1/* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements.  See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License.  You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16/**
17 * @file apr_buckets.h
18 * @brief APR-UTIL Buckets/Bucket Brigades
19 */
20
21#ifndef APR_BUCKETS_H
22#define APR_BUCKETS_H
23
24#if defined(APR_BUCKET_DEBUG) && !defined(APR_RING_DEBUG)
25#define APR_RING_DEBUG
26#endif
27
28#include "apu.h"
29#include "apr_network_io.h"
30#include "apr_file_io.h"
31#include "apr_general.h"
32#include "apr_mmap.h"
33#include "apr_errno.h"
34#include "apr_ring.h"
35#include "apr.h"
36#if APR_HAVE_SYS_UIO_H
37#include <sys/uio.h>	/* for struct iovec */
38#endif
39#if APR_HAVE_STDARG_H
40#include <stdarg.h>
41#endif
42
43#ifdef __cplusplus
44extern "C" {
45#endif
46
47/**
48 * @defgroup APR_Util_Bucket_Brigades Bucket Brigades
49 * @ingroup APR_Util
50 * @{
51 */
52
53/** default bucket buffer size - 8KB minus room for memory allocator headers */
54#define APR_BUCKET_BUFF_SIZE 8000
55
56/** Determines how a bucket or brigade should be read */
57typedef enum {
58    APR_BLOCK_READ,   /**< block until data becomes available */
59    APR_NONBLOCK_READ /**< return immediately if no data is available */
60} apr_read_type_e;
61
62/**
63 * The one-sentence buzzword-laden overview: Bucket brigades represent
64 * a complex data stream that can be passed through a layered IO
65 * system without unnecessary copying. A longer overview follows...
66 *
67 * A bucket brigade is a doubly linked list (ring) of buckets, so we
68 * aren't limited to inserting at the front and removing at the end.
69 * Buckets are only passed around as members of a brigade, although
70 * singleton buckets can occur for short periods of time.
71 *
72 * Buckets are data stores of various types. They can refer to data in
73 * memory, or part of a file or mmap area, or the output of a process,
74 * etc. Buckets also have some type-dependent accessor functions:
75 * read, split, copy, setaside, and destroy.
76 *
77 * read returns the address and size of the data in the bucket. If the
78 * data isn't in memory then it is read in and the bucket changes type
79 * so that it can refer to the new location of the data. If all the
80 * data doesn't fit in the bucket then a new bucket is inserted into
81 * the brigade to hold the rest of it.
82 *
83 * split divides the data in a bucket into two regions. After a split
84 * the original bucket refers to the first part of the data and a new
85 * bucket inserted into the brigade after the original bucket refers
86 * to the second part of the data. Reference counts are maintained as
87 * necessary.
88 *
89 * setaside ensures that the data in the bucket has a long enough
90 * lifetime. Sometimes it is convenient to create a bucket referring
91 * to data on the stack in the expectation that it will be consumed
92 * (output to the network) before the stack is unwound. If that
93 * expectation turns out not to be valid, the setaside function is
94 * called to move the data somewhere safer.
95 *
96 * copy makes a duplicate of the bucket structure as long as it's
97 * possible to have multiple references to a single copy of the
98 * data itself.  Not all bucket types can be copied.
99 *
100 * destroy maintains the reference counts on the resources used by a
101 * bucket and frees them if necessary.
102 *
103 * Note: all of the above functions have wrapper macros (apr_bucket_read(),
104 * apr_bucket_destroy(), etc), and those macros should be used rather
105 * than using the function pointers directly.
106 *
107 * To write a bucket brigade, they are first made into an iovec, so that we
108 * don't write too little data at one time.  Currently we ignore compacting the
109 * buckets into as few buckets as possible, but if we really want good
110 * performance, then we need to compact the buckets before we convert to an
111 * iovec, or possibly while we are converting to an iovec.
112 */
113
114/*
115 * Forward declaration of the main types.
116 */
117
118/** @see apr_bucket_brigade */
119typedef struct apr_bucket_brigade apr_bucket_brigade;
120/** @see apr_bucket */
121typedef struct apr_bucket apr_bucket;
122/** @see apr_bucket_alloc_t */
123typedef struct apr_bucket_alloc_t apr_bucket_alloc_t;
124
125/** @see apr_bucket_type_t */
126typedef struct apr_bucket_type_t apr_bucket_type_t;
127
128/**
129 * Basic bucket type
130 */
131struct apr_bucket_type_t {
132    /**
133     * The name of the bucket type
134     */
135    const char *name;
136    /**
137     * The number of functions this bucket understands.  Can not be less than
138     * five.
139     */
140    int num_func;
141    /**
142     * Whether the bucket contains metadata (ie, information that
143     * describes the regular contents of the brigade).  The metadata
144     * is not returned by apr_bucket_read() and is not indicated by
145     * the ->length of the apr_bucket itself.  In other words, an
146     * empty bucket is safe to arbitrarily remove if and only if it
147     * contains no metadata.  In this sense, "data" is just raw bytes
148     * that are the "content" of the brigade and "metadata" describes
149     * that data but is not a proper part of it.
150     */
151    enum {
152        /** This bucket type represents actual data to send to the client. */
153        APR_BUCKET_DATA = 0,
154        /** This bucket type represents metadata. */
155        APR_BUCKET_METADATA = 1
156    } is_metadata;
157    /**
158     * Free the private data and any resources used by the bucket (if they
159     *  aren't shared with another bucket).  This function is required to be
160     *  implemented for all bucket types, though it might be a no-op on some
161     *  of them (namely ones that never allocate any private data structures).
162     * @param data The private data pointer from the bucket to be destroyed
163     */
164    void (*destroy)(void *data);
165
166    /**
167     * Read the data from the bucket. This is required to be implemented
168     *  for all bucket types.
169     * @param b The bucket to read from
170     * @param str A place to store the data read.  Allocation should only be
171     *            done if absolutely necessary.
172     * @param len The amount of data read.
173     * @param block Should this read function block if there is more data that
174     *              cannot be read immediately.
175     */
176    apr_status_t (*read)(apr_bucket *b, const char **str, apr_size_t *len,
177                         apr_read_type_e block);
178
179    /**
180     * Make it possible to set aside the data for at least as long as the
181     *  given pool. Buckets containing data that could potentially die before
182     *  this pool (e.g. the data resides on the stack, in a child pool of
183     *  the given pool, or in a disjoint pool) must somehow copy, shift, or
184     *  transform the data to have the proper lifetime.
185     * @param e The bucket to convert
186     * @remark Some bucket types contain data that will always outlive the
187     *         bucket itself. For example no data (EOS and FLUSH), or the data
188     *         resides in global, constant memory (IMMORTAL), or the data is on
189     *      the heap (HEAP). For these buckets, apr_bucket_setaside_noop can
190     *      be used.
191     */
192    apr_status_t (*setaside)(apr_bucket *e, apr_pool_t *pool);
193
194    /**
195     * Split one bucket in two at the specified position by duplicating
196     *  the bucket structure (not the data) and modifying any necessary
197     *  start/end/offset information.  If it's not possible to do this
198     *  for the bucket type (perhaps the length of the data is indeterminate,
199     *  as with pipe and socket buckets), then APR_ENOTIMPL is returned.
200     * @param e The bucket to split
201     * @param point The offset of the first byte in the new bucket
202     */
203    apr_status_t (*split)(apr_bucket *e, apr_size_t point);
204
205    /**
206     * Copy the bucket structure (not the data), assuming that this is
207     *  possible for the bucket type. If it's not, APR_ENOTIMPL is returned.
208     * @param e The bucket to copy
209     * @param c Returns a pointer to the new bucket
210     */
211    apr_status_t (*copy)(apr_bucket *e, apr_bucket **c);
212
213};
214
215/**
216 * apr_bucket structures are allocated on the malloc() heap and
217 * their lifetime is controlled by the parent apr_bucket_brigade
218 * structure. Buckets can move from one brigade to another e.g. by
219 * calling APR_BRIGADE_CONCAT(). In general the data in a bucket has
220 * the same lifetime as the bucket and is freed when the bucket is
221 * destroyed; if the data is shared by more than one bucket (e.g.
222 * after a split) the data is freed when the last bucket goes away.
223 */
224struct apr_bucket {
225    /** Links to the rest of the brigade */
226    APR_RING_ENTRY(apr_bucket) link;
227    /** The type of bucket.  */
228    const apr_bucket_type_t *type;
229    /** The length of the data in the bucket.  This could have been implemented
230     *  with a function, but this is an optimization, because the most
231     *  common thing to do will be to get the length.  If the length is unknown,
232     *  the value of this field will be (apr_size_t)(-1).
233     */
234    apr_size_t length;
235    /** The start of the data in the bucket relative to the private base
236     *  pointer.  The vast majority of bucket types allow a fixed block of
237     *  data to be referenced by multiple buckets, each bucket pointing to
238     *  a different segment of the data.  That segment starts at base+start
239     *  and ends at base+start+length.
240     *  If the length == (apr_size_t)(-1), then start == -1.
241     */
242    apr_off_t start;
243    /** type-dependent data hangs off this pointer */
244    void *data;
245    /**
246     * Pointer to function used to free the bucket. This function should
247     * always be defined and it should be consistent with the memory
248     * function used to allocate the bucket. For example, if malloc() is
249     * used to allocate the bucket, this pointer should point to free().
250     * @param e Pointer to the bucket being freed
251     */
252    void (*free)(void *e);
253    /** The freelist from which this bucket was allocated */
254    apr_bucket_alloc_t *list;
255};
256
257/** A list of buckets */
258struct apr_bucket_brigade {
259    /** The pool to associate the brigade with.  The data is not allocated out
260     *  of the pool, but a cleanup is registered with this pool.  If the
261     *  brigade is destroyed by some mechanism other than pool destruction,
262     *  the destroying function is responsible for killing the cleanup.
263     */
264    apr_pool_t *p;
265    /** The buckets in the brigade are on this list. */
266    /*
267     * The apr_bucket_list structure doesn't actually need a name tag
268     * because it has no existence independent of struct apr_bucket_brigade;
269     * the ring macros are designed so that you can leave the name tag
270     * argument empty in this situation but apparently the Windows compiler
271     * doesn't like that.
272     */
273    APR_RING_HEAD(apr_bucket_list, apr_bucket) list;
274    /** The freelist from which this bucket was allocated */
275    apr_bucket_alloc_t *bucket_alloc;
276};
277
278
279/**
280 * Function called when a brigade should be flushed
281 */
282typedef apr_status_t (*apr_brigade_flush)(apr_bucket_brigade *bb, void *ctx);
283
284/*
285 * define APR_BUCKET_DEBUG if you want your brigades to be checked for
286 * validity at every possible instant.  this will slow your code down
287 * substantially but is a very useful debugging tool.
288 */
289#ifdef APR_BUCKET_DEBUG
290
291#define APR_BRIGADE_CHECK_CONSISTENCY(b)				\
292        APR_RING_CHECK_CONSISTENCY(&(b)->list, apr_bucket, link)
293
294#define APR_BUCKET_CHECK_CONSISTENCY(e)					\
295        APR_RING_CHECK_ELEM_CONSISTENCY((e), apr_bucket, link)
296
297#else
298/**
299 * checks the ring pointers in a bucket brigade for consistency.  an
300 * abort() will be triggered if any inconsistencies are found.
301 *   note: this is a no-op unless APR_BUCKET_DEBUG is defined.
302 * @param b The brigade
303 */
304#define APR_BRIGADE_CHECK_CONSISTENCY(b)
305/**
306 * checks the brigade a bucket is in for ring consistency.  an
307 * abort() will be triggered if any inconsistencies are found.
308 *   note: this is a no-op unless APR_BUCKET_DEBUG is defined.
309 * @param e The bucket
310 */
311#define APR_BUCKET_CHECK_CONSISTENCY(e)
312#endif
313
314
315/**
316 * Wrappers around the RING macros to reduce the verbosity of the code
317 * that handles bucket brigades.
318 */
319/**
320 * The magic pointer value that indicates the head of the brigade
321 * @remark This is used to find the beginning and end of the brigade, eg:
322 * <pre>
323 *      while (e != APR_BRIGADE_SENTINEL(b)) {
324 *          ...
325 *          e = APR_BUCKET_NEXT(e);
326 *      }
327 * </pre>
328 * @param  b The brigade
329 * @return The magic pointer value
330 */
331#define APR_BRIGADE_SENTINEL(b)	APR_RING_SENTINEL(&(b)->list, apr_bucket, link)
332
333/**
334 * Determine if the bucket brigade is empty
335 * @param b The brigade to check
336 * @return true or false
337 */
338#define APR_BRIGADE_EMPTY(b)	APR_RING_EMPTY(&(b)->list, apr_bucket, link)
339
340/**
341 * Return the first bucket in a brigade
342 * @param b The brigade to query
343 * @return The first bucket in the brigade
344 */
345#define APR_BRIGADE_FIRST(b)	APR_RING_FIRST(&(b)->list)
346/**
347 * Return the last bucket in a brigade
348 * @param b The brigade to query
349 * @return The last bucket in the brigade
350 */
351#define APR_BRIGADE_LAST(b)	APR_RING_LAST(&(b)->list)
352
353/**
354 * Insert a single bucket at the front of a brigade
355 * @param b The brigade to add to
356 * @param e The bucket to insert
357 */
358#define APR_BRIGADE_INSERT_HEAD(b, e) do {				\
359	apr_bucket *ap__b = (e);                                        \
360	APR_RING_INSERT_HEAD(&(b)->list, ap__b, apr_bucket, link);	\
361        APR_BRIGADE_CHECK_CONSISTENCY((b));				\
362    } while (0)
363
364/**
365 * Insert a single bucket at the end of a brigade
366 * @param b The brigade to add to
367 * @param e The bucket to insert
368 */
369#define APR_BRIGADE_INSERT_TAIL(b, e) do {				\
370	apr_bucket *ap__b = (e);					\
371	APR_RING_INSERT_TAIL(&(b)->list, ap__b, apr_bucket, link);	\
372        APR_BRIGADE_CHECK_CONSISTENCY((b));				\
373    } while (0)
374
375/**
376 * Concatenate brigade b onto the end of brigade a, leaving brigade b empty
377 * @param a The first brigade
378 * @param b The second brigade
379 */
380#define APR_BRIGADE_CONCAT(a, b) do {					\
381        APR_RING_CONCAT(&(a)->list, &(b)->list, apr_bucket, link);	\
382        APR_BRIGADE_CHECK_CONSISTENCY((a));				\
383    } while (0)
384
385/**
386 * Prepend brigade b onto the beginning of brigade a, leaving brigade b empty
387 * @param a The first brigade
388 * @param b The second brigade
389 */
390#define APR_BRIGADE_PREPEND(a, b) do {					\
391        APR_RING_PREPEND(&(a)->list, &(b)->list, apr_bucket, link);	\
392        APR_BRIGADE_CHECK_CONSISTENCY((a));				\
393    } while (0)
394
395/**
396 * Insert a single bucket before a specified bucket
397 * @param a The bucket to insert before
398 * @param b The bucket to insert
399 */
400#define APR_BUCKET_INSERT_BEFORE(a, b) do {				\
401	apr_bucket *ap__a = (a), *ap__b = (b);				\
402	APR_RING_INSERT_BEFORE(ap__a, ap__b, link);			\
403        APR_BUCKET_CHECK_CONSISTENCY(ap__a);				\
404    } while (0)
405
406/**
407 * Insert a single bucket after a specified bucket
408 * @param a The bucket to insert after
409 * @param b The bucket to insert
410 */
411#define APR_BUCKET_INSERT_AFTER(a, b) do {				\
412	apr_bucket *ap__a = (a), *ap__b = (b);				\
413	APR_RING_INSERT_AFTER(ap__a, ap__b, link);			\
414        APR_BUCKET_CHECK_CONSISTENCY(ap__a);				\
415    } while (0)
416
417/**
418 * Get the next bucket in the list
419 * @param e The current bucket
420 * @return The next bucket
421 */
422#define APR_BUCKET_NEXT(e)	APR_RING_NEXT((e), link)
423/**
424 * Get the previous bucket in the list
425 * @param e The current bucket
426 * @return The previous bucket
427 */
428#define APR_BUCKET_PREV(e)	APR_RING_PREV((e), link)
429
430/**
431 * Remove a bucket from its bucket brigade
432 * @param e The bucket to remove
433 */
434#define APR_BUCKET_REMOVE(e)	APR_RING_REMOVE((e), link)
435
436/**
437 * Initialize a new bucket's prev/next pointers
438 * @param e The bucket to initialize
439 */
440#define APR_BUCKET_INIT(e)	APR_RING_ELEM_INIT((e), link)
441
442/**
443 * Determine if a bucket contains metadata.  An empty bucket is
444 * safe to arbitrarily remove if and only if this is false.
445 * @param e The bucket to inspect
446 * @return true or false
447 */
448#define APR_BUCKET_IS_METADATA(e)    ((e)->type->is_metadata)
449
450/**
451 * Determine if a bucket is a FLUSH bucket
452 * @param e The bucket to inspect
453 * @return true or false
454 */
455#define APR_BUCKET_IS_FLUSH(e)       ((e)->type == &apr_bucket_type_flush)
456/**
457 * Determine if a bucket is an EOS bucket
458 * @param e The bucket to inspect
459 * @return true or false
460 */
461#define APR_BUCKET_IS_EOS(e)         ((e)->type == &apr_bucket_type_eos)
462/**
463 * Determine if a bucket is a FILE bucket
464 * @param e The bucket to inspect
465 * @return true or false
466 */
467#define APR_BUCKET_IS_FILE(e)        ((e)->type == &apr_bucket_type_file)
468/**
469 * Determine if a bucket is a PIPE bucket
470 * @param e The bucket to inspect
471 * @return true or false
472 */
473#define APR_BUCKET_IS_PIPE(e)        ((e)->type == &apr_bucket_type_pipe)
474/**
475 * Determine if a bucket is a SOCKET bucket
476 * @param e The bucket to inspect
477 * @return true or false
478 */
479#define APR_BUCKET_IS_SOCKET(e)      ((e)->type == &apr_bucket_type_socket)
480/**
481 * Determine if a bucket is a HEAP bucket
482 * @param e The bucket to inspect
483 * @return true or false
484 */
485#define APR_BUCKET_IS_HEAP(e)        ((e)->type == &apr_bucket_type_heap)
486/**
487 * Determine if a bucket is a TRANSIENT bucket
488 * @param e The bucket to inspect
489 * @return true or false
490 */
491#define APR_BUCKET_IS_TRANSIENT(e)   ((e)->type == &apr_bucket_type_transient)
492/**
493 * Determine if a bucket is a IMMORTAL bucket
494 * @param e The bucket to inspect
495 * @return true or false
496 */
497#define APR_BUCKET_IS_IMMORTAL(e)    ((e)->type == &apr_bucket_type_immortal)
498#if APR_HAS_MMAP
499/**
500 * Determine if a bucket is a MMAP bucket
501 * @param e The bucket to inspect
502 * @return true or false
503 */
504#define APR_BUCKET_IS_MMAP(e)        ((e)->type == &apr_bucket_type_mmap)
505#endif
506/**
507 * Determine if a bucket is a POOL bucket
508 * @param e The bucket to inspect
509 * @return true or false
510 */
511#define APR_BUCKET_IS_POOL(e)        ((e)->type == &apr_bucket_type_pool)
512
513/*
514 * General-purpose reference counting for the various bucket types.
515 *
516 * Any bucket type that keeps track of the resources it uses (i.e.
517 * most of them except for IMMORTAL, TRANSIENT, and EOS) needs to
518 * attach a reference count to the resource so that it can be freed
519 * when the last bucket that uses it goes away. Resource-sharing may
520 * occur because of bucket splits or buckets that refer to globally
521 * cached data. */
522
523/** @see apr_bucket_refcount */
524typedef struct apr_bucket_refcount apr_bucket_refcount;
525/**
526 * The structure used to manage the shared resource must start with an
527 * apr_bucket_refcount which is updated by the general-purpose refcount
528 * code. A pointer to the bucket-type-dependent private data structure
529 * can be cast to a pointer to an apr_bucket_refcount and vice versa.
530 */
531struct apr_bucket_refcount {
532    /** The number of references to this bucket */
533    int          refcount;
534};
535
536/*  *****  Reference-counted bucket types  *****  */
537
538/** @see apr_bucket_heap */
539typedef struct apr_bucket_heap apr_bucket_heap;
540/**
541 * A bucket referring to data allocated off the heap.
542 */
543struct apr_bucket_heap {
544    /** Number of buckets using this memory */
545    apr_bucket_refcount  refcount;
546    /** The start of the data actually allocated.  This should never be
547     * modified, it is only used to free the bucket.
548     */
549    char    *base;
550    /** how much memory was allocated */
551    apr_size_t  alloc_len;
552    /** function to use to delete the data */
553    void (*free_func)(void *data);
554};
555
556/** @see apr_bucket_pool */
557typedef struct apr_bucket_pool apr_bucket_pool;
558/**
559 * A bucket referring to data allocated from a pool
560 */
561struct apr_bucket_pool {
562    /** The pool bucket must be able to be easily morphed to a heap
563     * bucket if the pool gets cleaned up before all references are
564     * destroyed.  This apr_bucket_heap structure is populated automatically
565     * when the pool gets cleaned up, and subsequent calls to pool_read()
566     * will result in the apr_bucket in question being morphed into a
567     * regular heap bucket.  (To avoid having to do many extra refcount
568     * manipulations and b->data manipulations, the apr_bucket_pool
569     * struct actually *contains* the apr_bucket_heap struct that it
570     * will become as its first element; the two share their
571     * apr_bucket_refcount members.)
572     */
573    apr_bucket_heap  heap;
574    /** The block of data actually allocated from the pool.
575     * Segments of this block are referenced by adjusting
576     * the start and length of the apr_bucket accordingly.
577     * This will be NULL after the pool gets cleaned up.
578     */
579    const char *base;
580    /** The pool the data was allocated from.  When the pool
581     * is cleaned up, this gets set to NULL as an indicator
582     * to pool_read() that the data is now on the heap and
583     * so it should morph the bucket into a regular heap
584     * bucket before continuing.
585     */
586    apr_pool_t *pool;
587    /** The freelist this structure was allocated from, which is
588     * needed in the cleanup phase in order to allocate space on the heap
589     */
590    apr_bucket_alloc_t *list;
591};
592
593#if APR_HAS_MMAP
594/** @see apr_bucket_mmap */
595typedef struct apr_bucket_mmap apr_bucket_mmap;
596/**
597 * A bucket referring to an mmap()ed file
598 */
599struct apr_bucket_mmap {
600    /** Number of buckets using this memory */
601    apr_bucket_refcount  refcount;
602    /** The mmap this sub_bucket refers to */
603    apr_mmap_t *mmap;
604};
605#endif
606
607/** @see apr_bucket_file */
608typedef struct apr_bucket_file apr_bucket_file;
609/**
610 * A bucket referring to an file
611 */
612struct apr_bucket_file {
613    /** Number of buckets using this memory */
614    apr_bucket_refcount  refcount;
615    /** The file this bucket refers to */
616    apr_file_t *fd;
617    /** The pool into which any needed structures should
618     *  be created while reading from this file bucket */
619    apr_pool_t *readpool;
620#if APR_HAS_MMAP
621    /** Whether this bucket should be memory-mapped if
622     *  a caller tries to read from it */
623    int can_mmap;
624#endif /* APR_HAS_MMAP */
625};
626
627/** @see apr_bucket_structs */
628typedef union apr_bucket_structs apr_bucket_structs;
629/**
630 * A union of all bucket structures so we know what
631 * the max size is.
632 */
633union apr_bucket_structs {
634    apr_bucket      b;      /**< Bucket */
635    apr_bucket_heap heap;   /**< Heap */
636    apr_bucket_pool pool;   /**< Pool */
637#if APR_HAS_MMAP
638    apr_bucket_mmap mmap;   /**< MMap */
639#endif
640    apr_bucket_file file;   /**< File */
641};
642
643/**
644 * The amount that apr_bucket_alloc() should allocate in the common case.
645 * Note: this is twice as big as apr_bucket_structs to allow breathing
646 * room for third-party bucket types.
647 */
648#define APR_BUCKET_ALLOC_SIZE  APR_ALIGN_DEFAULT(2*sizeof(apr_bucket_structs))
649
650/*  *****  Bucket Brigade Functions  *****  */
651/**
652 * Create a new bucket brigade.  The bucket brigade is originally empty.
653 * @param p The pool to associate with the brigade.  Data is not allocated out
654 *          of the pool, but a cleanup is registered.
655 * @param list The bucket allocator to use
656 * @return The empty bucket brigade
657 */
658APU_DECLARE(apr_bucket_brigade *) apr_brigade_create(apr_pool_t *p,
659                                                     apr_bucket_alloc_t *list);
660
661/**
662 * destroy an entire bucket brigade.  This includes destroying all of the
663 * buckets within the bucket brigade's bucket list.
664 * @param b The bucket brigade to destroy
665 */
666APU_DECLARE(apr_status_t) apr_brigade_destroy(apr_bucket_brigade *b);
667
668/**
669 * empty out an entire bucket brigade.  This includes destroying all of the
670 * buckets within the bucket brigade's bucket list.  This is similar to
671 * apr_brigade_destroy(), except that it does not deregister the brigade's
672 * pool cleanup function.
673 * @param data The bucket brigade to clean up
674 * @remark Generally, you should use apr_brigade_destroy().  This function
675 *         can be useful in situations where you have a single brigade that
676 *         you wish to reuse many times by destroying all of the buckets in
677 *         the brigade and putting new buckets into it later.
678 */
679APU_DECLARE(apr_status_t) apr_brigade_cleanup(void *data);
680
681/**
682 * Move the buckets from the tail end of the existing brigade @a b into
683 * the brigade @a a. If @a a is NULL a new brigade is created. Buckets
684 * from @a e to the last bucket (inclusively) of brigade @a b are moved
685 * from @a b to the returned brigade @a a.
686 *
687 * @param b The brigade to split
688 * @param e The first bucket to move
689 * @param a The brigade which should be used for the result or NULL if
690 *          a new brigade should be created. The brigade @a a will be
691 *          cleared if it is not empty.
692 * @return The brigade supplied in @a a or a new one if @a a was NULL.
693 * @warning Note that this function allocates a new brigade if @a a is
694 * NULL so memory consumption should be carefully considered.
695 */
696APU_DECLARE(apr_bucket_brigade *) apr_brigade_split_ex(apr_bucket_brigade *b,
697                                                       apr_bucket *e,
698                                                       apr_bucket_brigade *a);
699
700/**
701 * Create a new bucket brigade and move the buckets from the tail end
702 * of an existing brigade into the new brigade.  Buckets from
703 * @a e to the last bucket (inclusively) of brigade @a b
704 * are moved from @a b to the returned brigade.
705 * @param b The brigade to split
706 * @param e The first bucket to move
707 * @return The new brigade
708 * @warning Note that this function always allocates a new brigade
709 * so memory consumption should be carefully considered.
710 */
711APU_DECLARE(apr_bucket_brigade *) apr_brigade_split(apr_bucket_brigade *b,
712                                                    apr_bucket *e);
713
714/**
715 * Partition a bucket brigade at a given offset (in bytes from the start of
716 * the brigade).  This is useful whenever a filter wants to use known ranges
717 * of bytes from the brigade; the ranges can even overlap.
718 * @param b The brigade to partition
719 * @param point The offset at which to partition the brigade
720 * @param after_point Returns a pointer to the first bucket after the partition
721 * @return APR_SUCCESS on success, APR_INCOMPLETE if the contents of the
722 * brigade were shorter than @a point, or an error code.
723 * @remark if APR_INCOMPLETE is returned, @a after_point will be set to
724 * the brigade sentinel.
725 */
726APU_DECLARE(apr_status_t) apr_brigade_partition(apr_bucket_brigade *b,
727                                                apr_off_t point,
728                                                apr_bucket **after_point);
729
730/**
731 * Return the total length of the brigade.
732 * @param bb The brigade to compute the length of
733 * @param read_all Read unknown-length buckets to force a size
734 * @param length Returns the length of the brigade (up to the end, or up
735 *               to a bucket read error), or -1 if the brigade has buckets
736 *               of indeterminate length and read_all is 0.
737 */
738APU_DECLARE(apr_status_t) apr_brigade_length(apr_bucket_brigade *bb,
739                                             int read_all,
740                                             apr_off_t *length);
741
742/**
743 * Take a bucket brigade and store the data in a flat char*
744 * @param bb The bucket brigade to create the char* from
745 * @param c The char* to write into
746 * @param len The maximum length of the char array. On return, it is the
747 *            actual length of the char array.
748 */
749APU_DECLARE(apr_status_t) apr_brigade_flatten(apr_bucket_brigade *bb,
750                                              char *c,
751                                              apr_size_t *len);
752
753/**
754 * Creates a pool-allocated string representing a flat bucket brigade
755 * @param bb The bucket brigade to create the char array from
756 * @param c On return, the allocated char array
757 * @param len On return, the length of the char array.
758 * @param pool The pool to allocate the string from.
759 */
760APU_DECLARE(apr_status_t) apr_brigade_pflatten(apr_bucket_brigade *bb,
761                                               char **c,
762                                               apr_size_t *len,
763                                               apr_pool_t *pool);
764
765/**
766 * Split a brigade to represent one LF line.
767 * @param bbOut The bucket brigade that will have the LF line appended to.
768 * @param bbIn The input bucket brigade to search for a LF-line.
769 * @param block The blocking mode to be used to split the line.
770 * @param maxbytes The maximum bytes to read.  If this many bytes are seen
771 *                 without a LF, the brigade will contain a partial line.
772 */
773APU_DECLARE(apr_status_t) apr_brigade_split_line(apr_bucket_brigade *bbOut,
774                                                 apr_bucket_brigade *bbIn,
775                                                 apr_read_type_e block,
776                                                 apr_off_t maxbytes);
777
778/**
779 * Create an iovec of the elements in a bucket_brigade... return number
780 * of elements used.  This is useful for writing to a file or to the
781 * network efficiently.
782 * @param b The bucket brigade to create the iovec from
783 * @param vec The iovec to create
784 * @param nvec The number of elements in the iovec. On return, it is the
785 *             number of iovec elements actually filled out.
786 */
787APU_DECLARE(apr_status_t) apr_brigade_to_iovec(apr_bucket_brigade *b,
788                                               struct iovec *vec, int *nvec);
789
790/**
791 * This function writes a list of strings into a bucket brigade.
792 * @param b The bucket brigade to add to
793 * @param flush The flush function to use if the brigade is full
794 * @param ctx The structure to pass to the flush function
795 * @param va A list of strings to add
796 * @return APR_SUCCESS or error code.
797 */
798APU_DECLARE(apr_status_t) apr_brigade_vputstrs(apr_bucket_brigade *b,
799                                               apr_brigade_flush flush,
800                                               void *ctx,
801                                               va_list va);
802
803/**
804 * This function writes a string into a bucket brigade.
805 *
806 * The apr_brigade_write function attempts to be efficient with the
807 * handling of heap buckets. Regardless of the amount of data stored
808 * inside a heap bucket, heap buckets are a fixed size to promote their
809 * reuse.
810 *
811 * If an attempt is made to write a string to a brigade that already
812 * ends with a heap bucket, this function will attempt to pack the
813 * string into the remaining space in the previous heap bucket, before
814 * allocating a new heap bucket.
815 *
816 * This function always returns APR_SUCCESS, unless a flush function is
817 * passed, in which case the return value of the flush function will be
818 * returned if used.
819 * @param b The bucket brigade to add to
820 * @param flush The flush function to use if the brigade is full
821 * @param ctx The structure to pass to the flush function
822 * @param str The string to add
823 * @param nbyte The number of bytes to write
824 * @return APR_SUCCESS or error code
825 */
826APU_DECLARE(apr_status_t) apr_brigade_write(apr_bucket_brigade *b,
827                                            apr_brigade_flush flush, void *ctx,
828                                            const char *str, apr_size_t nbyte);
829
830/**
831 * This function writes multiple strings into a bucket brigade.
832 * @param b The bucket brigade to add to
833 * @param flush The flush function to use if the brigade is full
834 * @param ctx The structure to pass to the flush function
835 * @param vec The strings to add (address plus length for each)
836 * @param nvec The number of entries in iovec
837 * @return APR_SUCCESS or error code
838 */
839APU_DECLARE(apr_status_t) apr_brigade_writev(apr_bucket_brigade *b,
840                                             apr_brigade_flush flush,
841                                             void *ctx,
842                                             const struct iovec *vec,
843                                             apr_size_t nvec);
844
845/**
846 * This function writes a string into a bucket brigade.
847 * @param bb The bucket brigade to add to
848 * @param flush The flush function to use if the brigade is full
849 * @param ctx The structure to pass to the flush function
850 * @param str The string to add
851 * @return APR_SUCCESS or error code
852 */
853APU_DECLARE(apr_status_t) apr_brigade_puts(apr_bucket_brigade *bb,
854                                           apr_brigade_flush flush, void *ctx,
855                                           const char *str);
856
857/**
858 * This function writes a character into a bucket brigade.
859 * @param b The bucket brigade to add to
860 * @param flush The flush function to use if the brigade is full
861 * @param ctx The structure to pass to the flush function
862 * @param c The character to add
863 * @return APR_SUCCESS or error code
864 */
865APU_DECLARE(apr_status_t) apr_brigade_putc(apr_bucket_brigade *b,
866                                           apr_brigade_flush flush, void *ctx,
867                                           const char c);
868
869/**
870 * This function writes an unspecified number of strings into a bucket brigade.
871 * @param b The bucket brigade to add to
872 * @param flush The flush function to use if the brigade is full
873 * @param ctx The structure to pass to the flush function
874 * @param ... The strings to add
875 * @return APR_SUCCESS or error code
876 */
877APU_DECLARE_NONSTD(apr_status_t) apr_brigade_putstrs(apr_bucket_brigade *b,
878                                                     apr_brigade_flush flush,
879                                                     void *ctx, ...);
880
881/**
882 * Evaluate a printf and put the resulting string at the end
883 * of the bucket brigade.
884 * @param b The brigade to write to
885 * @param flush The flush function to use if the brigade is full
886 * @param ctx The structure to pass to the flush function
887 * @param fmt The format of the string to write
888 * @param ... The arguments to fill out the format
889 * @return APR_SUCCESS or error code
890 */
891APU_DECLARE_NONSTD(apr_status_t) apr_brigade_printf(apr_bucket_brigade *b,
892                                                    apr_brigade_flush flush,
893                                                    void *ctx,
894                                                    const char *fmt, ...)
895        __attribute__((format(printf,4,5)));
896
897/**
898 * Evaluate a printf and put the resulting string at the end
899 * of the bucket brigade.
900 * @param b The brigade to write to
901 * @param flush The flush function to use if the brigade is full
902 * @param ctx The structure to pass to the flush function
903 * @param fmt The format of the string to write
904 * @param va The arguments to fill out the format
905 * @return APR_SUCCESS or error code
906 */
907APU_DECLARE(apr_status_t) apr_brigade_vprintf(apr_bucket_brigade *b,
908                                              apr_brigade_flush flush,
909                                              void *ctx,
910                                              const char *fmt, va_list va);
911
912/**
913 * Utility function to insert a file (or a segment of a file) onto the
914 * end of the brigade.  The file is split into multiple buckets if it
915 * is larger than the maximum size which can be represented by a
916 * single bucket.
917 * @param bb the brigade to insert into
918 * @param f the file to insert
919 * @param start the offset of the start of the segment
920 * @param len the length of the segment of the file to insert
921 * @param p pool from which file buckets are allocated
922 * @return the last bucket inserted
923 */
924APU_DECLARE(apr_bucket *) apr_brigade_insert_file(apr_bucket_brigade *bb,
925                                                  apr_file_t *f,
926                                                  apr_off_t start,
927                                                  apr_off_t len,
928                                                  apr_pool_t *p);
929
930
931
932/*  *****  Bucket freelist functions *****  */
933/**
934 * Create a bucket allocator.
935 * @param p This pool's underlying apr_allocator_t is used to allocate memory
936 *          for the bucket allocator.  When the pool is destroyed, the bucket
937 *          allocator's cleanup routine will free all memory that has been
938 *          allocated from it.
939 * @remark  The reason the allocator gets its memory from the pool's
940 *          apr_allocator_t rather than from the pool itself is because
941 *          the bucket allocator will free large memory blocks back to the
942 *          allocator when it's done with them, thereby preventing memory
943 *          footprint growth that would occur if we allocated from the pool.
944 * @warning The allocator must never be used by more than one thread at a time.
945 */
946APU_DECLARE_NONSTD(apr_bucket_alloc_t *) apr_bucket_alloc_create(apr_pool_t *p);
947
948/**
949 * Create a bucket allocator.
950 * @param allocator This apr_allocator_t is used to allocate both the bucket
951 *          allocator and all memory handed out by the bucket allocator.  The
952 *          caller is responsible for destroying the bucket allocator and the
953 *          apr_allocator_t -- no automatic cleanups will happen.
954 * @warning The allocator must never be used by more than one thread at a time.
955 */
956APU_DECLARE_NONSTD(apr_bucket_alloc_t *) apr_bucket_alloc_create_ex(apr_allocator_t *allocator);
957
958/**
959 * Destroy a bucket allocator.
960 * @param list The allocator to be destroyed
961 */
962APU_DECLARE_NONSTD(void) apr_bucket_alloc_destroy(apr_bucket_alloc_t *list);
963
964/**
965 * Allocate memory for use by the buckets.
966 * @param size The amount to allocate.
967 * @param list The allocator from which to allocate the memory.
968 */
969APU_DECLARE_NONSTD(void *) apr_bucket_alloc(apr_size_t size, apr_bucket_alloc_t *list);
970
971/**
972 * Free memory previously allocated with apr_bucket_alloc().
973 * @param block The block of memory to be freed.
974 */
975APU_DECLARE_NONSTD(void) apr_bucket_free(void *block);
976
977
978/*  *****  Bucket Functions  *****  */
979/**
980 * Free the resources used by a bucket. If multiple buckets refer to
981 * the same resource it is freed when the last one goes away.
982 * @see apr_bucket_delete()
983 * @param e The bucket to destroy
984 */
985#define apr_bucket_destroy(e) do {					\
986        (e)->type->destroy((e)->data);					\
987        (e)->free(e);							\
988    } while (0)
989
990/**
991 * Delete a bucket by removing it from its brigade (if any) and then
992 * destroying it.
993 * @remark This mainly acts as an aid in avoiding code verbosity.  It is
994 * the preferred exact equivalent to:
995 * <pre>
996 *      APR_BUCKET_REMOVE(e);
997 *      apr_bucket_destroy(e);
998 * </pre>
999 * @param e The bucket to delete
1000 */
1001#define apr_bucket_delete(e) do {					\
1002        APR_BUCKET_REMOVE(e);						\
1003        apr_bucket_destroy(e);						\
1004    } while (0)
1005
1006/**
1007 * Read some data from the bucket.
1008 *
1009 * The apr_bucket_read function returns a convenient amount of data
1010 * from the bucket provided, writing the address and length of the
1011 * data to the pointers provided by the caller. The function tries
1012 * as hard as possible to avoid a memory copy.
1013 *
1014 * Buckets are expected to be a member of a brigade at the time they
1015 * are read.
1016 *
1017 * In typical application code, buckets are read in a loop, and after
1018 * each bucket is read and processed, it is moved or deleted from the
1019 * brigade and the next bucket read.
1020 *
1021 * The definition of "convenient" depends on the type of bucket that
1022 * is being read, and is decided by APR. In the case of memory based
1023 * buckets such as heap and immortal buckets, a pointer will be
1024 * returned to the location of the buffer containing the complete
1025 * contents of the bucket.
1026 *
1027 * Some buckets, such as the socket bucket, might have no concept
1028 * of length. If an attempt is made to read such a bucket, the
1029 * apr_bucket_read function will read a convenient amount of data
1030 * from the socket. The socket bucket is magically morphed into a
1031 * heap bucket containing the just-read data, and a new socket bucket
1032 * is inserted just after this heap bucket.
1033 *
1034 * To understand why apr_bucket_read might do this, consider the loop
1035 * described above to read and process buckets. The current bucket
1036 * is magically morphed into a heap bucket and returned to the caller.
1037 * The caller processes the data, and deletes the heap bucket, moving
1038 * onto the next bucket, the new socket bucket. This process repeats,
1039 * giving the illusion of a bucket brigade that contains potentially
1040 * infinite amounts of data. It is up to the caller to decide at what
1041 * point to stop reading buckets.
1042 *
1043 * Some buckets, such as the file bucket, might have a fixed size,
1044 * but be significantly larger than is practical to store in RAM in
1045 * one go. As with the socket bucket, if an attempt is made to read
1046 * from a file bucket, the file bucket is magically morphed into a
1047 * heap bucket containing a convenient amount of data read from the
1048 * current offset in the file. During the read, the offset will be
1049 * moved forward on the file, and a new file bucket will be inserted
1050 * directly after the current bucket representing the remainder of the
1051 * file. If the heap bucket was large enough to store the whole
1052 * remainder of the file, no more file buckets are inserted, and the
1053 * file bucket will disappear completely.
1054 *
1055 * The pattern for reading buckets described above does create the
1056 * illusion that the code is willing to swallow buckets that might be
1057 * too large for the system to handle in one go. This however is just
1058 * an illusion: APR will always ensure that large (file) or infinite
1059 * (socket) buckets are broken into convenient bite sized heap buckets
1060 * before data is returned to the caller.
1061 *
1062 * There is a potential gotcha to watch for: if buckets are read in a
1063 * loop, and aren't deleted after being processed, the potentially large
1064 * bucket will slowly be converted into RAM resident heap buckets. If
1065 * the file is larger than available RAM, an out of memory condition
1066 * could be caused if the application is not careful to manage this.
1067 *
1068 * @param e The bucket to read from
1069 * @param str The location to store a pointer to the data in
1070 * @param len The location to store the amount of data read
1071 * @param block Whether the read function blocks
1072 */
1073#define apr_bucket_read(e,str,len,block) (e)->type->read(e, str, len, block)
1074
1075/**
1076 * Setaside data so that stack data is not destroyed on returning from
1077 * the function
1078 * @param e The bucket to setaside
1079 * @param p The pool to setaside into
1080 */
1081#define apr_bucket_setaside(e,p) (e)->type->setaside(e,p)
1082
1083/**
1084 * Split one bucket in two at the point provided.
1085 *
1086 * Once split, the original bucket becomes the first of the two new buckets.
1087 *
1088 * (It is assumed that the bucket is a member of a brigade when this
1089 * function is called).
1090 * @param e The bucket to split
1091 * @param point The offset to split the bucket at
1092 */
1093#define apr_bucket_split(e,point) (e)->type->split(e, point)
1094
1095/**
1096 * Copy a bucket.
1097 * @param e The bucket to copy
1098 * @param c Returns a pointer to the new bucket
1099 */
1100#define apr_bucket_copy(e,c) (e)->type->copy(e, c)
1101
1102/* Bucket type handling */
1103
1104/**
1105 * This function simply returns APR_SUCCESS to denote that the bucket does
1106 * not require anything to happen for its setaside() function. This is
1107 * appropriate for buckets that have "immortal" data -- the data will live
1108 * at least as long as the bucket.
1109 * @param data The bucket to setaside
1110 * @param pool The pool defining the desired lifetime of the bucket data
1111 * @return APR_SUCCESS
1112 */
1113APU_DECLARE_NONSTD(apr_status_t) apr_bucket_setaside_noop(apr_bucket *data,
1114                                                          apr_pool_t *pool);
1115
1116/**
1117 * A place holder function that signifies that the setaside function was not
1118 * implemented for this bucket
1119 * @param data The bucket to setaside
1120 * @param pool The pool defining the desired lifetime of the bucket data
1121 * @return APR_ENOTIMPL
1122 */
1123APU_DECLARE_NONSTD(apr_status_t) apr_bucket_setaside_notimpl(apr_bucket *data,
1124                                                             apr_pool_t *pool);
1125
1126/**
1127 * A place holder function that signifies that the split function was not
1128 * implemented for this bucket
1129 * @param data The bucket to split
1130 * @param point The location to split the bucket
1131 * @return APR_ENOTIMPL
1132 */
1133APU_DECLARE_NONSTD(apr_status_t) apr_bucket_split_notimpl(apr_bucket *data,
1134                                                          apr_size_t point);
1135
1136/**
1137 * A place holder function that signifies that the copy function was not
1138 * implemented for this bucket
1139 * @param e The bucket to copy
1140 * @param c Returns a pointer to the new bucket
1141 * @return APR_ENOTIMPL
1142 */
1143APU_DECLARE_NONSTD(apr_status_t) apr_bucket_copy_notimpl(apr_bucket *e,
1144                                                         apr_bucket **c);
1145
1146/**
1147 * A place holder function that signifies that this bucket does not need
1148 * to do anything special to be destroyed.  That's only the case for buckets
1149 * that either have no data (metadata buckets) or buckets whose data pointer
1150 * points to something that's not a bucket-type-specific structure, as with
1151 * simple buckets where data points to a string and pipe buckets where data
1152 * points directly to the apr_file_t.
1153 * @param data The bucket data to destroy
1154 */
1155APU_DECLARE_NONSTD(void) apr_bucket_destroy_noop(void *data);
1156
1157/**
1158 * There is no apr_bucket_destroy_notimpl, because destruction is required
1159 * to be implemented (it could be a noop, but only if that makes sense for
1160 * the bucket type)
1161 */
1162
1163/* There is no apr_bucket_read_notimpl, because it is a required function
1164 */
1165
1166
1167/* All of the bucket types implemented by the core */
1168/**
1169 * The flush bucket type.  This signifies that all data should be flushed to
1170 * the next filter.  The flush bucket should be sent with the other buckets.
1171 */
1172APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_flush;
1173/**
1174 * The EOS bucket type.  This signifies that there will be no more data, ever.
1175 * All filters MUST send all data to the next filter when they receive a
1176 * bucket of this type
1177 */
1178APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_eos;
1179/**
1180 * The FILE bucket type.  This bucket represents a file on disk
1181 */
1182APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_file;
1183/**
1184 * The HEAP bucket type.  This bucket represents a data allocated from the
1185 * heap.
1186 */
1187APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_heap;
1188#if APR_HAS_MMAP
1189/**
1190 * The MMAP bucket type.  This bucket represents an MMAP'ed file
1191 */
1192APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_mmap;
1193#endif
1194/**
1195 * The POOL bucket type.  This bucket represents a data that was allocated
1196 * from a pool.  IF this bucket is still available when the pool is cleared,
1197 * the data is copied on to the heap.
1198 */
1199APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_pool;
1200/**
1201 * The PIPE bucket type.  This bucket represents a pipe to another program.
1202 */
1203APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_pipe;
1204/**
1205 * The IMMORTAL bucket type.  This bucket represents a segment of data that
1206 * the creator is willing to take responsibility for.  The core will do
1207 * nothing with the data in an immortal bucket
1208 */
1209APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_immortal;
1210/**
1211 * The TRANSIENT bucket type.  This bucket represents a data allocated off
1212 * the stack.  When the setaside function is called, this data is copied on
1213 * to the heap
1214 */
1215APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_transient;
1216/**
1217 * The SOCKET bucket type.  This bucket represents a socket to another machine
1218 */
1219APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_socket;
1220
1221
1222/*  *****  Simple buckets  *****  */
1223
1224/**
1225 * Split a simple bucket into two at the given point.  Most non-reference
1226 * counting buckets that allow multiple references to the same block of
1227 * data (eg transient and immortal) will use this as their split function
1228 * without any additional type-specific handling.
1229 * @param b The bucket to be split
1230 * @param point The offset of the first byte in the new bucket
1231 * @return APR_EINVAL if the point is not within the bucket;
1232 *         APR_ENOMEM if allocation failed;
1233 *         or APR_SUCCESS
1234 */
1235APU_DECLARE_NONSTD(apr_status_t) apr_bucket_simple_split(apr_bucket *b,
1236                                                         apr_size_t point);
1237
1238/**
1239 * Copy a simple bucket.  Most non-reference-counting buckets that allow
1240 * multiple references to the same block of data (eg transient and immortal)
1241 * will use this as their copy function without any additional type-specific
1242 * handling.
1243 * @param a The bucket to copy
1244 * @param b Returns a pointer to the new bucket
1245 * @return APR_ENOMEM if allocation failed;
1246 *         or APR_SUCCESS
1247 */
1248APU_DECLARE_NONSTD(apr_status_t) apr_bucket_simple_copy(apr_bucket *a,
1249                                                        apr_bucket **b);
1250
1251
1252/*  *****  Shared, reference-counted buckets  *****  */
1253
1254/**
1255 * Initialize a bucket containing reference-counted data that may be
1256 * shared. The caller must allocate the bucket if necessary and
1257 * initialize its type-dependent fields, and allocate and initialize
1258 * its own private data structure. This function should only be called
1259 * by type-specific bucket creation functions.
1260 * @param b The bucket to initialize
1261 * @param data A pointer to the private data structure
1262 *             with the reference count at the start
1263 * @param start The start of the data in the bucket
1264 *              relative to the private base pointer
1265 * @param length The length of the data in the bucket
1266 * @return The new bucket, or NULL if allocation failed
1267 */
1268APU_DECLARE(apr_bucket *) apr_bucket_shared_make(apr_bucket *b, void *data,
1269				                 apr_off_t start,
1270                                                 apr_size_t length);
1271
1272/**
1273 * Decrement the refcount of the data in the bucket. This function
1274 * should only be called by type-specific bucket destruction functions.
1275 * @param data The private data pointer from the bucket to be destroyed
1276 * @return TRUE or FALSE; TRUE if the reference count is now
1277 *         zero, indicating that the shared resource itself can
1278 *         be destroyed by the caller.
1279 */
1280APU_DECLARE(int) apr_bucket_shared_destroy(void *data);
1281
1282/**
1283 * Split a bucket into two at the given point, and adjust the refcount
1284 * to the underlying data. Most reference-counting bucket types will
1285 * be able to use this function as their split function without any
1286 * additional type-specific handling.
1287 * @param b The bucket to be split
1288 * @param point The offset of the first byte in the new bucket
1289 * @return APR_EINVAL if the point is not within the bucket;
1290 *         APR_ENOMEM if allocation failed;
1291 *         or APR_SUCCESS
1292 */
1293APU_DECLARE_NONSTD(apr_status_t) apr_bucket_shared_split(apr_bucket *b,
1294                                                         apr_size_t point);
1295
1296/**
1297 * Copy a refcounted bucket, incrementing the reference count. Most
1298 * reference-counting bucket types will be able to use this function
1299 * as their copy function without any additional type-specific handling.
1300 * @param a The bucket to copy
1301 * @param b Returns a pointer to the new bucket
1302 * @return APR_ENOMEM if allocation failed;
1303           or APR_SUCCESS
1304 */
1305APU_DECLARE_NONSTD(apr_status_t) apr_bucket_shared_copy(apr_bucket *a,
1306                                                        apr_bucket **b);
1307
1308
1309/*  *****  Functions to Create Buckets of varying types  *****  */
1310/*
1311 * Each bucket type foo has two initialization functions:
1312 * apr_bucket_foo_make which sets up some already-allocated memory as a
1313 * bucket of type foo; and apr_bucket_foo_create which allocates memory
1314 * for the bucket, calls apr_bucket_make_foo, and initializes the
1315 * bucket's list pointers. The apr_bucket_foo_make functions are used
1316 * inside the bucket code to change the type of buckets in place;
1317 * other code should call apr_bucket_foo_create. All the initialization
1318 * functions change nothing if they fail.
1319 */
1320
1321/**
1322 * Create an End of Stream bucket.  This indicates that there is no more data
1323 * coming from down the filter stack.  All filters should flush at this point.
1324 * @param list The freelist from which this bucket should be allocated
1325 * @return The new bucket, or NULL if allocation failed
1326 */
1327APU_DECLARE(apr_bucket *) apr_bucket_eos_create(apr_bucket_alloc_t *list);
1328
1329/**
1330 * Make the bucket passed in an EOS bucket.  This indicates that there is no
1331 * more data coming from down the filter stack.  All filters should flush at
1332 * this point.
1333 * @param b The bucket to make into an EOS bucket
1334 * @return The new bucket, or NULL if allocation failed
1335 */
1336APU_DECLARE(apr_bucket *) apr_bucket_eos_make(apr_bucket *b);
1337
1338/**
1339 * Create a flush  bucket.  This indicates that filters should flush their
1340 * data.  There is no guarantee that they will flush it, but this is the
1341 * best we can do.
1342 * @param list The freelist from which this bucket should be allocated
1343 * @return The new bucket, or NULL if allocation failed
1344 */
1345APU_DECLARE(apr_bucket *) apr_bucket_flush_create(apr_bucket_alloc_t *list);
1346
1347/**
1348 * Make the bucket passed in a FLUSH  bucket.  This indicates that filters
1349 * should flush their data.  There is no guarantee that they will flush it,
1350 * but this is the best we can do.
1351 * @param b The bucket to make into a FLUSH bucket
1352 * @return The new bucket, or NULL if allocation failed
1353 */
1354APU_DECLARE(apr_bucket *) apr_bucket_flush_make(apr_bucket *b);
1355
1356/**
1357 * Create a bucket referring to long-lived data.
1358 * @param buf The data to insert into the bucket
1359 * @param nbyte The size of the data to insert.
1360 * @param list The freelist from which this bucket should be allocated
1361 * @return The new bucket, or NULL if allocation failed
1362 */
1363APU_DECLARE(apr_bucket *) apr_bucket_immortal_create(const char *buf,
1364                                                     apr_size_t nbyte,
1365                                                     apr_bucket_alloc_t *list);
1366
1367/**
1368 * Make the bucket passed in a bucket refer to long-lived data
1369 * @param b The bucket to make into a IMMORTAL bucket
1370 * @param buf The data to insert into the bucket
1371 * @param nbyte The size of the data to insert.
1372 * @return The new bucket, or NULL if allocation failed
1373 */
1374APU_DECLARE(apr_bucket *) apr_bucket_immortal_make(apr_bucket *b,
1375                                                   const char *buf,
1376                                                   apr_size_t nbyte);
1377
1378/**
1379 * Create a bucket referring to data on the stack.
1380 * @param buf The data to insert into the bucket
1381 * @param nbyte The size of the data to insert.
1382 * @param list The freelist from which this bucket should be allocated
1383 * @return The new bucket, or NULL if allocation failed
1384 */
1385APU_DECLARE(apr_bucket *) apr_bucket_transient_create(const char *buf,
1386                                                      apr_size_t nbyte,
1387                                                      apr_bucket_alloc_t *list);
1388
1389/**
1390 * Make the bucket passed in a bucket refer to stack data
1391 * @param b The bucket to make into a TRANSIENT bucket
1392 * @param buf The data to insert into the bucket
1393 * @param nbyte The size of the data to insert.
1394 * @return The new bucket, or NULL if allocation failed
1395 */
1396APU_DECLARE(apr_bucket *) apr_bucket_transient_make(apr_bucket *b,
1397                                                    const char *buf,
1398                                                    apr_size_t nbyte);
1399
1400/**
1401 * Create a bucket referring to memory on the heap. If the caller asks
1402 * for the data to be copied, this function always allocates 4K of
1403 * memory so that more data can be added to the bucket without
1404 * requiring another allocation. Therefore not all the data may be put
1405 * into the bucket. If copying is not requested then the bucket takes
1406 * over responsibility for free()ing the memory.
1407 * @param buf The buffer to insert into the bucket
1408 * @param nbyte The size of the buffer to insert.
1409 * @param free_func Function to use to free the data; NULL indicates that the
1410 *                  bucket should make a copy of the data
1411 * @param list The freelist from which this bucket should be allocated
1412 * @return The new bucket, or NULL if allocation failed
1413 */
1414APU_DECLARE(apr_bucket *) apr_bucket_heap_create(const char *buf,
1415                                                 apr_size_t nbyte,
1416                                                 void (*free_func)(void *data),
1417                                                 apr_bucket_alloc_t *list);
1418/**
1419 * Make the bucket passed in a bucket refer to heap data
1420 * @param b The bucket to make into a HEAP bucket
1421 * @param buf The buffer to insert into the bucket
1422 * @param nbyte The size of the buffer to insert.
1423 * @param free_func Function to use to free the data; NULL indicates that the
1424 *                  bucket should make a copy of the data
1425 * @return The new bucket, or NULL if allocation failed
1426 */
1427APU_DECLARE(apr_bucket *) apr_bucket_heap_make(apr_bucket *b, const char *buf,
1428                                               apr_size_t nbyte,
1429                                               void (*free_func)(void *data));
1430
1431/**
1432 * Create a bucket referring to memory allocated from a pool.
1433 *
1434 * @param buf The buffer to insert into the bucket
1435 * @param length The number of bytes referred to by this bucket
1436 * @param pool The pool the memory was allocated from
1437 * @param list The freelist from which this bucket should be allocated
1438 * @return The new bucket, or NULL if allocation failed
1439 */
1440APU_DECLARE(apr_bucket *) apr_bucket_pool_create(const char *buf,
1441                                                 apr_size_t length,
1442                                                 apr_pool_t *pool,
1443                                                 apr_bucket_alloc_t *list);
1444
1445/**
1446 * Make the bucket passed in a bucket refer to pool data
1447 * @param b The bucket to make into a pool bucket
1448 * @param buf The buffer to insert into the bucket
1449 * @param length The number of bytes referred to by this bucket
1450 * @param pool The pool the memory was allocated from
1451 * @return The new bucket, or NULL if allocation failed
1452 */
1453APU_DECLARE(apr_bucket *) apr_bucket_pool_make(apr_bucket *b, const char *buf,
1454                                               apr_size_t length,
1455                                               apr_pool_t *pool);
1456
1457#if APR_HAS_MMAP
1458/**
1459 * Create a bucket referring to mmap()ed memory.
1460 * @param mm The mmap to insert into the bucket
1461 * @param start The offset of the first byte in the mmap
1462 *              that this bucket refers to
1463 * @param length The number of bytes referred to by this bucket
1464 * @param list The freelist from which this bucket should be allocated
1465 * @return The new bucket, or NULL if allocation failed
1466 */
1467APU_DECLARE(apr_bucket *) apr_bucket_mmap_create(apr_mmap_t *mm,
1468                                                 apr_off_t start,
1469                                                 apr_size_t length,
1470                                                 apr_bucket_alloc_t *list);
1471
1472/**
1473 * Make the bucket passed in a bucket refer to an MMAP'ed file
1474 * @param b The bucket to make into a MMAP bucket
1475 * @param mm The mmap to insert into the bucket
1476 * @param start The offset of the first byte in the mmap
1477 *              that this bucket refers to
1478 * @param length The number of bytes referred to by this bucket
1479 * @return The new bucket, or NULL if allocation failed
1480 */
1481APU_DECLARE(apr_bucket *) apr_bucket_mmap_make(apr_bucket *b, apr_mmap_t *mm,
1482                                               apr_off_t start,
1483                                               apr_size_t length);
1484#endif
1485
1486/**
1487 * Create a bucket referring to a socket.
1488 * @param thissock The socket to put in the bucket
1489 * @param list The freelist from which this bucket should be allocated
1490 * @return The new bucket, or NULL if allocation failed
1491 */
1492APU_DECLARE(apr_bucket *) apr_bucket_socket_create(apr_socket_t *thissock,
1493                                                   apr_bucket_alloc_t *list);
1494/**
1495 * Make the bucket passed in a bucket refer to a socket
1496 * @param b The bucket to make into a SOCKET bucket
1497 * @param thissock The socket to put in the bucket
1498 * @return The new bucket, or NULL if allocation failed
1499 */
1500APU_DECLARE(apr_bucket *) apr_bucket_socket_make(apr_bucket *b,
1501                                                 apr_socket_t *thissock);
1502
1503/**
1504 * Create a bucket referring to a pipe.
1505 * @param thispipe The pipe to put in the bucket
1506 * @param list The freelist from which this bucket should be allocated
1507 * @return The new bucket, or NULL if allocation failed
1508 */
1509APU_DECLARE(apr_bucket *) apr_bucket_pipe_create(apr_file_t *thispipe,
1510                                                 apr_bucket_alloc_t *list);
1511
1512/**
1513 * Make the bucket passed in a bucket refer to a pipe
1514 * @param b The bucket to make into a PIPE bucket
1515 * @param thispipe The pipe to put in the bucket
1516 * @return The new bucket, or NULL if allocation failed
1517 */
1518APU_DECLARE(apr_bucket *) apr_bucket_pipe_make(apr_bucket *b,
1519                                               apr_file_t *thispipe);
1520
1521/**
1522 * Create a bucket referring to a file.
1523 * @param fd The file to put in the bucket
1524 * @param offset The offset where the data of interest begins in the file
1525 * @param len The amount of data in the file we are interested in
1526 * @param p The pool into which any needed structures should be created
1527 *          while reading from this file bucket
1528 * @param list The freelist from which this bucket should be allocated
1529 * @return The new bucket, or NULL if allocation failed
1530 * @remark If the file is truncated such that the segment of the file
1531 * referenced by the bucket no longer exists, an attempt to read
1532 * from the bucket will fail with APR_EOF.
1533 * @remark apr_brigade_insert_file() should generally be used to
1534 * insert files into brigades, since that function can correctly
1535 * handle large file issues.
1536 */
1537APU_DECLARE(apr_bucket *) apr_bucket_file_create(apr_file_t *fd,
1538                                                 apr_off_t offset,
1539                                                 apr_size_t len,
1540                                                 apr_pool_t *p,
1541                                                 apr_bucket_alloc_t *list);
1542
1543/**
1544 * Make the bucket passed in a bucket refer to a file
1545 * @param b The bucket to make into a FILE bucket
1546 * @param fd The file to put in the bucket
1547 * @param offset The offset where the data of interest begins in the file
1548 * @param len The amount of data in the file we are interested in
1549 * @param p The pool into which any needed structures should be created
1550 *          while reading from this file bucket
1551 * @return The new bucket, or NULL if allocation failed
1552 */
1553APU_DECLARE(apr_bucket *) apr_bucket_file_make(apr_bucket *b, apr_file_t *fd,
1554                                               apr_off_t offset,
1555                                               apr_size_t len, apr_pool_t *p);
1556
1557/**
1558 * Enable or disable memory-mapping for a FILE bucket (default is enabled)
1559 * @param b The bucket
1560 * @param enabled Whether memory-mapping should be enabled
1561 * @return APR_SUCCESS normally, or an error code if the operation fails
1562 */
1563APU_DECLARE(apr_status_t) apr_bucket_file_enable_mmap(apr_bucket *b,
1564                                                      int enabled);
1565
1566/** @} */
1567#ifdef __cplusplus
1568}
1569#endif
1570
1571#endif /* !APR_BUCKETS_H */
1572