could not be
489   expanded.  If all goes well, it will return a non-zero value.  */
490
491static int
492htab_expand (htab_t htab)
493{
494  PTR *oentries;
495  PTR *olimit;
496  PTR *p;
497  PTR *nentries;
498  size_t nsize, osize, elts;
499  unsigned int oindex, nindex;
500
501  oentries = htab->entries;
502  oindex = htab->size_prime_index;
503  osize = htab->size;
504  olimit = oentries + osize;
505  elts = htab_elements (htab);
506
507  /* Resize only when table after removal of unused elements is either
508     too full or too empty.  */
509  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
510    {
511      nindex = higher_prime_index (elts * 2);
512      nsize = prime_tab[nindex].prime;
513    }
514  else
515    {
516      nindex = oindex;
517      nsize = osize;
518    }
519
520  if (htab->alloc_with_arg_f != NULL)
521    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
522						  sizeof (PTR *));
523  else
524    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
525  if (nentries == NULL)
526    return 0;
527  htab->entries = nentries;
528  htab->size = nsize;
529  htab->size_prime_index = nindex;
530  htab->n_elements -= htab->n_deleted;
531  htab->n_deleted = 0;
532
533  p = oentries;
534  do
535    {
536      PTR x = *p;
537
538      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
539	{
540	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
541
542	  *q = x;
543	}
544
545      p++;
546    }
547  while (p < olimit);
548
549  if (htab->free_f != NULL)
550    (*htab->free_f) (oentries);
551  else if (htab->free_with_arg_f != NULL)
552    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
553  return 1;
554}
555
556/* This function searches for a hash table entry equal to the given
557   element.  It cannot be used to insert or delete an element.  */
558
559PTR
560htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
561{
562  hashval_t index, hash2;
563  size_t size;
564  PTR entry;
565
566  htab->searches++;
567  size = htab_size (htab);
568  index = htab_mod (hash, htab);
569
570  entry = htab->entries[index];
571  if (entry == HTAB_EMPTY_ENTRY
572      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
573    return entry;
574
575  hash2 = htab_mod_m2 (hash, htab);
576  for (;;)
577    {
578      htab->collisions++;
579      index += hash2;
580      if (index >= size)
581	index -= size;
582
583      entry = htab->entries[index];
584      if (entry == HTAB_EMPTY_ENTRY
585	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
586	return entry;
587    }
588}
589
590/* Like htab_find_slot_with_hash, but compute the hash value from the
591   element.  */
592
593PTR
594htab_find (htab_t htab, const PTR element)
595{
596  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
597}
598
599/* This function searches for a hash table slot containing an entry
600   equal to the given element.  To delete an entry, call this with
601   insert=NO_INSERT, then call htab_clear_slot on the slot returned
602   (possibly after doing some checks).  To insert an entry, call this
603   with insert=INSERT, then write the value you want into the returned
604   slot.  When inserting an entry, NULL may be returned if memory
605   allocation fails.  */
606
607PTR *
608htab_find_slot_with_hash (htab_t htab, const PTR element,
609                          hashval_t hash, enum insert_option insert)
610{
611  PTR *first_deleted_slot;
612  hashval_t index, hash2;
613  size_t size;
614  PTR entry;
615
616  size = htab_size (htab);
617  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
618    {
619      if (htab_expand (htab) == 0)
620	return NULL;
621      size = htab_size (htab);
622    }
623
624  index = htab_mod (hash, htab);
625
626  htab->searches++;
627  first_deleted_slot = NULL;
628
629  entry = htab->entries[index];
630  if (entry == HTAB_EMPTY_ENTRY)
631    goto empty_entry;
632  else if (entry == HTAB_DELETED_ENTRY)
633    first_deleted_slot = &htab->entries[index];
634  else if ((*htab->eq_f) (entry, element))
635    return &htab->entries[index];
636
637  hash2 = htab_mod_m2 (hash, htab);
638  for (;;)
639    {
640      htab->collisions++;
641      index += hash2;
642      if (index >= size)
643	index -= size;
644
645      entry = htab->entries[index];
646      if (entry == HTAB_EMPTY_ENTRY)
647	goto empty_entry;
648      else if (entry == HTAB_DELETED_ENTRY)
649	{
650	  if (!first_deleted_slot)
651	    first_deleted_slot = &htab->entries[index];
652	}
653      else if ((*htab->eq_f) (entry, element))
654	return &htab->entries[index];
655    }
656
657 empty_entry:
658  if (insert == NO_INSERT)
659    return NULL;
660
661  if (first_deleted_slot)
662    {
663      htab->n_deleted--;
664      *first_deleted_slot = HTAB_EMPTY_ENTRY;
665      return first_deleted_slot;
666    }
667
668  htab->n_elements++;
669  return &htab->entries[index];
670}
671
672/* Like htab_find_slot_with_hash, but compute the hash value from the
673   element.  */
674
675PTR *
676htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
677{
678  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
679				   insert);
680}
681
682/* This function deletes an element with the given value from hash
683   table (the hash is computed from the element).  If there is no matching
684   element in the hash table, this function does nothing.  */
685
686void
687htab_remove_elt (htab_t htab, PTR element)
688{
689  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
690}
691
692
693/* This function deletes an element with the given value from hash
694   table.  If there is no matching element in the hash table, this
695   function does nothing.  */
696
697void
698htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
699{
700  PTR *slot;
701
702  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
703  if (*slot == HTAB_EMPTY_ENTRY)
704    return;
705
706  if (htab->del_f)
707    (*htab->del_f) (*slot);
708
709  *slot = HTAB_DELETED_ENTRY;
710  htab->n_deleted++;
711}
712
713/* This function clears a specified slot in a hash table.  It is
714   useful when you've already done the lookup and don't want to do it
715   again.  */
716
717void
718htab_clear_slot (htab_t htab, PTR *slot)
719{
720  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
721      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
722    abort ();
723
724  if (htab->del_f)
725    (*htab->del_f) (*slot);
726
727  *slot = HTAB_DELETED_ENTRY;
728  htab->n_deleted++;
729}
730
731/* This function scans over the entire hash table calling
732   CALLBACK for each live entry.  If CALLBACK returns false,
733   the iteration stops.  INFO is passed as CALLBACK's second
734   argument.  */
735
736void
737htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
738{
739  PTR *slot;
740  PTR *limit;
741
742  slot = htab->entries;
743  limit = slot + htab_size (htab);
744
745  do
746    {
747      PTR x = *slot;
748
749      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
750	if (!(*callback) (slot, info))
751	  break;
752    }
753  while (++slot < limit);
754}
755
756/* Like htab_traverse_noresize, but does resize the table when it is
757   too empty to improve effectivity of subsequent calls.  */
758
759void
760htab_traverse (htab_t htab, htab_trav callback, PTR info)
761{
762  if (htab_elements (htab) * 8 < htab_size (htab))
763    htab_expand (htab);
764
765  htab_traverse_noresize (htab, callback, info);
766}
767
768/* Return the fraction of fixed collisions during all work with given
769   hash table. */
770
771double
772htab_collisions (htab_t htab)
773{
774  if (htab->searches == 0)
775    return 0.0;
776
777  return (double) htab->collisions / (double) htab->searches;
778}
779
780/* Hash P as a null-terminated string.
781
782   Copied from gcc/hashtable.c.  Zack had the following to say with respect
783   to applicability, though note that unlike hashtable.c, this hash table
784   implementation re-hashes rather than chain buckets.
785
786   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
787   From: Zack Weinberg <zackw@panix.com>
788   Date: Fri, 17 Aug 2001 02:15:56 -0400
789
790   I got it by extracting all the identifiers from all the source code
791   I had lying around in mid-1999, and testing many recurrences of
792   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
793   prime numbers or the appropriate identity.  This was the best one.
794   I don't remember exactly what constituted "best", except I was
795   looking at bucket-length distributions mostly.
796
797   So it should be very good at hashing identifiers, but might not be
798   as good at arbitrary strings.
799
800   I'll add that it thoroughly trounces the hash functions recommended
801   for this use at http://burtleburtle.net/bob/hash/index.html, both
802   on speed and bucket distribution.  I haven't tried it against the
803   function they just started using for Perl's hashes.  */
804
805hashval_t
806htab_hash_string (const PTR p)
807{
808  const unsigned char *str = (const unsigned char *) p;
809  hashval_t r = 0;
810  unsigned char c;
811
812  while ((c = *str++) != 0)
813    r = r * 67 + c - 113;
814
815  return r;
816}
817
818/* DERIVED FROM:
819--------------------------------------------------------------------
820lookup2.c, by Bob Jenkins, December 1996, Public Domain.
821hash(), hash2(), hash3, and mix() are externally useful functions.
822Routines to test the hash are included if SELF_TEST is defined.
823You can use this free for any purpose.  It has no warranty.
824--------------------------------------------------------------------
825*/
826
827/*
828--------------------------------------------------------------------
829mix -- mix 3 32-bit values reversibly.
830For every delta with one or two bit set, and the deltas of all three
831  high bits or all three low bits, whether the original value of a,b,c
832  is almost all zero or is uniformly distributed,
833* If mix() is run forward or backward, at least 32 bits in a,b,c
834  have at least 1/4 probability of changing.
835* If mix() is run forward, every bit of c will change between 1/3 and
836  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
837mix() was built out of 36 single-cycle latency instructions in a
838  structure that could supported 2x parallelism, like so:
839      a -= b;
840      a -= c; x = (c>>13);
841      b -= c; a ^= x;
842      b -= a; x = (a<<8);
843      c -= a; b ^= x;
844      c -= b; x = (b>>13);
845      ...
846  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
847  of that parallelism.  They've also turned some of those single-cycle
848  latency instructions into multi-cycle latency instructions.  Still,
849  this is the fastest good hash I could find.  There were about 2^^68
850  to choose from.  I only looked at a billion or so.
851--------------------------------------------------------------------
852*/
853/* same, but slower, works on systems that might have 8 byte hashval_t's */
854#define mix(a,b,c) \
855{ \
856  a -= b; a -= c; a ^= (c>>13); \
857  b -= c; b -= a; b ^= (a<< 8); \
858  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
859  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
860  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
861  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
862  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
863  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
864  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
865}
866
867/*
868--------------------------------------------------------------------
869hash() -- hash a variable-length key into a 32-bit value
870  k     : the key (the unaligned variable-length array of bytes)
871  len   : the length of the key, counting by bytes
872  level : can be any 4-byte value
873Returns a 32-bit value.  Every bit of the key affects every bit of
874the return value.  Every 1-bit and 2-bit delta achieves avalanche.
875About 36+6len instructions.
876
877The best hash table sizes are powers of 2.  There is no need to do
878mod a prime (mod is sooo slow!).  If you need less than 32 bits,
879use a bitmask.  For example, if you need only 10 bits, do
880  h = (h & hashmask(10));
881In which case, the hash table should have hashsize(10) elements.
882
883If you are hashing n strings (ub1 **)k, do it like this:
884  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
885
886By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
887code any way you wish, private, educational, or commercial.  It's free.
888
889See http://burtleburtle.net/bob/hash/evahash.html
890Use for hash table lookup, or anything where one collision in 2^32 is
891acceptable.  Do NOT use for cryptographic purposes.
892--------------------------------------------------------------------
893*/
894
895hashval_t
896iterative_hash (const PTR k_in /* the key */,
897                register size_t  length /* the length of the key */,
898                register hashval_t initval /* the previous hash, or
899                                              an arbitrary value */)
900{
901  register const unsigned char *k = (const unsigned char *)k_in;
902  register hashval_t a,b,c,len;
903
904  /* Set up the internal state */
905  len = length;
906  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
907  c = initval;           /* the previous hash value */
908
909  /*---------------------------------------- handle most of the key */
910#ifndef WORDS_BIGENDIAN
911  /* On a little-endian machine, if the data is 4-byte aligned we can hash
912     by word for better speed.  This gives nondeterministic results on
913     big-endian machines.  */
914  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
915    while (len >= 12)    /* aligned */
916      {
917	a += *(hashval_t *)(k+0);
918	b += *(hashval_t *)(k+4);
919	c += *(hashval_t *)(k+8);
920	mix(a,b,c);
921	k += 12; len -= 12;
922      }
923  else /* unaligned */
924#endif
925    while (len >= 12)
926      {
927	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
928	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
929	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
930	mix(a,b,c);
931	k += 12; len -= 12;
932      }
933
934  /*------------------------------------- handle the last 11 bytes */
935  c += length;
936  switch(len)              /* all the case statements fall through */
937    {
938    case 11: c+=((hashval_t)k[10]<<24);
939    case 10: c+=((hashval_t)k[9]<<16);
940    case 9 : c+=((hashval_t)k[8]<<8);
941      /* the first byte of c is reserved for the length */
942    case 8 : b+=((hashval_t)k[7]<<24);
943    case 7 : b+=((hashval_t)k[6]<<16);
944    case 6 : b+=((hashval_t)k[5]<<8);
945    case 5 : b+=k[4];
946    case 4 : a+=((hashval_t)k[3]<<24);
947    case 3 : a+=((hashval_t)k[2]<<16);
948    case 2 : a+=((hashval_t)k[1]<<8);
949    case 1 : a+=k[0];
950      /* case 0: nothing left to add */
951    }
952  mix(a,b,c);
953  /*-------------------------------------------- report the result */
954  return c;
955}
956