1/*
2 * This is work is derived from material Copyright RSA Data Security, Inc.
3 *
4 * The RSA copyright statement and Licence for that original material is
5 * included below. This is followed by the Apache copyright statement and
6 * licence for the modifications made to that material.
7 */
8
9/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
10 */
11
12/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
13   rights reserved.
14
15   License to copy and use this software is granted provided that it
16   is identified as the "RSA Data Security, Inc. MD5 Message-Digest
17   Algorithm" in all material mentioning or referencing this software
18   or this function.
19
20   License is also granted to make and use derivative works provided
21   that such works are identified as "derived from the RSA Data
22   Security, Inc. MD5 Message-Digest Algorithm" in all material
23   mentioning or referencing the derived work.
24
25   RSA Data Security, Inc. makes no representations concerning either
26   the merchantability of this software or the suitability of this
27   software for any particular purpose. It is provided "as is"
28   without express or implied warranty of any kind.
29
30   These notices must be retained in any copies of any part of this
31   documentation and/or software.
32 */
33
34/* Licensed to the Apache Software Foundation (ASF) under one or more
35 * contributor license agreements.  See the NOTICE file distributed with
36 * this work for additional information regarding copyright ownership.
37 * The ASF licenses this file to You under the Apache License, Version 2.0
38 * (the "License"); you may not use this file except in compliance with
39 * the License.  You may obtain a copy of the License at
40 *
41 *     http://www.apache.org/licenses/LICENSE-2.0
42 *
43 * Unless required by applicable law or agreed to in writing, software
44 * distributed under the License is distributed on an "AS IS" BASIS,
45 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
46 * See the License for the specific language governing permissions and
47 * limitations under the License.
48 */
49
50/*
51 * The apr_md5_encode() routine uses much code obtained from the FreeBSD 3.0
52 * MD5 crypt() function, which is licenced as follows:
53 * ----------------------------------------------------------------------------
54 * "THE BEER-WARE LICENSE" (Revision 42):
55 * <phk@login.dknet.dk> wrote this file.  As long as you retain this notice you
56 * can do whatever you want with this stuff. If we meet some day, and you think
57 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
58 * ----------------------------------------------------------------------------
59 */
60#include "apr_strings.h"
61#include "apr_md5.h"
62#include "apr_lib.h"
63#include "apu_config.h"
64
65#if APR_HAVE_STRING_H
66#include <string.h>
67#endif
68
69/* Constants for MD5Transform routine.
70 */
71
72#define S11 7
73#define S12 12
74#define S13 17
75#define S14 22
76#define S21 5
77#define S22 9
78#define S23 14
79#define S24 20
80#define S31 4
81#define S32 11
82#define S33 16
83#define S34 23
84#define S41 6
85#define S42 10
86#define S43 15
87#define S44 21
88
89static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64]);
90static void Encode(unsigned char *output, const apr_uint32_t *input,
91                   unsigned int len);
92static void Decode(apr_uint32_t *output, const unsigned char *input,
93                   unsigned int len);
94
95static const unsigned char PADDING[64] =
96{
97    0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
98    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
99    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
100};
101
102#if APR_CHARSET_EBCDIC
103static apr_xlate_t *xlate_ebcdic_to_ascii; /* used in apr_md5_encode() */
104#endif
105#define DO_XLATE 0
106#define SKIP_XLATE 1
107
108/* F, G, H and I are basic MD5 functions.
109 */
110#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
111#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
112#define H(x, y, z) ((x) ^ (y) ^ (z))
113#define I(x, y, z) ((y) ^ ((x) | (~z)))
114
115/* ROTATE_LEFT rotates x left n bits.
116 */
117#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
118
119/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
120 * Rotation is separate from addition to prevent recomputation.
121 */
122#define FF(a, b, c, d, x, s, ac) { \
123 (a) += F ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
124 (a) = ROTATE_LEFT ((a), (s)); \
125 (a) += (b); \
126  }
127#define GG(a, b, c, d, x, s, ac) { \
128 (a) += G ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
129 (a) = ROTATE_LEFT ((a), (s)); \
130 (a) += (b); \
131  }
132#define HH(a, b, c, d, x, s, ac) { \
133 (a) += H ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
134 (a) = ROTATE_LEFT ((a), (s)); \
135 (a) += (b); \
136  }
137#define II(a, b, c, d, x, s, ac) { \
138 (a) += I ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
139 (a) = ROTATE_LEFT ((a), (s)); \
140 (a) += (b); \
141  }
142
143/* MD5 initialization. Begins an MD5 operation, writing a new context.
144 */
145APU_DECLARE(apr_status_t) apr_md5_init(apr_md5_ctx_t *context)
146{
147    context->count[0] = context->count[1] = 0;
148
149    /* Load magic initialization constants. */
150    context->state[0] = 0x67452301;
151    context->state[1] = 0xefcdab89;
152    context->state[2] = 0x98badcfe;
153    context->state[3] = 0x10325476;
154    context->xlate = NULL;
155
156    return APR_SUCCESS;
157}
158
159/* MD5 translation setup.  Provides the APR translation handle
160 * to be used for translating the content before calculating the
161 * digest.
162 */
163APU_DECLARE(apr_status_t) apr_md5_set_xlate(apr_md5_ctx_t *context,
164                                            apr_xlate_t *xlate)
165{
166#if APR_HAS_XLATE
167    apr_status_t rv;
168    int is_sb;
169
170    /* TODO: remove the single-byte-only restriction from this code
171     */
172    rv = apr_xlate_sb_get(xlate, &is_sb);
173    if (rv != APR_SUCCESS) {
174        return rv;
175    }
176    if (!is_sb) {
177        return APR_EINVAL;
178    }
179    context->xlate = xlate;
180    return APR_SUCCESS;
181#else
182    return APR_ENOTIMPL;
183#endif /* APR_HAS_XLATE */
184}
185
186/* MD5 block update operation. Continues an MD5 message-digest
187 * operation, processing another message block, and updating the
188 * context.
189 */
190static apr_status_t md5_update_buffer(apr_md5_ctx_t *context,
191                                      const void *vinput,
192                                      apr_size_t inputLen,
193                                      int xlate_buffer)
194{
195    const unsigned char *input = vinput;
196    unsigned int i, idx, partLen;
197#if APR_HAS_XLATE
198    apr_size_t inbytes_left, outbytes_left;
199#endif
200
201    /* Compute number of bytes mod 64 */
202    idx = (unsigned int)((context->count[0] >> 3) & 0x3F);
203
204    /* Update number of bits */
205    if ((context->count[0] += ((apr_uint32_t)inputLen << 3))
206            < ((apr_uint32_t)inputLen << 3))
207        context->count[1]++;
208    context->count[1] += (apr_uint32_t)inputLen >> 29;
209
210    partLen = 64 - idx;
211
212    /* Transform as many times as possible. */
213#if !APR_HAS_XLATE
214    if (inputLen >= partLen) {
215        memcpy(&context->buffer[idx], input, partLen);
216        MD5Transform(context->state, context->buffer);
217
218        for (i = partLen; i + 63 < inputLen; i += 64)
219            MD5Transform(context->state, &input[i]);
220
221        idx = 0;
222    }
223    else
224        i = 0;
225
226    /* Buffer remaining input */
227    memcpy(&context->buffer[idx], &input[i], inputLen - i);
228#else /*APR_HAS_XLATE*/
229    if (inputLen >= partLen) {
230        if (context->xlate && (xlate_buffer == DO_XLATE)) {
231            inbytes_left = outbytes_left = partLen;
232            apr_xlate_conv_buffer(context->xlate, (const char *)input,
233                                  &inbytes_left,
234                                  (char *)&context->buffer[idx],
235                                  &outbytes_left);
236        }
237        else {
238            memcpy(&context->buffer[idx], input, partLen);
239        }
240        MD5Transform(context->state, context->buffer);
241
242        for (i = partLen; i + 63 < inputLen; i += 64) {
243            if (context->xlate && (xlate_buffer == DO_XLATE)) {
244                unsigned char inp_tmp[64];
245                inbytes_left = outbytes_left = 64;
246                apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
247                                      &inbytes_left, (char *)inp_tmp,
248                                      &outbytes_left);
249                MD5Transform(context->state, inp_tmp);
250            }
251            else {
252                MD5Transform(context->state, &input[i]);
253            }
254        }
255
256        idx = 0;
257    }
258    else
259        i = 0;
260
261    /* Buffer remaining input */
262    if (context->xlate && (xlate_buffer == DO_XLATE)) {
263        inbytes_left = outbytes_left = inputLen - i;
264        apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
265                              &inbytes_left, (char *)&context->buffer[idx],
266                              &outbytes_left);
267    }
268    else {
269        memcpy(&context->buffer[idx], &input[i], inputLen - i);
270    }
271#endif /*APR_HAS_XLATE*/
272    return APR_SUCCESS;
273}
274
275/* MD5 block update operation. API with the default setting
276 * for EBCDIC translations
277 */
278APU_DECLARE(apr_status_t) apr_md5_update(apr_md5_ctx_t *context,
279                                         const void *input,
280                                         apr_size_t inputLen)
281{
282    return md5_update_buffer(context, input, inputLen, DO_XLATE);
283}
284
285/* MD5 finalization. Ends an MD5 message-digest operation, writing the
286 * the message digest and zeroizing the context.
287 */
288APU_DECLARE(apr_status_t) apr_md5_final(unsigned char digest[APR_MD5_DIGESTSIZE],
289                                        apr_md5_ctx_t *context)
290{
291    unsigned char bits[8];
292    unsigned int idx, padLen;
293
294    /* Save number of bits */
295    Encode(bits, context->count, 8);
296
297#if APR_HAS_XLATE
298    /* apr_md5_update() should not translate for this final round. */
299    context->xlate = NULL;
300#endif /*APR_HAS_XLATE*/
301
302    /* Pad out to 56 mod 64. */
303    idx = (unsigned int)((context->count[0] >> 3) & 0x3f);
304    padLen = (idx < 56) ? (56 - idx) : (120 - idx);
305    apr_md5_update(context, PADDING, padLen);
306
307    /* Append length (before padding) */
308    apr_md5_update(context, bits, 8);
309
310    /* Store state in digest */
311    Encode(digest, context->state, APR_MD5_DIGESTSIZE);
312
313    /* Zeroize sensitive information. */
314    memset(context, 0, sizeof(*context));
315
316    return APR_SUCCESS;
317}
318
319/* MD5 in one step (init, update, final)
320 */
321APU_DECLARE(apr_status_t) apr_md5(unsigned char digest[APR_MD5_DIGESTSIZE],
322                                  const void *_input,
323                                  apr_size_t inputLen)
324{
325    const unsigned char *input = _input;
326    apr_md5_ctx_t ctx;
327    apr_status_t rv;
328
329    apr_md5_init(&ctx);
330
331    if ((rv = apr_md5_update(&ctx, input, inputLen)) != APR_SUCCESS)
332        return rv;
333
334    return apr_md5_final(digest, &ctx);
335}
336
337/* MD5 basic transformation. Transforms state based on block. */
338static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64])
339{
340    apr_uint32_t a = state[0], b = state[1], c = state[2], d = state[3],
341                 tmpbuf[APR_MD5_DIGESTSIZE];
342    const apr_uint32_t *x;
343
344#if !APR_IS_BIGENDIAN
345    if ((apr_uintptr_t)block % sizeof(apr_uint32_t) == 0) {
346        x = (apr_uint32_t *)block;
347    } else
348#endif
349    {
350        Decode(tmpbuf, block, 64);
351	x = tmpbuf;
352    }
353
354    /* Round 1 */
355    FF(a, b, c, d, x[0],  S11, 0xd76aa478); /* 1 */
356    FF(d, a, b, c, x[1],  S12, 0xe8c7b756); /* 2 */
357    FF(c, d, a, b, x[2],  S13, 0x242070db); /* 3 */
358    FF(b, c, d, a, x[3],  S14, 0xc1bdceee); /* 4 */
359    FF(a, b, c, d, x[4],  S11, 0xf57c0faf); /* 5 */
360    FF(d, a, b, c, x[5],  S12, 0x4787c62a); /* 6 */
361    FF(c, d, a, b, x[6],  S13, 0xa8304613); /* 7 */
362    FF(b, c, d, a, x[7],  S14, 0xfd469501); /* 8 */
363    FF(a, b, c, d, x[8],  S11, 0x698098d8); /* 9 */
364    FF(d, a, b, c, x[9],  S12, 0x8b44f7af); /* 10 */
365    FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
366    FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
367    FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
368    FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
369    FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
370    FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
371
372    /* Round 2 */
373    GG(a, b, c, d, x[1],  S21, 0xf61e2562); /* 17 */
374    GG(d, a, b, c, x[6],  S22, 0xc040b340); /* 18 */
375    GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
376    GG(b, c, d, a, x[0],  S24, 0xe9b6c7aa); /* 20 */
377    GG(a, b, c, d, x[5],  S21, 0xd62f105d); /* 21 */
378    GG(d, a, b, c, x[10], S22, 0x2441453);  /* 22 */
379    GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
380    GG(b, c, d, a, x[4],  S24, 0xe7d3fbc8); /* 24 */
381    GG(a, b, c, d, x[9],  S21, 0x21e1cde6); /* 25 */
382    GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
383    GG(c, d, a, b, x[3],  S23, 0xf4d50d87); /* 27 */
384    GG(b, c, d, a, x[8],  S24, 0x455a14ed); /* 28 */
385    GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
386    GG(d, a, b, c, x[2],  S22, 0xfcefa3f8); /* 30 */
387    GG(c, d, a, b, x[7],  S23, 0x676f02d9); /* 31 */
388    GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
389
390    /* Round 3 */
391    HH(a, b, c, d, x[5],  S31, 0xfffa3942); /* 33 */
392    HH(d, a, b, c, x[8],  S32, 0x8771f681); /* 34 */
393    HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
394    HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
395    HH(a, b, c, d, x[1],  S31, 0xa4beea44); /* 37 */
396    HH(d, a, b, c, x[4],  S32, 0x4bdecfa9); /* 38 */
397    HH(c, d, a, b, x[7],  S33, 0xf6bb4b60); /* 39 */
398    HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
399    HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
400    HH(d, a, b, c, x[0],  S32, 0xeaa127fa); /* 42 */
401    HH(c, d, a, b, x[3],  S33, 0xd4ef3085); /* 43 */
402    HH(b, c, d, a, x[6],  S34, 0x4881d05);  /* 44 */
403    HH(a, b, c, d, x[9],  S31, 0xd9d4d039); /* 45 */
404    HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
405    HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
406    HH(b, c, d, a, x[2],  S34, 0xc4ac5665); /* 48 */
407
408    /* Round 4 */
409    II(a, b, c, d, x[0],  S41, 0xf4292244); /* 49 */
410    II(d, a, b, c, x[7],  S42, 0x432aff97); /* 50 */
411    II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
412    II(b, c, d, a, x[5],  S44, 0xfc93a039); /* 52 */
413    II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
414    II(d, a, b, c, x[3],  S42, 0x8f0ccc92); /* 54 */
415    II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
416    II(b, c, d, a, x[1],  S44, 0x85845dd1); /* 56 */
417    II(a, b, c, d, x[8],  S41, 0x6fa87e4f); /* 57 */
418    II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
419    II(c, d, a, b, x[6],  S43, 0xa3014314); /* 59 */
420    II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
421    II(a, b, c, d, x[4],  S41, 0xf7537e82); /* 61 */
422    II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
423    II(c, d, a, b, x[2],  S43, 0x2ad7d2bb); /* 63 */
424    II(b, c, d, a, x[9],  S44, 0xeb86d391); /* 64 */
425
426    state[0] += a;
427    state[1] += b;
428    state[2] += c;
429    state[3] += d;
430
431#if !APR_IS_BIGENDIAN
432    if (x == tmpbuf)
433#endif
434    {
435        /* Zeroize sensitive information. */
436        memset(tmpbuf, 0, sizeof(tmpbuf));
437    }
438}
439
440/* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is
441 * a multiple of 4.
442 */
443static void Encode(unsigned char *output, const apr_uint32_t *input,
444                   unsigned int len)
445{
446    unsigned int i, j;
447    apr_uint32_t k;
448
449    for (i = 0, j = 0; j < len; i++, j += 4) {
450        k = input[i];
451        output[j]     = (unsigned char)(k & 0xff);
452        output[j + 1] = (unsigned char)((k >> 8) & 0xff);
453        output[j + 2] = (unsigned char)((k >> 16) & 0xff);
454        output[j + 3] = (unsigned char)((k >> 24) & 0xff);
455    }
456}
457
458/* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is
459 * a multiple of 4.
460 */
461static void Decode(apr_uint32_t *output, const unsigned char *input,
462                   unsigned int len)
463{
464    unsigned int i, j;
465
466    for (i = 0, j = 0; j < len; i++, j += 4)
467        output[i] = ((apr_uint32_t)input[j])             |
468                    (((apr_uint32_t)input[j + 1]) << 8)  |
469                    (((apr_uint32_t)input[j + 2]) << 16) |
470                    (((apr_uint32_t)input[j + 3]) << 24);
471}
472
473#if APR_CHARSET_EBCDIC
474APU_DECLARE(apr_status_t) apr_MD5InitEBCDIC(apr_xlate_t *xlate)
475{
476    xlate_ebcdic_to_ascii = xlate;
477    return APR_SUCCESS;
478}
479#endif
480
481/*
482 * Define the Magic String prefix that identifies a password as being
483 * hashed using our algorithm.
484 */
485static const char * const apr1_id = "$apr1$";
486
487/*
488 * The following MD5 password encryption code was largely borrowed from
489 * the FreeBSD 3.0 /usr/src/lib/libcrypt/crypt.c file, which is
490 * licenced as stated at the top of this file.
491 */
492
493static void to64(char *s, unsigned long v, int n)
494{
495    static unsigned char itoa64[] =         /* 0 ... 63 => ASCII - 64 */
496        "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
497
498    while (--n >= 0) {
499        *s++ = itoa64[v&0x3f];
500        v >>= 6;
501    }
502}
503
504APU_DECLARE(apr_status_t) apr_md5_encode(const char *pw, const char *salt,
505                             char *result, apr_size_t nbytes)
506{
507    /*
508     * Minimum size is 8 bytes for salt, plus 1 for the trailing NUL,
509     * plus 4 for the '$' separators, plus the password hash itself.
510     * Let's leave a goodly amount of leeway.
511     */
512
513    char passwd[120], *p;
514    const char *sp, *ep;
515    unsigned char final[APR_MD5_DIGESTSIZE];
516    apr_ssize_t sl, pl, i;
517    apr_md5_ctx_t ctx, ctx1;
518    unsigned long l;
519
520    /*
521     * Refine the salt first.  It's possible we were given an already-hashed
522     * string as the salt argument, so extract the actual salt value from it
523     * if so.  Otherwise just use the string up to the first '$' as the salt.
524     */
525    sp = salt;
526
527    /*
528     * If it starts with the magic string, then skip that.
529     */
530    if (!strncmp(sp, apr1_id, strlen(apr1_id))) {
531        sp += strlen(apr1_id);
532    }
533
534    /*
535     * It stops at the first '$' or 8 chars, whichever comes first
536     */
537    for (ep = sp; (*ep != '\0') && (*ep != '$') && (ep < (sp + 8)); ep++) {
538        continue;
539    }
540
541    /*
542     * Get the length of the true salt
543     */
544    sl = ep - sp;
545
546    /*
547     * 'Time to make the doughnuts..'
548     */
549    apr_md5_init(&ctx);
550#if APR_CHARSET_EBCDIC
551    apr_md5_set_xlate(&ctx, xlate_ebcdic_to_ascii);
552#endif
553
554    /*
555     * The password first, since that is what is most unknown
556     */
557    apr_md5_update(&ctx, pw, strlen(pw));
558
559    /*
560     * Then our magic string
561     */
562    apr_md5_update(&ctx, apr1_id, strlen(apr1_id));
563
564    /*
565     * Then the raw salt
566     */
567    apr_md5_update(&ctx, sp, sl);
568
569    /*
570     * Then just as many characters of the MD5(pw, salt, pw)
571     */
572    apr_md5_init(&ctx1);
573#if APR_CHARSET_EBCDIC
574    apr_md5_set_xlate(&ctx1, xlate_ebcdic_to_ascii);
575#endif
576    apr_md5_update(&ctx1, pw, strlen(pw));
577    apr_md5_update(&ctx1, sp, sl);
578    apr_md5_update(&ctx1, pw, strlen(pw));
579    apr_md5_final(final, &ctx1);
580    for (pl = strlen(pw); pl > 0; pl -= APR_MD5_DIGESTSIZE) {
581        md5_update_buffer(&ctx, final,
582                      (pl > APR_MD5_DIGESTSIZE) ? APR_MD5_DIGESTSIZE : pl, SKIP_XLATE);
583    }
584
585    /*
586     * Don't leave anything around in vm they could use.
587     */
588    memset(final, 0, sizeof(final));
589
590    /*
591     * Then something really weird...
592     */
593    for (i = strlen(pw); i != 0; i >>= 1) {
594        if (i & 1) {
595            md5_update_buffer(&ctx, final, 1, SKIP_XLATE);
596        }
597        else {
598            apr_md5_update(&ctx, pw, 1);
599        }
600    }
601
602    /*
603     * Now make the output string.  We know our limitations, so we
604     * can use the string routines without bounds checking.
605     */
606    strcpy(passwd, apr1_id);
607    strncat(passwd, sp, sl);
608    strcat(passwd, "$");
609
610    apr_md5_final(final, &ctx);
611
612    /*
613     * And now, just to make sure things don't run too fast..
614     * On a 60 Mhz Pentium this takes 34 msec, so you would
615     * need 30 seconds to build a 1000 entry dictionary...
616     */
617    for (i = 0; i < 1000; i++) {
618        apr_md5_init(&ctx1);
619         /*
620          * apr_md5_final clears out ctx1.xlate at the end of each loop,
621          * so need to to set it each time through
622          */
623#if APR_CHARSET_EBCDIC
624        apr_md5_set_xlate(&ctx1, xlate_ebcdic_to_ascii);
625#endif
626        if (i & 1) {
627            apr_md5_update(&ctx1, pw, strlen(pw));
628        }
629        else {
630            md5_update_buffer(&ctx1, final, APR_MD5_DIGESTSIZE, SKIP_XLATE);
631        }
632        if (i % 3) {
633            apr_md5_update(&ctx1, sp, sl);
634        }
635
636        if (i % 7) {
637            apr_md5_update(&ctx1, pw, strlen(pw));
638        }
639
640        if (i & 1) {
641            md5_update_buffer(&ctx1, final, APR_MD5_DIGESTSIZE, SKIP_XLATE);
642        }
643        else {
644            apr_md5_update(&ctx1, pw, strlen(pw));
645        }
646        apr_md5_final(final,&ctx1);
647    }
648
649    p = passwd + strlen(passwd);
650
651    l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p, l, 4); p += 4;
652    l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p, l, 4); p += 4;
653    l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p, l, 4); p += 4;
654    l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p, l, 4); p += 4;
655    l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p, l, 4); p += 4;
656    l =                    final[11]                ; to64(p, l, 2); p += 2;
657    *p = '\0';
658
659    /*
660     * Don't leave anything around in vm they could use.
661     */
662    memset(final, 0, sizeof(final));
663
664    apr_cpystrn(result, passwd, nbytes - 1);
665    return APR_SUCCESS;
666}
667