1/*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 *	File:	vm/vm_object.c
60 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 *	Virtual memory object module.
63 */
64
65#include <debug.h>
66#include <mach_pagemap.h>
67#include <task_swapper.h>
68
69#include <mach/mach_types.h>
70#include <mach/memory_object.h>
71#include <mach/memory_object_default.h>
72#include <mach/memory_object_control_server.h>
73#include <mach/vm_param.h>
74
75#include <mach/sdt.h>
76
77#include <ipc/ipc_types.h>
78#include <ipc/ipc_port.h>
79
80#include <kern/kern_types.h>
81#include <kern/assert.h>
82#include <kern/lock.h>
83#include <kern/queue.h>
84#include <kern/xpr.h>
85#include <kern/kalloc.h>
86#include <kern/zalloc.h>
87#include <kern/host.h>
88#include <kern/host_statistics.h>
89#include <kern/processor.h>
90#include <kern/misc_protos.h>
91
92#include <vm/memory_object.h>
93#include <vm/vm_fault.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_pageout.h>
98#include <vm/vm_protos.h>
99#include <vm/vm_purgeable_internal.h>
100
101/*
102 *	Virtual memory objects maintain the actual data
103 *	associated with allocated virtual memory.  A given
104 *	page of memory exists within exactly one object.
105 *
106 *	An object is only deallocated when all "references"
107 *	are given up.
108 *
109 *	Associated with each object is a list of all resident
110 *	memory pages belonging to that object; this list is
111 *	maintained by the "vm_page" module, but locked by the object's
112 *	lock.
113 *
114 *	Each object also records the memory object reference
115 *	that is used by the kernel to request and write
116 *	back data (the memory object, field "pager"), etc...
117 *
118 *	Virtual memory objects are allocated to provide
119 *	zero-filled memory (vm_allocate) or map a user-defined
120 *	memory object into a virtual address space (vm_map).
121 *
122 *	Virtual memory objects that refer to a user-defined
123 *	memory object are called "permanent", because all changes
124 *	made in virtual memory are reflected back to the
125 *	memory manager, which may then store it permanently.
126 *	Other virtual memory objects are called "temporary",
127 *	meaning that changes need be written back only when
128 *	necessary to reclaim pages, and that storage associated
129 *	with the object can be discarded once it is no longer
130 *	mapped.
131 *
132 *	A permanent memory object may be mapped into more
133 *	than one virtual address space.  Moreover, two threads
134 *	may attempt to make the first mapping of a memory
135 *	object concurrently.  Only one thread is allowed to
136 *	complete this mapping; all others wait for the
137 *	"pager_initialized" field is asserted, indicating
138 *	that the first thread has initialized all of the
139 *	necessary fields in the virtual memory object structure.
140 *
141 *	The kernel relies on a *default memory manager* to
142 *	provide backing storage for the zero-filled virtual
143 *	memory objects.  The pager memory objects associated
144 *	with these temporary virtual memory objects are only
145 *	requested from the default memory manager when it
146 *	becomes necessary.  Virtual memory objects
147 *	that depend on the default memory manager are called
148 *	"internal".  The "pager_created" field is provided to
149 *	indicate whether these ports have ever been allocated.
150 *
151 *	The kernel may also create virtual memory objects to
152 *	hold changed pages after a copy-on-write operation.
153 *	In this case, the virtual memory object (and its
154 *	backing storage -- its memory object) only contain
155 *	those pages that have been changed.  The "shadow"
156 *	field refers to the virtual memory object that contains
157 *	the remainder of the contents.  The "shadow_offset"
158 *	field indicates where in the "shadow" these contents begin.
159 *	The "copy" field refers to a virtual memory object
160 *	to which changed pages must be copied before changing
161 *	this object, in order to implement another form
162 *	of copy-on-write optimization.
163 *
164 *	The virtual memory object structure also records
165 *	the attributes associated with its memory object.
166 *	The "pager_ready", "can_persist" and "copy_strategy"
167 *	fields represent those attributes.  The "cached_list"
168 *	field is used in the implementation of the persistence
169 *	attribute.
170 *
171 * ZZZ Continue this comment.
172 */
173
174/* Forward declarations for internal functions. */
175static kern_return_t	vm_object_terminate(
176				vm_object_t	object);
177
178extern void		vm_object_remove(
179				vm_object_t	object);
180
181static kern_return_t	vm_object_copy_call(
182				vm_object_t		src_object,
183				vm_object_offset_t	src_offset,
184				vm_object_size_t	size,
185				vm_object_t		*_result_object);
186
187static void		vm_object_do_collapse(
188				vm_object_t	object,
189				vm_object_t	backing_object);
190
191static void		vm_object_do_bypass(
192				vm_object_t	object,
193				vm_object_t	backing_object);
194
195static void		vm_object_release_pager(
196	                        memory_object_t	pager,
197				boolean_t	hashed);
198
199static zone_t		vm_object_zone;		/* vm backing store zone */
200
201/*
202 *	All wired-down kernel memory belongs to a single virtual
203 *	memory object (kernel_object) to avoid wasting data structures.
204 */
205static struct vm_object			kernel_object_store;
206vm_object_t						kernel_object;
207
208
209/*
210 *	The submap object is used as a placeholder for vm_map_submap
211 *	operations.  The object is declared in vm_map.c because it
212 *	is exported by the vm_map module.  The storage is declared
213 *	here because it must be initialized here.
214 */
215static struct vm_object			vm_submap_object_store;
216
217/*
218 *	Virtual memory objects are initialized from
219 *	a template (see vm_object_allocate).
220 *
221 *	When adding a new field to the virtual memory
222 *	object structure, be sure to add initialization
223 *	(see _vm_object_allocate()).
224 */
225static struct vm_object			vm_object_template;
226
227unsigned int vm_page_purged_wired = 0;
228unsigned int vm_page_purged_busy = 0;
229unsigned int vm_page_purged_others = 0;
230
231#if VM_OBJECT_CACHE
232/*
233 *	Virtual memory objects that are not referenced by
234 *	any address maps, but that are allowed to persist
235 *	(an attribute specified by the associated memory manager),
236 *	are kept in a queue (vm_object_cached_list).
237 *
238 *	When an object from this queue is referenced again,
239 *	for example to make another address space mapping,
240 *	it must be removed from the queue.  That is, the
241 *	queue contains *only* objects with zero references.
242 *
243 *	The kernel may choose to terminate objects from this
244 *	queue in order to reclaim storage.  The current policy
245 *	is to permit a fixed maximum number of unreferenced
246 *	objects (vm_object_cached_max).
247 *
248 *	A spin lock (accessed by routines
249 *	vm_object_cache_{lock,lock_try,unlock}) governs the
250 *	object cache.  It must be held when objects are
251 *	added to or removed from the cache (in vm_object_terminate).
252 *	The routines that acquire a reference to a virtual
253 *	memory object based on one of the memory object ports
254 *	must also lock the cache.
255 *
256 *	Ideally, the object cache should be more isolated
257 *	from the reference mechanism, so that the lock need
258 *	not be held to make simple references.
259 */
260static vm_object_t	vm_object_cache_trim(
261				boolean_t called_from_vm_object_deallocate);
262
263static void		vm_object_deactivate_all_pages(
264				vm_object_t	object);
265
266static int		vm_object_cached_high;	/* highest # cached objects */
267static int		vm_object_cached_max = 512;	/* may be patched*/
268
269#define vm_object_cache_lock()		\
270		lck_mtx_lock(&vm_object_cached_lock_data)
271#define vm_object_cache_lock_try()		\
272		lck_mtx_try_lock(&vm_object_cached_lock_data)
273
274#endif	/* VM_OBJECT_CACHE */
275
276static queue_head_t	vm_object_cached_list;
277static uint32_t		vm_object_cache_pages_freed = 0;
278static uint32_t		vm_object_cache_pages_moved = 0;
279static uint32_t		vm_object_cache_pages_skipped = 0;
280static uint32_t		vm_object_cache_adds = 0;
281static uint32_t		vm_object_cached_count = 0;
282static lck_mtx_t	vm_object_cached_lock_data;
283static lck_mtx_ext_t	vm_object_cached_lock_data_ext;
284
285static uint32_t		vm_object_page_grab_failed = 0;
286static uint32_t		vm_object_page_grab_skipped = 0;
287static uint32_t		vm_object_page_grab_returned = 0;
288static uint32_t		vm_object_page_grab_pmapped = 0;
289static uint32_t		vm_object_page_grab_reactivations = 0;
290
291#define vm_object_cache_lock_spin()		\
292		lck_mtx_lock_spin(&vm_object_cached_lock_data)
293#define vm_object_cache_unlock()	\
294		lck_mtx_unlock(&vm_object_cached_lock_data)
295
296static void	vm_object_cache_remove_locked(vm_object_t);
297
298
299#define	VM_OBJECT_HASH_COUNT		1024
300#define	VM_OBJECT_HASH_LOCK_COUNT	512
301
302static lck_mtx_t	vm_object_hashed_lock_data[VM_OBJECT_HASH_LOCK_COUNT];
303static lck_mtx_ext_t	vm_object_hashed_lock_data_ext[VM_OBJECT_HASH_LOCK_COUNT];
304
305static queue_head_t	vm_object_hashtable[VM_OBJECT_HASH_COUNT];
306static struct zone	*vm_object_hash_zone;
307
308struct vm_object_hash_entry {
309	queue_chain_t		hash_link;	/* hash chain link */
310	memory_object_t	pager;		/* pager we represent */
311	vm_object_t		object;		/* corresponding object */
312	boolean_t		waiting;	/* someone waiting for
313						 * termination */
314};
315
316typedef struct vm_object_hash_entry	*vm_object_hash_entry_t;
317#define VM_OBJECT_HASH_ENTRY_NULL	((vm_object_hash_entry_t) 0)
318
319#define VM_OBJECT_HASH_SHIFT	5
320#define vm_object_hash(pager) \
321	((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT))
322
323#define vm_object_lock_hash(pager) \
324	((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_LOCK_COUNT))
325
326void vm_object_hash_entry_free(
327	vm_object_hash_entry_t	entry);
328
329static void vm_object_reap(vm_object_t object);
330static void vm_object_reap_async(vm_object_t object);
331static void vm_object_reaper_thread(void);
332
333static lck_mtx_t	vm_object_reaper_lock_data;
334static lck_mtx_ext_t	vm_object_reaper_lock_data_ext;
335
336static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */
337unsigned int vm_object_reap_count = 0;
338unsigned int vm_object_reap_count_async = 0;
339
340#define vm_object_reaper_lock()		\
341		lck_mtx_lock(&vm_object_reaper_lock_data)
342#define vm_object_reaper_lock_spin()		\
343		lck_mtx_lock_spin(&vm_object_reaper_lock_data)
344#define vm_object_reaper_unlock()	\
345		lck_mtx_unlock(&vm_object_reaper_lock_data)
346
347#if 0
348#undef KERNEL_DEBUG
349#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
350#endif
351
352
353static lck_mtx_t *
354vm_object_hash_lock_spin(
355	memory_object_t	pager)
356{
357	int	index;
358
359	index = vm_object_lock_hash(pager);
360
361	lck_mtx_lock_spin(&vm_object_hashed_lock_data[index]);
362
363	return (&vm_object_hashed_lock_data[index]);
364}
365
366static void
367vm_object_hash_unlock(lck_mtx_t *lck)
368{
369	lck_mtx_unlock(lck);
370}
371
372
373/*
374 *	vm_object_hash_lookup looks up a pager in the hashtable
375 *	and returns the corresponding entry, with optional removal.
376 */
377static vm_object_hash_entry_t
378vm_object_hash_lookup(
379	memory_object_t	pager,
380	boolean_t	remove_entry)
381{
382	queue_t			bucket;
383	vm_object_hash_entry_t	entry;
384
385	bucket = &vm_object_hashtable[vm_object_hash(pager)];
386
387	entry = (vm_object_hash_entry_t)queue_first(bucket);
388	while (!queue_end(bucket, (queue_entry_t)entry)) {
389		if (entry->pager == pager) {
390			if (remove_entry) {
391				queue_remove(bucket, entry,
392					     vm_object_hash_entry_t, hash_link);
393			}
394			return(entry);
395		}
396		entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link);
397	}
398	return(VM_OBJECT_HASH_ENTRY_NULL);
399}
400
401/*
402 *	vm_object_hash_enter enters the specified
403 *	pager / cache object association in the hashtable.
404 */
405
406static void
407vm_object_hash_insert(
408	vm_object_hash_entry_t	entry,
409	vm_object_t		object)
410{
411	queue_t		bucket;
412
413	bucket = &vm_object_hashtable[vm_object_hash(entry->pager)];
414
415	queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link);
416
417	entry->object = object;
418	object->hashed = TRUE;
419}
420
421static vm_object_hash_entry_t
422vm_object_hash_entry_alloc(
423	memory_object_t	pager)
424{
425	vm_object_hash_entry_t	entry;
426
427	entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone);
428	entry->pager = pager;
429	entry->object = VM_OBJECT_NULL;
430	entry->waiting = FALSE;
431
432	return(entry);
433}
434
435void
436vm_object_hash_entry_free(
437	vm_object_hash_entry_t	entry)
438{
439	zfree(vm_object_hash_zone, entry);
440}
441
442/*
443 *	vm_object_allocate:
444 *
445 *	Returns a new object with the given size.
446 */
447
448__private_extern__ void
449_vm_object_allocate(
450	vm_object_size_t	size,
451	vm_object_t		object)
452{
453	XPR(XPR_VM_OBJECT,
454		"vm_object_allocate, object 0x%X size 0x%X\n",
455		object, size, 0,0,0);
456
457	*object = vm_object_template;
458	queue_init(&object->memq);
459	queue_init(&object->msr_q);
460#if UPL_DEBUG
461	queue_init(&object->uplq);
462#endif /* UPL_DEBUG */
463	vm_object_lock_init(object);
464	object->vo_size = size;
465}
466
467__private_extern__ vm_object_t
468vm_object_allocate(
469	vm_object_size_t	size)
470{
471	register vm_object_t object;
472
473	object = (vm_object_t) zalloc(vm_object_zone);
474
475//	dbgLog(object, size, 0, 2);			/* (TEST/DEBUG) */
476
477	if (object != VM_OBJECT_NULL)
478		_vm_object_allocate(size, object);
479
480	return object;
481}
482
483
484lck_grp_t		vm_object_lck_grp;
485lck_grp_t		vm_object_cache_lck_grp;
486lck_grp_attr_t		vm_object_lck_grp_attr;
487lck_attr_t		vm_object_lck_attr;
488lck_attr_t		kernel_object_lck_attr;
489
490/*
491 *	vm_object_bootstrap:
492 *
493 *	Initialize the VM objects module.
494 */
495__private_extern__ void
496vm_object_bootstrap(void)
497{
498	register int	i;
499
500	vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object),
501				round_page(512*1024),
502				round_page(12*1024),
503				"vm objects");
504	zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */
505	zone_change(vm_object_zone, Z_NOENCRYPT, TRUE);
506
507	vm_object_init_lck_grp();
508
509	queue_init(&vm_object_cached_list);
510
511	lck_mtx_init_ext(&vm_object_cached_lock_data,
512		&vm_object_cached_lock_data_ext,
513		&vm_object_cache_lck_grp,
514		&vm_object_lck_attr);
515
516
517
518	queue_init(&vm_object_reaper_queue);
519
520	for (i = 0; i < VM_OBJECT_HASH_LOCK_COUNT; i++) {
521		lck_mtx_init_ext(&vm_object_hashed_lock_data[i],
522				 &vm_object_hashed_lock_data_ext[i],
523				 &vm_object_lck_grp,
524				 &vm_object_lck_attr);
525	}
526	lck_mtx_init_ext(&vm_object_reaper_lock_data,
527		&vm_object_reaper_lock_data_ext,
528		&vm_object_lck_grp,
529		&vm_object_lck_attr);
530
531	vm_object_hash_zone =
532			zinit((vm_size_t) sizeof (struct vm_object_hash_entry),
533			      round_page(512*1024),
534			      round_page(12*1024),
535			      "vm object hash entries");
536	zone_change(vm_object_hash_zone, Z_CALLERACCT, FALSE);
537	zone_change(vm_object_hash_zone, Z_NOENCRYPT, TRUE);
538
539	for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
540		queue_init(&vm_object_hashtable[i]);
541
542
543	/*
544	 *	Fill in a template object, for quick initialization
545	 */
546
547
548
549	/* memq; Lock; init after allocation */
550	vm_object_template.memq.prev = NULL;
551	vm_object_template.memq.next = NULL;
552#if 0
553	/*
554	 * We can't call vm_object_lock_init() here because that will
555	 * allocate some memory and VM is not fully initialized yet.
556	 * The lock will be initialized for each allocated object in
557	 * _vm_object_allocate(), so we don't need to initialize it in
558	 * the vm_object_template.
559	 */
560	vm_object_lock_init(&vm_object_template);
561#endif
562	vm_object_template.vo_size = 0;
563	vm_object_template.memq_hint = VM_PAGE_NULL;
564	vm_object_template.ref_count = 1;
565#if	TASK_SWAPPER
566	vm_object_template.res_count = 1;
567#endif	/* TASK_SWAPPER */
568	vm_object_template.resident_page_count = 0;
569	vm_object_template.wired_page_count = 0;
570	vm_object_template.reusable_page_count = 0;
571	vm_object_template.copy = VM_OBJECT_NULL;
572	vm_object_template.shadow = VM_OBJECT_NULL;
573	vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0;
574	vm_object_template.pager = MEMORY_OBJECT_NULL;
575	vm_object_template.paging_offset = 0;
576	vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL;
577	vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC;
578	vm_object_template.paging_in_progress = 0;
579	vm_object_template.activity_in_progress = 0;
580
581	/* Begin bitfields */
582	vm_object_template.all_wanted = 0; /* all bits FALSE */
583	vm_object_template.pager_created = FALSE;
584	vm_object_template.pager_initialized = FALSE;
585	vm_object_template.pager_ready = FALSE;
586	vm_object_template.pager_trusted = FALSE;
587	vm_object_template.can_persist = FALSE;
588	vm_object_template.internal = TRUE;
589	vm_object_template.temporary = TRUE;
590	vm_object_template.private = FALSE;
591	vm_object_template.pageout = FALSE;
592	vm_object_template.alive = TRUE;
593	vm_object_template.purgable = VM_PURGABLE_DENY;
594	vm_object_template.shadowed = FALSE;
595	vm_object_template.silent_overwrite = FALSE;
596	vm_object_template.advisory_pageout = FALSE;
597	vm_object_template.true_share = FALSE;
598	vm_object_template.terminating = FALSE;
599	vm_object_template.named = FALSE;
600	vm_object_template.shadow_severed = FALSE;
601	vm_object_template.phys_contiguous = FALSE;
602	vm_object_template.nophyscache = FALSE;
603	/* End bitfields */
604
605	vm_object_template.cached_list.prev = NULL;
606	vm_object_template.cached_list.next = NULL;
607	vm_object_template.msr_q.prev = NULL;
608	vm_object_template.msr_q.next = NULL;
609
610	vm_object_template.last_alloc = (vm_object_offset_t) 0;
611	vm_object_template.sequential = (vm_object_offset_t) 0;
612	vm_object_template.pages_created = 0;
613	vm_object_template.pages_used = 0;
614	vm_object_template.scan_collisions = 0;
615
616#if	MACH_PAGEMAP
617	vm_object_template.existence_map = VM_EXTERNAL_NULL;
618#endif	/* MACH_PAGEMAP */
619	vm_object_template.cow_hint = ~(vm_offset_t)0;
620#if	MACH_ASSERT
621	vm_object_template.paging_object = VM_OBJECT_NULL;
622#endif	/* MACH_ASSERT */
623
624	/* cache bitfields */
625	vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT;
626	vm_object_template.set_cache_attr = FALSE;
627	vm_object_template.code_signed = FALSE;
628	vm_object_template.hashed = FALSE;
629	vm_object_template.transposed = FALSE;
630	vm_object_template.mapping_in_progress = FALSE;
631	vm_object_template.volatile_empty = FALSE;
632	vm_object_template.volatile_fault = FALSE;
633	vm_object_template.all_reusable = FALSE;
634	vm_object_template.blocked_access = FALSE;
635	vm_object_template.__object2_unused_bits = 0;
636#if UPL_DEBUG
637	vm_object_template.uplq.prev = NULL;
638	vm_object_template.uplq.next = NULL;
639#endif /* UPL_DEBUG */
640#ifdef VM_PIP_DEBUG
641	bzero(&vm_object_template.pip_holders,
642	      sizeof (vm_object_template.pip_holders));
643#endif /* VM_PIP_DEBUG */
644
645	vm_object_template.objq.next=NULL;
646	vm_object_template.objq.prev=NULL;
647
648	vm_object_template.vo_cache_ts = 0;
649
650	/*
651	 *	Initialize the "kernel object"
652	 */
653
654	kernel_object = &kernel_object_store;
655
656/*
657 *	Note that in the following size specifications, we need to add 1 because
658 *	VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size.
659 */
660
661#ifdef ppc
662	_vm_object_allocate(vm_last_addr + 1,
663			    kernel_object);
664#else
665	_vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
666			    kernel_object);
667#endif
668	kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
669
670	/*
671	 *	Initialize the "submap object".  Make it as large as the
672	 *	kernel object so that no limit is imposed on submap sizes.
673	 */
674
675	vm_submap_object = &vm_submap_object_store;
676#ifdef ppc
677	_vm_object_allocate(vm_last_addr + 1,
678			    vm_submap_object);
679#else
680	_vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
681			    vm_submap_object);
682#endif
683	vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
684
685	/*
686	 * Create an "extra" reference to this object so that we never
687	 * try to deallocate it; zfree doesn't like to be called with
688	 * non-zone memory.
689	 */
690
691	vm_object_reference(vm_submap_object);
692
693
694#if	MACH_PAGEMAP
695	vm_external_module_initialize();
696#endif	/* MACH_PAGEMAP */
697}
698
699void
700vm_object_reaper_init(void)
701{
702	kern_return_t	kr;
703	thread_t	thread;
704
705	kr = kernel_thread_start_priority(
706		(thread_continue_t) vm_object_reaper_thread,
707		NULL,
708		BASEPRI_PREEMPT - 1,
709		&thread);
710	if (kr != KERN_SUCCESS) {
711		panic("failed to launch vm_object_reaper_thread kr=0x%x", kr);
712	}
713	thread_deallocate(thread);
714}
715
716__private_extern__ void
717vm_object_init(void)
718{
719	/*
720	 *	Finish initializing the kernel object.
721	 */
722}
723
724
725__private_extern__ void
726vm_object_init_lck_grp(void)
727{
728	/*
729	 * initialze the vm_object lock world
730	 */
731	lck_grp_attr_setdefault(&vm_object_lck_grp_attr);
732	lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr);
733	lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr);
734	lck_attr_setdefault(&vm_object_lck_attr);
735	lck_attr_setdefault(&kernel_object_lck_attr);
736	lck_attr_cleardebug(&kernel_object_lck_attr);
737}
738
739#if VM_OBJECT_CACHE
740#define	MIGHT_NOT_CACHE_SHADOWS		1
741#if	MIGHT_NOT_CACHE_SHADOWS
742static int cache_shadows = TRUE;
743#endif	/* MIGHT_NOT_CACHE_SHADOWS */
744#endif
745
746/*
747 *	vm_object_deallocate:
748 *
749 *	Release a reference to the specified object,
750 *	gained either through a vm_object_allocate
751 *	or a vm_object_reference call.  When all references
752 *	are gone, storage associated with this object
753 *	may be relinquished.
754 *
755 *	No object may be locked.
756 */
757unsigned long vm_object_deallocate_shared_successes = 0;
758unsigned long vm_object_deallocate_shared_failures = 0;
759unsigned long vm_object_deallocate_shared_swap_failures = 0;
760__private_extern__ void
761vm_object_deallocate(
762	register vm_object_t	object)
763{
764#if VM_OBJECT_CACHE
765	boolean_t	retry_cache_trim = FALSE;
766	uint32_t	try_failed_count = 0;
767#endif
768	vm_object_t	shadow = VM_OBJECT_NULL;
769
770//	if(object)dbgLog(object, object->ref_count, object->can_persist, 3);	/* (TEST/DEBUG) */
771//	else dbgLog(object, 0, 0, 3);	/* (TEST/DEBUG) */
772
773	if (object == VM_OBJECT_NULL)
774	        return;
775
776	if (object == kernel_object) {
777		vm_object_lock_shared(object);
778
779		OSAddAtomic(-1, &object->ref_count);
780
781		if (object->ref_count == 0) {
782			panic("vm_object_deallocate: losing kernel_object\n");
783		}
784		vm_object_unlock(object);
785		return;
786	}
787
788	if (object->ref_count > 2 ||
789	    (!object->named && object->ref_count > 1)) {
790		UInt32		original_ref_count;
791		volatile UInt32	*ref_count_p;
792		Boolean		atomic_swap;
793
794		/*
795		 * The object currently looks like it is not being
796		 * kept alive solely by the reference we're about to release.
797		 * Let's try and release our reference without taking
798		 * all the locks we would need if we had to terminate the
799		 * object (cache lock + exclusive object lock).
800		 * Lock the object "shared" to make sure we don't race with
801		 * anyone holding it "exclusive".
802		 */
803	        vm_object_lock_shared(object);
804		ref_count_p = (volatile UInt32 *) &object->ref_count;
805		original_ref_count = object->ref_count;
806		/*
807		 * Test again as "ref_count" could have changed.
808		 * "named" shouldn't change.
809		 */
810		if (original_ref_count > 2 ||
811		    (!object->named && original_ref_count > 1)) {
812			atomic_swap = OSCompareAndSwap(
813				original_ref_count,
814				original_ref_count - 1,
815				(UInt32 *) &object->ref_count);
816			if (atomic_swap == FALSE) {
817				vm_object_deallocate_shared_swap_failures++;
818			}
819
820		} else {
821			atomic_swap = FALSE;
822		}
823		vm_object_unlock(object);
824
825		if (atomic_swap) {
826			/*
827			 * ref_count was updated atomically !
828			 */
829			vm_object_deallocate_shared_successes++;
830			return;
831		}
832
833		/*
834		 * Someone else updated the ref_count at the same
835		 * time and we lost the race.  Fall back to the usual
836		 * slow but safe path...
837		 */
838		vm_object_deallocate_shared_failures++;
839	}
840
841	while (object != VM_OBJECT_NULL) {
842
843		vm_object_lock(object);
844
845		assert(object->ref_count > 0);
846
847		/*
848		 *	If the object has a named reference, and only
849		 *	that reference would remain, inform the pager
850		 *	about the last "mapping" reference going away.
851		 */
852		if ((object->ref_count == 2)  && (object->named)) {
853			memory_object_t	pager = object->pager;
854
855			/* Notify the Pager that there are no */
856			/* more mappers for this object */
857
858			if (pager != MEMORY_OBJECT_NULL) {
859				vm_object_mapping_wait(object, THREAD_UNINT);
860				vm_object_mapping_begin(object);
861				vm_object_unlock(object);
862
863				memory_object_last_unmap(pager);
864
865				vm_object_lock(object);
866				vm_object_mapping_end(object);
867			}
868			assert(object->ref_count > 0);
869		}
870
871		/*
872		 *	Lose the reference. If other references
873		 *	remain, then we are done, unless we need
874		 *	to retry a cache trim.
875		 *	If it is the last reference, then keep it
876		 *	until any pending initialization is completed.
877		 */
878
879		/* if the object is terminating, it cannot go into */
880		/* the cache and we obviously should not call      */
881		/* terminate again.  */
882
883		if ((object->ref_count > 1) || object->terminating) {
884			vm_object_lock_assert_exclusive(object);
885			object->ref_count--;
886			vm_object_res_deallocate(object);
887
888			if (object->ref_count == 1 &&
889			    object->shadow != VM_OBJECT_NULL) {
890				/*
891				 * There's only one reference left on this
892				 * VM object.  We can't tell if it's a valid
893				 * one (from a mapping for example) or if this
894				 * object is just part of a possibly stale and
895				 * useless shadow chain.
896				 * We would like to try and collapse it into
897				 * its parent, but we don't have any pointers
898				 * back to this parent object.
899				 * But we can try and collapse this object with
900				 * its own shadows, in case these are useless
901				 * too...
902				 * We can't bypass this object though, since we
903				 * don't know if this last reference on it is
904				 * meaningful or not.
905				 */
906				vm_object_collapse(object, 0, FALSE);
907			}
908			vm_object_unlock(object);
909#if VM_OBJECT_CACHE
910			if (retry_cache_trim &&
911			    ((object = vm_object_cache_trim(TRUE)) !=
912			     VM_OBJECT_NULL)) {
913				continue;
914			}
915#endif
916			return;
917		}
918
919		/*
920		 *	We have to wait for initialization
921		 *	before destroying or caching the object.
922		 */
923
924		if (object->pager_created && ! object->pager_initialized) {
925			assert(! object->can_persist);
926			vm_object_assert_wait(object,
927					      VM_OBJECT_EVENT_INITIALIZED,
928					      THREAD_UNINT);
929			vm_object_unlock(object);
930
931			thread_block(THREAD_CONTINUE_NULL);
932			continue;
933		}
934
935#if VM_OBJECT_CACHE
936		/*
937		 *	If this object can persist, then enter it in
938		 *	the cache. Otherwise, terminate it.
939		 *
940		 * 	NOTE:  Only permanent objects are cached, and
941		 *	permanent objects cannot have shadows.  This
942		 *	affects the residence counting logic in a minor
943		 *	way (can do it in-line, mostly).
944		 */
945
946		if ((object->can_persist) && (object->alive)) {
947			/*
948			 *	Now it is safe to decrement reference count,
949			 *	and to return if reference count is > 0.
950			 */
951
952			vm_object_lock_assert_exclusive(object);
953			if (--object->ref_count > 0) {
954				vm_object_res_deallocate(object);
955				vm_object_unlock(object);
956
957				if (retry_cache_trim &&
958				    ((object = vm_object_cache_trim(TRUE)) !=
959				     VM_OBJECT_NULL)) {
960					continue;
961				}
962				return;
963			}
964
965#if	MIGHT_NOT_CACHE_SHADOWS
966			/*
967			 *	Remove shadow now if we don't
968			 *	want to cache shadows.
969			 */
970			if (! cache_shadows) {
971				shadow = object->shadow;
972				object->shadow = VM_OBJECT_NULL;
973			}
974#endif	/* MIGHT_NOT_CACHE_SHADOWS */
975
976			/*
977			 *	Enter the object onto the queue of
978			 *	cached objects, and deactivate
979			 *	all of its pages.
980			 */
981			assert(object->shadow == VM_OBJECT_NULL);
982			VM_OBJ_RES_DECR(object);
983			XPR(XPR_VM_OBJECT,
984		      "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n",
985				object,
986				vm_object_cached_list.next,
987				vm_object_cached_list.prev,0,0);
988
989
990			vm_object_unlock(object);
991
992			try_failed_count = 0;
993			for (;;) {
994				vm_object_cache_lock();
995
996				/*
997				 * if we try to take a regular lock here
998				 * we risk deadlocking against someone
999				 * holding a lock on this object while
1000				 * trying to vm_object_deallocate a different
1001				 * object
1002				 */
1003				if (vm_object_lock_try(object))
1004					break;
1005				vm_object_cache_unlock();
1006				try_failed_count++;
1007
1008				mutex_pause(try_failed_count);  /* wait a bit */
1009			}
1010			vm_object_cached_count++;
1011			if (vm_object_cached_count > vm_object_cached_high)
1012				vm_object_cached_high = vm_object_cached_count;
1013			queue_enter(&vm_object_cached_list, object,
1014				vm_object_t, cached_list);
1015			vm_object_cache_unlock();
1016
1017			vm_object_deactivate_all_pages(object);
1018			vm_object_unlock(object);
1019
1020#if	MIGHT_NOT_CACHE_SHADOWS
1021			/*
1022			 *	If we have a shadow that we need
1023			 *	to deallocate, do so now, remembering
1024			 *	to trim the cache later.
1025			 */
1026			if (! cache_shadows && shadow != VM_OBJECT_NULL) {
1027				object = shadow;
1028				retry_cache_trim = TRUE;
1029				continue;
1030			}
1031#endif	/* MIGHT_NOT_CACHE_SHADOWS */
1032
1033			/*
1034			 *	Trim the cache. If the cache trim
1035			 *	returns with a shadow for us to deallocate,
1036			 *	then remember to retry the cache trim
1037			 *	when we are done deallocating the shadow.
1038			 *	Otherwise, we are done.
1039			 */
1040
1041			object = vm_object_cache_trim(TRUE);
1042			if (object == VM_OBJECT_NULL) {
1043				return;
1044			}
1045			retry_cache_trim = TRUE;
1046		} else
1047#endif	/* VM_OBJECT_CACHE */
1048		{
1049			/*
1050			 *	This object is not cachable; terminate it.
1051			 */
1052			XPR(XPR_VM_OBJECT,
1053	 "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n",
1054			    object, object->resident_page_count,
1055			    object->paging_in_progress,
1056			    (void *)current_thread(),object->ref_count);
1057
1058			VM_OBJ_RES_DECR(object);	/* XXX ? */
1059			/*
1060			 *	Terminate this object. If it had a shadow,
1061			 *	then deallocate it; otherwise, if we need
1062			 *	to retry a cache trim, do so now; otherwise,
1063			 *	we are done. "pageout" objects have a shadow,
1064			 *	but maintain a "paging reference" rather than
1065			 *	a normal reference.
1066			 */
1067			shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
1068
1069			if (vm_object_terminate(object) != KERN_SUCCESS) {
1070				return;
1071			}
1072			if (shadow != VM_OBJECT_NULL) {
1073				object = shadow;
1074				continue;
1075			}
1076#if VM_OBJECT_CACHE
1077			if (retry_cache_trim &&
1078			    ((object = vm_object_cache_trim(TRUE)) !=
1079			     VM_OBJECT_NULL)) {
1080				continue;
1081			}
1082#endif
1083			return;
1084		}
1085	}
1086#if VM_OBJECT_CACHE
1087	assert(! retry_cache_trim);
1088#endif
1089}
1090
1091
1092
1093vm_page_t
1094vm_object_page_grab(
1095	vm_object_t	object)
1096{
1097	vm_page_t	p, next_p;
1098	int		p_limit = 0;
1099	int		p_skipped = 0;
1100
1101	vm_object_lock_assert_exclusive(object);
1102
1103	next_p = (vm_page_t)queue_first(&object->memq);
1104	p_limit = MIN(50, object->resident_page_count);
1105
1106	while (!queue_end(&object->memq, (queue_entry_t)next_p) && --p_limit > 0) {
1107
1108		p = next_p;
1109		next_p = (vm_page_t)queue_next(&next_p->listq);
1110
1111		if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry || p->fictitious)
1112			goto move_page_in_obj;
1113
1114		if (p->pmapped || p->dirty || p->precious) {
1115			vm_page_lockspin_queues();
1116
1117			if (p->pmapped) {
1118				int refmod_state;
1119
1120				vm_object_page_grab_pmapped++;
1121
1122				if (p->reference == FALSE || p->dirty == FALSE) {
1123
1124					refmod_state = pmap_get_refmod(p->phys_page);
1125
1126					if (refmod_state & VM_MEM_REFERENCED)
1127						p->reference = TRUE;
1128					if (refmod_state & VM_MEM_MODIFIED) {
1129						SET_PAGE_DIRTY(p, FALSE);
1130					}
1131				}
1132				if (p->dirty == FALSE && p->precious == FALSE) {
1133
1134					refmod_state = pmap_disconnect(p->phys_page);
1135
1136					if (refmod_state & VM_MEM_REFERENCED)
1137						p->reference = TRUE;
1138					if (refmod_state & VM_MEM_MODIFIED) {
1139						SET_PAGE_DIRTY(p, FALSE);
1140					}
1141
1142					if (p->dirty == FALSE)
1143						goto take_page;
1144				}
1145			}
1146			if (p->inactive && p->reference == TRUE) {
1147				vm_page_activate(p);
1148
1149				VM_STAT_INCR(reactivations);
1150				vm_object_page_grab_reactivations++;
1151			}
1152			vm_page_unlock_queues();
1153move_page_in_obj:
1154			queue_remove(&object->memq, p, vm_page_t, listq);
1155			queue_enter(&object->memq, p, vm_page_t, listq);
1156
1157			p_skipped++;
1158			continue;
1159		}
1160		vm_page_lockspin_queues();
1161take_page:
1162		vm_page_free_prepare_queues(p);
1163		vm_object_page_grab_returned++;
1164		vm_object_page_grab_skipped += p_skipped;
1165
1166		vm_page_unlock_queues();
1167
1168		vm_page_free_prepare_object(p, TRUE);
1169
1170		return (p);
1171	}
1172	vm_object_page_grab_skipped += p_skipped;
1173	vm_object_page_grab_failed++;
1174
1175	return (NULL);
1176}
1177
1178
1179
1180#define EVICT_PREPARE_LIMIT	64
1181#define EVICT_AGE		10
1182
1183static	clock_sec_t	vm_object_cache_aging_ts = 0;
1184
1185static void
1186vm_object_cache_remove_locked(
1187	vm_object_t	object)
1188{
1189	queue_remove(&vm_object_cached_list, object, vm_object_t, objq);
1190	object->objq.next = NULL;
1191	object->objq.prev = NULL;
1192
1193	vm_object_cached_count--;
1194}
1195
1196void
1197vm_object_cache_remove(
1198	vm_object_t	object)
1199{
1200	vm_object_cache_lock_spin();
1201
1202	if (object->objq.next || object->objq.prev)
1203		vm_object_cache_remove_locked(object);
1204
1205	vm_object_cache_unlock();
1206}
1207
1208void
1209vm_object_cache_add(
1210	vm_object_t	object)
1211{
1212	clock_sec_t sec;
1213	clock_nsec_t nsec;
1214
1215	if (object->resident_page_count == 0)
1216		return;
1217	clock_get_system_nanotime(&sec, &nsec);
1218
1219	vm_object_cache_lock_spin();
1220
1221	if (object->objq.next == NULL && object->objq.prev == NULL) {
1222		queue_enter(&vm_object_cached_list, object, vm_object_t, objq);
1223		object->vo_cache_ts = sec + EVICT_AGE;
1224		object->vo_cache_pages_to_scan = object->resident_page_count;
1225
1226		vm_object_cached_count++;
1227		vm_object_cache_adds++;
1228	}
1229	vm_object_cache_unlock();
1230}
1231
1232int
1233vm_object_cache_evict(
1234	int	num_to_evict,
1235	int	max_objects_to_examine)
1236{
1237	vm_object_t	object = VM_OBJECT_NULL;
1238	vm_object_t	next_obj = VM_OBJECT_NULL;
1239	vm_page_t	local_free_q = VM_PAGE_NULL;
1240	vm_page_t	p;
1241	vm_page_t	next_p;
1242	int		object_cnt = 0;
1243	vm_page_t	ep_array[EVICT_PREPARE_LIMIT];
1244	int		ep_count;
1245	int		ep_limit;
1246	int		ep_index;
1247	int		ep_freed = 0;
1248	int		ep_moved = 0;
1249	uint32_t	ep_skipped = 0;
1250	clock_sec_t	sec;
1251	clock_nsec_t	nsec;
1252
1253	KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0);
1254	/*
1255	 * do a couple of quick checks to see if it's
1256	 * worthwhile grabbing the lock
1257	 */
1258	if (queue_empty(&vm_object_cached_list)) {
1259		KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1260		return (0);
1261	}
1262	clock_get_system_nanotime(&sec, &nsec);
1263
1264	/*
1265	 * the object on the head of the queue has not
1266	 * yet sufficiently aged
1267	 */
1268	if (sec < vm_object_cache_aging_ts) {
1269		KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1270		return (0);
1271	}
1272	/*
1273	 * don't need the queue lock to find
1274	 * and lock an object on the cached list
1275	 */
1276	vm_page_unlock_queues();
1277
1278	vm_object_cache_lock_spin();
1279
1280	for (;;) {
1281		next_obj = (vm_object_t)queue_first(&vm_object_cached_list);
1282
1283		while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) {
1284
1285			object = next_obj;
1286			next_obj = (vm_object_t)queue_next(&next_obj->objq);
1287
1288			if (sec < object->vo_cache_ts) {
1289				KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0);
1290
1291				vm_object_cache_aging_ts = object->vo_cache_ts;
1292				object = VM_OBJECT_NULL;
1293				break;
1294			}
1295			if (!vm_object_lock_try_scan(object)) {
1296				/*
1297				 * just skip over this guy for now... if we find
1298				 * an object to steal pages from, we'll revist in a bit...
1299				 * hopefully, the lock will have cleared
1300				 */
1301				KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0);
1302
1303				object = VM_OBJECT_NULL;
1304				continue;
1305			}
1306			if (queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) {
1307				/*
1308				 * this case really shouldn't happen, but it's not fatal
1309				 * so deal with it... if we don't remove the object from
1310				 * the list, we'll never move past it.
1311				 */
1312				KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1313
1314				vm_object_cache_remove_locked(object);
1315				vm_object_unlock(object);
1316				object = VM_OBJECT_NULL;
1317				continue;
1318			}
1319			/*
1320			 * we have a locked object with pages...
1321			 * time to start harvesting
1322			 */
1323			break;
1324		}
1325		vm_object_cache_unlock();
1326
1327		if (object == VM_OBJECT_NULL)
1328			break;
1329
1330		/*
1331		 * object is locked at this point and
1332		 * has resident pages
1333		 */
1334		next_p = (vm_page_t)queue_first(&object->memq);
1335
1336		/*
1337		 * break the page scan into 2 pieces to minimize the time spent
1338		 * behind the page queue lock...
1339		 * the list of pages on these unused objects is likely to be cold
1340		 * w/r to the cpu cache which increases the time to scan the list
1341		 * tenfold...  and we may have a 'run' of pages we can't utilize that
1342		 * needs to be skipped over...
1343		 */
1344		if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT)
1345			ep_limit = EVICT_PREPARE_LIMIT;
1346		ep_count = 0;
1347
1348		while (!queue_end(&object->memq, (queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) {
1349
1350			p = next_p;
1351			next_p = (vm_page_t)queue_next(&next_p->listq);
1352
1353			object->vo_cache_pages_to_scan--;
1354
1355			if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry) {
1356				queue_remove(&object->memq, p, vm_page_t, listq);
1357				queue_enter(&object->memq, p, vm_page_t, listq);
1358
1359				ep_skipped++;
1360				continue;
1361			}
1362			if (p->wpmapped || p->dirty || p->precious) {
1363				queue_remove(&object->memq, p, vm_page_t, listq);
1364				queue_enter(&object->memq, p, vm_page_t, listq);
1365
1366				pmap_clear_reference(p->phys_page);
1367			}
1368			ep_array[ep_count++] = p;
1369		}
1370		KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0);
1371
1372		vm_page_lockspin_queues();
1373
1374		for (ep_index = 0; ep_index < ep_count; ep_index++) {
1375
1376			p = ep_array[ep_index];
1377
1378			if (p->wpmapped || p->dirty || p->precious) {
1379				p->reference = FALSE;
1380				p->no_cache = FALSE;
1381
1382				/*
1383				 * we've already filtered out pages that are in the laundry
1384				 * so if we get here, this page can't be on the pageout queue
1385				 */
1386				assert(!p->pageout_queue);
1387
1388				VM_PAGE_QUEUES_REMOVE(p);
1389				VM_PAGE_ENQUEUE_INACTIVE(p, TRUE);
1390
1391				ep_moved++;
1392			} else {
1393				vm_page_free_prepare_queues(p);
1394
1395				assert(p->pageq.next == NULL && p->pageq.prev == NULL);
1396				/*
1397				 * Add this page to our list of reclaimed pages,
1398				 * to be freed later.
1399				 */
1400				p->pageq.next = (queue_entry_t) local_free_q;
1401				local_free_q = p;
1402
1403				ep_freed++;
1404			}
1405		}
1406		vm_page_unlock_queues();
1407
1408		KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0);
1409
1410		if (local_free_q) {
1411			vm_page_free_list(local_free_q, TRUE);
1412			local_free_q = VM_PAGE_NULL;
1413		}
1414		if (object->vo_cache_pages_to_scan == 0) {
1415			KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0);
1416
1417			vm_object_cache_remove(object);
1418
1419			KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1420		}
1421		/*
1422		 * done with this object
1423		 */
1424		vm_object_unlock(object);
1425		object = VM_OBJECT_NULL;
1426
1427		/*
1428		 * at this point, we are not holding any locks
1429		 */
1430		if ((ep_freed + ep_moved) >= num_to_evict) {
1431			/*
1432			 * we've reached our target for the
1433			 * number of pages to evict
1434			 */
1435			break;
1436		}
1437		vm_object_cache_lock_spin();
1438	}
1439	/*
1440	 * put the page queues lock back to the caller's
1441	 * idea of it
1442	 */
1443	vm_page_lock_queues();
1444
1445	vm_object_cache_pages_freed += ep_freed;
1446	vm_object_cache_pages_moved += ep_moved;
1447	vm_object_cache_pages_skipped += ep_skipped;
1448
1449	KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0);
1450	return (ep_freed);
1451}
1452
1453
1454#if VM_OBJECT_CACHE
1455/*
1456 *	Check to see whether we really need to trim
1457 *	down the cache. If so, remove an object from
1458 *	the cache, terminate it, and repeat.
1459 *
1460 *	Called with, and returns with, cache lock unlocked.
1461 */
1462vm_object_t
1463vm_object_cache_trim(
1464	boolean_t called_from_vm_object_deallocate)
1465{
1466	register vm_object_t object = VM_OBJECT_NULL;
1467	vm_object_t shadow;
1468
1469	for (;;) {
1470
1471		/*
1472		 *	If we no longer need to trim the cache,
1473		 *	then we are done.
1474		 */
1475		if (vm_object_cached_count <= vm_object_cached_max)
1476			return VM_OBJECT_NULL;
1477
1478		vm_object_cache_lock();
1479		if (vm_object_cached_count <= vm_object_cached_max) {
1480			vm_object_cache_unlock();
1481			return VM_OBJECT_NULL;
1482		}
1483
1484		/*
1485		 *	We must trim down the cache, so remove
1486		 *	the first object in the cache.
1487		 */
1488		XPR(XPR_VM_OBJECT,
1489		"vm_object_cache_trim: removing from front of cache (%x, %x)\n",
1490			vm_object_cached_list.next,
1491			vm_object_cached_list.prev, 0, 0, 0);
1492
1493		object = (vm_object_t) queue_first(&vm_object_cached_list);
1494		if(object == (vm_object_t) &vm_object_cached_list) {
1495			/* something's wrong with the calling parameter or */
1496			/* the value of vm_object_cached_count, just fix   */
1497			/* and return */
1498			if(vm_object_cached_max < 0)
1499				vm_object_cached_max = 0;
1500			vm_object_cached_count = 0;
1501			vm_object_cache_unlock();
1502			return VM_OBJECT_NULL;
1503		}
1504		vm_object_lock(object);
1505		queue_remove(&vm_object_cached_list, object, vm_object_t,
1506			     cached_list);
1507		vm_object_cached_count--;
1508
1509		vm_object_cache_unlock();
1510		/*
1511		 *	Since this object is in the cache, we know
1512		 *	that it is initialized and has no references.
1513		 *	Take a reference to avoid recursive deallocations.
1514		 */
1515
1516		assert(object->pager_initialized);
1517		assert(object->ref_count == 0);
1518		vm_object_lock_assert_exclusive(object);
1519		object->ref_count++;
1520
1521		/*
1522		 *	Terminate the object.
1523		 *	If the object had a shadow, we let vm_object_deallocate
1524		 *	deallocate it. "pageout" objects have a shadow, but
1525		 *	maintain a "paging reference" rather than a normal
1526		 *	reference.
1527		 *	(We are careful here to limit recursion.)
1528		 */
1529		shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
1530
1531		if(vm_object_terminate(object) != KERN_SUCCESS)
1532			continue;
1533
1534		if (shadow != VM_OBJECT_NULL) {
1535			if (called_from_vm_object_deallocate) {
1536				return shadow;
1537			} else {
1538				vm_object_deallocate(shadow);
1539			}
1540		}
1541	}
1542}
1543#endif
1544
1545
1546/*
1547 *	Routine:	vm_object_terminate
1548 *	Purpose:
1549 *		Free all resources associated with a vm_object.
1550 *	In/out conditions:
1551 *		Upon entry, the object must be locked,
1552 *		and the object must have exactly one reference.
1553 *
1554 *		The shadow object reference is left alone.
1555 *
1556 *		The object must be unlocked if its found that pages
1557 *		must be flushed to a backing object.  If someone
1558 *		manages to map the object while it is being flushed
1559 *		the object is returned unlocked and unchanged.  Otherwise,
1560 *		upon exit, the cache will be unlocked, and the
1561 *		object will cease to exist.
1562 */
1563static kern_return_t
1564vm_object_terminate(
1565	vm_object_t	object)
1566{
1567	vm_object_t	shadow_object;
1568
1569	XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n",
1570		object, object->ref_count, 0, 0, 0);
1571
1572	if (!object->pageout && (!object->temporary || object->can_persist) &&
1573	    (object->pager != NULL || object->shadow_severed)) {
1574		/*
1575		 * Clear pager_trusted bit so that the pages get yanked
1576		 * out of the object instead of cleaned in place.  This
1577		 * prevents a deadlock in XMM and makes more sense anyway.
1578		 */
1579		object->pager_trusted = FALSE;
1580
1581		vm_object_reap_pages(object, REAP_TERMINATE);
1582	}
1583	/*
1584	 *	Make sure the object isn't already being terminated
1585	 */
1586	if (object->terminating) {
1587		vm_object_lock_assert_exclusive(object);
1588		object->ref_count--;
1589		assert(object->ref_count > 0);
1590		vm_object_unlock(object);
1591		return KERN_FAILURE;
1592	}
1593
1594	/*
1595	 * Did somebody get a reference to the object while we were
1596	 * cleaning it?
1597	 */
1598	if (object->ref_count != 1) {
1599		vm_object_lock_assert_exclusive(object);
1600		object->ref_count--;
1601		assert(object->ref_count > 0);
1602		vm_object_res_deallocate(object);
1603		vm_object_unlock(object);
1604		return KERN_FAILURE;
1605	}
1606
1607	/*
1608	 *	Make sure no one can look us up now.
1609	 */
1610
1611	object->terminating = TRUE;
1612	object->alive = FALSE;
1613
1614	if ( !object->internal && (object->objq.next || object->objq.prev))
1615		vm_object_cache_remove(object);
1616
1617	if (object->hashed) {
1618		lck_mtx_t	*lck;
1619
1620		lck = vm_object_hash_lock_spin(object->pager);
1621		vm_object_remove(object);
1622		vm_object_hash_unlock(lck);
1623	}
1624	/*
1625	 *	Detach the object from its shadow if we are the shadow's
1626	 *	copy. The reference we hold on the shadow must be dropped
1627	 *	by our caller.
1628	 */
1629	if (((shadow_object = object->shadow) != VM_OBJECT_NULL) &&
1630	    !(object->pageout)) {
1631		vm_object_lock(shadow_object);
1632		if (shadow_object->copy == object)
1633			shadow_object->copy = VM_OBJECT_NULL;
1634		vm_object_unlock(shadow_object);
1635	}
1636
1637	if (object->paging_in_progress != 0 ||
1638	    object->activity_in_progress != 0) {
1639		/*
1640		 * There are still some paging_in_progress references
1641		 * on this object, meaning that there are some paging
1642		 * or other I/O operations in progress for this VM object.
1643		 * Such operations take some paging_in_progress references
1644		 * up front to ensure that the object doesn't go away, but
1645		 * they may also need to acquire a reference on the VM object,
1646		 * to map it in kernel space, for example.  That means that
1647		 * they may end up releasing the last reference on the VM
1648		 * object, triggering its termination, while still holding
1649		 * paging_in_progress references.  Waiting for these
1650		 * pending paging_in_progress references to go away here would
1651		 * deadlock.
1652		 *
1653		 * To avoid deadlocking, we'll let the vm_object_reaper_thread
1654		 * complete the VM object termination if it still holds
1655		 * paging_in_progress references at this point.
1656		 *
1657		 * No new paging_in_progress should appear now that the
1658		 * VM object is "terminating" and not "alive".
1659		 */
1660		vm_object_reap_async(object);
1661		vm_object_unlock(object);
1662		/*
1663		 * Return KERN_FAILURE to let the caller know that we
1664		 * haven't completed the termination and it can't drop this
1665		 * object's reference on its shadow object yet.
1666		 * The reaper thread will take care of that once it has
1667		 * completed this object's termination.
1668		 */
1669		return KERN_FAILURE;
1670	}
1671	/*
1672	 * complete the VM object termination
1673	 */
1674	vm_object_reap(object);
1675	object = VM_OBJECT_NULL;
1676
1677	/*
1678	 * the object lock was released by vm_object_reap()
1679	 *
1680	 * KERN_SUCCESS means that this object has been terminated
1681	 * and no longer needs its shadow object but still holds a
1682	 * reference on it.
1683	 * The caller is responsible for dropping that reference.
1684	 * We can't call vm_object_deallocate() here because that
1685	 * would create a recursion.
1686	 */
1687	return KERN_SUCCESS;
1688}
1689
1690
1691/*
1692 * vm_object_reap():
1693 *
1694 * Complete the termination of a VM object after it's been marked
1695 * as "terminating" and "!alive" by vm_object_terminate().
1696 *
1697 * The VM object must be locked by caller.
1698 * The lock will be released on return and the VM object is no longer valid.
1699 */
1700void
1701vm_object_reap(
1702	vm_object_t object)
1703{
1704	memory_object_t		pager;
1705
1706	vm_object_lock_assert_exclusive(object);
1707	assert(object->paging_in_progress == 0);
1708	assert(object->activity_in_progress == 0);
1709
1710	vm_object_reap_count++;
1711
1712	pager = object->pager;
1713	object->pager = MEMORY_OBJECT_NULL;
1714
1715	if (pager != MEMORY_OBJECT_NULL)
1716		memory_object_control_disable(object->pager_control);
1717
1718	object->ref_count--;
1719#if	TASK_SWAPPER
1720	assert(object->res_count == 0);
1721#endif	/* TASK_SWAPPER */
1722
1723	assert (object->ref_count == 0);
1724
1725	/*
1726	 * remove from purgeable queue if it's on
1727	 */
1728	if (object->internal && (object->objq.next || object->objq.prev)) {
1729	        purgeable_q_t queue = vm_purgeable_object_remove(object);
1730		assert(queue);
1731
1732		/* Must take page lock for this - using it to protect token queue */
1733		vm_page_lock_queues();
1734		vm_purgeable_token_delete_first(queue);
1735
1736		assert(queue->debug_count_objects>=0);
1737		vm_page_unlock_queues();
1738	}
1739
1740	/*
1741	 *	Clean or free the pages, as appropriate.
1742	 *	It is possible for us to find busy/absent pages,
1743	 *	if some faults on this object were aborted.
1744	 */
1745	if (object->pageout) {
1746		assert(object->shadow != VM_OBJECT_NULL);
1747
1748		vm_pageout_object_terminate(object);
1749
1750	} else if (((object->temporary && !object->can_persist) || (pager == MEMORY_OBJECT_NULL))) {
1751
1752		vm_object_reap_pages(object, REAP_REAP);
1753	}
1754	assert(queue_empty(&object->memq));
1755	assert(object->paging_in_progress == 0);
1756	assert(object->activity_in_progress == 0);
1757	assert(object->ref_count == 0);
1758
1759	/*
1760	 * If the pager has not already been released by
1761	 * vm_object_destroy, we need to terminate it and
1762	 * release our reference to it here.
1763	 */
1764	if (pager != MEMORY_OBJECT_NULL) {
1765		vm_object_unlock(object);
1766		vm_object_release_pager(pager, object->hashed);
1767		vm_object_lock(object);
1768	}
1769
1770	/* kick off anyone waiting on terminating */
1771	object->terminating = FALSE;
1772	vm_object_paging_begin(object);
1773	vm_object_paging_end(object);
1774	vm_object_unlock(object);
1775
1776#if	MACH_PAGEMAP
1777	vm_external_destroy(object->existence_map, object->vo_size);
1778#endif	/* MACH_PAGEMAP */
1779
1780	object->shadow = VM_OBJECT_NULL;
1781
1782	vm_object_lock_destroy(object);
1783	/*
1784	 *	Free the space for the object.
1785	 */
1786	zfree(vm_object_zone, object);
1787	object = VM_OBJECT_NULL;
1788}
1789
1790
1791unsigned int vm_max_batch = 256;
1792
1793#define V_O_R_MAX_BATCH 128
1794
1795#define BATCH_LIMIT(max) 	(vm_max_batch >= max ? max : vm_max_batch)
1796
1797
1798#define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect)		\
1799	MACRO_BEGIN							\
1800	if (_local_free_q) {						\
1801		if (do_disconnect) {					\
1802			vm_page_t m;					\
1803			for (m = _local_free_q;				\
1804			     m != VM_PAGE_NULL;				\
1805			     m = (vm_page_t) m->pageq.next) {		\
1806				if (m->pmapped) {			\
1807					pmap_disconnect(m->phys_page);	\
1808				}					\
1809			}						\
1810		}							\
1811		vm_page_free_list(_local_free_q, TRUE);			\
1812		_local_free_q = VM_PAGE_NULL;				\
1813	}								\
1814	MACRO_END
1815
1816
1817void
1818vm_object_reap_pages(
1819	vm_object_t 	object,
1820	int		reap_type)
1821{
1822	vm_page_t	p;
1823	vm_page_t	next;
1824	vm_page_t	local_free_q = VM_PAGE_NULL;
1825	int		loop_count;
1826	boolean_t	disconnect_on_release;
1827
1828	if (reap_type == REAP_DATA_FLUSH) {
1829		/*
1830		 * We need to disconnect pages from all pmaps before
1831		 * releasing them to the free list
1832		 */
1833		disconnect_on_release = TRUE;
1834	} else {
1835		/*
1836		 * Either the caller has already disconnected the pages
1837		 * from all pmaps, or we disconnect them here as we add
1838		 * them to out local list of pages to be released.
1839		 * No need to re-disconnect them when we release the pages
1840		 * to the free list.
1841		 */
1842		disconnect_on_release = FALSE;
1843	}
1844
1845restart_after_sleep:
1846	if (queue_empty(&object->memq))
1847		return;
1848	loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1849
1850	vm_page_lockspin_queues();
1851
1852	next = (vm_page_t)queue_first(&object->memq);
1853
1854	while (!queue_end(&object->memq, (queue_entry_t)next)) {
1855
1856		p = next;
1857		next = (vm_page_t)queue_next(&next->listq);
1858
1859		if (--loop_count == 0) {
1860
1861			vm_page_unlock_queues();
1862
1863			if (local_free_q) {
1864				/*
1865				 * Free the pages we reclaimed so far
1866				 * and take a little break to avoid
1867				 * hogging the page queue lock too long
1868				 */
1869				VM_OBJ_REAP_FREELIST(local_free_q,
1870						     disconnect_on_release);
1871			} else
1872				mutex_pause(0);
1873
1874			loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1875
1876			vm_page_lockspin_queues();
1877		}
1878		if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) {
1879
1880			if (p->busy || p->cleaning) {
1881
1882				vm_page_unlock_queues();
1883				/*
1884				 * free the pages reclaimed so far
1885				 */
1886				VM_OBJ_REAP_FREELIST(local_free_q,
1887						     disconnect_on_release);
1888
1889				PAGE_SLEEP(object, p, THREAD_UNINT);
1890
1891				goto restart_after_sleep;
1892			}
1893			if (p->laundry) {
1894				p->pageout = FALSE;
1895
1896				vm_pageout_steal_laundry(p, TRUE);
1897			}
1898		}
1899		switch (reap_type) {
1900
1901		case REAP_DATA_FLUSH:
1902			if (VM_PAGE_WIRED(p)) {
1903				/*
1904				 * this is an odd case... perhaps we should
1905				 * zero-fill this page since we're conceptually
1906				 * tossing its data at this point, but leaving
1907				 * it on the object to honor the 'wire' contract
1908				 */
1909				continue;
1910			}
1911			break;
1912
1913		case REAP_PURGEABLE:
1914			if (VM_PAGE_WIRED(p)) {
1915				/*
1916				 * can't purge a wired page
1917				 */
1918				vm_page_purged_wired++;
1919				continue;
1920			}
1921			if (p->laundry && !p->busy && !p->cleaning) {
1922				p->pageout = FALSE;
1923
1924				vm_pageout_steal_laundry(p, TRUE);
1925			}
1926			if (p->cleaning || p->laundry) {
1927				/*
1928				 * page is being acted upon,
1929				 * so don't mess with it
1930				 */
1931				vm_page_purged_others++;
1932				continue;
1933			}
1934			if (p->busy) {
1935				/*
1936				 * We can't reclaim a busy page but we can
1937				 * make it more likely to be paged (it's not wired) to make
1938				 * sure that it gets considered by
1939				 * vm_pageout_scan() later.
1940				 */
1941				vm_page_deactivate(p);
1942				vm_page_purged_busy++;
1943				continue;
1944			}
1945
1946			assert(p->object != kernel_object);
1947
1948			/*
1949			 * we can discard this page...
1950			 */
1951			if (p->pmapped == TRUE) {
1952				int refmod_state;
1953				/*
1954				 * unmap the page
1955				 */
1956				refmod_state = pmap_disconnect(p->phys_page);
1957				if (refmod_state & VM_MEM_MODIFIED) {
1958					SET_PAGE_DIRTY(p, FALSE);
1959				}
1960			}
1961			if (p->dirty || p->precious) {
1962				/*
1963				 * we saved the cost of cleaning this page !
1964				 */
1965				vm_page_purged_count++;
1966			}
1967
1968			break;
1969
1970		case REAP_TERMINATE:
1971			if (p->absent || p->private) {
1972				/*
1973				 *	For private pages, VM_PAGE_FREE just
1974				 *	leaves the page structure around for
1975				 *	its owner to clean up.  For absent
1976				 *	pages, the structure is returned to
1977				 *	the appropriate pool.
1978				 */
1979				break;
1980			}
1981			if (p->fictitious) {
1982				assert (p->phys_page == vm_page_guard_addr);
1983				break;
1984			}
1985			if (!p->dirty && p->wpmapped)
1986				p->dirty = pmap_is_modified(p->phys_page);
1987
1988			if ((p->dirty || p->precious) && !p->error && object->alive) {
1989
1990				if (!p->laundry) {
1991					VM_PAGE_QUEUES_REMOVE(p);
1992					/*
1993					 * flush page... page will be freed
1994					 * upon completion of I/O
1995					 */
1996					vm_pageout_cluster(p, TRUE);
1997				}
1998				vm_page_unlock_queues();
1999				/*
2000				 * free the pages reclaimed so far
2001				 */
2002				VM_OBJ_REAP_FREELIST(local_free_q,
2003						     disconnect_on_release);
2004
2005				vm_object_paging_wait(object, THREAD_UNINT);
2006
2007				goto restart_after_sleep;
2008			}
2009			break;
2010
2011		case REAP_REAP:
2012			break;
2013		}
2014		vm_page_free_prepare_queues(p);
2015		assert(p->pageq.next == NULL && p->pageq.prev == NULL);
2016		/*
2017		 * Add this page to our list of reclaimed pages,
2018		 * to be freed later.
2019		 */
2020		p->pageq.next = (queue_entry_t) local_free_q;
2021		local_free_q = p;
2022	}
2023	vm_page_unlock_queues();
2024
2025	/*
2026	 * Free the remaining reclaimed pages
2027	 */
2028	VM_OBJ_REAP_FREELIST(local_free_q,
2029			     disconnect_on_release);
2030}
2031
2032
2033void
2034vm_object_reap_async(
2035	vm_object_t	object)
2036{
2037	vm_object_lock_assert_exclusive(object);
2038
2039	vm_object_reaper_lock_spin();
2040
2041	vm_object_reap_count_async++;
2042
2043	/* enqueue the VM object... */
2044	queue_enter(&vm_object_reaper_queue, object,
2045		    vm_object_t, cached_list);
2046
2047	vm_object_reaper_unlock();
2048
2049	/* ... and wake up the reaper thread */
2050	thread_wakeup((event_t) &vm_object_reaper_queue);
2051}
2052
2053
2054void
2055vm_object_reaper_thread(void)
2056{
2057	vm_object_t	object, shadow_object;
2058
2059	vm_object_reaper_lock_spin();
2060
2061	while (!queue_empty(&vm_object_reaper_queue)) {
2062		queue_remove_first(&vm_object_reaper_queue,
2063				   object,
2064				   vm_object_t,
2065				   cached_list);
2066
2067		vm_object_reaper_unlock();
2068		vm_object_lock(object);
2069
2070		assert(object->terminating);
2071		assert(!object->alive);
2072
2073		/*
2074		 * The pageout daemon might be playing with our pages.
2075		 * Now that the object is dead, it won't touch any more
2076		 * pages, but some pages might already be on their way out.
2077		 * Hence, we wait until the active paging activities have
2078		 * ceased before we break the association with the pager
2079		 * itself.
2080		 */
2081		while (object->paging_in_progress != 0 ||
2082			object->activity_in_progress != 0) {
2083			vm_object_wait(object,
2084				       VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
2085				       THREAD_UNINT);
2086			vm_object_lock(object);
2087		}
2088
2089		shadow_object =
2090			object->pageout ? VM_OBJECT_NULL : object->shadow;
2091
2092		vm_object_reap(object);
2093		/* cache is unlocked and object is no longer valid */
2094		object = VM_OBJECT_NULL;
2095
2096		if (shadow_object != VM_OBJECT_NULL) {
2097			/*
2098			 * Drop the reference "object" was holding on
2099			 * its shadow object.
2100			 */
2101			vm_object_deallocate(shadow_object);
2102			shadow_object = VM_OBJECT_NULL;
2103		}
2104		vm_object_reaper_lock_spin();
2105	}
2106
2107	/* wait for more work... */
2108	assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT);
2109
2110	vm_object_reaper_unlock();
2111
2112	thread_block((thread_continue_t) vm_object_reaper_thread);
2113	/*NOTREACHED*/
2114}
2115
2116/*
2117 *	Routine:	vm_object_pager_wakeup
2118 *	Purpose:	Wake up anyone waiting for termination of a pager.
2119 */
2120
2121static void
2122vm_object_pager_wakeup(
2123	memory_object_t	pager)
2124{
2125	vm_object_hash_entry_t	entry;
2126	boolean_t		waiting = FALSE;
2127	lck_mtx_t		*lck;
2128
2129	/*
2130	 *	If anyone was waiting for the memory_object_terminate
2131	 *	to be queued, wake them up now.
2132	 */
2133	lck = vm_object_hash_lock_spin(pager);
2134	entry = vm_object_hash_lookup(pager, TRUE);
2135	if (entry != VM_OBJECT_HASH_ENTRY_NULL)
2136		waiting = entry->waiting;
2137	vm_object_hash_unlock(lck);
2138
2139	if (entry != VM_OBJECT_HASH_ENTRY_NULL) {
2140		if (waiting)
2141			thread_wakeup((event_t) pager);
2142		vm_object_hash_entry_free(entry);
2143	}
2144}
2145
2146/*
2147 *	Routine:	vm_object_release_pager
2148 *	Purpose:	Terminate the pager and, upon completion,
2149 *			release our last reference to it.
2150 *			just like memory_object_terminate, except
2151 *			that we wake up anyone blocked in vm_object_enter
2152 *			waiting for termination message to be queued
2153 *			before calling memory_object_init.
2154 */
2155static void
2156vm_object_release_pager(
2157	memory_object_t	pager,
2158	boolean_t	hashed)
2159{
2160
2161	/*
2162	 *	Terminate the pager.
2163	 */
2164
2165	(void) memory_object_terminate(pager);
2166
2167	if (hashed == TRUE) {
2168		/*
2169		 *	Wakeup anyone waiting for this terminate
2170		 *      and remove the entry from the hash
2171		 */
2172		vm_object_pager_wakeup(pager);
2173	}
2174	/*
2175	 *	Release reference to pager.
2176	 */
2177	memory_object_deallocate(pager);
2178}
2179
2180/*
2181 *	Routine:	vm_object_destroy
2182 *	Purpose:
2183 *		Shut down a VM object, despite the
2184 *		presence of address map (or other) references
2185 *		to the vm_object.
2186 */
2187kern_return_t
2188vm_object_destroy(
2189	vm_object_t		object,
2190	__unused kern_return_t		reason)
2191{
2192	memory_object_t		old_pager;
2193
2194	if (object == VM_OBJECT_NULL)
2195		return(KERN_SUCCESS);
2196
2197	/*
2198	 *	Remove the pager association immediately.
2199	 *
2200	 *	This will prevent the memory manager from further
2201	 *	meddling.  [If it wanted to flush data or make
2202	 *	other changes, it should have done so before performing
2203	 *	the destroy call.]
2204	 */
2205
2206	vm_object_lock(object);
2207	object->can_persist = FALSE;
2208	object->named = FALSE;
2209	object->alive = FALSE;
2210
2211	if (object->hashed) {
2212		lck_mtx_t	*lck;
2213		/*
2214		 *	Rip out the pager from the vm_object now...
2215		 */
2216		lck = vm_object_hash_lock_spin(object->pager);
2217		vm_object_remove(object);
2218		vm_object_hash_unlock(lck);
2219	}
2220	old_pager = object->pager;
2221	object->pager = MEMORY_OBJECT_NULL;
2222	if (old_pager != MEMORY_OBJECT_NULL)
2223		memory_object_control_disable(object->pager_control);
2224
2225	/*
2226	 * Wait for the existing paging activity (that got
2227	 * through before we nulled out the pager) to subside.
2228	 */
2229
2230	vm_object_paging_wait(object, THREAD_UNINT);
2231	vm_object_unlock(object);
2232
2233	/*
2234	 *	Terminate the object now.
2235	 */
2236	if (old_pager != MEMORY_OBJECT_NULL) {
2237		vm_object_release_pager(old_pager, object->hashed);
2238
2239		/*
2240		 * JMM - Release the caller's reference.  This assumes the
2241		 * caller had a reference to release, which is a big (but
2242		 * currently valid) assumption if this is driven from the
2243		 * vnode pager (it is holding a named reference when making
2244		 * this call)..
2245		 */
2246		vm_object_deallocate(object);
2247
2248	}
2249	return(KERN_SUCCESS);
2250}
2251
2252
2253#if VM_OBJECT_CACHE
2254
2255#define VM_OBJ_DEACT_ALL_STATS DEBUG
2256#if VM_OBJ_DEACT_ALL_STATS
2257uint32_t vm_object_deactivate_all_pages_batches = 0;
2258uint32_t vm_object_deactivate_all_pages_pages = 0;
2259#endif /* VM_OBJ_DEACT_ALL_STATS */
2260/*
2261 *	vm_object_deactivate_all_pages
2262 *
2263 *	Deactivate all pages in the specified object.  (Keep its pages
2264 *	in memory even though it is no longer referenced.)
2265 *
2266 *	The object must be locked.
2267 */
2268static void
2269vm_object_deactivate_all_pages(
2270	register vm_object_t	object)
2271{
2272	register vm_page_t	p;
2273	int			loop_count;
2274#if VM_OBJ_DEACT_ALL_STATS
2275	int			pages_count;
2276#endif /* VM_OBJ_DEACT_ALL_STATS */
2277#define V_O_D_A_P_MAX_BATCH	256
2278
2279	loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
2280#if VM_OBJ_DEACT_ALL_STATS
2281	pages_count = 0;
2282#endif /* VM_OBJ_DEACT_ALL_STATS */
2283	vm_page_lock_queues();
2284	queue_iterate(&object->memq, p, vm_page_t, listq) {
2285		if (--loop_count == 0) {
2286#if VM_OBJ_DEACT_ALL_STATS
2287			hw_atomic_add(&vm_object_deactivate_all_pages_batches,
2288				      1);
2289			hw_atomic_add(&vm_object_deactivate_all_pages_pages,
2290				      pages_count);
2291			pages_count = 0;
2292#endif /* VM_OBJ_DEACT_ALL_STATS */
2293			lck_mtx_yield(&vm_page_queue_lock);
2294			loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
2295		}
2296		if (!p->busy && !p->throttled) {
2297#if VM_OBJ_DEACT_ALL_STATS
2298			pages_count++;
2299#endif /* VM_OBJ_DEACT_ALL_STATS */
2300			vm_page_deactivate(p);
2301		}
2302	}
2303#if VM_OBJ_DEACT_ALL_STATS
2304	if (pages_count) {
2305		hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1);
2306		hw_atomic_add(&vm_object_deactivate_all_pages_pages,
2307			      pages_count);
2308		pages_count = 0;
2309	}
2310#endif /* VM_OBJ_DEACT_ALL_STATS */
2311	vm_page_unlock_queues();
2312}
2313#endif	/* VM_OBJECT_CACHE */
2314
2315
2316
2317/*
2318 * The "chunk" macros are used by routines below when looking for pages to deactivate.  These
2319 * exist because of the need to handle shadow chains.  When deactivating pages, we only
2320 * want to deactive the ones at the top most level in the object chain.  In order to do
2321 * this efficiently, the specified address range is divided up into "chunks" and we use
2322 * a bit map to keep track of which pages have already been processed as we descend down
2323 * the shadow chain.  These chunk macros hide the details of the bit map implementation
2324 * as much as we can.
2325 *
2326 * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is
2327 * set to 64 pages.  The bit map is indexed from the low-order end, so that the lowest
2328 * order bit represents page 0 in the current range and highest order bit represents
2329 * page 63.
2330 *
2331 * For further convenience, we also use negative logic for the page state in the bit map.
2332 * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has
2333 * been processed.  This way we can simply test the 64-bit long word to see if it's zero
2334 * to easily tell if the whole range has been processed.  Therefore, the bit map starts
2335 * out with all the bits set.  The macros below hide all these details from the caller.
2336 */
2337
2338#define PAGES_IN_A_CHUNK	64	/* The number of pages in the chunk must */
2339					/* be the same as the number of bits in  */
2340					/* the chunk_state_t type. We use 64     */
2341					/* just for convenience.		 */
2342
2343#define CHUNK_SIZE	(PAGES_IN_A_CHUNK * PAGE_SIZE_64)	/* Size of a chunk in bytes */
2344
2345typedef uint64_t	chunk_state_t;
2346
2347/*
2348 * The bit map uses negative logic, so we start out with all 64 bits set to indicate
2349 * that no pages have been processed yet.  Also, if len is less than the full CHUNK_SIZE,
2350 * then we mark pages beyond the len as having been "processed" so that we don't waste time
2351 * looking at pages in that range.  This can save us from unnecessarily chasing down the
2352 * shadow chain.
2353 */
2354
2355#define CHUNK_INIT(c, len) 						\
2356	MACRO_BEGIN							\
2357	uint64_t p;							\
2358									\
2359	(c) = 0xffffffffffffffffLL; 					\
2360									\
2361	for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++)	\
2362		MARK_PAGE_HANDLED(c, p);				\
2363	MACRO_END
2364
2365
2366/*
2367 * Return true if all pages in the chunk have not yet been processed.
2368 */
2369
2370#define CHUNK_NOT_COMPLETE(c)	((c) != 0)
2371
2372/*
2373 * Return true if the page at offset 'p' in the bit map has already been handled
2374 * while processing a higher level object in the shadow chain.
2375 */
2376
2377#define PAGE_ALREADY_HANDLED(c, p)	(((c) & (1LL << (p))) == 0)
2378
2379/*
2380 * Mark the page at offset 'p' in the bit map as having been processed.
2381 */
2382
2383#define MARK_PAGE_HANDLED(c, p) \
2384MACRO_BEGIN \
2385	(c) = (c) & ~(1LL << (p)); \
2386MACRO_END
2387
2388
2389/*
2390 * Return true if the page at the given offset has been paged out.  Object is
2391 * locked upon entry and returned locked.
2392 */
2393
2394static boolean_t
2395page_is_paged_out(
2396	vm_object_t		object,
2397	vm_object_offset_t	offset)
2398{
2399	kern_return_t	kr;
2400	memory_object_t	pager;
2401
2402	/*
2403	 * Check the existence map for the page if we have one, otherwise
2404	 * ask the pager about this page.
2405	 */
2406
2407#if MACH_PAGEMAP
2408	if (object->existence_map) {
2409		if (vm_external_state_get(object->existence_map, offset)
2410		    == VM_EXTERNAL_STATE_EXISTS) {
2411			/*
2412			 * We found the page
2413			 */
2414
2415			return TRUE;
2416		}
2417	} else
2418#endif
2419		if (object->internal &&
2420		   object->alive &&
2421		   !object->terminating &&
2422		   object->pager_ready) {
2423
2424		/*
2425		 * We're already holding a "paging in progress" reference
2426		 * so the object can't disappear when we release the lock.
2427		 */
2428
2429		assert(object->paging_in_progress);
2430		pager = object->pager;
2431		vm_object_unlock(object);
2432
2433		kr = memory_object_data_request(
2434			pager,
2435			offset + object->paging_offset,
2436			0,	/* just poke the pager */
2437			VM_PROT_READ,
2438			NULL);
2439
2440		vm_object_lock(object);
2441
2442		if (kr == KERN_SUCCESS) {
2443
2444			/*
2445			 * We found the page
2446			 */
2447
2448			return TRUE;
2449		}
2450	}
2451
2452	return FALSE;
2453}
2454
2455
2456
2457/*
2458 * Deactivate the pages in the specified object and range.  If kill_page is set, also discard any
2459 * page modified state from the pmap.  Update the chunk_state as we go along.  The caller must specify
2460 * a size that is less than or equal to the CHUNK_SIZE.
2461 */
2462
2463static void
2464deactivate_pages_in_object(
2465	vm_object_t		object,
2466	vm_object_offset_t	offset,
2467	vm_object_size_t	size,
2468	boolean_t               kill_page,
2469	boolean_t		reusable_page,
2470#if !MACH_ASSERT
2471	__unused
2472#endif
2473	boolean_t		all_reusable,
2474	chunk_state_t		*chunk_state)
2475{
2476	vm_page_t	m;
2477	int		p;
2478	struct vm_page_delayed_work	dw_array[DEFAULT_DELAYED_WORK_LIMIT];
2479	struct vm_page_delayed_work	*dwp;
2480	int		dw_count;
2481	int		dw_limit;
2482	unsigned int	reusable = 0;
2483
2484
2485	/*
2486	 * Examine each page in the chunk.  The variable 'p' is the page number relative to the start of the
2487	 * chunk.  Since this routine is called once for each level in the shadow chain, the chunk_state may
2488	 * have pages marked as having been processed already.  We stop the loop early if we find we've handled
2489	 * all the pages in the chunk.
2490	 */
2491
2492	dwp = &dw_array[0];
2493	dw_count = 0;
2494	dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
2495
2496	for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64) {
2497
2498		/*
2499		 * If this offset has already been found and handled in a higher level object, then don't
2500		 * do anything with it in the current shadow object.
2501		 */
2502
2503		if (PAGE_ALREADY_HANDLED(*chunk_state, p))
2504			continue;
2505
2506		/*
2507		 * See if the page at this offset is around.  First check to see if the page is resident,
2508		 * then if not, check the existence map or with the pager.
2509		 */
2510
2511	        if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
2512
2513			/*
2514			 * We found a page we were looking for.  Mark it as "handled" now in the chunk_state
2515			 * so that we won't bother looking for a page at this offset again if there are more
2516			 * shadow objects.  Then deactivate the page.
2517			 */
2518
2519			MARK_PAGE_HANDLED(*chunk_state, p);
2520
2521			if (( !VM_PAGE_WIRED(m)) && (!m->private) && (!m->gobbled) && (!m->busy) && (!m->laundry)) {
2522				int	clear_refmod;
2523
2524				clear_refmod = VM_MEM_REFERENCED;
2525				dwp->dw_mask = DW_clear_reference;
2526
2527				if ((kill_page) && (object->internal)) {
2528			        	m->precious = FALSE;
2529				        m->dirty = FALSE;
2530
2531					clear_refmod |= VM_MEM_MODIFIED;
2532					if (m->throttled) {
2533						/*
2534						 * This page is now clean and
2535						 * reclaimable.  Move it out
2536						 * of the throttled queue, so
2537						 * that vm_pageout_scan() can
2538						 * find it.
2539						 */
2540						dwp->dw_mask |= DW_move_page;
2541					}
2542#if	MACH_PAGEMAP
2543					vm_external_state_clr(object->existence_map, offset);
2544#endif	/* MACH_PAGEMAP */
2545
2546					if (reusable_page && !m->reusable) {
2547						assert(!all_reusable);
2548						assert(!object->all_reusable);
2549						m->reusable = TRUE;
2550						object->reusable_page_count++;
2551						assert(object->resident_page_count >= object->reusable_page_count);
2552						reusable++;
2553					}
2554				}
2555				pmap_clear_refmod(m->phys_page, clear_refmod);
2556
2557				if (!m->throttled && !(reusable_page || all_reusable))
2558					dwp->dw_mask |= DW_move_page;
2559
2560				VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
2561
2562				if (dw_count >= dw_limit) {
2563					if (reusable) {
2564						OSAddAtomic(reusable,
2565							    &vm_page_stats_reusable.reusable_count);
2566						vm_page_stats_reusable.reusable += reusable;
2567						reusable = 0;
2568					}
2569					vm_page_do_delayed_work(object, &dw_array[0], dw_count);
2570
2571					dwp = &dw_array[0];
2572					dw_count = 0;
2573				}
2574			}
2575
2576		} else {
2577
2578			/*
2579			 * The page at this offset isn't memory resident, check to see if it's
2580			 * been paged out.  If so, mark it as handled so we don't bother looking
2581			 * for it in the shadow chain.
2582			 */
2583
2584			if (page_is_paged_out(object, offset)) {
2585				MARK_PAGE_HANDLED(*chunk_state, p);
2586
2587				/*
2588				 * If we're killing a non-resident page, then clear the page in the existence
2589				 * map so we don't bother paging it back in if it's touched again in the future.
2590				 */
2591
2592				if ((kill_page) && (object->internal)) {
2593#if	MACH_PAGEMAP
2594					vm_external_state_clr(object->existence_map, offset);
2595#endif	/* MACH_PAGEMAP */
2596				}
2597			}
2598		}
2599	}
2600
2601	if (reusable) {
2602		OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count);
2603		vm_page_stats_reusable.reusable += reusable;
2604		reusable = 0;
2605	}
2606
2607	if (dw_count)
2608		vm_page_do_delayed_work(object, &dw_array[0], dw_count);
2609}
2610
2611
2612/*
2613 * Deactive a "chunk" of the given range of the object starting at offset.  A "chunk"
2614 * will always be less than or equal to the given size.  The total range is divided up
2615 * into chunks for efficiency and performance related to the locks and handling the shadow
2616 * chain.  This routine returns how much of the given "size" it actually processed.  It's
2617 * up to the caler to loop and keep calling this routine until the entire range they want
2618 * to process has been done.
2619 */
2620
2621static vm_object_size_t
2622deactivate_a_chunk(
2623	vm_object_t		orig_object,
2624	vm_object_offset_t	offset,
2625	vm_object_size_t	size,
2626	boolean_t               kill_page,
2627	boolean_t		reusable_page,
2628	boolean_t		all_reusable)
2629{
2630	vm_object_t		object;
2631	vm_object_t		tmp_object;
2632	vm_object_size_t	length;
2633	chunk_state_t		chunk_state;
2634
2635
2636	/*
2637	 * Get set to do a chunk.  We'll do up to CHUNK_SIZE, but no more than the
2638	 * remaining size the caller asked for.
2639	 */
2640
2641	length = MIN(size, CHUNK_SIZE);
2642
2643	/*
2644	 * The chunk_state keeps track of which pages we've already processed if there's
2645	 * a shadow chain on this object.  At this point, we haven't done anything with this
2646	 * range of pages yet, so initialize the state to indicate no pages processed yet.
2647	 */
2648
2649	CHUNK_INIT(chunk_state, length);
2650	object = orig_object;
2651
2652	/*
2653	 * Start at the top level object and iterate around the loop once for each object
2654	 * in the shadow chain.  We stop processing early if we've already found all the pages
2655	 * in the range.  Otherwise we stop when we run out of shadow objects.
2656	 */
2657
2658	while (object && CHUNK_NOT_COMPLETE(chunk_state)) {
2659		vm_object_paging_begin(object);
2660
2661		deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state);
2662
2663		vm_object_paging_end(object);
2664
2665		/*
2666		 * We've finished with this object, see if there's a shadow object.  If
2667		 * there is, update the offset and lock the new object.  We also turn off
2668		 * kill_page at this point since we only kill pages in the top most object.
2669		 */
2670
2671		tmp_object = object->shadow;
2672
2673		if (tmp_object) {
2674			kill_page = FALSE;
2675			reusable_page = FALSE;
2676			all_reusable = FALSE;
2677		        offset += object->vo_shadow_offset;
2678		        vm_object_lock(tmp_object);
2679		}
2680
2681		if (object != orig_object)
2682		        vm_object_unlock(object);
2683
2684		object = tmp_object;
2685	}
2686
2687	if (object && object != orig_object)
2688	        vm_object_unlock(object);
2689
2690	return length;
2691}
2692
2693
2694
2695/*
2696 * Move any resident pages in the specified range to the inactive queue.  If kill_page is set,
2697 * we also clear the modified status of the page and "forget" any changes that have been made
2698 * to the page.
2699 */
2700
2701__private_extern__ void
2702vm_object_deactivate_pages(
2703	vm_object_t		object,
2704	vm_object_offset_t	offset,
2705	vm_object_size_t	size,
2706	boolean_t               kill_page,
2707	boolean_t		reusable_page)
2708{
2709	vm_object_size_t	length;
2710	boolean_t		all_reusable;
2711
2712	/*
2713	 * We break the range up into chunks and do one chunk at a time.  This is for
2714	 * efficiency and performance while handling the shadow chains and the locks.
2715	 * The deactivate_a_chunk() function returns how much of the range it processed.
2716	 * We keep calling this routine until the given size is exhausted.
2717	 */
2718
2719
2720	all_reusable = FALSE;
2721	if (reusable_page &&
2722	    object->internal &&
2723	    object->vo_size != 0 &&
2724	    object->vo_size == size &&
2725	    object->reusable_page_count == 0) {
2726		all_reusable = TRUE;
2727		reusable_page = FALSE;
2728	}
2729
2730	if ((reusable_page || all_reusable) && object->all_reusable) {
2731		/* This means MADV_FREE_REUSABLE has been called twice, which
2732		 * is probably illegal. */
2733		return;
2734	}
2735
2736	while (size) {
2737		length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable);
2738
2739		size -= length;
2740		offset += length;
2741	}
2742
2743	if (all_reusable) {
2744		if (!object->all_reusable) {
2745			unsigned int reusable;
2746
2747			object->all_reusable = TRUE;
2748			assert(object->reusable_page_count == 0);
2749			/* update global stats */
2750			reusable = object->resident_page_count;
2751			OSAddAtomic(reusable,
2752				    &vm_page_stats_reusable.reusable_count);
2753			vm_page_stats_reusable.reusable += reusable;
2754			vm_page_stats_reusable.all_reusable_calls++;
2755		}
2756	} else if (reusable_page) {
2757		vm_page_stats_reusable.partial_reusable_calls++;
2758	}
2759}
2760
2761void
2762vm_object_reuse_pages(
2763	vm_object_t		object,
2764	vm_object_offset_t	start_offset,
2765	vm_object_offset_t	end_offset,
2766	boolean_t		allow_partial_reuse)
2767{
2768	vm_object_offset_t	cur_offset;
2769	vm_page_t		m;
2770	unsigned int		reused, reusable;
2771
2772#define VM_OBJECT_REUSE_PAGE(object, m, reused)				\
2773	MACRO_BEGIN							\
2774		if ((m) != VM_PAGE_NULL &&				\
2775		    (m)->reusable) {					\
2776			assert((object)->reusable_page_count <=		\
2777			       (object)->resident_page_count);		\
2778			assert((object)->reusable_page_count > 0);	\
2779			(object)->reusable_page_count--;		\
2780			(m)->reusable = FALSE;				\
2781			(reused)++;					\
2782		}							\
2783	MACRO_END
2784
2785	reused = 0;
2786	reusable = 0;
2787
2788	vm_object_lock_assert_exclusive(object);
2789
2790	if (object->all_reusable) {
2791		assert(object->reusable_page_count == 0);
2792		object->all_reusable = FALSE;
2793		if (end_offset - start_offset == object->vo_size ||
2794		    !allow_partial_reuse) {
2795			vm_page_stats_reusable.all_reuse_calls++;
2796			reused = object->resident_page_count;
2797		} else {
2798			vm_page_stats_reusable.partial_reuse_calls++;
2799			queue_iterate(&object->memq, m, vm_page_t, listq) {
2800				if (m->offset < start_offset ||
2801				    m->offset >= end_offset) {
2802					m->reusable = TRUE;
2803					object->reusable_page_count++;
2804					assert(object->resident_page_count >= object->reusable_page_count);
2805					continue;
2806				} else {
2807					assert(!m->reusable);
2808					reused++;
2809				}
2810			}
2811		}
2812	} else if (object->resident_page_count >
2813		   ((end_offset - start_offset) >> PAGE_SHIFT)) {
2814		vm_page_stats_reusable.partial_reuse_calls++;
2815		for (cur_offset = start_offset;
2816		     cur_offset < end_offset;
2817		     cur_offset += PAGE_SIZE_64) {
2818			if (object->reusable_page_count == 0) {
2819				break;
2820			}
2821			m = vm_page_lookup(object, cur_offset);
2822			VM_OBJECT_REUSE_PAGE(object, m, reused);
2823		}
2824	} else {
2825		vm_page_stats_reusable.partial_reuse_calls++;
2826		queue_iterate(&object->memq, m, vm_page_t, listq) {
2827			if (object->reusable_page_count == 0) {
2828				break;
2829			}
2830			if (m->offset < start_offset ||
2831			    m->offset >= end_offset) {
2832				continue;
2833			}
2834			VM_OBJECT_REUSE_PAGE(object, m, reused);
2835		}
2836	}
2837
2838	/* update global stats */
2839	OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count);
2840	vm_page_stats_reusable.reused += reused;
2841	vm_page_stats_reusable.reusable += reusable;
2842}
2843
2844/*
2845 *	Routine:	vm_object_pmap_protect
2846 *
2847 *	Purpose:
2848 *		Reduces the permission for all physical
2849 *		pages in the specified object range.
2850 *
2851 *		If removing write permission only, it is
2852 *		sufficient to protect only the pages in
2853 *		the top-level object; only those pages may
2854 *		have write permission.
2855 *
2856 *		If removing all access, we must follow the
2857 *		shadow chain from the top-level object to
2858 *		remove access to all pages in shadowed objects.
2859 *
2860 *		The object must *not* be locked.  The object must
2861 *		be temporary/internal.
2862 *
2863 *              If pmap is not NULL, this routine assumes that
2864 *              the only mappings for the pages are in that
2865 *              pmap.
2866 */
2867
2868__private_extern__ void
2869vm_object_pmap_protect(
2870	register vm_object_t		object,
2871	register vm_object_offset_t	offset,
2872	vm_object_size_t		size,
2873	pmap_t				pmap,
2874	vm_map_offset_t			pmap_start,
2875	vm_prot_t			prot)
2876{
2877	if (object == VM_OBJECT_NULL)
2878	    return;
2879	size = vm_object_round_page(size);
2880	offset = vm_object_trunc_page(offset);
2881
2882	vm_object_lock(object);
2883
2884	if (object->phys_contiguous) {
2885		if (pmap != NULL) {
2886			vm_object_unlock(object);
2887			pmap_protect(pmap, pmap_start, pmap_start + size, prot);
2888		} else {
2889			vm_object_offset_t phys_start, phys_end, phys_addr;
2890
2891			phys_start = object->vo_shadow_offset + offset;
2892			phys_end = phys_start + size;
2893			assert(phys_start <= phys_end);
2894			assert(phys_end <= object->vo_shadow_offset + object->vo_size);
2895			vm_object_unlock(object);
2896
2897			for (phys_addr = phys_start;
2898			     phys_addr < phys_end;
2899			     phys_addr += PAGE_SIZE_64) {
2900				pmap_page_protect((ppnum_t) (phys_addr >> PAGE_SHIFT), prot);
2901			}
2902		}
2903		return;
2904	}
2905
2906	assert(object->internal);
2907
2908	while (TRUE) {
2909	   if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) {
2910		vm_object_unlock(object);
2911		pmap_protect(pmap, pmap_start, pmap_start + size, prot);
2912		return;
2913	    }
2914
2915	    /* if we are doing large ranges with respect to resident */
2916	    /* page count then we should interate over pages otherwise */
2917	    /* inverse page look-up will be faster */
2918	    if (ptoa_64(object->resident_page_count / 4) <  size) {
2919		vm_page_t		p;
2920		vm_object_offset_t	end;
2921
2922		end = offset + size;
2923
2924		if (pmap != PMAP_NULL) {
2925		  queue_iterate(&object->memq, p, vm_page_t, listq) {
2926		    if (!p->fictitious &&
2927			(offset <= p->offset) && (p->offset < end)) {
2928			vm_map_offset_t start;
2929
2930			start = pmap_start + p->offset - offset;
2931			pmap_protect(pmap, start, start + PAGE_SIZE_64, prot);
2932		    }
2933		  }
2934		} else {
2935		  queue_iterate(&object->memq, p, vm_page_t, listq) {
2936		    if (!p->fictitious &&
2937			(offset <= p->offset) && (p->offset < end)) {
2938
2939		        pmap_page_protect(p->phys_page, prot);
2940		    }
2941		  }
2942		}
2943	   } else {
2944		vm_page_t		p;
2945		vm_object_offset_t	end;
2946		vm_object_offset_t	target_off;
2947
2948		end = offset + size;
2949
2950		if (pmap != PMAP_NULL) {
2951			for(target_off = offset;
2952			    target_off < end;
2953			    target_off += PAGE_SIZE) {
2954				p = vm_page_lookup(object, target_off);
2955				if (p != VM_PAGE_NULL) {
2956					vm_object_offset_t start;
2957					start = pmap_start +
2958						(p->offset - offset);
2959					pmap_protect(pmap, start,
2960						     start + PAGE_SIZE, prot);
2961				}
2962		    	}
2963		} else {
2964			for(target_off = offset;
2965				target_off < end; target_off += PAGE_SIZE) {
2966				p = vm_page_lookup(object, target_off);
2967				if (p != VM_PAGE_NULL) {
2968				        pmap_page_protect(p->phys_page, prot);
2969				}
2970		    	}
2971		}
2972	  }
2973
2974	    if (prot == VM_PROT_NONE) {
2975		/*
2976		 * Must follow shadow chain to remove access
2977		 * to pages in shadowed objects.
2978		 */
2979		register vm_object_t	next_object;
2980
2981		next_object = object->shadow;
2982		if (next_object != VM_OBJECT_NULL) {
2983		    offset += object->vo_shadow_offset;
2984		    vm_object_lock(next_object);
2985		    vm_object_unlock(object);
2986		    object = next_object;
2987		}
2988		else {
2989		    /*
2990		     * End of chain - we are done.
2991		     */
2992		    break;
2993		}
2994	    }
2995	    else {
2996		/*
2997		 * Pages in shadowed objects may never have
2998		 * write permission - we may stop here.
2999		 */
3000		break;
3001	    }
3002	}
3003
3004	vm_object_unlock(object);
3005}
3006
3007/*
3008 *	Routine:	vm_object_copy_slowly
3009 *
3010 *	Description:
3011 *		Copy the specified range of the source
3012 *		virtual memory object without using
3013 *		protection-based optimizations (such
3014 *		as copy-on-write).  The pages in the
3015 *		region are actually copied.
3016 *
3017 *	In/out conditions:
3018 *		The caller must hold a reference and a lock
3019 *		for the source virtual memory object.  The source
3020 *		object will be returned *unlocked*.
3021 *
3022 *	Results:
3023 *		If the copy is completed successfully, KERN_SUCCESS is
3024 *		returned.  If the caller asserted the interruptible
3025 *		argument, and an interruption occurred while waiting
3026 *		for a user-generated event, MACH_SEND_INTERRUPTED is
3027 *		returned.  Other values may be returned to indicate
3028 *		hard errors during the copy operation.
3029 *
3030 *		A new virtual memory object is returned in a
3031 *		parameter (_result_object).  The contents of this
3032 *		new object, starting at a zero offset, are a copy
3033 *		of the source memory region.  In the event of
3034 *		an error, this parameter will contain the value
3035 *		VM_OBJECT_NULL.
3036 */
3037__private_extern__ kern_return_t
3038vm_object_copy_slowly(
3039	register vm_object_t	src_object,
3040	vm_object_offset_t	src_offset,
3041	vm_object_size_t	size,
3042	boolean_t		interruptible,
3043	vm_object_t		*_result_object)	/* OUT */
3044{
3045	vm_object_t		new_object;
3046	vm_object_offset_t	new_offset;
3047
3048	struct vm_object_fault_info fault_info;
3049
3050	XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n",
3051	    src_object, src_offset, size, 0, 0);
3052
3053	if (size == 0) {
3054		vm_object_unlock(src_object);
3055		*_result_object = VM_OBJECT_NULL;
3056		return(KERN_INVALID_ARGUMENT);
3057	}
3058
3059	/*
3060	 *	Prevent destruction of the source object while we copy.
3061	 */
3062
3063	vm_object_reference_locked(src_object);
3064	vm_object_unlock(src_object);
3065
3066	/*
3067	 *	Create a new object to hold the copied pages.
3068	 *	A few notes:
3069	 *		We fill the new object starting at offset 0,
3070	 *		 regardless of the input offset.
3071	 *		We don't bother to lock the new object within
3072	 *		 this routine, since we have the only reference.
3073	 */
3074
3075	new_object = vm_object_allocate(size);
3076	new_offset = 0;
3077
3078	assert(size == trunc_page_64(size));	/* Will the loop terminate? */
3079
3080	fault_info.interruptible = interruptible;
3081	fault_info.behavior  = VM_BEHAVIOR_SEQUENTIAL;
3082	fault_info.user_tag  = 0;
3083	fault_info.lo_offset = src_offset;
3084	fault_info.hi_offset = src_offset + size;
3085	fault_info.no_cache  = FALSE;
3086	fault_info.stealth = TRUE;
3087	fault_info.io_sync = FALSE;
3088	fault_info.cs_bypass = FALSE;
3089	fault_info.mark_zf_absent = FALSE;
3090	fault_info.batch_pmap_op = FALSE;
3091
3092	for ( ;
3093	    size != 0 ;
3094	    src_offset += PAGE_SIZE_64,
3095			new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64
3096	    ) {
3097		vm_page_t	new_page;
3098		vm_fault_return_t result;
3099
3100		vm_object_lock(new_object);
3101
3102		while ((new_page = vm_page_alloc(new_object, new_offset))
3103				== VM_PAGE_NULL) {
3104
3105			vm_object_unlock(new_object);
3106
3107			if (!vm_page_wait(interruptible)) {
3108				vm_object_deallocate(new_object);
3109				vm_object_deallocate(src_object);
3110				*_result_object = VM_OBJECT_NULL;
3111				return(MACH_SEND_INTERRUPTED);
3112			}
3113			vm_object_lock(new_object);
3114		}
3115		vm_object_unlock(new_object);
3116
3117		do {
3118			vm_prot_t	prot = VM_PROT_READ;
3119			vm_page_t	_result_page;
3120			vm_page_t	top_page;
3121			register
3122			vm_page_t	result_page;
3123			kern_return_t	error_code;
3124
3125			vm_object_lock(src_object);
3126			vm_object_paging_begin(src_object);
3127
3128			if (size > (vm_size_t) -1) {
3129				/* 32-bit overflow */
3130				fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
3131			} else {
3132				fault_info.cluster_size = (vm_size_t) size;
3133				assert(fault_info.cluster_size == size);
3134			}
3135
3136			XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0);
3137			result = vm_fault_page(src_object, src_offset,
3138				VM_PROT_READ, FALSE,
3139				&prot, &_result_page, &top_page,
3140			        (int *)0,
3141				&error_code, FALSE, FALSE, &fault_info);
3142
3143			switch(result) {
3144			case VM_FAULT_SUCCESS:
3145				result_page = _result_page;
3146
3147				/*
3148				 *	Copy the page to the new object.
3149				 *
3150				 *	POLICY DECISION:
3151				 *		If result_page is clean,
3152				 *		we could steal it instead
3153				 *		of copying.
3154				 */
3155
3156				vm_page_copy(result_page, new_page);
3157				vm_object_unlock(result_page->object);
3158
3159				/*
3160				 *	Let go of both pages (make them
3161				 *	not busy, perform wakeup, activate).
3162				 */
3163				vm_object_lock(new_object);
3164				SET_PAGE_DIRTY(new_page, FALSE);
3165				PAGE_WAKEUP_DONE(new_page);
3166				vm_object_unlock(new_object);
3167
3168				vm_object_lock(result_page->object);
3169				PAGE_WAKEUP_DONE(result_page);
3170
3171				vm_page_lockspin_queues();
3172				if (!result_page->active &&
3173				    !result_page->inactive &&
3174				    !result_page->throttled)
3175					vm_page_activate(result_page);
3176				vm_page_activate(new_page);
3177				vm_page_unlock_queues();
3178
3179				/*
3180				 *	Release paging references and
3181				 *	top-level placeholder page, if any.
3182				 */
3183
3184				vm_fault_cleanup(result_page->object,
3185						 top_page);
3186
3187				break;
3188
3189			case VM_FAULT_RETRY:
3190				break;
3191
3192			case VM_FAULT_MEMORY_SHORTAGE:
3193				if (vm_page_wait(interruptible))
3194					break;
3195				/* fall thru */
3196
3197			case VM_FAULT_INTERRUPTED:
3198				vm_object_lock(new_object);
3199				VM_PAGE_FREE(new_page);
3200				vm_object_unlock(new_object);
3201
3202				vm_object_deallocate(new_object);
3203				vm_object_deallocate(src_object);
3204				*_result_object = VM_OBJECT_NULL;
3205				return(MACH_SEND_INTERRUPTED);
3206
3207			case VM_FAULT_SUCCESS_NO_VM_PAGE:
3208				/* success but no VM page: fail */
3209				vm_object_paging_end(src_object);
3210				vm_object_unlock(src_object);
3211				/*FALLTHROUGH*/
3212			case VM_FAULT_MEMORY_ERROR:
3213				/*
3214				 * A policy choice:
3215				 *	(a) ignore pages that we can't
3216				 *	    copy
3217				 *	(b) return the null object if
3218				 *	    any page fails [chosen]
3219				 */
3220
3221				vm_object_lock(new_object);
3222				VM_PAGE_FREE(new_page);
3223				vm_object_unlock(new_object);
3224
3225				vm_object_deallocate(new_object);
3226				vm_object_deallocate(src_object);
3227				*_result_object = VM_OBJECT_NULL;
3228				return(error_code ? error_code:
3229				       KERN_MEMORY_ERROR);
3230
3231			default:
3232				panic("vm_object_copy_slowly: unexpected error"
3233				      " 0x%x from vm_fault_page()\n", result);
3234			}
3235		} while (result != VM_FAULT_SUCCESS);
3236	}
3237
3238	/*
3239	 *	Lose the extra reference, and return our object.
3240	 */
3241	vm_object_deallocate(src_object);
3242	*_result_object = new_object;
3243	return(KERN_SUCCESS);
3244}
3245
3246/*
3247 *	Routine:	vm_object_copy_quickly
3248 *
3249 *	Purpose:
3250 *		Copy the specified range of the source virtual
3251 *		memory object, if it can be done without waiting
3252 *		for user-generated events.
3253 *
3254 *	Results:
3255 *		If the copy is successful, the copy is returned in
3256 *		the arguments; otherwise, the arguments are not
3257 *		affected.
3258 *
3259 *	In/out conditions:
3260 *		The object should be unlocked on entry and exit.
3261 */
3262
3263/*ARGSUSED*/
3264__private_extern__ boolean_t
3265vm_object_copy_quickly(
3266	vm_object_t		*_object,		/* INOUT */
3267	__unused vm_object_offset_t	offset,	/* IN */
3268	__unused vm_object_size_t	size,	/* IN */
3269	boolean_t		*_src_needs_copy,	/* OUT */
3270	boolean_t		*_dst_needs_copy)	/* OUT */
3271{
3272	vm_object_t	object = *_object;
3273	memory_object_copy_strategy_t copy_strategy;
3274
3275	XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n",
3276	    *_object, offset, size, 0, 0);
3277	if (object == VM_OBJECT_NULL) {
3278		*_src_needs_copy = FALSE;
3279		*_dst_needs_copy = FALSE;
3280		return(TRUE);
3281	}
3282
3283	vm_object_lock(object);
3284
3285	copy_strategy = object->copy_strategy;
3286
3287	switch (copy_strategy) {
3288	case MEMORY_OBJECT_COPY_SYMMETRIC:
3289
3290		/*
3291		 *	Symmetric copy strategy.
3292		 *	Make another reference to the object.
3293		 *	Leave object/offset unchanged.
3294		 */
3295
3296		vm_object_reference_locked(object);
3297		object->shadowed = TRUE;
3298		vm_object_unlock(object);
3299
3300		/*
3301		 *	Both source and destination must make
3302		 *	shadows, and the source must be made
3303		 *	read-only if not already.
3304		 */
3305
3306		*_src_needs_copy = TRUE;
3307		*_dst_needs_copy = TRUE;
3308
3309		break;
3310
3311	case MEMORY_OBJECT_COPY_DELAY:
3312		vm_object_unlock(object);
3313		return(FALSE);
3314
3315	default:
3316		vm_object_unlock(object);
3317		return(FALSE);
3318	}
3319	return(TRUE);
3320}
3321
3322static int copy_call_count = 0;
3323static int copy_call_sleep_count = 0;
3324static int copy_call_restart_count = 0;
3325
3326/*
3327 *	Routine:	vm_object_copy_call [internal]
3328 *
3329 *	Description:
3330 *		Copy the source object (src_object), using the
3331 *		user-managed copy algorithm.
3332 *
3333 *	In/out conditions:
3334 *		The source object must be locked on entry.  It
3335 *		will be *unlocked* on exit.
3336 *
3337 *	Results:
3338 *		If the copy is successful, KERN_SUCCESS is returned.
3339 *		A new object that represents the copied virtual
3340 *		memory is returned in a parameter (*_result_object).
3341 *		If the return value indicates an error, this parameter
3342 *		is not valid.
3343 */
3344static kern_return_t
3345vm_object_copy_call(
3346	vm_object_t		src_object,
3347	vm_object_offset_t	src_offset,
3348	vm_object_size_t	size,
3349	vm_object_t		*_result_object)	/* OUT */
3350{
3351	kern_return_t	kr;
3352	vm_object_t	copy;
3353	boolean_t	check_ready = FALSE;
3354	uint32_t	try_failed_count = 0;
3355
3356	/*
3357	 *	If a copy is already in progress, wait and retry.
3358	 *
3359	 *	XXX
3360	 *	Consider making this call interruptable, as Mike
3361	 *	intended it to be.
3362	 *
3363	 *	XXXO
3364	 *	Need a counter or version or something to allow
3365	 *	us to use the copy that the currently requesting
3366	 *	thread is obtaining -- is it worth adding to the
3367	 *	vm object structure? Depends how common this case it.
3368	 */
3369	copy_call_count++;
3370	while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3371		vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3372			       THREAD_UNINT);
3373		copy_call_restart_count++;
3374	}
3375
3376	/*
3377	 *	Indicate (for the benefit of memory_object_create_copy)
3378	 *	that we want a copy for src_object. (Note that we cannot
3379	 *	do a real assert_wait before calling memory_object_copy,
3380	 *	so we simply set the flag.)
3381	 */
3382
3383	vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL);
3384	vm_object_unlock(src_object);
3385
3386	/*
3387	 *	Ask the memory manager to give us a memory object
3388	 *	which represents a copy of the src object.
3389	 *	The memory manager may give us a memory object
3390	 *	which we already have, or it may give us a
3391	 *	new memory object. This memory object will arrive
3392	 *	via memory_object_create_copy.
3393	 */
3394
3395	kr = KERN_FAILURE;	/* XXX need to change memory_object.defs */
3396	if (kr != KERN_SUCCESS) {
3397		return kr;
3398	}
3399
3400	/*
3401	 *	Wait for the copy to arrive.
3402	 */
3403	vm_object_lock(src_object);
3404	while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3405		vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3406			       THREAD_UNINT);
3407		copy_call_sleep_count++;
3408	}
3409Retry:
3410	assert(src_object->copy != VM_OBJECT_NULL);
3411	copy = src_object->copy;
3412	if (!vm_object_lock_try(copy)) {
3413		vm_object_unlock(src_object);
3414
3415		try_failed_count++;
3416		mutex_pause(try_failed_count);	/* wait a bit */
3417
3418		vm_object_lock(src_object);
3419		goto Retry;
3420	}
3421	if (copy->vo_size < src_offset+size)
3422		copy->vo_size = src_offset+size;
3423
3424	if (!copy->pager_ready)
3425		check_ready = TRUE;
3426
3427	/*
3428	 *	Return the copy.
3429	 */
3430	*_result_object = copy;
3431	vm_object_unlock(copy);
3432	vm_object_unlock(src_object);
3433
3434	/* Wait for the copy to be ready. */
3435	if (check_ready == TRUE) {
3436		vm_object_lock(copy);
3437		while (!copy->pager_ready) {
3438			vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT);
3439		}
3440		vm_object_unlock(copy);
3441	}
3442
3443	return KERN_SUCCESS;
3444}
3445
3446static int copy_delayed_lock_collisions = 0;
3447static int copy_delayed_max_collisions = 0;
3448static int copy_delayed_lock_contention = 0;
3449static int copy_delayed_protect_iterate = 0;
3450
3451/*
3452 *	Routine:	vm_object_copy_delayed [internal]
3453 *
3454 *	Description:
3455 *		Copy the specified virtual memory object, using
3456 *		the asymmetric copy-on-write algorithm.
3457 *
3458 *	In/out conditions:
3459 *		The src_object must be locked on entry.  It will be unlocked
3460 *		on exit - so the caller must also hold a reference to it.
3461 *
3462 *		This routine will not block waiting for user-generated
3463 *		events.  It is not interruptible.
3464 */
3465__private_extern__ vm_object_t
3466vm_object_copy_delayed(
3467	vm_object_t		src_object,
3468	vm_object_offset_t	src_offset,
3469	vm_object_size_t	size,
3470	boolean_t		src_object_shared)
3471{
3472	vm_object_t		new_copy = VM_OBJECT_NULL;
3473	vm_object_t		old_copy;
3474	vm_page_t		p;
3475	vm_object_size_t	copy_size = src_offset + size;
3476
3477
3478	int collisions = 0;
3479	/*
3480	 *	The user-level memory manager wants to see all of the changes
3481	 *	to this object, but it has promised not to make any changes on
3482 	 *	its own.
3483	 *
3484	 *	Perform an asymmetric copy-on-write, as follows:
3485	 *		Create a new object, called a "copy object" to hold
3486	 *		 pages modified by the new mapping  (i.e., the copy,
3487	 *		 not the original mapping).
3488	 *		Record the original object as the backing object for
3489	 *		 the copy object.  If the original mapping does not
3490	 *		 change a page, it may be used read-only by the copy.
3491	 *		Record the copy object in the original object.
3492	 *		 When the original mapping causes a page to be modified,
3493	 *		 it must be copied to a new page that is "pushed" to
3494	 *		 the copy object.
3495	 *		Mark the new mapping (the copy object) copy-on-write.
3496	 *		 This makes the copy object itself read-only, allowing
3497	 *		 it to be reused if the original mapping makes no
3498	 *		 changes, and simplifying the synchronization required
3499	 *		 in the "push" operation described above.
3500	 *
3501	 *	The copy-on-write is said to be assymetric because the original
3502	 *	object is *not* marked copy-on-write. A copied page is pushed
3503	 *	to the copy object, regardless which party attempted to modify
3504	 *	the page.
3505	 *
3506	 *	Repeated asymmetric copy operations may be done. If the
3507	 *	original object has not been changed since the last copy, its
3508	 *	copy object can be reused. Otherwise, a new copy object can be
3509	 *	inserted between the original object and its previous copy
3510	 *	object.  Since any copy object is read-only, this cannot affect
3511	 *	affect the contents of the previous copy object.
3512	 *
3513	 *	Note that a copy object is higher in the object tree than the
3514	 *	original object; therefore, use of the copy object recorded in
3515	 *	the original object must be done carefully, to avoid deadlock.
3516	 */
3517
3518 Retry:
3519
3520	/*
3521	 * Wait for paging in progress.
3522	 */
3523	if (!src_object->true_share &&
3524	    (src_object->paging_in_progress != 0 ||
3525	     src_object->activity_in_progress != 0)) {
3526	        if (src_object_shared == TRUE) {
3527		        vm_object_unlock(src_object);
3528			vm_object_lock(src_object);
3529			src_object_shared = FALSE;
3530			goto Retry;
3531		}
3532		vm_object_paging_wait(src_object, THREAD_UNINT);
3533	}
3534	/*
3535	 *	See whether we can reuse the result of a previous
3536	 *	copy operation.
3537	 */
3538
3539	old_copy = src_object->copy;
3540	if (old_copy != VM_OBJECT_NULL) {
3541	        int lock_granted;
3542
3543		/*
3544		 *	Try to get the locks (out of order)
3545		 */
3546		if (src_object_shared == TRUE)
3547		        lock_granted = vm_object_lock_try_shared(old_copy);
3548		else
3549		        lock_granted = vm_object_lock_try(old_copy);
3550
3551		if (!lock_granted) {
3552			vm_object_unlock(src_object);
3553
3554			if (collisions++ == 0)
3555				copy_delayed_lock_contention++;
3556			mutex_pause(collisions);
3557
3558			/* Heisenberg Rules */
3559			copy_delayed_lock_collisions++;
3560
3561			if (collisions > copy_delayed_max_collisions)
3562				copy_delayed_max_collisions = collisions;
3563
3564			if (src_object_shared == TRUE)
3565			        vm_object_lock_shared(src_object);
3566			else
3567			        vm_object_lock(src_object);
3568
3569			goto Retry;
3570		}
3571
3572		/*
3573		 *	Determine whether the old copy object has
3574		 *	been modified.
3575		 */
3576
3577		if (old_copy->resident_page_count == 0 &&
3578		    !old_copy->pager_created) {
3579			/*
3580			 *	It has not been modified.
3581			 *
3582			 *	Return another reference to
3583			 *	the existing copy-object if
3584			 *	we can safely grow it (if
3585			 *	needed).
3586			 */
3587
3588			if (old_copy->vo_size < copy_size) {
3589			        if (src_object_shared == TRUE) {
3590				        vm_object_unlock(old_copy);
3591					vm_object_unlock(src_object);
3592
3593					vm_object_lock(src_object);
3594					src_object_shared = FALSE;
3595					goto Retry;
3596				}
3597				/*
3598				 * We can't perform a delayed copy if any of the
3599				 * pages in the extended range are wired (because
3600				 * we can't safely take write permission away from
3601				 * wired pages).  If the pages aren't wired, then
3602				 * go ahead and protect them.
3603				 */
3604				copy_delayed_protect_iterate++;
3605
3606				queue_iterate(&src_object->memq, p, vm_page_t, listq) {
3607					if (!p->fictitious &&
3608					    p->offset >= old_copy->vo_size &&
3609					    p->offset < copy_size) {
3610						if (VM_PAGE_WIRED(p)) {
3611							vm_object_unlock(old_copy);
3612							vm_object_unlock(src_object);
3613
3614							if (new_copy != VM_OBJECT_NULL) {
3615								vm_object_unlock(new_copy);
3616								vm_object_deallocate(new_copy);
3617							}
3618
3619							return VM_OBJECT_NULL;
3620						} else {
3621							pmap_page_protect(p->phys_page,
3622									  (VM_PROT_ALL & ~VM_PROT_WRITE));
3623						}
3624					}
3625				}
3626				old_copy->vo_size = copy_size;
3627			}
3628			if (src_object_shared == TRUE)
3629			        vm_object_reference_shared(old_copy);
3630			else
3631			        vm_object_reference_locked(old_copy);
3632			vm_object_unlock(old_copy);
3633			vm_object_unlock(src_object);
3634
3635			if (new_copy != VM_OBJECT_NULL) {
3636				vm_object_unlock(new_copy);
3637				vm_object_deallocate(new_copy);
3638			}
3639			return(old_copy);
3640		}
3641
3642
3643
3644		/*
3645		 * Adjust the size argument so that the newly-created
3646		 * copy object will be large enough to back either the
3647		 * old copy object or the new mapping.
3648		 */
3649		if (old_copy->vo_size > copy_size)
3650			copy_size = old_copy->vo_size;
3651
3652		if (new_copy == VM_OBJECT_NULL) {
3653			vm_object_unlock(old_copy);
3654			vm_object_unlock(src_object);
3655			new_copy = vm_object_allocate(copy_size);
3656			vm_object_lock(src_object);
3657			vm_object_lock(new_copy);
3658
3659			src_object_shared = FALSE;
3660			goto Retry;
3661		}
3662		new_copy->vo_size = copy_size;
3663
3664		/*
3665		 *	The copy-object is always made large enough to
3666		 *	completely shadow the original object, since
3667		 *	it may have several users who want to shadow
3668		 *	the original object at different points.
3669		 */
3670
3671		assert((old_copy->shadow == src_object) &&
3672		    (old_copy->vo_shadow_offset == (vm_object_offset_t) 0));
3673
3674	} else if (new_copy == VM_OBJECT_NULL) {
3675		vm_object_unlock(src_object);
3676		new_copy = vm_object_allocate(copy_size);
3677		vm_object_lock(src_object);
3678		vm_object_lock(new_copy);
3679
3680		src_object_shared = FALSE;
3681		goto Retry;
3682	}
3683
3684	/*
3685	 * We now have the src object locked, and the new copy object
3686	 * allocated and locked (and potentially the old copy locked).
3687	 * Before we go any further, make sure we can still perform
3688	 * a delayed copy, as the situation may have changed.
3689	 *
3690	 * Specifically, we can't perform a delayed copy if any of the
3691	 * pages in the range are wired (because we can't safely take
3692	 * write permission away from wired pages).  If the pages aren't
3693	 * wired, then go ahead and protect them.
3694	 */
3695	copy_delayed_protect_iterate++;
3696
3697	queue_iterate(&src_object->memq, p, vm_page_t, listq) {
3698		if (!p->fictitious && p->offset < copy_size) {
3699			if (VM_PAGE_WIRED(p)) {
3700				if (old_copy)
3701					vm_object_unlock(old_copy);
3702				vm_object_unlock(src_object);
3703				vm_object_unlock(new_copy);
3704				vm_object_deallocate(new_copy);
3705				return VM_OBJECT_NULL;
3706			} else {
3707				pmap_page_protect(p->phys_page,
3708						  (VM_PROT_ALL & ~VM_PROT_WRITE));
3709			}
3710		}
3711	}
3712	if (old_copy != VM_OBJECT_NULL) {
3713		/*
3714		 *	Make the old copy-object shadow the new one.
3715		 *	It will receive no more pages from the original
3716		 *	object.
3717		 */
3718
3719		/* remove ref. from old_copy */
3720		vm_object_lock_assert_exclusive(src_object);
3721		src_object->ref_count--;
3722		assert(src_object->ref_count > 0);
3723		vm_object_lock_assert_exclusive(old_copy);
3724		old_copy->shadow = new_copy;
3725		vm_object_lock_assert_exclusive(new_copy);
3726		assert(new_copy->ref_count > 0);
3727		new_copy->ref_count++;		/* for old_copy->shadow ref. */
3728
3729#if TASK_SWAPPER
3730		if (old_copy->res_count) {
3731			VM_OBJ_RES_INCR(new_copy);
3732			VM_OBJ_RES_DECR(src_object);
3733		}
3734#endif
3735
3736		vm_object_unlock(old_copy);	/* done with old_copy */
3737	}
3738
3739	/*
3740	 *	Point the new copy at the existing object.
3741	 */
3742	vm_object_lock_assert_exclusive(new_copy);
3743	new_copy->shadow = src_object;
3744	new_copy->vo_shadow_offset = 0;
3745	new_copy->shadowed = TRUE;	/* caller must set needs_copy */
3746
3747	vm_object_lock_assert_exclusive(src_object);
3748	vm_object_reference_locked(src_object);
3749	src_object->copy = new_copy;
3750	vm_object_unlock(src_object);
3751	vm_object_unlock(new_copy);
3752
3753	XPR(XPR_VM_OBJECT,
3754		"vm_object_copy_delayed: used copy object %X for source %X\n",
3755		new_copy, src_object, 0, 0, 0);
3756
3757	return new_copy;
3758}
3759
3760/*
3761 *	Routine:	vm_object_copy_strategically
3762 *
3763 *	Purpose:
3764 *		Perform a copy according to the source object's
3765 *		declared strategy.  This operation may block,
3766 *		and may be interrupted.
3767 */
3768__private_extern__ kern_return_t
3769vm_object_copy_strategically(
3770	register vm_object_t	src_object,
3771	vm_object_offset_t	src_offset,
3772	vm_object_size_t	size,
3773	vm_object_t		*dst_object,	/* OUT */
3774	vm_object_offset_t	*dst_offset,	/* OUT */
3775	boolean_t		*dst_needs_copy) /* OUT */
3776{
3777	boolean_t	result;
3778	boolean_t	interruptible = THREAD_ABORTSAFE; /* XXX */
3779	boolean_t	object_lock_shared = FALSE;
3780	memory_object_copy_strategy_t copy_strategy;
3781
3782	assert(src_object != VM_OBJECT_NULL);
3783
3784	copy_strategy = src_object->copy_strategy;
3785
3786	if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
3787	        vm_object_lock_shared(src_object);
3788		object_lock_shared = TRUE;
3789	} else
3790	        vm_object_lock(src_object);
3791
3792	/*
3793	 *	The copy strategy is only valid if the memory manager
3794	 *	is "ready". Internal objects are always ready.
3795	 */
3796
3797	while (!src_object->internal && !src_object->pager_ready) {
3798		wait_result_t wait_result;
3799
3800		if (object_lock_shared == TRUE) {
3801		        vm_object_unlock(src_object);
3802			vm_object_lock(src_object);
3803			object_lock_shared = FALSE;
3804			continue;
3805		}
3806		wait_result = vm_object_sleep(	src_object,
3807						VM_OBJECT_EVENT_PAGER_READY,
3808						interruptible);
3809		if (wait_result != THREAD_AWAKENED) {
3810			vm_object_unlock(src_object);
3811			*dst_object = VM_OBJECT_NULL;
3812			*dst_offset = 0;
3813			*dst_needs_copy = FALSE;
3814			return(MACH_SEND_INTERRUPTED);
3815		}
3816	}
3817
3818	/*
3819	 *	Use the appropriate copy strategy.
3820	 */
3821
3822	switch (copy_strategy) {
3823	    case MEMORY_OBJECT_COPY_DELAY:
3824		*dst_object = vm_object_copy_delayed(src_object,
3825						     src_offset, size, object_lock_shared);
3826		if (*dst_object != VM_OBJECT_NULL) {
3827			*dst_offset = src_offset;
3828			*dst_needs_copy = TRUE;
3829			result = KERN_SUCCESS;
3830			break;
3831		}
3832		vm_object_lock(src_object);
3833		/* fall thru when delayed copy not allowed */
3834
3835	    case MEMORY_OBJECT_COPY_NONE:
3836		result = vm_object_copy_slowly(src_object, src_offset, size,
3837					       interruptible, dst_object);
3838		if (result == KERN_SUCCESS) {
3839			*dst_offset = 0;
3840			*dst_needs_copy = FALSE;
3841		}
3842		break;
3843
3844	    case MEMORY_OBJECT_COPY_CALL:
3845		result = vm_object_copy_call(src_object, src_offset, size,
3846				dst_object);
3847		if (result == KERN_SUCCESS) {
3848			*dst_offset = src_offset;
3849			*dst_needs_copy = TRUE;
3850		}
3851		break;
3852
3853	    case MEMORY_OBJECT_COPY_SYMMETRIC:
3854		XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0);
3855		vm_object_unlock(src_object);
3856		result = KERN_MEMORY_RESTART_COPY;
3857		break;
3858
3859	    default:
3860		panic("copy_strategically: bad strategy");
3861		result = KERN_INVALID_ARGUMENT;
3862	}
3863	return(result);
3864}
3865
3866/*
3867 *	vm_object_shadow:
3868 *
3869 *	Create a new object which is backed by the
3870 *	specified existing object range.  The source
3871 *	object reference is deallocated.
3872 *
3873 *	The new object and offset into that object
3874 *	are returned in the source parameters.
3875 */
3876boolean_t vm_object_shadow_check = TRUE;
3877
3878__private_extern__ boolean_t
3879vm_object_shadow(
3880	vm_object_t		*object,	/* IN/OUT */
3881	vm_object_offset_t	*offset,	/* IN/OUT */
3882	vm_object_size_t	length)
3883{
3884	register vm_object_t	source;
3885	register vm_object_t	result;
3886
3887	source = *object;
3888	assert(source != VM_OBJECT_NULL);
3889	if (source == VM_OBJECT_NULL)
3890		return FALSE;
3891
3892#if 0
3893	/*
3894	 * XXX FBDP
3895	 * This assertion is valid but it gets triggered by Rosetta for example
3896	 * due to a combination of vm_remap() that changes a VM object's
3897	 * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY)
3898	 * that then sets "needs_copy" on its map entry.  This creates a
3899	 * mapping situation that VM should never see and doesn't know how to
3900	 * handle.
3901	 * It's not clear if this can create any real problem but we should
3902	 * look into fixing this, probably by having vm_protect(VM_PROT_COPY)
3903	 * do more than just set "needs_copy" to handle the copy-on-write...
3904	 * In the meantime, let's disable the assertion.
3905	 */
3906	assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
3907#endif
3908
3909	/*
3910	 *	Determine if we really need a shadow.
3911	 *
3912	 *	If the source object is larger than what we are trying
3913	 *	to create, then force the shadow creation even if the
3914	 *	ref count is 1.  This will allow us to [potentially]
3915	 *	collapse the underlying object away in the future
3916	 *	(freeing up the extra data it might contain and that
3917	 *	we don't need).
3918	 */
3919	if (vm_object_shadow_check &&
3920	    source->vo_size == length &&
3921	    source->ref_count == 1 &&
3922	    (source->shadow == VM_OBJECT_NULL ||
3923	     source->shadow->copy == VM_OBJECT_NULL) )
3924	{
3925		source->shadowed = FALSE;
3926		return FALSE;
3927	}
3928
3929	/*
3930	 *	Allocate a new object with the given length
3931	 */
3932
3933	if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL)
3934		panic("vm_object_shadow: no object for shadowing");
3935
3936	/*
3937	 *	The new object shadows the source object, adding
3938	 *	a reference to it.  Our caller changes his reference
3939	 *	to point to the new object, removing a reference to
3940	 *	the source object.  Net result: no change of reference
3941	 *	count.
3942	 */
3943	result->shadow = source;
3944
3945	/*
3946	 *	Store the offset into the source object,
3947	 *	and fix up the offset into the new object.
3948	 */
3949
3950	result->vo_shadow_offset = *offset;
3951
3952	/*
3953	 *	Return the new things
3954	 */
3955
3956	*offset = 0;
3957	*object = result;
3958	return TRUE;
3959}
3960
3961/*
3962 *	The relationship between vm_object structures and
3963 *	the memory_object requires careful synchronization.
3964 *
3965 *	All associations are created by memory_object_create_named
3966 *  for external pagers and vm_object_pager_create for internal
3967 *  objects as follows:
3968 *
3969 *		pager:	the memory_object itself, supplied by
3970 *			the user requesting a mapping (or the kernel,
3971 *			when initializing internal objects); the
3972 *			kernel simulates holding send rights by keeping
3973 *			a port reference;
3974 *
3975 *		pager_request:
3976 *			the memory object control port,
3977 *			created by the kernel; the kernel holds
3978 *			receive (and ownership) rights to this
3979 *			port, but no other references.
3980 *
3981 *	When initialization is complete, the "initialized" field
3982 *	is asserted.  Other mappings using a particular memory object,
3983 *	and any references to the vm_object gained through the
3984 *	port association must wait for this initialization to occur.
3985 *
3986 *	In order to allow the memory manager to set attributes before
3987 *	requests (notably virtual copy operations, but also data or
3988 *	unlock requests) are made, a "ready" attribute is made available.
3989 *	Only the memory manager may affect the value of this attribute.
3990 *	Its value does not affect critical kernel functions, such as
3991 *	internal object initialization or destruction.  [Furthermore,
3992 *	memory objects created by the kernel are assumed to be ready
3993 *	immediately; the default memory manager need not explicitly
3994 *	set the "ready" attribute.]
3995 *
3996 *	[Both the "initialized" and "ready" attribute wait conditions
3997 *	use the "pager" field as the wait event.]
3998 *
3999 *	The port associations can be broken down by any of the
4000 *	following routines:
4001 *		vm_object_terminate:
4002 *			No references to the vm_object remain, and
4003 *			the object cannot (or will not) be cached.
4004 *			This is the normal case, and is done even
4005 *			though one of the other cases has already been
4006 *			done.
4007 *		memory_object_destroy:
4008 *			The memory manager has requested that the
4009 *			kernel relinquish references to the memory
4010 *			object. [The memory manager may not want to
4011 *			destroy the memory object, but may wish to
4012 *			refuse or tear down existing memory mappings.]
4013 *
4014 *	Each routine that breaks an association must break all of
4015 *	them at once.  At some later time, that routine must clear
4016 *	the pager field and release the memory object references.
4017 *	[Furthermore, each routine must cope with the simultaneous
4018 *	or previous operations of the others.]
4019 *
4020 *	In addition to the lock on the object, the vm_object_hash_lock
4021 *	governs the associations.  References gained through the
4022 *	association require use of the hash lock.
4023 *
4024 *	Because the pager field may be cleared spontaneously, it
4025 *	cannot be used to determine whether a memory object has
4026 *	ever been associated with a particular vm_object.  [This
4027 *	knowledge is important to the shadow object mechanism.]
4028 *	For this reason, an additional "created" attribute is
4029 *	provided.
4030 *
4031 *	During various paging operations, the pager reference found in the
4032 *	vm_object must be valid.  To prevent this from being released,
4033 *	(other than being removed, i.e., made null), routines may use
4034 *	the vm_object_paging_begin/end routines [actually, macros].
4035 *	The implementation uses the "paging_in_progress" and "wanted" fields.
4036 *	[Operations that alter the validity of the pager values include the
4037 *	termination routines and vm_object_collapse.]
4038 */
4039
4040
4041/*
4042 *	Routine:	vm_object_enter
4043 *	Purpose:
4044 *		Find a VM object corresponding to the given
4045 *		pager; if no such object exists, create one,
4046 *		and initialize the pager.
4047 */
4048vm_object_t
4049vm_object_enter(
4050	memory_object_t		pager,
4051	vm_object_size_t	size,
4052	boolean_t		internal,
4053	boolean_t		init,
4054	boolean_t		named)
4055{
4056	register vm_object_t	object;
4057	vm_object_t		new_object;
4058	boolean_t		must_init;
4059	vm_object_hash_entry_t	entry, new_entry;
4060	uint32_t        try_failed_count = 0;
4061	lck_mtx_t	*lck;
4062
4063	if (pager == MEMORY_OBJECT_NULL)
4064		return(vm_object_allocate(size));
4065
4066	new_object = VM_OBJECT_NULL;
4067	new_entry = VM_OBJECT_HASH_ENTRY_NULL;
4068	must_init = init;
4069
4070	/*
4071	 *	Look for an object associated with this port.
4072	 */
4073Retry:
4074	lck = vm_object_hash_lock_spin(pager);
4075	do {
4076		entry = vm_object_hash_lookup(pager, FALSE);
4077
4078		if (entry == VM_OBJECT_HASH_ENTRY_NULL) {
4079			if (new_object == VM_OBJECT_NULL) {
4080				/*
4081				 *	We must unlock to create a new object;
4082				 *	if we do so, we must try the lookup again.
4083				 */
4084				vm_object_hash_unlock(lck);
4085				assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL);
4086				new_entry = vm_object_hash_entry_alloc(pager);
4087				new_object = vm_object_allocate(size);
4088				lck = vm_object_hash_lock_spin(pager);
4089			} else {
4090				/*
4091				 *	Lookup failed twice, and we have something
4092				 *	to insert; set the object.
4093				 */
4094				vm_object_hash_insert(new_entry, new_object);
4095				entry = new_entry;
4096				new_entry = VM_OBJECT_HASH_ENTRY_NULL;
4097				new_object = VM_OBJECT_NULL;
4098				must_init = TRUE;
4099			}
4100		} else if (entry->object == VM_OBJECT_NULL) {
4101			/*
4102		 	 *	If a previous object is being terminated,
4103			 *	we must wait for the termination message
4104			 *	to be queued (and lookup the entry again).
4105			 */
4106			entry->waiting = TRUE;
4107			entry = VM_OBJECT_HASH_ENTRY_NULL;
4108			assert_wait((event_t) pager, THREAD_UNINT);
4109			vm_object_hash_unlock(lck);
4110
4111			thread_block(THREAD_CONTINUE_NULL);
4112			lck = vm_object_hash_lock_spin(pager);
4113		}
4114	} while (entry == VM_OBJECT_HASH_ENTRY_NULL);
4115
4116	object = entry->object;
4117	assert(object != VM_OBJECT_NULL);
4118
4119	if (!must_init) {
4120	        if ( !vm_object_lock_try(object)) {
4121
4122		        vm_object_hash_unlock(lck);
4123
4124		        try_failed_count++;
4125			mutex_pause(try_failed_count);  /* wait a bit */
4126			goto Retry;
4127		}
4128		assert(!internal || object->internal);
4129#if VM_OBJECT_CACHE
4130		if (object->ref_count == 0) {
4131			if ( !vm_object_cache_lock_try()) {
4132
4133				vm_object_hash_unlock(lck);
4134				vm_object_unlock(object);
4135
4136				try_failed_count++;
4137				mutex_pause(try_failed_count);  /* wait a bit */
4138				goto Retry;
4139			}
4140			XPR(XPR_VM_OBJECT_CACHE,
4141			    "vm_object_enter: removing %x from cache, head (%x, %x)\n",
4142				object,
4143				vm_object_cached_list.next,
4144				vm_object_cached_list.prev, 0,0);
4145			queue_remove(&vm_object_cached_list, object,
4146				     vm_object_t, cached_list);
4147			vm_object_cached_count--;
4148
4149			vm_object_cache_unlock();
4150		}
4151#endif
4152		if (named) {
4153			assert(!object->named);
4154			object->named = TRUE;
4155		}
4156		vm_object_lock_assert_exclusive(object);
4157		object->ref_count++;
4158		vm_object_res_reference(object);
4159
4160		vm_object_hash_unlock(lck);
4161		vm_object_unlock(object);
4162
4163		VM_STAT_INCR(hits);
4164	} else
4165		vm_object_hash_unlock(lck);
4166
4167	assert(object->ref_count > 0);
4168
4169	VM_STAT_INCR(lookups);
4170
4171	XPR(XPR_VM_OBJECT,
4172		"vm_o_enter: pager 0x%x obj 0x%x must_init %d\n",
4173		pager, object, must_init, 0, 0);
4174
4175	/*
4176	 *	If we raced to create a vm_object but lost, let's
4177	 *	throw away ours.
4178	 */
4179
4180	if (new_object != VM_OBJECT_NULL)
4181		vm_object_deallocate(new_object);
4182
4183	if (new_entry != VM_OBJECT_HASH_ENTRY_NULL)
4184		vm_object_hash_entry_free(new_entry);
4185
4186	if (must_init) {
4187		memory_object_control_t control;
4188
4189		/*
4190		 *	Allocate request port.
4191		 */
4192
4193		control = memory_object_control_allocate(object);
4194		assert (control != MEMORY_OBJECT_CONTROL_NULL);
4195
4196		vm_object_lock(object);
4197		assert(object != kernel_object);
4198
4199		/*
4200		 *	Copy the reference we were given.
4201		 */
4202
4203		memory_object_reference(pager);
4204		object->pager_created = TRUE;
4205		object->pager = pager;
4206		object->internal = internal;
4207		object->pager_trusted = internal;
4208		if (!internal) {
4209			/* copy strategy invalid until set by memory manager */
4210			object->copy_strategy = MEMORY_OBJECT_COPY_INVALID;
4211		}
4212		object->pager_control = control;
4213		object->pager_ready = FALSE;
4214
4215		vm_object_unlock(object);
4216
4217		/*
4218		 *	Let the pager know we're using it.
4219		 */
4220
4221		(void) memory_object_init(pager,
4222			object->pager_control,
4223			PAGE_SIZE);
4224
4225		vm_object_lock(object);
4226		if (named)
4227			object->named = TRUE;
4228		if (internal) {
4229			object->pager_ready = TRUE;
4230			vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
4231		}
4232
4233		object->pager_initialized = TRUE;
4234		vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED);
4235	} else {
4236		vm_object_lock(object);
4237	}
4238
4239	/*
4240	 *	[At this point, the object must be locked]
4241	 */
4242
4243	/*
4244	 *	Wait for the work above to be done by the first
4245	 *	thread to map this object.
4246	 */
4247
4248	while (!object->pager_initialized) {
4249		vm_object_sleep(object,
4250				VM_OBJECT_EVENT_INITIALIZED,
4251				THREAD_UNINT);
4252	}
4253	vm_object_unlock(object);
4254
4255	XPR(XPR_VM_OBJECT,
4256	    "vm_object_enter: vm_object %x, memory_object %x, internal %d\n",
4257	    object, object->pager, internal, 0,0);
4258	return(object);
4259}
4260
4261/*
4262 *	Routine:	vm_object_pager_create
4263 *	Purpose:
4264 *		Create a memory object for an internal object.
4265 *	In/out conditions:
4266 *		The object is locked on entry and exit;
4267 *		it may be unlocked within this call.
4268 *	Limitations:
4269 *		Only one thread may be performing a
4270 *		vm_object_pager_create on an object at
4271 *		a time.  Presumably, only the pageout
4272 *		daemon will be using this routine.
4273 */
4274
4275void
4276vm_object_pager_create(
4277	register vm_object_t	object)
4278{
4279	memory_object_t		pager;
4280	vm_object_hash_entry_t	entry;
4281	lck_mtx_t		*lck;
4282#if	MACH_PAGEMAP
4283	vm_object_size_t	size;
4284	vm_external_map_t	map;
4285#endif	/* MACH_PAGEMAP */
4286
4287	XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n",
4288		object, 0,0,0,0);
4289
4290	assert(object != kernel_object);
4291
4292	if (memory_manager_default_check() != KERN_SUCCESS)
4293		return;
4294
4295	/*
4296	 *	Prevent collapse or termination by holding a paging reference
4297	 */
4298
4299	vm_object_paging_begin(object);
4300	if (object->pager_created) {
4301		/*
4302		 *	Someone else got to it first...
4303		 *	wait for them to finish initializing the ports
4304		 */
4305		while (!object->pager_initialized) {
4306			vm_object_sleep(object,
4307				        VM_OBJECT_EVENT_INITIALIZED,
4308				        THREAD_UNINT);
4309		}
4310		vm_object_paging_end(object);
4311		return;
4312	}
4313
4314	/*
4315	 *	Indicate that a memory object has been assigned
4316	 *	before dropping the lock, to prevent a race.
4317	 */
4318
4319	object->pager_created = TRUE;
4320	object->paging_offset = 0;
4321
4322#if	MACH_PAGEMAP
4323	size = object->vo_size;
4324#endif	/* MACH_PAGEMAP */
4325	vm_object_unlock(object);
4326
4327#if	MACH_PAGEMAP
4328	map = vm_external_create(size);
4329	vm_object_lock(object);
4330	assert(object->vo_size == size);
4331	object->existence_map = map;
4332	vm_object_unlock(object);
4333#endif	/* MACH_PAGEMAP */
4334
4335	if ((uint32_t) object->vo_size != object->vo_size) {
4336		panic("vm_object_pager_create(): object size 0x%llx >= 4GB\n",
4337		      (uint64_t) object->vo_size);
4338	}
4339
4340	/*
4341	 *	Create the [internal] pager, and associate it with this object.
4342	 *
4343	 *	We make the association here so that vm_object_enter()
4344	 * 	can look up the object to complete initializing it.  No
4345	 *	user will ever map this object.
4346	 */
4347	{
4348		memory_object_default_t		dmm;
4349
4350		/* acquire a reference for the default memory manager */
4351		dmm = memory_manager_default_reference();
4352
4353		assert(object->temporary);
4354
4355		/* create our new memory object */
4356		assert((vm_size_t) object->vo_size == object->vo_size);
4357		(void) memory_object_create(dmm, (vm_size_t) object->vo_size,
4358					    &pager);
4359
4360		memory_object_default_deallocate(dmm);
4361       }
4362
4363	entry = vm_object_hash_entry_alloc(pager);
4364
4365	lck = vm_object_hash_lock_spin(pager);
4366	vm_object_hash_insert(entry, object);
4367	vm_object_hash_unlock(lck);
4368
4369	/*
4370	 *	A reference was returned by
4371	 *	memory_object_create(), and it is
4372	 *	copied by vm_object_enter().
4373	 */
4374
4375	if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object)
4376		panic("vm_object_pager_create: mismatch");
4377
4378	/*
4379	 *	Drop the reference we were passed.
4380	 */
4381	memory_object_deallocate(pager);
4382
4383	vm_object_lock(object);
4384
4385	/*
4386	 *	Release the paging reference
4387	 */
4388	vm_object_paging_end(object);
4389}
4390
4391/*
4392 *	Routine:	vm_object_remove
4393 *	Purpose:
4394 *		Eliminate the pager/object association
4395 *		for this pager.
4396 *	Conditions:
4397 *		The object cache must be locked.
4398 */
4399__private_extern__ void
4400vm_object_remove(
4401	vm_object_t	object)
4402{
4403	memory_object_t pager;
4404
4405	if ((pager = object->pager) != MEMORY_OBJECT_NULL) {
4406		vm_object_hash_entry_t	entry;
4407
4408		entry = vm_object_hash_lookup(pager, FALSE);
4409		if (entry != VM_OBJECT_HASH_ENTRY_NULL)
4410			entry->object = VM_OBJECT_NULL;
4411	}
4412
4413}
4414
4415/*
4416 *	Global variables for vm_object_collapse():
4417 *
4418 *		Counts for normal collapses and bypasses.
4419 *		Debugging variables, to watch or disable collapse.
4420 */
4421static long	object_collapses = 0;
4422static long	object_bypasses  = 0;
4423
4424static boolean_t	vm_object_collapse_allowed = TRUE;
4425static boolean_t	vm_object_bypass_allowed = TRUE;
4426
4427#if MACH_PAGEMAP
4428static int	vm_external_discarded;
4429static int	vm_external_collapsed;
4430#endif
4431
4432unsigned long vm_object_collapse_encrypted = 0;
4433
4434/*
4435 *	Routine:	vm_object_do_collapse
4436 *	Purpose:
4437 *		Collapse an object with the object backing it.
4438 *		Pages in the backing object are moved into the
4439 *		parent, and the backing object is deallocated.
4440 *	Conditions:
4441 *		Both objects and the cache are locked; the page
4442 *		queues are unlocked.
4443 *
4444 */
4445static void
4446vm_object_do_collapse(
4447	vm_object_t object,
4448	vm_object_t backing_object)
4449{
4450	vm_page_t p, pp;
4451	vm_object_offset_t new_offset, backing_offset;
4452	vm_object_size_t size;
4453
4454	vm_object_lock_assert_exclusive(object);
4455	vm_object_lock_assert_exclusive(backing_object);
4456
4457	backing_offset = object->vo_shadow_offset;
4458	size = object->vo_size;
4459
4460	/*
4461	 *	Move all in-memory pages from backing_object
4462	 *	to the parent.  Pages that have been paged out
4463	 *	will be overwritten by any of the parent's
4464	 *	pages that shadow them.
4465	 */
4466
4467	while (!queue_empty(&backing_object->memq)) {
4468
4469		p = (vm_page_t) queue_first(&backing_object->memq);
4470
4471		new_offset = (p->offset - backing_offset);
4472
4473		assert(!p->busy || p->absent);
4474
4475		/*
4476		 *	If the parent has a page here, or if
4477		 *	this page falls outside the parent,
4478		 *	dispose of it.
4479		 *
4480		 *	Otherwise, move it as planned.
4481		 */
4482
4483		if (p->offset < backing_offset || new_offset >= size) {
4484			VM_PAGE_FREE(p);
4485		} else {
4486			/*
4487			 * ENCRYPTED SWAP:
4488			 * The encryption key includes the "pager" and the
4489			 * "paging_offset".  These will not change during the
4490			 * object collapse, so we can just move an encrypted
4491			 * page from one object to the other in this case.
4492			 * We can't decrypt the page here, since we can't drop
4493			 * the object lock.
4494			 */
4495			if (p->encrypted) {
4496				vm_object_collapse_encrypted++;
4497			}
4498			pp = vm_page_lookup(object, new_offset);
4499			if (pp == VM_PAGE_NULL) {
4500
4501				/*
4502				 *	Parent now has no page.
4503				 *	Move the backing object's page up.
4504				 */
4505
4506				vm_page_rename(p, object, new_offset, TRUE);
4507#if	MACH_PAGEMAP
4508			} else if (pp->absent) {
4509
4510				/*
4511				 *	Parent has an absent page...
4512				 *	it's not being paged in, so
4513				 *	it must really be missing from
4514				 *	the parent.
4515				 *
4516				 *	Throw out the absent page...
4517				 *	any faults looking for that
4518				 *	page will restart with the new
4519				 *	one.
4520				 */
4521
4522				VM_PAGE_FREE(pp);
4523				vm_page_rename(p, object, new_offset, TRUE);
4524#endif	/* MACH_PAGEMAP */
4525			} else {
4526				assert(! pp->absent);
4527
4528				/*
4529				 *	Parent object has a real page.
4530				 *	Throw away the backing object's
4531				 *	page.
4532				 */
4533				VM_PAGE_FREE(p);
4534			}
4535		}
4536	}
4537
4538#if	!MACH_PAGEMAP
4539	assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL))
4540		|| (!backing_object->pager_created
4541		&&  (backing_object->pager == MEMORY_OBJECT_NULL)));
4542#else
4543        assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL);
4544#endif	/* !MACH_PAGEMAP */
4545
4546	if (backing_object->pager != MEMORY_OBJECT_NULL) {
4547		vm_object_hash_entry_t	entry;
4548
4549		/*
4550		 *	Move the pager from backing_object to object.
4551		 *
4552		 *	XXX We're only using part of the paging space
4553		 *	for keeps now... we ought to discard the
4554		 *	unused portion.
4555		 */
4556
4557		assert(!object->paging_in_progress);
4558		assert(!object->activity_in_progress);
4559		object->pager = backing_object->pager;
4560
4561		if (backing_object->hashed) {
4562			lck_mtx_t	*lck;
4563
4564			lck = vm_object_hash_lock_spin(backing_object->pager);
4565			entry = vm_object_hash_lookup(object->pager, FALSE);
4566			assert(entry != VM_OBJECT_HASH_ENTRY_NULL);
4567			entry->object = object;
4568			vm_object_hash_unlock(lck);
4569
4570			object->hashed = TRUE;
4571		}
4572		object->pager_created = backing_object->pager_created;
4573		object->pager_control = backing_object->pager_control;
4574		object->pager_ready = backing_object->pager_ready;
4575		object->pager_initialized = backing_object->pager_initialized;
4576		object->paging_offset =
4577		    backing_object->paging_offset + backing_offset;
4578		if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
4579			memory_object_control_collapse(object->pager_control,
4580						       object);
4581		}
4582	}
4583
4584#if	MACH_PAGEMAP
4585	/*
4586	 *	If the shadow offset is 0, the use the existence map from
4587	 *	the backing object if there is one. If the shadow offset is
4588	 *	not zero, toss it.
4589	 *
4590	 *	XXX - If the shadow offset is not 0 then a bit copy is needed
4591	 *	if the map is to be salvaged.  For now, we just just toss the
4592	 *	old map, giving the collapsed object no map. This means that
4593	 *	the pager is invoked for zero fill pages.  If analysis shows
4594	 *	that this happens frequently and is a performance hit, then
4595	 *	this code should be fixed to salvage the map.
4596	 */
4597	assert(object->existence_map == VM_EXTERNAL_NULL);
4598	if (backing_offset || (size != backing_object->vo_size)) {
4599		vm_external_discarded++;
4600		vm_external_destroy(backing_object->existence_map,
4601			backing_object->vo_size);
4602	}
4603	else {
4604		vm_external_collapsed++;
4605		object->existence_map = backing_object->existence_map;
4606	}
4607	backing_object->existence_map = VM_EXTERNAL_NULL;
4608#endif	/* MACH_PAGEMAP */
4609
4610	/*
4611	 *	Object now shadows whatever backing_object did.
4612	 *	Note that the reference to backing_object->shadow
4613	 *	moves from within backing_object to within object.
4614	 */
4615
4616	assert(!object->phys_contiguous);
4617	assert(!backing_object->phys_contiguous);
4618	object->shadow = backing_object->shadow;
4619	if (object->shadow) {
4620		object->vo_shadow_offset += backing_object->vo_shadow_offset;
4621	} else {
4622		/* no shadow, therefore no shadow offset... */
4623		object->vo_shadow_offset = 0;
4624	}
4625	assert((object->shadow == VM_OBJECT_NULL) ||
4626	       (object->shadow->copy != backing_object));
4627
4628	/*
4629	 *	Discard backing_object.
4630	 *
4631	 *	Since the backing object has no pages, no
4632	 *	pager left, and no object references within it,
4633	 *	all that is necessary is to dispose of it.
4634	 */
4635
4636	assert((backing_object->ref_count == 1) &&
4637	       (backing_object->resident_page_count == 0) &&
4638	       (backing_object->paging_in_progress == 0) &&
4639	       (backing_object->activity_in_progress == 0));
4640
4641	backing_object->alive = FALSE;
4642	vm_object_unlock(backing_object);
4643
4644	XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n",
4645		backing_object, 0,0,0,0);
4646
4647	vm_object_lock_destroy(backing_object);
4648
4649	zfree(vm_object_zone, backing_object);
4650
4651	object_collapses++;
4652}
4653
4654static void
4655vm_object_do_bypass(
4656	vm_object_t object,
4657	vm_object_t backing_object)
4658{
4659	/*
4660	 *	Make the parent shadow the next object
4661	 *	in the chain.
4662	 */
4663
4664	vm_object_lock_assert_exclusive(object);
4665	vm_object_lock_assert_exclusive(backing_object);
4666
4667#if	TASK_SWAPPER
4668	/*
4669	 *	Do object reference in-line to
4670	 *	conditionally increment shadow's
4671	 *	residence count.  If object is not
4672	 *	resident, leave residence count
4673	 *	on shadow alone.
4674	 */
4675	if (backing_object->shadow != VM_OBJECT_NULL) {
4676		vm_object_lock(backing_object->shadow);
4677		vm_object_lock_assert_exclusive(backing_object->shadow);
4678		backing_object->shadow->ref_count++;
4679		if (object->res_count != 0)
4680			vm_object_res_reference(backing_object->shadow);
4681		vm_object_unlock(backing_object->shadow);
4682	}
4683#else	/* TASK_SWAPPER */
4684	vm_object_reference(backing_object->shadow);
4685#endif	/* TASK_SWAPPER */
4686
4687	assert(!object->phys_contiguous);
4688	assert(!backing_object->phys_contiguous);
4689	object->shadow = backing_object->shadow;
4690	if (object->shadow) {
4691		object->vo_shadow_offset += backing_object->vo_shadow_offset;
4692	} else {
4693		/* no shadow, therefore no shadow offset... */
4694		object->vo_shadow_offset = 0;
4695	}
4696
4697	/*
4698	 *	Backing object might have had a copy pointer
4699	 *	to us.  If it did, clear it.
4700	 */
4701	if (backing_object->copy == object) {
4702		backing_object->copy = VM_OBJECT_NULL;
4703	}
4704
4705	/*
4706	 *	Drop the reference count on backing_object.
4707#if	TASK_SWAPPER
4708	 *	Since its ref_count was at least 2, it
4709	 *	will not vanish; so we don't need to call
4710	 *	vm_object_deallocate.
4711	 *	[with a caveat for "named" objects]
4712	 *
4713	 *	The res_count on the backing object is
4714	 *	conditionally decremented.  It's possible
4715	 *	(via vm_pageout_scan) to get here with
4716	 *	a "swapped" object, which has a 0 res_count,
4717	 *	in which case, the backing object res_count
4718	 *	is already down by one.
4719#else
4720	 *	Don't call vm_object_deallocate unless
4721	 *	ref_count drops to zero.
4722	 *
4723	 *	The ref_count can drop to zero here if the
4724	 *	backing object could be bypassed but not
4725	 *	collapsed, such as when the backing object
4726	 *	is temporary and cachable.
4727#endif
4728	 */
4729	if (backing_object->ref_count > 2 ||
4730	    (!backing_object->named && backing_object->ref_count > 1)) {
4731		vm_object_lock_assert_exclusive(backing_object);
4732		backing_object->ref_count--;
4733#if	TASK_SWAPPER
4734		if (object->res_count != 0)
4735			vm_object_res_deallocate(backing_object);
4736		assert(backing_object->ref_count > 0);
4737#endif	/* TASK_SWAPPER */
4738		vm_object_unlock(backing_object);
4739	} else {
4740
4741		/*
4742		 *	Drop locks so that we can deallocate
4743		 *	the backing object.
4744		 */
4745
4746#if	TASK_SWAPPER
4747		if (object->res_count == 0) {
4748			/* XXX get a reference for the deallocate below */
4749			vm_object_res_reference(backing_object);
4750		}
4751#endif	/* TASK_SWAPPER */
4752		/*
4753		 * vm_object_collapse (the caller of this function) is
4754		 * now called from contexts that may not guarantee that a
4755		 * valid reference is held on the object... w/o a valid
4756		 * reference, it is unsafe and unwise (you will definitely
4757		 * regret it) to unlock the object and then retake the lock
4758		 * since the object may be terminated and recycled in between.
4759		 * The "activity_in_progress" reference will keep the object
4760		 * 'stable'.
4761		 */
4762		vm_object_activity_begin(object);
4763		vm_object_unlock(object);
4764
4765		vm_object_unlock(backing_object);
4766		vm_object_deallocate(backing_object);
4767
4768		/*
4769		 *	Relock object. We don't have to reverify
4770		 *	its state since vm_object_collapse will
4771		 *	do that for us as it starts at the
4772		 *	top of its loop.
4773		 */
4774
4775		vm_object_lock(object);
4776		vm_object_activity_end(object);
4777	}
4778
4779	object_bypasses++;
4780}
4781
4782
4783/*
4784 *	vm_object_collapse:
4785 *
4786 *	Perform an object collapse or an object bypass if appropriate.
4787 *	The real work of collapsing and bypassing is performed in
4788 *	the routines vm_object_do_collapse and vm_object_do_bypass.
4789 *
4790 *	Requires that the object be locked and the page queues be unlocked.
4791 *
4792 */
4793static unsigned long vm_object_collapse_calls = 0;
4794static unsigned long vm_object_collapse_objects = 0;
4795static unsigned long vm_object_collapse_do_collapse = 0;
4796static unsigned long vm_object_collapse_do_bypass = 0;
4797
4798__private_extern__ void
4799vm_object_collapse(
4800	register vm_object_t			object,
4801	register vm_object_offset_t		hint_offset,
4802	boolean_t				can_bypass)
4803{
4804	register vm_object_t			backing_object;
4805	register unsigned int			rcount;
4806	register unsigned int			size;
4807	vm_object_t				original_object;
4808	int					object_lock_type;
4809	int					backing_object_lock_type;
4810
4811	vm_object_collapse_calls++;
4812
4813	if (! vm_object_collapse_allowed &&
4814	    ! (can_bypass && vm_object_bypass_allowed)) {
4815		return;
4816	}
4817
4818	XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n",
4819		object, 0,0,0,0);
4820
4821	if (object == VM_OBJECT_NULL)
4822		return;
4823
4824	original_object = object;
4825
4826	/*
4827	 * The top object was locked "exclusive" by the caller.
4828	 * In the first pass, to determine if we can collapse the shadow chain,
4829	 * take a "shared" lock on the shadow objects.  If we can collapse,
4830	 * we'll have to go down the chain again with exclusive locks.
4831	 */
4832	object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4833	backing_object_lock_type = OBJECT_LOCK_SHARED;
4834
4835retry:
4836	object = original_object;
4837	vm_object_lock_assert_exclusive(object);
4838
4839	while (TRUE) {
4840		vm_object_collapse_objects++;
4841		/*
4842		 *	Verify that the conditions are right for either
4843		 *	collapse or bypass:
4844		 */
4845
4846		/*
4847		 *	There is a backing object, and
4848		 */
4849
4850		backing_object = object->shadow;
4851		if (backing_object == VM_OBJECT_NULL) {
4852			if (object != original_object) {
4853				vm_object_unlock(object);
4854			}
4855			return;
4856		}
4857		if (backing_object_lock_type == OBJECT_LOCK_SHARED) {
4858			vm_object_lock_shared(backing_object);
4859		} else {
4860			vm_object_lock(backing_object);
4861		}
4862
4863		/*
4864		 *	No pages in the object are currently
4865		 *	being paged out, and
4866		 */
4867		if (object->paging_in_progress != 0 ||
4868		    object->activity_in_progress != 0) {
4869			/* try and collapse the rest of the shadow chain */
4870			if (object != original_object) {
4871				vm_object_unlock(object);
4872			}
4873			object = backing_object;
4874			object_lock_type = backing_object_lock_type;
4875			continue;
4876		}
4877
4878		/*
4879		 *	...
4880		 *		The backing object is not read_only,
4881		 *		and no pages in the backing object are
4882		 *		currently being paged out.
4883		 *		The backing object is internal.
4884		 *
4885		 */
4886
4887		if (!backing_object->internal ||
4888		    backing_object->paging_in_progress != 0 ||
4889		    backing_object->activity_in_progress != 0) {
4890			/* try and collapse the rest of the shadow chain */
4891			if (object != original_object) {
4892				vm_object_unlock(object);
4893			}
4894			object = backing_object;
4895			object_lock_type = backing_object_lock_type;
4896			continue;
4897		}
4898
4899		/*
4900		 *	The backing object can't be a copy-object:
4901		 *	the shadow_offset for the copy-object must stay
4902		 *	as 0.  Furthermore (for the 'we have all the
4903		 *	pages' case), if we bypass backing_object and
4904		 *	just shadow the next object in the chain, old
4905		 *	pages from that object would then have to be copied
4906		 *	BOTH into the (former) backing_object and into the
4907		 *	parent object.
4908		 */
4909		if (backing_object->shadow != VM_OBJECT_NULL &&
4910		    backing_object->shadow->copy == backing_object) {
4911			/* try and collapse the rest of the shadow chain */
4912			if (object != original_object) {
4913				vm_object_unlock(object);
4914			}
4915			object = backing_object;
4916			object_lock_type = backing_object_lock_type;
4917			continue;
4918		}
4919
4920		/*
4921		 *	We can now try to either collapse the backing
4922		 *	object (if the parent is the only reference to
4923		 *	it) or (perhaps) remove the parent's reference
4924		 *	to it.
4925		 *
4926		 *	If there is exactly one reference to the backing
4927		 *	object, we may be able to collapse it into the
4928		 *	parent.
4929		 *
4930		 *	If MACH_PAGEMAP is defined:
4931		 *	The parent must not have a pager created for it,
4932		 *	since collapsing a backing_object dumps new pages
4933		 *	into the parent that its pager doesn't know about
4934		 *	(and the collapse code can't merge the existence
4935		 *	maps).
4936		 *	Otherwise:
4937		 *	As long as one of the objects is still not known
4938		 *	to the pager, we can collapse them.
4939		 */
4940		if (backing_object->ref_count == 1 &&
4941		    (!object->pager_created
4942#if	!MACH_PAGEMAP
4943		     || !backing_object->pager_created
4944#endif	/*!MACH_PAGEMAP */
4945		    ) && vm_object_collapse_allowed) {
4946
4947			/*
4948			 * We need the exclusive lock on the VM objects.
4949			 */
4950			if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
4951				/*
4952				 * We have an object and its shadow locked
4953				 * "shared".  We can't just upgrade the locks
4954				 * to "exclusive", as some other thread might
4955				 * also have these objects locked "shared" and
4956				 * attempt to upgrade one or the other to
4957				 * "exclusive".  The upgrades would block
4958				 * forever waiting for the other "shared" locks
4959				 * to get released.
4960				 * So we have to release the locks and go
4961				 * down the shadow chain again (since it could
4962				 * have changed) with "exclusive" locking.
4963				 */
4964				vm_object_unlock(backing_object);
4965				if (object != original_object)
4966					vm_object_unlock(object);
4967				object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4968				backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4969				goto retry;
4970			}
4971
4972			XPR(XPR_VM_OBJECT,
4973		   "vm_object_collapse: %x to %x, pager %x, pager_control %x\n",
4974				backing_object, object,
4975				backing_object->pager,
4976				backing_object->pager_control, 0);
4977
4978			/*
4979			 *	Collapse the object with its backing
4980			 *	object, and try again with the object's
4981			 *	new backing object.
4982			 */
4983
4984			vm_object_do_collapse(object, backing_object);
4985			vm_object_collapse_do_collapse++;
4986			continue;
4987		}
4988
4989		/*
4990		 *	Collapsing the backing object was not possible
4991		 *	or permitted, so let's try bypassing it.
4992		 */
4993
4994		if (! (can_bypass && vm_object_bypass_allowed)) {
4995			/* try and collapse the rest of the shadow chain */
4996			if (object != original_object) {
4997				vm_object_unlock(object);
4998			}
4999			object = backing_object;
5000			object_lock_type = backing_object_lock_type;
5001			continue;
5002		}
5003
5004
5005		/*
5006		 *	If the object doesn't have all its pages present,
5007		 *	we have to make sure no pages in the backing object
5008		 *	"show through" before bypassing it.
5009		 */
5010		size = atop(object->vo_size);
5011		rcount = object->resident_page_count;
5012
5013		if (rcount != size) {
5014			vm_object_offset_t	offset;
5015			vm_object_offset_t	backing_offset;
5016			unsigned int     	backing_rcount;
5017
5018			/*
5019			 *	If the backing object has a pager but no pagemap,
5020			 *	then we cannot bypass it, because we don't know
5021			 *	what pages it has.
5022			 */
5023			if (backing_object->pager_created
5024#if	MACH_PAGEMAP
5025			    && (backing_object->existence_map == VM_EXTERNAL_NULL)
5026#endif	/* MACH_PAGEMAP */
5027				) {
5028				/* try and collapse the rest of the shadow chain */
5029				if (object != original_object) {
5030					vm_object_unlock(object);
5031				}
5032				object = backing_object;
5033				object_lock_type = backing_object_lock_type;
5034				continue;
5035			}
5036
5037			/*
5038			 *	If the object has a pager but no pagemap,
5039			 *	then we cannot bypass it, because we don't know
5040			 *	what pages it has.
5041			 */
5042			if (object->pager_created
5043#if	MACH_PAGEMAP
5044			    && (object->existence_map == VM_EXTERNAL_NULL)
5045#endif	/* MACH_PAGEMAP */
5046				) {
5047				/* try and collapse the rest of the shadow chain */
5048				if (object != original_object) {
5049					vm_object_unlock(object);
5050				}
5051				object = backing_object;
5052				object_lock_type = backing_object_lock_type;
5053				continue;
5054			}
5055
5056			backing_offset = object->vo_shadow_offset;
5057			backing_rcount = backing_object->resident_page_count;
5058
5059			if ( (int)backing_rcount - (int)(atop(backing_object->vo_size) - size) > (int)rcount) {
5060				/*
5061				 * we have enough pages in the backing object to guarantee that
5062				 * at least 1 of them must be 'uncovered' by a resident page
5063				 * in the object we're evaluating, so move on and
5064				 * try to collapse the rest of the shadow chain
5065				 */
5066                                if (object != original_object) {
5067                                        vm_object_unlock(object);
5068                                }
5069                                object = backing_object;
5070                                object_lock_type = backing_object_lock_type;
5071                                continue;
5072			}
5073
5074			/*
5075			 *	If all of the pages in the backing object are
5076			 *	shadowed by the parent object, the parent
5077			 *	object no longer has to shadow the backing
5078			 *	object; it can shadow the next one in the
5079			 *	chain.
5080			 *
5081			 *	If the backing object has existence info,
5082			 *	we must check examine its existence info
5083			 *	as well.
5084			 *
5085			 */
5086
5087#if	MACH_PAGEMAP
5088#define EXISTS_IN_OBJECT(obj, off, rc) \
5089	(vm_external_state_get((obj)->existence_map, \
5090	 (vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \
5091	 ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
5092#else
5093#define EXISTS_IN_OBJECT(obj, off, rc) \
5094	(((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
5095#endif	/* MACH_PAGEMAP */
5096
5097			/*
5098			 * Check the hint location first
5099			 * (since it is often the quickest way out of here).
5100			 */
5101			if (object->cow_hint != ~(vm_offset_t)0)
5102				hint_offset = (vm_object_offset_t)object->cow_hint;
5103			else
5104				hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ?
5105				              (hint_offset - 8 * PAGE_SIZE_64) : 0;
5106
5107			if (EXISTS_IN_OBJECT(backing_object, hint_offset +
5108			                     backing_offset, backing_rcount) &&
5109			    !EXISTS_IN_OBJECT(object, hint_offset, rcount)) {
5110				/* dependency right at the hint */
5111				object->cow_hint = (vm_offset_t) hint_offset; /* atomic */
5112				/* try and collapse the rest of the shadow chain */
5113				if (object != original_object) {
5114					vm_object_unlock(object);
5115				}
5116				object = backing_object;
5117				object_lock_type = backing_object_lock_type;
5118				continue;
5119			}
5120
5121			/*
5122			 * If the object's window onto the backing_object
5123			 * is large compared to the number of resident
5124			 * pages in the backing object, it makes sense to
5125			 * walk the backing_object's resident pages first.
5126			 *
5127			 * NOTE: Pages may be in both the existence map and/or
5128                         * resident, so if we don't find a dependency while
5129			 * walking the backing object's resident page list
5130			 * directly, and there is an existence map, we'll have
5131			 * to run the offset based 2nd pass.  Because we may
5132			 * have to run both passes, we need to be careful
5133			 * not to decrement 'rcount' in the 1st pass
5134			 */
5135			if (backing_rcount && backing_rcount < (size / 8)) {
5136				unsigned int rc = rcount;
5137				vm_page_t p;
5138
5139				backing_rcount = backing_object->resident_page_count;
5140				p = (vm_page_t)queue_first(&backing_object->memq);
5141				do {
5142					offset = (p->offset - backing_offset);
5143
5144					if (offset < object->vo_size &&
5145					    offset != hint_offset &&
5146					    !EXISTS_IN_OBJECT(object, offset, rc)) {
5147						/* found a dependency */
5148						object->cow_hint = (vm_offset_t) offset; /* atomic */
5149
5150						break;
5151					}
5152					p = (vm_page_t) queue_next(&p->listq);
5153
5154				} while (--backing_rcount);
5155
5156				if (backing_rcount != 0 ) {
5157					/* try and collapse the rest of the shadow chain */
5158					if (object != original_object) {
5159						vm_object_unlock(object);
5160					}
5161					object = backing_object;
5162					object_lock_type = backing_object_lock_type;
5163					continue;
5164				}
5165			}
5166
5167			/*
5168			 * Walk through the offsets looking for pages in the
5169			 * backing object that show through to the object.
5170			 */
5171			if (backing_rcount
5172#if MACH_PAGEMAP
5173			    || backing_object->existence_map
5174#endif	/* MACH_PAGEMAP */
5175				) {
5176				offset = hint_offset;
5177
5178				while((offset =
5179				      (offset + PAGE_SIZE_64 < object->vo_size) ?
5180				      (offset + PAGE_SIZE_64) : 0) != hint_offset) {
5181
5182					if (EXISTS_IN_OBJECT(backing_object, offset +
5183				            backing_offset, backing_rcount) &&
5184					    !EXISTS_IN_OBJECT(object, offset, rcount)) {
5185						/* found a dependency */
5186						object->cow_hint = (vm_offset_t) offset; /* atomic */
5187						break;
5188					}
5189				}
5190				if (offset != hint_offset) {
5191					/* try and collapse the rest of the shadow chain */
5192					if (object != original_object) {
5193						vm_object_unlock(object);
5194					}
5195					object = backing_object;
5196					object_lock_type = backing_object_lock_type;
5197					continue;
5198				}
5199			}
5200		}
5201
5202		/*
5203		 * We need "exclusive" locks on the 2 VM objects.
5204		 */
5205		if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
5206			vm_object_unlock(backing_object);
5207			if (object != original_object)
5208				vm_object_unlock(object);
5209			object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5210			backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5211			goto retry;
5212		}
5213
5214		/* reset the offset hint for any objects deeper in the chain */
5215		object->cow_hint = (vm_offset_t)0;
5216
5217		/*
5218		 *	All interesting pages in the backing object
5219		 *	already live in the parent or its pager.
5220		 *	Thus we can bypass the backing object.
5221		 */
5222
5223		vm_object_do_bypass(object, backing_object);
5224		vm_object_collapse_do_bypass++;
5225
5226		/*
5227		 *	Try again with this object's new backing object.
5228		 */
5229
5230		continue;
5231	}
5232
5233	if (object != original_object) {
5234		vm_object_unlock(object);
5235	}
5236}
5237
5238/*
5239 *	Routine:	vm_object_page_remove: [internal]
5240 *	Purpose:
5241 *		Removes all physical pages in the specified
5242 *		object range from the object's list of pages.
5243 *
5244 *	In/out conditions:
5245 *		The object must be locked.
5246 *		The object must not have paging_in_progress, usually
5247 *		guaranteed by not having a pager.
5248 */
5249unsigned int vm_object_page_remove_lookup = 0;
5250unsigned int vm_object_page_remove_iterate = 0;
5251
5252__private_extern__ void
5253vm_object_page_remove(
5254	register vm_object_t		object,
5255	register vm_object_offset_t	start,
5256	register vm_object_offset_t	end)
5257{
5258	register vm_page_t	p, next;
5259
5260	/*
5261	 *	One and two page removals are most popular.
5262	 *	The factor of 16 here is somewhat arbitrary.
5263	 *	It balances vm_object_lookup vs iteration.
5264	 */
5265
5266	if (atop_64(end - start) < (unsigned)object->resident_page_count/16) {
5267		vm_object_page_remove_lookup++;
5268
5269		for (; start < end; start += PAGE_SIZE_64) {
5270			p = vm_page_lookup(object, start);
5271			if (p != VM_PAGE_NULL) {
5272				assert(!p->cleaning && !p->pageout && !p->laundry);
5273				if (!p->fictitious && p->pmapped)
5274				        pmap_disconnect(p->phys_page);
5275				VM_PAGE_FREE(p);
5276			}
5277		}
5278	} else {
5279		vm_object_page_remove_iterate++;
5280
5281		p = (vm_page_t) queue_first(&object->memq);
5282		while (!queue_end(&object->memq, (queue_entry_t) p)) {
5283			next = (vm_page_t) queue_next(&p->listq);
5284			if ((start <= p->offset) && (p->offset < end)) {
5285				assert(!p->cleaning && !p->pageout && !p->laundry);
5286				if (!p->fictitious && p->pmapped)
5287				        pmap_disconnect(p->phys_page);
5288				VM_PAGE_FREE(p);
5289			}
5290			p = next;
5291		}
5292	}
5293}
5294
5295
5296/*
5297 *	Routine:	vm_object_coalesce
5298 *	Function:	Coalesces two objects backing up adjoining
5299 *			regions of memory into a single object.
5300 *
5301 *	returns TRUE if objects were combined.
5302 *
5303 *	NOTE:	Only works at the moment if the second object is NULL -
5304 *		if it's not, which object do we lock first?
5305 *
5306 *	Parameters:
5307 *		prev_object	First object to coalesce
5308 *		prev_offset	Offset into prev_object
5309 *		next_object	Second object into coalesce
5310 *		next_offset	Offset into next_object
5311 *
5312 *		prev_size	Size of reference to prev_object
5313 *		next_size	Size of reference to next_object
5314 *
5315 *	Conditions:
5316 *	The object(s) must *not* be locked. The map must be locked
5317 *	to preserve the reference to the object(s).
5318 */
5319static int vm_object_coalesce_count = 0;
5320
5321__private_extern__ boolean_t
5322vm_object_coalesce(
5323	register vm_object_t		prev_object,
5324	vm_object_t			next_object,
5325	vm_object_offset_t		prev_offset,
5326	__unused vm_object_offset_t next_offset,
5327	vm_object_size_t		prev_size,
5328	vm_object_size_t		next_size)
5329{
5330	vm_object_size_t	newsize;
5331
5332#ifdef	lint
5333	next_offset++;
5334#endif	/* lint */
5335
5336	if (next_object != VM_OBJECT_NULL) {
5337		return(FALSE);
5338	}
5339
5340	if (prev_object == VM_OBJECT_NULL) {
5341		return(TRUE);
5342	}
5343
5344	XPR(XPR_VM_OBJECT,
5345       "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n",
5346		prev_object, prev_offset, prev_size, next_size, 0);
5347
5348	vm_object_lock(prev_object);
5349
5350	/*
5351	 *	Try to collapse the object first
5352	 */
5353	vm_object_collapse(prev_object, prev_offset, TRUE);
5354
5355	/*
5356	 *	Can't coalesce if pages not mapped to
5357	 *	prev_entry may be in use any way:
5358	 *	. more than one reference
5359	 *	. paged out
5360	 *	. shadows another object
5361	 *	. has a copy elsewhere
5362	 *	. is purgeable
5363	 *	. paging references (pages might be in page-list)
5364	 */
5365
5366	if ((prev_object->ref_count > 1) ||
5367	    prev_object->pager_created ||
5368	    (prev_object->shadow != VM_OBJECT_NULL) ||
5369	    (prev_object->copy != VM_OBJECT_NULL) ||
5370	    (prev_object->true_share != FALSE) ||
5371	    (prev_object->purgable != VM_PURGABLE_DENY) ||
5372	    (prev_object->paging_in_progress != 0) ||
5373	    (prev_object->activity_in_progress != 0)) {
5374		vm_object_unlock(prev_object);
5375		return(FALSE);
5376	}
5377
5378	vm_object_coalesce_count++;
5379
5380	/*
5381	 *	Remove any pages that may still be in the object from
5382	 *	a previous deallocation.
5383	 */
5384	vm_object_page_remove(prev_object,
5385		prev_offset + prev_size,
5386		prev_offset + prev_size + next_size);
5387
5388	/*
5389	 *	Extend the object if necessary.
5390	 */
5391	newsize = prev_offset + prev_size + next_size;
5392	if (newsize > prev_object->vo_size) {
5393#if	MACH_PAGEMAP
5394		/*
5395		 *	We cannot extend an object that has existence info,
5396		 *	since the existence info might then fail to cover
5397		 *	the entire object.
5398		 *
5399		 *	This assertion must be true because the object
5400		 *	has no pager, and we only create existence info
5401		 *	for objects with pagers.
5402		 */
5403		assert(prev_object->existence_map == VM_EXTERNAL_NULL);
5404#endif	/* MACH_PAGEMAP */
5405		prev_object->vo_size = newsize;
5406	}
5407
5408	vm_object_unlock(prev_object);
5409	return(TRUE);
5410}
5411
5412/*
5413 *	Attach a set of physical pages to an object, so that they can
5414 *	be mapped by mapping the object.  Typically used to map IO memory.
5415 *
5416 *	The mapping function and its private data are used to obtain the
5417 *	physical addresses for each page to be mapped.
5418 */
5419void
5420vm_object_page_map(
5421	vm_object_t		object,
5422	vm_object_offset_t	offset,
5423	vm_object_size_t	size,
5424	vm_object_offset_t	(*map_fn)(void *map_fn_data,
5425		vm_object_offset_t offset),
5426		void 		*map_fn_data)	/* private to map_fn */
5427{
5428	int64_t	num_pages;
5429	int	i;
5430	vm_page_t	m;
5431	vm_page_t	old_page;
5432	vm_object_offset_t	addr;
5433
5434	num_pages = atop_64(size);
5435
5436	for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) {
5437
5438	    addr = (*map_fn)(map_fn_data, offset);
5439
5440	    while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL)
5441		vm_page_more_fictitious();
5442
5443	    vm_object_lock(object);
5444	    if ((old_page = vm_page_lookup(object, offset))
5445			!= VM_PAGE_NULL)
5446	    {
5447		    VM_PAGE_FREE(old_page);
5448	    }
5449
5450	    assert((ppnum_t) addr == addr);
5451	    vm_page_init(m, (ppnum_t) addr, FALSE);
5452	    /*
5453	     * private normally requires lock_queues but since we
5454	     * are initializing the page, its not necessary here
5455	     */
5456	    m->private = TRUE;		/* don`t free page */
5457	    m->wire_count = 1;
5458	    vm_page_insert(m, object, offset);
5459
5460	    PAGE_WAKEUP_DONE(m);
5461	    vm_object_unlock(object);
5462	}
5463}
5464
5465kern_return_t
5466vm_object_populate_with_private(
5467		vm_object_t		object,
5468		vm_object_offset_t	offset,
5469		ppnum_t			phys_page,
5470		vm_size_t		size)
5471{
5472	ppnum_t			base_page;
5473	vm_object_offset_t	base_offset;
5474
5475
5476	if (!object->private)
5477		return KERN_FAILURE;
5478
5479	base_page = phys_page;
5480
5481	vm_object_lock(object);
5482
5483	if (!object->phys_contiguous) {
5484		vm_page_t	m;
5485
5486		if ((base_offset = trunc_page_64(offset)) != offset) {
5487			vm_object_unlock(object);
5488			return KERN_FAILURE;
5489		}
5490		base_offset += object->paging_offset;
5491
5492		while (size) {
5493			m = vm_page_lookup(object, base_offset);
5494
5495			if (m != VM_PAGE_NULL) {
5496				if (m->fictitious) {
5497					if (m->phys_page != vm_page_guard_addr) {
5498
5499						vm_page_lockspin_queues();
5500						m->private = TRUE;
5501						vm_page_unlock_queues();
5502
5503						m->fictitious = FALSE;
5504						m->phys_page = base_page;
5505					}
5506				} else if (m->phys_page != base_page) {
5507
5508				        if ( !m->private) {
5509						/*
5510						 * we'd leak a real page... that can't be right
5511						 */
5512						panic("vm_object_populate_with_private - %p not private", m);
5513					}
5514					if (m->pmapped) {
5515					        /*
5516						 * pmap call to clear old mapping
5517						 */
5518					        pmap_disconnect(m->phys_page);
5519					}
5520					m->phys_page = base_page;
5521				}
5522				if (m->encrypted) {
5523					/*
5524					 * we should never see this on a ficticious or private page
5525					 */
5526					panic("vm_object_populate_with_private - %p encrypted", m);
5527				}
5528
5529			} else {
5530				while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL)
5531                			vm_page_more_fictitious();
5532
5533				/*
5534				 * private normally requires lock_queues but since we
5535				 * are initializing the page, its not necessary here
5536				 */
5537				m->private = TRUE;
5538				m->fictitious = FALSE;
5539				m->phys_page = base_page;
5540				m->unusual = TRUE;
5541				m->busy = FALSE;
5542
5543	    			vm_page_insert(m, object, base_offset);
5544			}
5545			base_page++;									/* Go to the next physical page */
5546			base_offset += PAGE_SIZE;
5547			size -= PAGE_SIZE;
5548		}
5549	} else {
5550		/* NOTE: we should check the original settings here */
5551		/* if we have a size > zero a pmap call should be made */
5552		/* to disable the range */
5553
5554		/* pmap_? */
5555
5556		/* shadows on contiguous memory are not allowed */
5557		/* we therefore can use the offset field */
5558		object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT;
5559		object->vo_size = size;
5560	}
5561	vm_object_unlock(object);
5562
5563	return KERN_SUCCESS;
5564}
5565
5566/*
5567 *	memory_object_free_from_cache:
5568 *
5569 *	Walk the vm_object cache list, removing and freeing vm_objects
5570 *	which are backed by the pager identified by the caller, (pager_ops).
5571 *	Remove up to "count" objects, if there are that may available
5572 *	in the cache.
5573 *
5574 *	Walk the list at most once, return the number of vm_objects
5575 *	actually freed.
5576 */
5577
5578__private_extern__ kern_return_t
5579memory_object_free_from_cache(
5580	__unused host_t		host,
5581	__unused memory_object_pager_ops_t pager_ops,
5582	int		*count)
5583{
5584#if VM_OBJECT_CACHE
5585	int	object_released = 0;
5586
5587	register vm_object_t object = VM_OBJECT_NULL;
5588	vm_object_t shadow;
5589
5590/*
5591	if(host == HOST_NULL)
5592		return(KERN_INVALID_ARGUMENT);
5593*/
5594
5595 try_again:
5596	vm_object_cache_lock();
5597
5598	queue_iterate(&vm_object_cached_list, object,
5599					vm_object_t, cached_list) {
5600		if (object->pager &&
5601		    (pager_ops == object->pager->mo_pager_ops)) {
5602			vm_object_lock(object);
5603			queue_remove(&vm_object_cached_list, object,
5604					vm_object_t, cached_list);
5605			vm_object_cached_count--;
5606
5607			vm_object_cache_unlock();
5608			/*
5609		 	*	Since this object is in the cache, we know
5610		 	*	that it is initialized and has only a pager's
5611			*	(implicit) reference. Take a reference to avoid
5612			*	recursive deallocations.
5613		 	*/
5614
5615			assert(object->pager_initialized);
5616			assert(object->ref_count == 0);
5617			vm_object_lock_assert_exclusive(object);
5618			object->ref_count++;
5619
5620			/*
5621		 	*	Terminate the object.
5622		 	*	If the object had a shadow, we let
5623			*	vm_object_deallocate deallocate it.
5624			*	"pageout" objects have a shadow, but
5625		 	*	maintain a "paging reference" rather
5626			*	than a normal reference.
5627		 	*	(We are careful here to limit recursion.)
5628		 	*/
5629			shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
5630
5631			if ((vm_object_terminate(object) == KERN_SUCCESS)
5632					&& (shadow != VM_OBJECT_NULL)) {
5633				vm_object_deallocate(shadow);
5634			}
5635
5636			if(object_released++ == *count)
5637				return KERN_SUCCESS;
5638			goto try_again;
5639		}
5640	}
5641	vm_object_cache_unlock();
5642	*count  = object_released;
5643#else
5644	*count = 0;
5645#endif
5646	return KERN_SUCCESS;
5647}
5648
5649
5650
5651kern_return_t
5652memory_object_create_named(
5653	memory_object_t	pager,
5654	memory_object_offset_t	size,
5655	memory_object_control_t		*control)
5656{
5657	vm_object_t 		object;
5658	vm_object_hash_entry_t	entry;
5659	lck_mtx_t		*lck;
5660
5661	*control = MEMORY_OBJECT_CONTROL_NULL;
5662	if (pager == MEMORY_OBJECT_NULL)
5663		return KERN_INVALID_ARGUMENT;
5664
5665	lck = vm_object_hash_lock_spin(pager);
5666	entry = vm_object_hash_lookup(pager, FALSE);
5667
5668	if ((entry != VM_OBJECT_HASH_ENTRY_NULL) &&
5669			(entry->object != VM_OBJECT_NULL)) {
5670		if (entry->object->named == TRUE)
5671			panic("memory_object_create_named: caller already holds the right");	}
5672	vm_object_hash_unlock(lck);
5673
5674	if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) == VM_OBJECT_NULL) {
5675		return(KERN_INVALID_OBJECT);
5676	}
5677
5678	/* wait for object (if any) to be ready */
5679	if (object != VM_OBJECT_NULL) {
5680		vm_object_lock(object);
5681		object->named = TRUE;
5682		while (!object->pager_ready) {
5683			vm_object_sleep(object,
5684					VM_OBJECT_EVENT_PAGER_READY,
5685					THREAD_UNINT);
5686		}
5687		*control = object->pager_control;
5688		vm_object_unlock(object);
5689	}
5690	return (KERN_SUCCESS);
5691}
5692
5693
5694/*
5695 *	Routine:	memory_object_recover_named [user interface]
5696 *	Purpose:
5697 *		Attempt to recover a named reference for a VM object.
5698 *		VM will verify that the object has not already started
5699 *		down the termination path, and if it has, will optionally
5700 *		wait for that to finish.
5701 *	Returns:
5702 *		KERN_SUCCESS - we recovered a named reference on the object
5703 *		KERN_FAILURE - we could not recover a reference (object dead)
5704 *		KERN_INVALID_ARGUMENT - bad memory object control
5705 */
5706kern_return_t
5707memory_object_recover_named(
5708	memory_object_control_t	control,
5709	boolean_t		wait_on_terminating)
5710{
5711	vm_object_t		object;
5712
5713	object = memory_object_control_to_vm_object(control);
5714	if (object == VM_OBJECT_NULL) {
5715		return (KERN_INVALID_ARGUMENT);
5716	}
5717restart:
5718	vm_object_lock(object);
5719
5720	if (object->terminating && wait_on_terminating) {
5721		vm_object_wait(object,
5722			VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
5723			THREAD_UNINT);
5724		goto restart;
5725	}
5726
5727	if (!object->alive) {
5728		vm_object_unlock(object);
5729		return KERN_FAILURE;
5730	}
5731
5732	if (object->named == TRUE) {
5733		vm_object_unlock(object);
5734		return KERN_SUCCESS;
5735	}
5736#if VM_OBJECT_CACHE
5737	if ((object->ref_count == 0) && (!object->terminating)) {
5738		if (!vm_object_cache_lock_try()) {
5739			vm_object_unlock(object);
5740			goto restart;
5741		}
5742		queue_remove(&vm_object_cached_list, object,
5743				     vm_object_t, cached_list);
5744		vm_object_cached_count--;
5745		XPR(XPR_VM_OBJECT_CACHE,
5746		    "memory_object_recover_named: removing %X, head (%X, %X)\n",
5747		    object,
5748		    vm_object_cached_list.next,
5749		    vm_object_cached_list.prev, 0,0);
5750
5751		vm_object_cache_unlock();
5752	}
5753#endif
5754	object->named = TRUE;
5755	vm_object_lock_assert_exclusive(object);
5756	object->ref_count++;
5757	vm_object_res_reference(object);
5758	while (!object->pager_ready) {
5759		vm_object_sleep(object,
5760				VM_OBJECT_EVENT_PAGER_READY,
5761				THREAD_UNINT);
5762	}
5763	vm_object_unlock(object);
5764	return (KERN_SUCCESS);
5765}
5766
5767
5768/*
5769 *	vm_object_release_name:
5770 *
5771 *	Enforces name semantic on memory_object reference count decrement
5772 *	This routine should not be called unless the caller holds a name
5773 *	reference gained through the memory_object_create_named.
5774 *
5775 *	If the TERMINATE_IDLE flag is set, the call will return if the
5776 *	reference count is not 1. i.e. idle with the only remaining reference
5777 *	being the name.
5778 *	If the decision is made to proceed the name field flag is set to
5779 *	false and the reference count is decremented.  If the RESPECT_CACHE
5780 *	flag is set and the reference count has gone to zero, the
5781 *	memory_object is checked to see if it is cacheable otherwise when
5782 *	the reference count is zero, it is simply terminated.
5783 */
5784
5785__private_extern__ kern_return_t
5786vm_object_release_name(
5787	vm_object_t	object,
5788	int		flags)
5789{
5790	vm_object_t	shadow;
5791	boolean_t	original_object = TRUE;
5792
5793	while (object != VM_OBJECT_NULL) {
5794
5795		vm_object_lock(object);
5796
5797		assert(object->alive);
5798		if (original_object)
5799			assert(object->named);
5800		assert(object->ref_count > 0);
5801
5802		/*
5803		 *	We have to wait for initialization before
5804		 *	destroying or caching the object.
5805		 */
5806
5807		if (object->pager_created && !object->pager_initialized) {
5808			assert(!object->can_persist);
5809			vm_object_assert_wait(object,
5810					VM_OBJECT_EVENT_INITIALIZED,
5811					THREAD_UNINT);
5812			vm_object_unlock(object);
5813			thread_block(THREAD_CONTINUE_NULL);
5814			continue;
5815		}
5816
5817		if (((object->ref_count > 1)
5818			&& (flags & MEMORY_OBJECT_TERMINATE_IDLE))
5819			|| (object->terminating)) {
5820			vm_object_unlock(object);
5821			return KERN_FAILURE;
5822		} else {
5823			if (flags & MEMORY_OBJECT_RELEASE_NO_OP) {
5824				vm_object_unlock(object);
5825				return KERN_SUCCESS;
5826			}
5827		}
5828
5829		if ((flags & MEMORY_OBJECT_RESPECT_CACHE) &&
5830					(object->ref_count == 1)) {
5831			if (original_object)
5832				object->named = FALSE;
5833			vm_object_unlock(object);
5834			/* let vm_object_deallocate push this thing into */
5835			/* the cache, if that it is where it is bound */
5836			vm_object_deallocate(object);
5837			return KERN_SUCCESS;
5838		}
5839		VM_OBJ_RES_DECR(object);
5840		shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
5841
5842		if (object->ref_count == 1) {
5843			if (vm_object_terminate(object) != KERN_SUCCESS) {
5844				if (original_object) {
5845					return KERN_FAILURE;
5846				} else {
5847					return KERN_SUCCESS;
5848				}
5849			}
5850			if (shadow != VM_OBJECT_NULL) {
5851				original_object = FALSE;
5852				object = shadow;
5853				continue;
5854			}
5855			return KERN_SUCCESS;
5856		} else {
5857			vm_object_lock_assert_exclusive(object);
5858			object->ref_count--;
5859			assert(object->ref_count > 0);
5860			if(original_object)
5861				object->named = FALSE;
5862			vm_object_unlock(object);
5863			return KERN_SUCCESS;
5864		}
5865	}
5866	/*NOTREACHED*/
5867	assert(0);
5868	return KERN_FAILURE;
5869}
5870
5871
5872__private_extern__ kern_return_t
5873vm_object_lock_request(
5874	vm_object_t			object,
5875	vm_object_offset_t		offset,
5876	vm_object_size_t		size,
5877	memory_object_return_t		should_return,
5878	int				flags,
5879	vm_prot_t			prot)
5880{
5881	__unused boolean_t	should_flush;
5882
5883	should_flush = flags & MEMORY_OBJECT_DATA_FLUSH;
5884
5885        XPR(XPR_MEMORY_OBJECT,
5886	    "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n",
5887	    object, offset, size,
5888 	    (((should_return&1)<<1)|should_flush), prot);
5889
5890	/*
5891	 *	Check for bogus arguments.
5892	 */
5893	if (object == VM_OBJECT_NULL)
5894		return (KERN_INVALID_ARGUMENT);
5895
5896	if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE)
5897		return (KERN_INVALID_ARGUMENT);
5898
5899	size = round_page_64(size);
5900
5901	/*
5902	 *	Lock the object, and acquire a paging reference to
5903	 *	prevent the memory_object reference from being released.
5904	 */
5905	vm_object_lock(object);
5906	vm_object_paging_begin(object);
5907
5908	(void)vm_object_update(object,
5909		offset, size, NULL, NULL, should_return, flags, prot);
5910
5911	vm_object_paging_end(object);
5912	vm_object_unlock(object);
5913
5914	return (KERN_SUCCESS);
5915}
5916
5917/*
5918 * Empty a purgeable object by grabbing the physical pages assigned to it and
5919 * putting them on the free queue without writing them to backing store, etc.
5920 * When the pages are next touched they will be demand zero-fill pages.  We
5921 * skip pages which are busy, being paged in/out, wired, etc.  We do _not_
5922 * skip referenced/dirty pages, pages on the active queue, etc.  We're more
5923 * than happy to grab these since this is a purgeable object.  We mark the
5924 * object as "empty" after reaping its pages.
5925 *
5926 * On entry the object must be locked and it must be
5927 * purgeable with no delayed copies pending.
5928 */
5929void
5930vm_object_purge(vm_object_t object)
5931{
5932        vm_object_lock_assert_exclusive(object);
5933
5934	if (object->purgable == VM_PURGABLE_DENY)
5935		return;
5936
5937	assert(object->copy == VM_OBJECT_NULL);
5938	assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
5939
5940	if(object->purgable == VM_PURGABLE_VOLATILE) {
5941		unsigned int delta;
5942		assert(object->resident_page_count >=
5943		       object->wired_page_count);
5944		delta = (object->resident_page_count -
5945			 object->wired_page_count);
5946		if (delta != 0) {
5947			assert(vm_page_purgeable_count >=
5948			       delta);
5949			OSAddAtomic(-delta,
5950				    (SInt32 *)&vm_page_purgeable_count);
5951		}
5952		if (object->wired_page_count != 0) {
5953			assert(vm_page_purgeable_wired_count >=
5954			       object->wired_page_count);
5955			OSAddAtomic(-object->wired_page_count,
5956				    (SInt32 *)&vm_page_purgeable_wired_count);
5957		}
5958	}
5959	object->purgable = VM_PURGABLE_EMPTY;
5960
5961	vm_object_reap_pages(object, REAP_PURGEABLE);
5962}
5963
5964
5965/*
5966 * vm_object_purgeable_control() allows the caller to control and investigate the
5967 * state of a purgeable object.  A purgeable object is created via a call to
5968 * vm_allocate() with VM_FLAGS_PURGABLE specified.  A purgeable object will
5969 * never be coalesced with any other object -- even other purgeable objects --
5970 * and will thus always remain a distinct object.  A purgeable object has
5971 * special semantics when its reference count is exactly 1.  If its reference
5972 * count is greater than 1, then a purgeable object will behave like a normal
5973 * object and attempts to use this interface will result in an error return
5974 * of KERN_INVALID_ARGUMENT.
5975 *
5976 * A purgeable object may be put into a "volatile" state which will make the
5977 * object's pages elligable for being reclaimed without paging to backing
5978 * store if the system runs low on memory.  If the pages in a volatile
5979 * purgeable object are reclaimed, the purgeable object is said to have been
5980 * "emptied."  When a purgeable object is emptied the system will reclaim as
5981 * many pages from the object as it can in a convenient manner (pages already
5982 * en route to backing store or busy for other reasons are left as is).  When
5983 * a purgeable object is made volatile, its pages will generally be reclaimed
5984 * before other pages in the application's working set.  This semantic is
5985 * generally used by applications which can recreate the data in the object
5986 * faster than it can be paged in.  One such example might be media assets
5987 * which can be reread from a much faster RAID volume.
5988 *
5989 * A purgeable object may be designated as "non-volatile" which means it will
5990 * behave like all other objects in the system with pages being written to and
5991 * read from backing store as needed to satisfy system memory needs.  If the
5992 * object was emptied before the object was made non-volatile, that fact will
5993 * be returned as the old state of the purgeable object (see
5994 * VM_PURGABLE_SET_STATE below).  In this case, any pages of the object which
5995 * were reclaimed as part of emptying the object will be refaulted in as
5996 * zero-fill on demand.  It is up to the application to note that an object
5997 * was emptied and recreate the objects contents if necessary.  When a
5998 * purgeable object is made non-volatile, its pages will generally not be paged
5999 * out to backing store in the immediate future.  A purgeable object may also
6000 * be manually emptied.
6001 *
6002 * Finally, the current state (non-volatile, volatile, volatile & empty) of a
6003 * volatile purgeable object may be queried at any time.  This information may
6004 * be used as a control input to let the application know when the system is
6005 * experiencing memory pressure and is reclaiming memory.
6006 *
6007 * The specified address may be any address within the purgeable object.  If
6008 * the specified address does not represent any object in the target task's
6009 * virtual address space, then KERN_INVALID_ADDRESS will be returned.  If the
6010 * object containing the specified address is not a purgeable object, then
6011 * KERN_INVALID_ARGUMENT will be returned.  Otherwise, KERN_SUCCESS will be
6012 * returned.
6013 *
6014 * The control parameter may be any one of VM_PURGABLE_SET_STATE or
6015 * VM_PURGABLE_GET_STATE.  For VM_PURGABLE_SET_STATE, the in/out parameter
6016 * state is used to set the new state of the purgeable object and return its
6017 * old state.  For VM_PURGABLE_GET_STATE, the current state of the purgeable
6018 * object is returned in the parameter state.
6019 *
6020 * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE,
6021 * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY.  These, respectively, represent
6022 * the non-volatile, volatile and volatile/empty states described above.
6023 * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will
6024 * immediately reclaim as many pages in the object as can be conveniently
6025 * collected (some may have already been written to backing store or be
6026 * otherwise busy).
6027 *
6028 * The process of making a purgeable object non-volatile and determining its
6029 * previous state is atomic.  Thus, if a purgeable object is made
6030 * VM_PURGABLE_NONVOLATILE and the old state is returned as
6031 * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are
6032 * completely intact and will remain so until the object is made volatile
6033 * again.  If the old state is returned as VM_PURGABLE_EMPTY then the object
6034 * was reclaimed while it was in a volatile state and its previous contents
6035 * have been lost.
6036 */
6037/*
6038 * The object must be locked.
6039 */
6040kern_return_t
6041vm_object_purgable_control(
6042	vm_object_t	object,
6043	vm_purgable_t	control,
6044	int		*state)
6045{
6046	int		old_state;
6047	int		new_state;
6048
6049	if (object == VM_OBJECT_NULL) {
6050		/*
6051		 * Object must already be present or it can't be purgeable.
6052		 */
6053		return KERN_INVALID_ARGUMENT;
6054	}
6055
6056	/*
6057	 * Get current state of the purgeable object.
6058	 */
6059	old_state = object->purgable;
6060	if (old_state == VM_PURGABLE_DENY)
6061		return KERN_INVALID_ARGUMENT;
6062
6063	/* purgeable cant have delayed copies - now or in the future */
6064	assert(object->copy == VM_OBJECT_NULL);
6065	assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
6066
6067	/*
6068	 * Execute the desired operation.
6069	 */
6070	if (control == VM_PURGABLE_GET_STATE) {
6071		*state = old_state;
6072		return KERN_SUCCESS;
6073	}
6074
6075	if ((*state) & VM_PURGABLE_DEBUG_EMPTY) {
6076		object->volatile_empty = TRUE;
6077	}
6078	if ((*state) & VM_PURGABLE_DEBUG_FAULT) {
6079		object->volatile_fault = TRUE;
6080	}
6081
6082	new_state = *state & VM_PURGABLE_STATE_MASK;
6083	if (new_state == VM_PURGABLE_VOLATILE &&
6084	    object->volatile_empty) {
6085		new_state = VM_PURGABLE_EMPTY;
6086	}
6087
6088	switch (new_state) {
6089	case VM_PURGABLE_DENY:
6090	case VM_PURGABLE_NONVOLATILE:
6091		object->purgable = new_state;
6092
6093		if (old_state == VM_PURGABLE_VOLATILE) {
6094			unsigned int delta;
6095
6096			assert(object->resident_page_count >=
6097			       object->wired_page_count);
6098			delta = (object->resident_page_count -
6099				 object->wired_page_count);
6100
6101			assert(vm_page_purgeable_count >= delta);
6102
6103			if (delta != 0) {
6104				OSAddAtomic(-delta,
6105					    (SInt32 *)&vm_page_purgeable_count);
6106			}
6107			if (object->wired_page_count != 0) {
6108				assert(vm_page_purgeable_wired_count >=
6109				       object->wired_page_count);
6110				OSAddAtomic(-object->wired_page_count,
6111					    (SInt32 *)&vm_page_purgeable_wired_count);
6112			}
6113
6114			vm_page_lock_queues();
6115
6116			assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
6117			purgeable_q_t queue = vm_purgeable_object_remove(object);
6118			assert(queue);
6119
6120			vm_purgeable_token_delete_last(queue);
6121			assert(queue->debug_count_objects>=0);
6122
6123			vm_page_unlock_queues();
6124		}
6125		break;
6126
6127	case VM_PURGABLE_VOLATILE:
6128		if (object->volatile_fault) {
6129			vm_page_t	p;
6130			int		refmod;
6131
6132			queue_iterate(&object->memq, p, vm_page_t, listq) {
6133				if (p->busy ||
6134				    VM_PAGE_WIRED(p) ||
6135				    p->fictitious) {
6136					continue;
6137				}
6138				refmod = pmap_disconnect(p->phys_page);
6139				if ((refmod & VM_MEM_MODIFIED) &&
6140				    !p->dirty) {
6141					SET_PAGE_DIRTY(p, FALSE);
6142				}
6143			}
6144		}
6145
6146		if (old_state == VM_PURGABLE_EMPTY &&
6147		    object->resident_page_count == 0)
6148			break;
6149
6150		purgeable_q_t queue;
6151
6152		/* find the correct queue */
6153		if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE)
6154		        queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
6155		else {
6156		        if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO)
6157			        queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
6158			else
6159			        queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
6160		}
6161
6162		if (old_state == VM_PURGABLE_NONVOLATILE ||
6163		    old_state == VM_PURGABLE_EMPTY) {
6164			unsigned int delta;
6165
6166		        /* try to add token... this can fail */
6167		        vm_page_lock_queues();
6168
6169			kern_return_t result = vm_purgeable_token_add(queue);
6170			if (result != KERN_SUCCESS) {
6171			        vm_page_unlock_queues();
6172				return result;
6173			}
6174			vm_page_unlock_queues();
6175
6176			assert(object->resident_page_count >=
6177			       object->wired_page_count);
6178			delta = (object->resident_page_count -
6179				 object->wired_page_count);
6180
6181			if (delta != 0) {
6182				OSAddAtomic(delta,
6183					    &vm_page_purgeable_count);
6184			}
6185			if (object->wired_page_count != 0) {
6186				OSAddAtomic(object->wired_page_count,
6187					    &vm_page_purgeable_wired_count);
6188			}
6189
6190			object->purgable = new_state;
6191
6192			/* object should not be on a queue */
6193			assert(object->objq.next == NULL && object->objq.prev == NULL);
6194		}
6195		else if (old_state == VM_PURGABLE_VOLATILE) {
6196		        /*
6197			 * if reassigning priorities / purgeable groups, we don't change the
6198			 * token queue. So moving priorities will not make pages stay around longer.
6199			 * Reasoning is that the algorithm gives most priority to the most important
6200			 * object. If a new token is added, the most important object' priority is boosted.
6201			 * This biases the system already for purgeable queues that move a lot.
6202			 * It doesn't seem more biasing is neccessary in this case, where no new object is added.
6203			 */
6204		        assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
6205
6206			purgeable_q_t old_queue=vm_purgeable_object_remove(object);
6207			assert(old_queue);
6208
6209			if (old_queue != queue) {
6210				kern_return_t result;
6211
6212			        /* Changing queue. Have to move token. */
6213			        vm_page_lock_queues();
6214				vm_purgeable_token_delete_last(old_queue);
6215				result = vm_purgeable_token_add(queue);
6216				vm_page_unlock_queues();
6217
6218				assert(result==KERN_SUCCESS);   /* this should never fail since we just freed a token */
6219			}
6220		};
6221		vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT );
6222
6223		assert(queue->debug_count_objects>=0);
6224
6225		break;
6226
6227
6228	case VM_PURGABLE_EMPTY:
6229		if (object->volatile_fault) {
6230			vm_page_t	p;
6231			int		refmod;
6232
6233			queue_iterate(&object->memq, p, vm_page_t, listq) {
6234				if (p->busy ||
6235				    VM_PAGE_WIRED(p) ||
6236				    p->fictitious) {
6237					continue;
6238				}
6239				refmod = pmap_disconnect(p->phys_page);
6240				if ((refmod & VM_MEM_MODIFIED) &&
6241				    !p->dirty) {
6242					SET_PAGE_DIRTY(p, FALSE);
6243				}
6244			}
6245		}
6246
6247		if (old_state != new_state) {
6248			assert(old_state == VM_PURGABLE_NONVOLATILE ||
6249			       old_state == VM_PURGABLE_VOLATILE);
6250			if (old_state == VM_PURGABLE_VOLATILE) {
6251				purgeable_q_t old_queue;
6252
6253				/* object should be on a queue */
6254				assert(object->objq.next != NULL &&
6255				       object->objq.prev != NULL);
6256				old_queue = vm_purgeable_object_remove(object);
6257				assert(old_queue);
6258				vm_page_lock_queues();
6259				vm_purgeable_token_delete_last(old_queue);
6260				vm_page_unlock_queues();
6261			}
6262			(void) vm_object_purge(object);
6263		}
6264		break;
6265
6266	}
6267	*state = old_state;
6268
6269	return KERN_SUCCESS;
6270}
6271
6272#if	TASK_SWAPPER
6273/*
6274 * vm_object_res_deallocate
6275 *
6276 * (recursively) decrement residence counts on vm objects and their shadows.
6277 * Called from vm_object_deallocate and when swapping out an object.
6278 *
6279 * The object is locked, and remains locked throughout the function,
6280 * even as we iterate down the shadow chain.  Locks on intermediate objects
6281 * will be dropped, but not the original object.
6282 *
6283 * NOTE: this function used to use recursion, rather than iteration.
6284 */
6285
6286__private_extern__ void
6287vm_object_res_deallocate(
6288	vm_object_t	object)
6289{
6290	vm_object_t orig_object = object;
6291	/*
6292	 * Object is locked so it can be called directly
6293	 * from vm_object_deallocate.  Original object is never
6294	 * unlocked.
6295	 */
6296	assert(object->res_count > 0);
6297	while  (--object->res_count == 0) {
6298		assert(object->ref_count >= object->res_count);
6299		vm_object_deactivate_all_pages(object);
6300		/* iterate on shadow, if present */
6301		if (object->shadow != VM_OBJECT_NULL) {
6302			vm_object_t tmp_object = object->shadow;
6303			vm_object_lock(tmp_object);
6304			if (object != orig_object)
6305				vm_object_unlock(object);
6306			object = tmp_object;
6307			assert(object->res_count > 0);
6308		} else
6309			break;
6310	}
6311	if (object != orig_object)
6312		vm_object_unlock(object);
6313}
6314
6315/*
6316 * vm_object_res_reference
6317 *
6318 * Internal function to increment residence count on a vm object
6319 * and its shadows.  It is called only from vm_object_reference, and
6320 * when swapping in a vm object, via vm_map_swap.
6321 *
6322 * The object is locked, and remains locked throughout the function,
6323 * even as we iterate down the shadow chain.  Locks on intermediate objects
6324 * will be dropped, but not the original object.
6325 *
6326 * NOTE: this function used to use recursion, rather than iteration.
6327 */
6328
6329__private_extern__ void
6330vm_object_res_reference(
6331	vm_object_t	object)
6332{
6333	vm_object_t orig_object = object;
6334	/*
6335	 * Object is locked, so this can be called directly
6336	 * from vm_object_reference.  This lock is never released.
6337	 */
6338	while  ((++object->res_count == 1)  &&
6339		(object->shadow != VM_OBJECT_NULL)) {
6340		vm_object_t tmp_object = object->shadow;
6341
6342		assert(object->ref_count >= object->res_count);
6343		vm_object_lock(tmp_object);
6344		if (object != orig_object)
6345			vm_object_unlock(object);
6346		object = tmp_object;
6347	}
6348	if (object != orig_object)
6349		vm_object_unlock(object);
6350	assert(orig_object->ref_count >= orig_object->res_count);
6351}
6352#endif	/* TASK_SWAPPER */
6353
6354/*
6355 *	vm_object_reference:
6356 *
6357 *	Gets another reference to the given object.
6358 */
6359#ifdef vm_object_reference
6360#undef vm_object_reference
6361#endif
6362__private_extern__ void
6363vm_object_reference(
6364	register vm_object_t	object)
6365{
6366	if (object == VM_OBJECT_NULL)
6367		return;
6368
6369	vm_object_lock(object);
6370	assert(object->ref_count > 0);
6371	vm_object_reference_locked(object);
6372	vm_object_unlock(object);
6373}
6374
6375#ifdef MACH_BSD
6376/*
6377 * Scale the vm_object_cache
6378 * This is required to make sure that the vm_object_cache is big
6379 * enough to effectively cache the mapped file.
6380 * This is really important with UBC as all the regular file vnodes
6381 * have memory object associated with them. Havving this cache too
6382 * small results in rapid reclaim of vnodes and hurts performance a LOT!
6383 *
6384 * This is also needed as number of vnodes can be dynamically scaled.
6385 */
6386kern_return_t
6387adjust_vm_object_cache(
6388	__unused vm_size_t oval,
6389	__unused vm_size_t nval)
6390{
6391#if VM_OBJECT_CACHE
6392	vm_object_cached_max = nval;
6393	vm_object_cache_trim(FALSE);
6394#endif
6395	return (KERN_SUCCESS);
6396}
6397#endif /* MACH_BSD */
6398
6399
6400/*
6401 * vm_object_transpose
6402 *
6403 * This routine takes two VM objects of the same size and exchanges
6404 * their backing store.
6405 * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE
6406 * and UPL_BLOCK_ACCESS if they are referenced anywhere.
6407 *
6408 * The VM objects must not be locked by caller.
6409 */
6410unsigned int vm_object_transpose_count = 0;
6411kern_return_t
6412vm_object_transpose(
6413	vm_object_t		object1,
6414	vm_object_t		object2,
6415	vm_object_size_t	transpose_size)
6416{
6417	vm_object_t		tmp_object;
6418	kern_return_t		retval;
6419	boolean_t		object1_locked, object2_locked;
6420	vm_page_t		page;
6421	vm_object_offset_t	page_offset;
6422	lck_mtx_t		*hash_lck;
6423	vm_object_hash_entry_t	hash_entry;
6424
6425	tmp_object = VM_OBJECT_NULL;
6426	object1_locked = FALSE; object2_locked = FALSE;
6427
6428	if (object1 == object2 ||
6429	    object1 == VM_OBJECT_NULL ||
6430	    object2 == VM_OBJECT_NULL) {
6431		/*
6432		 * If the 2 VM objects are the same, there's
6433		 * no point in exchanging their backing store.
6434		 */
6435		retval = KERN_INVALID_VALUE;
6436		goto done;
6437	}
6438
6439	/*
6440	 * Since we need to lock both objects at the same time,
6441	 * make sure we always lock them in the same order to
6442	 * avoid deadlocks.
6443	 */
6444	if (object1 >  object2) {
6445		tmp_object = object1;
6446		object1 = object2;
6447		object2 = tmp_object;
6448	}
6449
6450	/*
6451	 * Allocate a temporary VM object to hold object1's contents
6452	 * while we copy object2 to object1.
6453	 */
6454	tmp_object = vm_object_allocate(transpose_size);
6455	vm_object_lock(tmp_object);
6456	tmp_object->can_persist = FALSE;
6457
6458
6459	/*
6460	 * Grab control of the 1st VM object.
6461	 */
6462	vm_object_lock(object1);
6463	object1_locked = TRUE;
6464	if (!object1->alive || object1->terminating ||
6465	    object1->copy || object1->shadow || object1->shadowed ||
6466	    object1->purgable != VM_PURGABLE_DENY) {
6467		/*
6468		 * We don't deal with copy or shadow objects (yet).
6469		 */
6470		retval = KERN_INVALID_VALUE;
6471		goto done;
6472	}
6473	/*
6474	 * We're about to mess with the object's backing store and
6475	 * taking a "paging_in_progress" reference wouldn't be enough
6476	 * to prevent any paging activity on this object, so the caller should
6477	 * have "quiesced" the objects beforehand, via a UPL operation with
6478	 * UPL_SET_IO_WIRE (to make sure all the pages are there and wired)
6479	 * and UPL_BLOCK_ACCESS (to mark the pages "busy").
6480	 *
6481	 * Wait for any paging operation to complete (but only paging, not
6482	 * other kind of activities not linked to the pager).  After we're
6483	 * statisfied that there's no more paging in progress, we keep the
6484	 * object locked, to guarantee that no one tries to access its pager.
6485	 */
6486	vm_object_paging_only_wait(object1, THREAD_UNINT);
6487
6488	/*
6489	 * Same as above for the 2nd object...
6490	 */
6491	vm_object_lock(object2);
6492	object2_locked = TRUE;
6493	if (! object2->alive || object2->terminating ||
6494	    object2->copy || object2->shadow || object2->shadowed ||
6495	    object2->purgable != VM_PURGABLE_DENY) {
6496		retval = KERN_INVALID_VALUE;
6497		goto done;
6498	}
6499	vm_object_paging_only_wait(object2, THREAD_UNINT);
6500
6501
6502	if (object1->vo_size != object2->vo_size ||
6503	    object1->vo_size != transpose_size) {
6504		/*
6505		 * If the 2 objects don't have the same size, we can't
6506		 * exchange their backing stores or one would overflow.
6507		 * If their size doesn't match the caller's
6508		 * "transpose_size", we can't do it either because the
6509		 * transpose operation will affect the entire span of
6510		 * the objects.
6511		 */
6512		retval = KERN_INVALID_VALUE;
6513		goto done;
6514	}
6515
6516
6517	/*
6518	 * Transpose the lists of resident pages.
6519	 * This also updates the resident_page_count and the memq_hint.
6520	 */
6521	if (object1->phys_contiguous || queue_empty(&object1->memq)) {
6522		/*
6523		 * No pages in object1, just transfer pages
6524		 * from object2 to object1.  No need to go through
6525		 * an intermediate object.
6526		 */
6527		while (!queue_empty(&object2->memq)) {
6528			page = (vm_page_t) queue_first(&object2->memq);
6529			vm_page_rename(page, object1, page->offset, FALSE);
6530		}
6531		assert(queue_empty(&object2->memq));
6532	} else if (object2->phys_contiguous || queue_empty(&object2->memq)) {
6533		/*
6534		 * No pages in object2, just transfer pages
6535		 * from object1 to object2.  No need to go through
6536		 * an intermediate object.
6537		 */
6538		while (!queue_empty(&object1->memq)) {
6539			page = (vm_page_t) queue_first(&object1->memq);
6540			vm_page_rename(page, object2, page->offset, FALSE);
6541		}
6542		assert(queue_empty(&object1->memq));
6543	} else {
6544		/* transfer object1's pages to tmp_object */
6545		while (!queue_empty(&object1->memq)) {
6546			page = (vm_page_t) queue_first(&object1->memq);
6547			page_offset = page->offset;
6548			vm_page_remove(page, TRUE);
6549			page->offset = page_offset;
6550			queue_enter(&tmp_object->memq, page, vm_page_t, listq);
6551		}
6552		assert(queue_empty(&object1->memq));
6553		/* transfer object2's pages to object1 */
6554		while (!queue_empty(&object2->memq)) {
6555			page = (vm_page_t) queue_first(&object2->memq);
6556			vm_page_rename(page, object1, page->offset, FALSE);
6557		}
6558		assert(queue_empty(&object2->memq));
6559		/* transfer tmp_object's pages to object1 */
6560		while (!queue_empty(&tmp_object->memq)) {
6561			page = (vm_page_t) queue_first(&tmp_object->memq);
6562			queue_remove(&tmp_object->memq, page,
6563				     vm_page_t, listq);
6564			vm_page_insert(page, object2, page->offset);
6565		}
6566		assert(queue_empty(&tmp_object->memq));
6567	}
6568
6569#define __TRANSPOSE_FIELD(field)				\
6570MACRO_BEGIN							\
6571	tmp_object->field = object1->field;			\
6572	object1->field = object2->field;			\
6573	object2->field = tmp_object->field;			\
6574MACRO_END
6575
6576	/* "Lock" refers to the object not its contents */
6577	/* "size" should be identical */
6578	assert(object1->vo_size == object2->vo_size);
6579	/* "memq_hint" was updated above when transposing pages */
6580	/* "ref_count" refers to the object not its contents */
6581#if TASK_SWAPPER
6582	/* "res_count" refers to the object not its contents */
6583#endif
6584	/* "resident_page_count" was updated above when transposing pages */
6585	/* "wired_page_count" was updated above when transposing pages */
6586	/* "reusable_page_count" was updated above when transposing pages */
6587	/* there should be no "copy" */
6588	assert(!object1->copy);
6589	assert(!object2->copy);
6590	/* there should be no "shadow" */
6591	assert(!object1->shadow);
6592	assert(!object2->shadow);
6593	__TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */
6594	__TRANSPOSE_FIELD(pager);
6595	__TRANSPOSE_FIELD(paging_offset);
6596	__TRANSPOSE_FIELD(pager_control);
6597	/* update the memory_objects' pointers back to the VM objects */
6598	if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6599		memory_object_control_collapse(object1->pager_control,
6600					       object1);
6601	}
6602	if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6603		memory_object_control_collapse(object2->pager_control,
6604					       object2);
6605	}
6606	__TRANSPOSE_FIELD(copy_strategy);
6607	/* "paging_in_progress" refers to the object not its contents */
6608	assert(!object1->paging_in_progress);
6609	assert(!object2->paging_in_progress);
6610	assert(object1->activity_in_progress);
6611	assert(object2->activity_in_progress);
6612	/* "all_wanted" refers to the object not its contents */
6613	__TRANSPOSE_FIELD(pager_created);
6614	__TRANSPOSE_FIELD(pager_initialized);
6615	__TRANSPOSE_FIELD(pager_ready);
6616	__TRANSPOSE_FIELD(pager_trusted);
6617	__TRANSPOSE_FIELD(can_persist);
6618	__TRANSPOSE_FIELD(internal);
6619	__TRANSPOSE_FIELD(temporary);
6620	__TRANSPOSE_FIELD(private);
6621	__TRANSPOSE_FIELD(pageout);
6622	/* "alive" should be set */
6623	assert(object1->alive);
6624	assert(object2->alive);
6625	/* "purgeable" should be non-purgeable */
6626	assert(object1->purgable == VM_PURGABLE_DENY);
6627	assert(object2->purgable == VM_PURGABLE_DENY);
6628	/* "shadowed" refers to the the object not its contents */
6629	__TRANSPOSE_FIELD(silent_overwrite);
6630	__TRANSPOSE_FIELD(advisory_pageout);
6631	__TRANSPOSE_FIELD(true_share);
6632	/* "terminating" should not be set */
6633	assert(!object1->terminating);
6634	assert(!object2->terminating);
6635	__TRANSPOSE_FIELD(named);
6636	/* "shadow_severed" refers to the object not its contents */
6637	__TRANSPOSE_FIELD(phys_contiguous);
6638	__TRANSPOSE_FIELD(nophyscache);
6639	/* "cached_list.next" points to transposed object */
6640	object1->cached_list.next = (queue_entry_t) object2;
6641	object2->cached_list.next = (queue_entry_t) object1;
6642	/* "cached_list.prev" should be NULL */
6643	assert(object1->cached_list.prev == NULL);
6644	assert(object2->cached_list.prev == NULL);
6645	/* "msr_q" is linked to the object not its contents */
6646	assert(queue_empty(&object1->msr_q));
6647	assert(queue_empty(&object2->msr_q));
6648	__TRANSPOSE_FIELD(last_alloc);
6649	__TRANSPOSE_FIELD(sequential);
6650	__TRANSPOSE_FIELD(pages_created);
6651	__TRANSPOSE_FIELD(pages_used);
6652	__TRANSPOSE_FIELD(scan_collisions);
6653#if MACH_PAGEMAP
6654	__TRANSPOSE_FIELD(existence_map);
6655#endif
6656	__TRANSPOSE_FIELD(cow_hint);
6657#if MACH_ASSERT
6658	__TRANSPOSE_FIELD(paging_object);
6659#endif
6660	__TRANSPOSE_FIELD(wimg_bits);
6661	__TRANSPOSE_FIELD(set_cache_attr);
6662	__TRANSPOSE_FIELD(code_signed);
6663	if (object1->hashed) {
6664		hash_lck = vm_object_hash_lock_spin(object2->pager);
6665		hash_entry = vm_object_hash_lookup(object2->pager, FALSE);
6666		assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL);
6667		hash_entry->object = object2;
6668		vm_object_hash_unlock(hash_lck);
6669	}
6670	if (object2->hashed) {
6671		hash_lck = vm_object_hash_lock_spin(object1->pager);
6672		hash_entry = vm_object_hash_lookup(object1->pager, FALSE);
6673		assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL);
6674		hash_entry->object = object1;
6675		vm_object_hash_unlock(hash_lck);
6676	}
6677	__TRANSPOSE_FIELD(hashed);
6678	object1->transposed = TRUE;
6679	object2->transposed = TRUE;
6680	__TRANSPOSE_FIELD(mapping_in_progress);
6681	__TRANSPOSE_FIELD(volatile_empty);
6682	__TRANSPOSE_FIELD(volatile_fault);
6683	__TRANSPOSE_FIELD(all_reusable);
6684	assert(object1->blocked_access);
6685	assert(object2->blocked_access);
6686	assert(object1->__object2_unused_bits == 0);
6687	assert(object2->__object2_unused_bits == 0);
6688#if UPL_DEBUG
6689	/* "uplq" refers to the object not its contents (see upl_transpose()) */
6690#endif
6691	assert(object1->objq.next == NULL);
6692	assert(object1->objq.prev == NULL);
6693	assert(object2->objq.next == NULL);
6694	assert(object2->objq.prev == NULL);
6695
6696#undef __TRANSPOSE_FIELD
6697
6698	retval = KERN_SUCCESS;
6699
6700done:
6701	/*
6702	 * Cleanup.
6703	 */
6704	if (tmp_object != VM_OBJECT_NULL) {
6705		vm_object_unlock(tmp_object);
6706		/*
6707		 * Re-initialize the temporary object to avoid
6708		 * deallocating a real pager.
6709		 */
6710		_vm_object_allocate(transpose_size, tmp_object);
6711		vm_object_deallocate(tmp_object);
6712		tmp_object = VM_OBJECT_NULL;
6713	}
6714
6715	if (object1_locked) {
6716		vm_object_unlock(object1);
6717		object1_locked = FALSE;
6718	}
6719	if (object2_locked) {
6720		vm_object_unlock(object2);
6721		object2_locked = FALSE;
6722	}
6723
6724	vm_object_transpose_count++;
6725
6726	return retval;
6727}
6728
6729
6730/*
6731 *      vm_object_cluster_size
6732 *
6733 *      Determine how big a cluster we should issue an I/O for...
6734 *
6735 *	Inputs:   *start == offset of page needed
6736 *		  *length == maximum cluster pager can handle
6737 *	Outputs:  *start == beginning offset of cluster
6738 *		  *length == length of cluster to try
6739 *
6740 *	The original *start will be encompassed by the cluster
6741 *
6742 */
6743extern int speculative_reads_disabled;
6744extern int ignore_is_ssd;
6745
6746#if CONFIG_EMBEDDED
6747unsigned int preheat_pages_max = MAX_UPL_TRANSFER;
6748unsigned int preheat_pages_min = 10;
6749#else
6750unsigned int preheat_pages_max = MAX_UPL_TRANSFER;
6751unsigned int preheat_pages_min = 8;
6752#endif
6753
6754uint32_t pre_heat_scaling[MAX_UPL_TRANSFER + 1];
6755uint32_t pre_heat_cluster[MAX_UPL_TRANSFER + 1];
6756
6757
6758__private_extern__ void
6759vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start,
6760		       vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming)
6761{
6762	vm_size_t		pre_heat_size;
6763	vm_size_t		tail_size;
6764	vm_size_t		head_size;
6765	vm_size_t		max_length;
6766	vm_size_t		cluster_size;
6767	vm_object_offset_t	object_size;
6768	vm_object_offset_t	orig_start;
6769	vm_object_offset_t	target_start;
6770	vm_object_offset_t	offset;
6771	vm_behavior_t		behavior;
6772	boolean_t		look_behind = TRUE;
6773	boolean_t		look_ahead  = TRUE;
6774	boolean_t		isSSD = FALSE;
6775	uint32_t		throttle_limit;
6776	int			sequential_run;
6777	int			sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
6778	unsigned int		max_ph_size;
6779	unsigned int		min_ph_size;
6780	unsigned int		min_ph_size_in_bytes;
6781
6782	assert( !(*length & PAGE_MASK));
6783	assert( !(*start & PAGE_MASK_64));
6784
6785	/*
6786	 * remember maxiumum length of run requested
6787	 */
6788	max_length = *length;
6789	/*
6790	 * we'll always return a cluster size of at least
6791	 * 1 page, since the original fault must always
6792	 * be processed
6793	 */
6794	*length = PAGE_SIZE;
6795	*io_streaming = 0;
6796
6797	if (speculative_reads_disabled || fault_info == NULL) {
6798	        /*
6799		 * no cluster... just fault the page in
6800		 */
6801	        return;
6802	}
6803	orig_start = *start;
6804	target_start = orig_start;
6805	cluster_size = round_page(fault_info->cluster_size);
6806	behavior = fault_info->behavior;
6807
6808	vm_object_lock(object);
6809
6810	if (object->pager == MEMORY_OBJECT_NULL)
6811		goto out;	/* pager is gone for this object, nothing more to do */
6812
6813	if (!ignore_is_ssd)
6814		vnode_pager_get_isSSD(object->pager, &isSSD);
6815
6816	min_ph_size = preheat_pages_min;
6817	max_ph_size = preheat_pages_max;
6818
6819	if (isSSD) {
6820		min_ph_size /= 2;
6821		max_ph_size /= 8;
6822	}
6823	if (min_ph_size < 1)
6824		min_ph_size = 1;
6825
6826	if (max_ph_size < 1)
6827		max_ph_size = 1;
6828	else if (max_ph_size > MAX_UPL_TRANSFER)
6829		max_ph_size = MAX_UPL_TRANSFER;
6830
6831	if (max_length > (max_ph_size * PAGE_SIZE))
6832	        max_length = max_ph_size * PAGE_SIZE;
6833
6834	if (max_length <= PAGE_SIZE)
6835		goto out;
6836
6837	min_ph_size_in_bytes = min_ph_size * PAGE_SIZE;
6838
6839	if (object->internal)
6840	        object_size = object->vo_size;
6841	else
6842	        vnode_pager_get_object_size(object->pager, &object_size);
6843
6844	object_size = round_page_64(object_size);
6845
6846	if (orig_start >= object_size) {
6847	        /*
6848		 * fault occurred beyond the EOF...
6849		 * we need to punt w/o changing the
6850		 * starting offset
6851		 */
6852	        goto out;
6853	}
6854	if (object->pages_used > object->pages_created) {
6855	        /*
6856		 * must have wrapped our 32 bit counters
6857		 * so reset
6858		 */
6859 	        object->pages_used = object->pages_created = 0;
6860	}
6861	if ((sequential_run = object->sequential)) {
6862		  if (sequential_run < 0) {
6863		          sequential_behavior = VM_BEHAVIOR_RSEQNTL;
6864			  sequential_run = 0 - sequential_run;
6865		  } else {
6866		          sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
6867		  }
6868
6869	}
6870	switch (behavior) {
6871
6872	default:
6873	        behavior = VM_BEHAVIOR_DEFAULT;
6874
6875	case VM_BEHAVIOR_DEFAULT:
6876	        if (object->internal && fault_info->user_tag == VM_MEMORY_STACK)
6877		        goto out;
6878
6879		if (sequential_run >= (3 * PAGE_SIZE)) {
6880		        pre_heat_size = sequential_run + PAGE_SIZE;
6881
6882			if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL)
6883			        look_behind = FALSE;
6884			else
6885			        look_ahead = FALSE;
6886
6887			*io_streaming = 1;
6888		} else {
6889
6890			if (object->pages_created < (20 * min_ph_size)) {
6891			        /*
6892				 * prime the pump
6893				 */
6894			        pre_heat_size = min_ph_size_in_bytes;
6895			} else {
6896				/*
6897				 * Linear growth in PH size: The maximum size is max_length...
6898				 * this cacluation will result in a size that is neither a
6899				 * power of 2 nor a multiple of PAGE_SIZE... so round
6900				 * it up to the nearest PAGE_SIZE boundary
6901				 */
6902				pre_heat_size = (max_length * object->pages_used) / object->pages_created;
6903
6904				if (pre_heat_size < min_ph_size_in_bytes)
6905					pre_heat_size = min_ph_size_in_bytes;
6906				else
6907					pre_heat_size = round_page(pre_heat_size);
6908			}
6909		}
6910		break;
6911
6912	case VM_BEHAVIOR_RANDOM:
6913	        if ((pre_heat_size = cluster_size) <= PAGE_SIZE)
6914		        goto out;
6915	        break;
6916
6917	case VM_BEHAVIOR_SEQUENTIAL:
6918	        if ((pre_heat_size = cluster_size) == 0)
6919		        pre_heat_size = sequential_run + PAGE_SIZE;
6920		look_behind = FALSE;
6921		*io_streaming = 1;
6922
6923	        break;
6924
6925	case VM_BEHAVIOR_RSEQNTL:
6926	        if ((pre_heat_size = cluster_size) == 0)
6927		        pre_heat_size = sequential_run + PAGE_SIZE;
6928		look_ahead = FALSE;
6929		*io_streaming = 1;
6930
6931	        break;
6932
6933	}
6934	throttle_limit = (uint32_t) max_length;
6935	assert(throttle_limit == max_length);
6936
6937	if (vnode_pager_check_hard_throttle(object->pager, &throttle_limit, *io_streaming) == KERN_SUCCESS) {
6938		if (max_length > throttle_limit)
6939			max_length = throttle_limit;
6940	}
6941	if (pre_heat_size > max_length)
6942	        pre_heat_size = max_length;
6943
6944	if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size_in_bytes)) {
6945
6946		unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count;
6947
6948		if (consider_free < vm_page_throttle_limit) {
6949			pre_heat_size = trunc_page(pre_heat_size / 16);
6950		} else if (consider_free < vm_page_free_target) {
6951			pre_heat_size = trunc_page(pre_heat_size / 4);
6952		}
6953
6954		if (pre_heat_size < min_ph_size_in_bytes)
6955			pre_heat_size = min_ph_size_in_bytes;
6956	}
6957	if (look_ahead == TRUE) {
6958	        if (look_behind == TRUE) {
6959			/*
6960			 * if we get here its due to a random access...
6961			 * so we want to center the original fault address
6962			 * within the cluster we will issue... make sure
6963			 * to calculate 'head_size' as a multiple of PAGE_SIZE...
6964			 * 'pre_heat_size' is a multiple of PAGE_SIZE but not
6965			 * necessarily an even number of pages so we need to truncate
6966			 * the result to a PAGE_SIZE boundary
6967			 */
6968			head_size = trunc_page(pre_heat_size / 2);
6969
6970			if (target_start > head_size)
6971				target_start -= head_size;
6972			else
6973				target_start = 0;
6974
6975			/*
6976			 * 'target_start' at this point represents the beginning offset
6977			 * of the cluster we are considering... 'orig_start' will be in
6978			 * the center of this cluster if we didn't have to clip the start
6979			 * due to running into the start of the file
6980			 */
6981		}
6982	        if ((target_start + pre_heat_size) > object_size)
6983		        pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start));
6984		/*
6985		 * at this point caclulate the number of pages beyond the original fault
6986		 * address that we want to consider... this is guaranteed not to extend beyond
6987		 * the current EOF...
6988		 */
6989		assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start));
6990	        tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE;
6991	} else {
6992	        if (pre_heat_size > target_start) {
6993			/*
6994			 * since pre_heat_size is always smaller then 2^32,
6995			 * if it is larger then target_start (a 64 bit value)
6996			 * it is safe to clip target_start to 32 bits
6997			 */
6998	                pre_heat_size = (vm_size_t) target_start;
6999		}
7000		tail_size = 0;
7001	}
7002	assert( !(target_start & PAGE_MASK_64));
7003	assert( !(pre_heat_size & PAGE_MASK));
7004
7005	pre_heat_scaling[pre_heat_size / PAGE_SIZE]++;
7006
7007	if (pre_heat_size <= PAGE_SIZE)
7008	        goto out;
7009
7010	if (look_behind == TRUE) {
7011	        /*
7012		 * take a look at the pages before the original
7013		 * faulting offset... recalculate this in case
7014		 * we had to clip 'pre_heat_size' above to keep
7015		 * from running past the EOF.
7016		 */
7017	        head_size = pre_heat_size - tail_size - PAGE_SIZE;
7018
7019	        for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) {
7020		        /*
7021			 * don't poke below the lowest offset
7022			 */
7023		        if (offset < fault_info->lo_offset)
7024			        break;
7025		        /*
7026			 * for external objects and internal objects w/o an existence map
7027			 * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
7028			 */
7029#if MACH_PAGEMAP
7030		        if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
7031			        /*
7032				 * we know for a fact that the pager can't provide the page
7033				 * so don't include it or any pages beyond it in this cluster
7034				 */
7035			        break;
7036			}
7037#endif
7038			if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
7039			        /*
7040				 * don't bridge resident pages
7041				 */
7042			        break;
7043			}
7044			*start = offset;
7045			*length += PAGE_SIZE;
7046		}
7047	}
7048	if (look_ahead == TRUE) {
7049	        for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) {
7050		        /*
7051			 * don't poke above the highest offset
7052			 */
7053		        if (offset >= fault_info->hi_offset)
7054			        break;
7055			assert(offset < object_size);
7056
7057		        /*
7058			 * for external objects and internal objects w/o an existence map
7059			 * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
7060			 */
7061#if MACH_PAGEMAP
7062		        if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
7063			        /*
7064				 * we know for a fact that the pager can't provide the page
7065				 * so don't include it or any pages beyond it in this cluster
7066				 */
7067			        break;
7068			}
7069#endif
7070			if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
7071			        /*
7072				 * don't bridge resident pages
7073				 */
7074			        break;
7075			}
7076			*length += PAGE_SIZE;
7077		}
7078	}
7079out:
7080	if (*length > max_length)
7081		*length = max_length;
7082
7083	pre_heat_cluster[*length / PAGE_SIZE]++;
7084
7085	vm_object_unlock(object);
7086
7087	DTRACE_VM1(clustersize, vm_size_t, *length);
7088}
7089
7090
7091/*
7092 * Allow manipulation of individual page state.  This is actually part of
7093 * the UPL regimen but takes place on the VM object rather than on a UPL
7094 */
7095
7096kern_return_t
7097vm_object_page_op(
7098	vm_object_t		object,
7099	vm_object_offset_t	offset,
7100	int			ops,
7101	ppnum_t			*phys_entry,
7102	int			*flags)
7103{
7104	vm_page_t		dst_page;
7105
7106	vm_object_lock(object);
7107
7108	if(ops & UPL_POP_PHYSICAL) {
7109		if(object->phys_contiguous) {
7110			if (phys_entry) {
7111				*phys_entry = (ppnum_t)
7112					(object->vo_shadow_offset >> PAGE_SHIFT);
7113			}
7114			vm_object_unlock(object);
7115			return KERN_SUCCESS;
7116		} else {
7117			vm_object_unlock(object);
7118			return KERN_INVALID_OBJECT;
7119		}
7120	}
7121	if(object->phys_contiguous) {
7122		vm_object_unlock(object);
7123		return KERN_INVALID_OBJECT;
7124	}
7125
7126	while(TRUE) {
7127		if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) {
7128			vm_object_unlock(object);
7129			return KERN_FAILURE;
7130		}
7131
7132		/* Sync up on getting the busy bit */
7133		if((dst_page->busy || dst_page->cleaning) &&
7134			   (((ops & UPL_POP_SET) &&
7135			   (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) {
7136			/* someone else is playing with the page, we will */
7137			/* have to wait */
7138			PAGE_SLEEP(object, dst_page, THREAD_UNINT);
7139			continue;
7140		}
7141
7142		if (ops & UPL_POP_DUMP) {
7143			if (dst_page->pmapped == TRUE)
7144			        pmap_disconnect(dst_page->phys_page);
7145
7146			VM_PAGE_FREE(dst_page);
7147			break;
7148		}
7149
7150		if (flags) {
7151		        *flags = 0;
7152
7153			/* Get the condition of flags before requested ops */
7154			/* are undertaken */
7155
7156			if(dst_page->dirty) *flags |= UPL_POP_DIRTY;
7157			if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT;
7158			if(dst_page->precious) *flags |= UPL_POP_PRECIOUS;
7159			if(dst_page->absent) *flags |= UPL_POP_ABSENT;
7160			if(dst_page->busy) *flags |= UPL_POP_BUSY;
7161		}
7162
7163		/* The caller should have made a call either contingent with */
7164		/* or prior to this call to set UPL_POP_BUSY */
7165		if(ops & UPL_POP_SET) {
7166			/* The protection granted with this assert will */
7167			/* not be complete.  If the caller violates the */
7168			/* convention and attempts to change page state */
7169			/* without first setting busy we may not see it */
7170			/* because the page may already be busy.  However */
7171			/* if such violations occur we will assert sooner */
7172			/* or later. */
7173			assert(dst_page->busy || (ops & UPL_POP_BUSY));
7174			if (ops & UPL_POP_DIRTY) {
7175				SET_PAGE_DIRTY(dst_page, FALSE);
7176			}
7177			if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE;
7178			if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE;
7179			if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE;
7180			if (ops & UPL_POP_BUSY) dst_page->busy = TRUE;
7181		}
7182
7183		if(ops & UPL_POP_CLR) {
7184			assert(dst_page->busy);
7185			if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE;
7186			if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE;
7187			if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE;
7188			if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE;
7189			if (ops & UPL_POP_BUSY) {
7190			        dst_page->busy = FALSE;
7191				PAGE_WAKEUP(dst_page);
7192			}
7193		}
7194
7195		if (dst_page->encrypted) {
7196			/*
7197			 * ENCRYPTED SWAP:
7198			 * We need to decrypt this encrypted page before the
7199			 * caller can access its contents.
7200			 * But if the caller really wants to access the page's
7201			 * contents, they have to keep the page "busy".
7202			 * Otherwise, the page could get recycled or re-encrypted
7203			 * at any time.
7204			 */
7205			if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) &&
7206			    dst_page->busy) {
7207				/*
7208				 * The page is stable enough to be accessed by
7209				 * the caller, so make sure its contents are
7210				 * not encrypted.
7211				 */
7212				vm_page_decrypt(dst_page, 0);
7213			} else {
7214				/*
7215				 * The page is not busy, so don't bother
7216				 * decrypting it, since anything could
7217				 * happen to it between now and when the
7218				 * caller wants to access it.
7219				 * We should not give the caller access
7220				 * to this page.
7221				 */
7222				assert(!phys_entry);
7223			}
7224		}
7225
7226		if (phys_entry) {
7227			/*
7228			 * The physical page number will remain valid
7229			 * only if the page is kept busy.
7230			 * ENCRYPTED SWAP: make sure we don't let the
7231			 * caller access an encrypted page.
7232			 */
7233			assert(dst_page->busy);
7234			assert(!dst_page->encrypted);
7235			*phys_entry = dst_page->phys_page;
7236		}
7237
7238		break;
7239	}
7240
7241	vm_object_unlock(object);
7242	return KERN_SUCCESS;
7243
7244}
7245
7246/*
7247 * vm_object_range_op offers performance enhancement over
7248 * vm_object_page_op for page_op functions which do not require page
7249 * level state to be returned from the call.  Page_op was created to provide
7250 * a low-cost alternative to page manipulation via UPLs when only a single
7251 * page was involved.  The range_op call establishes the ability in the _op
7252 * family of functions to work on multiple pages where the lack of page level
7253 * state handling allows the caller to avoid the overhead of the upl structures.
7254 */
7255
7256kern_return_t
7257vm_object_range_op(
7258	vm_object_t		object,
7259	vm_object_offset_t	offset_beg,
7260	vm_object_offset_t	offset_end,
7261	int                     ops,
7262	uint32_t		*range)
7263{
7264        vm_object_offset_t	offset;
7265	vm_page_t		dst_page;
7266
7267	if (offset_end - offset_beg > (uint32_t) -1) {
7268		/* range is too big and would overflow "*range" */
7269		return KERN_INVALID_ARGUMENT;
7270	}
7271	if (object->resident_page_count == 0) {
7272	        if (range) {
7273		        if (ops & UPL_ROP_PRESENT) {
7274			        *range = 0;
7275			} else {
7276			        *range = (uint32_t) (offset_end - offset_beg);
7277				assert(*range == (offset_end - offset_beg));
7278			}
7279		}
7280		return KERN_SUCCESS;
7281	}
7282	vm_object_lock(object);
7283
7284	if (object->phys_contiguous) {
7285		vm_object_unlock(object);
7286	        return KERN_INVALID_OBJECT;
7287	}
7288
7289	offset = offset_beg & ~PAGE_MASK_64;
7290
7291	while (offset < offset_end) {
7292		dst_page = vm_page_lookup(object, offset);
7293		if (dst_page != VM_PAGE_NULL) {
7294			if (ops & UPL_ROP_DUMP) {
7295				if (dst_page->busy || dst_page->cleaning) {
7296					/*
7297					 * someone else is playing with the
7298					 * page, we will have to wait
7299					 */
7300				        PAGE_SLEEP(object, dst_page, THREAD_UNINT);
7301					/*
7302					 * need to relook the page up since it's
7303					 * state may have changed while we slept
7304					 * it might even belong to a different object
7305					 * at this point
7306					 */
7307					continue;
7308				}
7309				if (dst_page->laundry) {
7310					dst_page->pageout = FALSE;
7311
7312					vm_pageout_steal_laundry(dst_page, FALSE);
7313				}
7314				if (dst_page->pmapped == TRUE)
7315				        pmap_disconnect(dst_page->phys_page);
7316
7317				VM_PAGE_FREE(dst_page);
7318
7319			} else if ((ops & UPL_ROP_ABSENT) && !dst_page->absent)
7320			        break;
7321		} else if (ops & UPL_ROP_PRESENT)
7322		        break;
7323
7324		offset += PAGE_SIZE;
7325	}
7326	vm_object_unlock(object);
7327
7328	if (range) {
7329	        if (offset > offset_end)
7330		        offset = offset_end;
7331		if(offset > offset_beg) {
7332			*range = (uint32_t) (offset - offset_beg);
7333			assert(*range == (offset - offset_beg));
7334		} else {
7335			*range = 0;
7336		}
7337	}
7338	return KERN_SUCCESS;
7339}
7340
7341
7342uint32_t scan_object_collision = 0;
7343
7344void
7345vm_object_lock(vm_object_t object)
7346{
7347        if (object == vm_pageout_scan_wants_object) {
7348	        scan_object_collision++;
7349	        mutex_pause(2);
7350	}
7351        lck_rw_lock_exclusive(&object->Lock);
7352}
7353
7354boolean_t
7355vm_object_lock_avoid(vm_object_t object)
7356{
7357        if (object == vm_pageout_scan_wants_object) {
7358	        scan_object_collision++;
7359		return TRUE;
7360	}
7361	return FALSE;
7362}
7363
7364boolean_t
7365_vm_object_lock_try(vm_object_t object)
7366{
7367	return (lck_rw_try_lock_exclusive(&object->Lock));
7368}
7369
7370boolean_t
7371vm_object_lock_try(vm_object_t object)
7372{
7373	/*
7374	 * Called from hibernate path so check before blocking.
7375	 */
7376	if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) {
7377		mutex_pause(2);
7378	}
7379	return _vm_object_lock_try(object);
7380}
7381
7382void
7383vm_object_lock_shared(vm_object_t object)
7384{
7385        if (vm_object_lock_avoid(object)) {
7386	        mutex_pause(2);
7387	}
7388	lck_rw_lock_shared(&object->Lock);
7389}
7390
7391boolean_t
7392vm_object_lock_try_shared(vm_object_t object)
7393{
7394        if (vm_object_lock_avoid(object)) {
7395	        mutex_pause(2);
7396	}
7397	return (lck_rw_try_lock_shared(&object->Lock));
7398}
7399
7400
7401unsigned int vm_object_change_wimg_mode_count = 0;
7402
7403/*
7404 * The object must be locked
7405 */
7406void
7407vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode)
7408{
7409	vm_page_t p;
7410
7411	vm_object_lock_assert_exclusive(object);
7412
7413	vm_object_paging_wait(object, THREAD_UNINT);
7414
7415	queue_iterate(&object->memq, p, vm_page_t, listq) {
7416
7417		if (!p->fictitious)
7418			pmap_set_cache_attributes(p->phys_page, wimg_mode);
7419	}
7420	if (wimg_mode == VM_WIMG_USE_DEFAULT)
7421		object->set_cache_attr = FALSE;
7422	else
7423		object->set_cache_attr = TRUE;
7424
7425	object->wimg_bits = wimg_mode;
7426
7427	vm_object_change_wimg_mode_count++;
7428}
7429
7430#if CONFIG_FREEZE
7431
7432kern_return_t vm_object_pack(
7433	unsigned int	*purgeable_count,
7434	unsigned int	*wired_count,
7435	unsigned int	*clean_count,
7436	unsigned int	*dirty_count,
7437	unsigned int	dirty_budget,
7438	boolean_t	*shared,
7439	vm_object_t	src_object,
7440	struct default_freezer_handle *df_handle)
7441{
7442	kern_return_t	kr = KERN_SUCCESS;
7443
7444	vm_object_lock(src_object);
7445
7446	*purgeable_count = *wired_count = *clean_count = *dirty_count = 0;
7447	*shared = FALSE;
7448
7449	if (!src_object->alive || src_object->terminating){
7450		kr = KERN_FAILURE;
7451		goto done;
7452	}
7453
7454	if (src_object->purgable == VM_PURGABLE_VOLATILE) {
7455		*purgeable_count = src_object->resident_page_count;
7456
7457		/* If the default freezer handle is null, we're just walking the pages to discover how many can be hibernated */
7458		if (df_handle != NULL) {
7459			purgeable_q_t queue;
7460			/* object should be on a queue */
7461			assert(src_object->objq.next != NULL &&
7462			       src_object->objq.prev != NULL);
7463			queue = vm_purgeable_object_remove(src_object);
7464			assert(queue);
7465			vm_page_lock_queues();
7466			vm_purgeable_token_delete_first(queue);
7467			vm_page_unlock_queues();
7468			vm_object_purge(src_object);
7469		}
7470		goto done;
7471	}
7472
7473	if (src_object->ref_count == 1) {
7474		vm_object_pack_pages(wired_count, clean_count, dirty_count, dirty_budget, src_object, df_handle);
7475	} else {
7476		if (src_object->internal) {
7477			*shared = TRUE;
7478		}
7479	}
7480done:
7481	vm_object_unlock(src_object);
7482
7483	return kr;
7484}
7485
7486
7487void
7488vm_object_pack_pages(
7489	unsigned int		*wired_count,
7490	unsigned int		*clean_count,
7491	unsigned int		*dirty_count,
7492	unsigned int		dirty_budget,
7493	vm_object_t		src_object,
7494	struct default_freezer_handle *df_handle)
7495{
7496	vm_page_t p, next;
7497
7498	next = (vm_page_t)queue_first(&src_object->memq);
7499
7500	while (!queue_end(&src_object->memq, (queue_entry_t)next)) {
7501		p = next;
7502		next = (vm_page_t)queue_next(&next->listq);
7503
7504		/* Finish up if we've hit our pageout limit */
7505		if (dirty_budget && (dirty_budget == *dirty_count)) {
7506			break;
7507		}
7508		assert(!p->laundry);
7509
7510		if (p->fictitious || p->busy )
7511			continue;
7512
7513		if (p->absent || p->unusual || p->error)
7514			continue;
7515
7516		if (VM_PAGE_WIRED(p)) {
7517			(*wired_count)++;
7518			continue;
7519		}
7520
7521		if (df_handle == NULL) {
7522			if (p->dirty || pmap_is_modified(p->phys_page)) {
7523				(*dirty_count)++;
7524			} else {
7525				(*clean_count)++;
7526			}
7527			continue;
7528		}
7529
7530		if (p->cleaning) {
7531			p->pageout = TRUE;
7532			continue;
7533		}
7534
7535		if (p->pmapped == TRUE) {
7536			int refmod_state;
7537		 	refmod_state = pmap_disconnect(p->phys_page);
7538			if (refmod_state & VM_MEM_MODIFIED) {
7539				SET_PAGE_DIRTY(p, FALSE);
7540			}
7541		}
7542
7543		if (p->dirty) {
7544			default_freezer_pack_page(p, df_handle);
7545			(*dirty_count)++;
7546		}
7547		else {
7548			VM_PAGE_FREE(p);
7549			(*clean_count)++;
7550		}
7551	}
7552}
7553
7554void
7555vm_object_pageout(
7556	vm_object_t object)
7557{
7558	vm_page_t p, next;
7559
7560	assert(object != VM_OBJECT_NULL );
7561
7562	vm_object_lock(object);
7563
7564	next = (vm_page_t)queue_first(&object->memq);
7565
7566	while (!queue_end(&object->memq, (queue_entry_t)next)) {
7567		p = next;
7568		next = (vm_page_t)queue_next(&next->listq);
7569
7570		/* Throw to the pageout queue */
7571		vm_page_lockspin_queues();
7572
7573		/*
7574		 * see if page is already in the process of
7575		 * being cleaned... if so, leave it alone
7576		 */
7577		if (!p->laundry) {
7578			VM_PAGE_QUEUES_REMOVE(p);
7579			vm_pageout_cluster(p, TRUE);
7580		}
7581		vm_page_unlock_queues();
7582	}
7583
7584	vm_object_unlock(object);
7585}
7586
7587kern_return_t
7588vm_object_pagein(
7589	vm_object_t object)
7590{
7591	memory_object_t	pager;
7592	kern_return_t	kr;
7593
7594	vm_object_lock(object);
7595
7596	pager = object->pager;
7597
7598	if (!object->pager_ready || pager == MEMORY_OBJECT_NULL) {
7599		vm_object_unlock(object);
7600		return KERN_FAILURE;
7601	}
7602
7603	vm_object_paging_wait(object, THREAD_UNINT);
7604	vm_object_paging_begin(object);
7605
7606	object->blocked_access = TRUE;
7607	vm_object_unlock(object);
7608
7609	kr = memory_object_data_reclaim(pager, TRUE);
7610
7611	vm_object_lock(object);
7612
7613	object->blocked_access = FALSE;
7614	vm_object_paging_end(object);
7615
7616	vm_object_unlock(object);
7617
7618	return kr;
7619}
7620#endif /* CONFIG_FREEZE */
7621