1/*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58
59/*
60 *	File:	pmap.c
61 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
62 *	(These guys wrote the Vax version)
63 *
64 *	Physical Map management code for Intel i386, i486, and i860.
65 *
66 *	Manages physical address maps.
67 *
68 *	In addition to hardware address maps, this
69 *	module is called upon to provide software-use-only
70 *	maps which may or may not be stored in the same
71 *	form as hardware maps.  These pseudo-maps are
72 *	used to store intermediate results from copy
73 *	operations to and from address spaces.
74 *
75 *	Since the information managed by this module is
76 *	also stored by the logical address mapping module,
77 *	this module may throw away valid virtual-to-physical
78 *	mappings at almost any time.  However, invalidations
79 *	of virtual-to-physical mappings must be done as
80 *	requested.
81 *
82 *	In order to cope with hardware architectures which
83 *	make virtual-to-physical map invalidates expensive,
84 *	this module may delay invalidate or reduced protection
85 *	operations until such time as they are actually
86 *	necessary.  This module is given full information as
87 *	to which processors are currently using which maps,
88 *	and to when physical maps must be made correct.
89 */
90
91#include <string.h>
92#include <mach_ldebug.h>
93
94#include <libkern/OSAtomic.h>
95
96#include <mach/machine/vm_types.h>
97
98#include <mach/boolean.h>
99#include <kern/thread.h>
100#include <kern/zalloc.h>
101#include <kern/queue.h>
102#include <kern/ledger.h>
103
104#include <kern/lock.h>
105#include <kern/kalloc.h>
106#include <kern/spl.h>
107
108#include <vm/pmap.h>
109#include <vm/vm_map.h>
110#include <vm/vm_kern.h>
111#include <mach/vm_param.h>
112#include <mach/vm_prot.h>
113#include <vm/vm_object.h>
114#include <vm/vm_page.h>
115
116#include <mach/machine/vm_param.h>
117#include <machine/thread.h>
118
119#include <kern/misc_protos.h>			/* prototyping */
120#include <i386/misc_protos.h>
121
122#include <i386/cpuid.h>
123#include <i386/cpu_data.h>
124#include <i386/cpu_number.h>
125#include <i386/machine_cpu.h>
126#include <i386/seg.h>
127#include <i386/serial_io.h>
128#include <i386/cpu_capabilities.h>
129#include <i386/machine_routines.h>
130#include <i386/proc_reg.h>
131#include <i386/tsc.h>
132#include <i386/acpi.h>
133#include <i386/pmap_internal.h>
134
135#include <vm/vm_protos.h>
136
137#include <i386/mp.h>
138#include <i386/mp_desc.h>
139#include <i386/i386_lowmem.h>
140#include <i386/lowglobals.h>
141
142
143/* #define DEBUGINTERRUPTS 1  uncomment to ensure pmap callers have interrupts enabled */
144#ifdef DEBUGINTERRUPTS
145#define pmap_intr_assert() {if (processor_avail_count > 1 && !ml_get_interrupts_enabled()) panic("pmap interrupt assert %s, %d",__FILE__, __LINE__);}
146#else
147#define pmap_intr_assert()
148#endif
149
150#ifdef IWANTTODEBUG
151#undef	DEBUG
152#define DEBUG 1
153#define POSTCODE_DELAY 1
154#include <i386/postcode.h>
155#endif /* IWANTTODEBUG */
156
157#ifdef PMAP_DEBUG
158void dump_pmap(pmap_t);
159void dump_4GB_pdpt(pmap_t p);
160void dump_4GB_pdpt_thread(thread_t tp);
161#endif
162
163int nx_enabled = 1;			/* enable no-execute protection */
164#ifdef CONFIG_EMBEDDED
165int allow_data_exec  = 0;	/* no exec from data, embedded is hardcore like that */
166#else
167int allow_data_exec  = VM_ABI_32;	/* 32-bit apps may execute data by default, 64-bit apps may not */
168#endif
169int allow_stack_exec = 0;		/* No apps may execute from the stack by default */
170
171#if CONFIG_YONAH
172boolean_t cpu_64bit  = FALSE;
173#else
174const boolean_t cpu_64bit  = TRUE;
175#endif
176boolean_t pmap_trace = FALSE;
177
178uint64_t max_preemption_latency_tsc = 0;
179
180pv_hashed_entry_t     *pv_hash_table;  /* hash lists */
181
182uint32_t npvhash = 0;
183
184/*
185 *	pv_list entries are kept on a list that can only be accessed
186 *	with the pmap system locked (at SPLVM, not in the cpus_active set).
187 *	The list is refilled from the pv_hashed_list_zone if it becomes empty.
188 */
189pv_rooted_entry_t	pv_free_list = PV_ROOTED_ENTRY_NULL;		/* free list at SPLVM */
190pv_hashed_entry_t	pv_hashed_free_list = PV_HASHED_ENTRY_NULL;
191pv_hashed_entry_t      pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL;
192decl_simple_lock_data(,pv_hashed_free_list_lock)
193decl_simple_lock_data(,pv_hashed_kern_free_list_lock)
194decl_simple_lock_data(,pv_hash_table_lock)
195
196zone_t		pv_hashed_list_zone;	/* zone of pv_hashed_entry structures */
197
198static zone_t pdpt_zone;
199
200/*
201 *	First and last physical addresses that we maintain any information
202 *	for.  Initialized to zero so that pmap operations done before
203 *	pmap_init won't touch any non-existent structures.
204 */
205boolean_t	pmap_initialized = FALSE;/* Has pmap_init completed? */
206
207static struct vm_object kptobj_object_store;
208static vm_object_t kptobj;
209
210/*
211 *	Index into pv_head table, its lock bits, and the modify/reference and managed bits
212 */
213
214/*
215 *	Array of physical page attribites for managed pages.
216 *	One byte per physical page.
217 */
218char	*pmap_phys_attributes;
219unsigned int	last_managed_page = 0;
220
221uint64_t pde_mapped_size;
222
223const boolean_t	pmap_disable_kheap_nx = TRUE;
224const boolean_t	pmap_disable_kstack_nx = TRUE;
225
226
227#if	USLOCK_DEBUG
228extern int	max_lock_loops;
229#define LOOP_VAR							\
230	unsigned int	loop_count;					\
231	loop_count = disable_serial_output ? max_lock_loops		\
232					: max_lock_loops*100
233#define LOOP_CHECK(msg, pmap)						\
234	if (--loop_count == 0) {					\
235		mp_disable_preemption();				\
236	    	kprintf("%s: cpu %d pmap %x\n",				\
237			  msg, cpu_number(), pmap);			\
238            	Debugger("deadlock detection");				\
239		mp_enable_preemption();					\
240		loop_count = max_lock_loops;				\
241	}
242#else	/* USLOCK_DEBUG */
243#define LOOP_VAR
244#define LOOP_CHECK(msg, pmap)
245#endif	/* USLOCK_DEBUG */
246
247unsigned pmap_memory_region_count;
248unsigned pmap_memory_region_current;
249
250pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE];
251
252/*
253 *	Other useful macros.
254 */
255#define current_pmap()		(vm_map_pmap(current_thread()->map))
256
257struct pmap	kernel_pmap_store;
258pmap_t		kernel_pmap;
259
260pd_entry_t    high_shared_pde;
261pd_entry_t    commpage64_pde;
262
263struct zone	*pmap_zone;		/* zone of pmap structures */
264
265int		pmap_debug = 0;		/* flag for debugging prints */
266
267unsigned int	inuse_ptepages_count = 0;
268long long	alloc_ptepages_count __attribute__((aligned(8))) = 0LL; /* aligned for atomic access */
269unsigned int	bootstrap_wired_pages = 0;
270int 		pt_fake_zone_index = -1;
271
272extern 	long	NMIPI_acks;
273
274addr64_t	kernel64_cr3;
275boolean_t	no_shared_cr3 = FALSE;	/* -no_shared_cr3 boot arg */
276
277boolean_t	kernel_text_ps_4K = TRUE;
278boolean_t	wpkernel = TRUE;
279
280extern char end;
281static int nkpt;
282
283pt_entry_t     *DMAP1, *DMAP2;
284caddr_t         DADDR1;
285caddr_t         DADDR2;
286
287/*
288 * for legacy, returns the address of the pde entry.
289 * for 64 bit, causes the pdpt page containing the pde entry to be mapped,
290 * then returns the mapped address of the pde entry in that page
291 */
292pd_entry_t *
293pmap_pde(pmap_t m, vm_map_offset_t v)
294{
295  pd_entry_t *pde;
296	if (!cpu_64bit || (m == kernel_pmap)) {
297	  pde = (&((m)->dirbase[(vm_offset_t)(v) >> PDESHIFT]));
298	} else {
299	  assert(m);
300	  assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
301	  pde = pmap64_pde(m, v);
302	}
303	return pde;
304}
305
306/*
307 * the single pml4 page per pmap is allocated at pmap create time and exists
308 * for the duration of the pmap. we allocate this page in kernel vm (to save us one
309 * level of page table dynamic mapping.
310 * this returns the address of the requested pml4 entry in the top level page.
311 */
312static inline
313pml4_entry_t *
314pmap64_pml4(pmap_t pmap, vm_map_offset_t vaddr)
315{
316  return ((pml4_entry_t *)pmap->pm_hold + ((vm_offset_t)((vaddr>>PML4SHIFT)&(NPML4PG-1))));
317}
318
319/*
320 * maps in the pml4 page, if any, containing the pdpt entry requested
321 * and returns the address of the pdpt entry in that mapped page
322 */
323pdpt_entry_t *
324pmap64_pdpt(pmap_t pmap, vm_map_offset_t vaddr)
325{
326  pml4_entry_t newpf;
327  pml4_entry_t *pml4;
328  int i;
329
330  assert(pmap);
331  assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
332  if ((vaddr > 0x00007FFFFFFFFFFFULL) && (vaddr < 0xFFFF800000000000ULL)) {
333    return(0);
334  }
335
336  pml4 = pmap64_pml4(pmap, vaddr);
337
338	if (pml4 && ((*pml4 & INTEL_PTE_VALID))) {
339
340		newpf = *pml4 & PG_FRAME;
341
342
343		for (i=PMAP_PDPT_FIRST_WINDOW; i < PMAP_PDPT_FIRST_WINDOW+PMAP_PDPT_NWINDOWS; i++) {
344		  if (((*(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP)) & PG_FRAME) == newpf) {
345		  return((pdpt_entry_t *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR) +
346			 ((vm_offset_t)((vaddr>>PDPTSHIFT)&(NPDPTPG-1))));
347		  }
348		}
349
350		  current_cpu_datap()->cpu_pmap->pdpt_window_index++;
351		  if (current_cpu_datap()->cpu_pmap->pdpt_window_index > (PMAP_PDPT_FIRST_WINDOW+PMAP_PDPT_NWINDOWS-1))
352		    current_cpu_datap()->cpu_pmap->pdpt_window_index = PMAP_PDPT_FIRST_WINDOW;
353		  pmap_store_pte(
354				 (current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pdpt_window_index].prv_CMAP),
355				 newpf | INTEL_PTE_RW | INTEL_PTE_VALID);
356		  invlpg((u_int)(current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pdpt_window_index].prv_CADDR));
357		  return ((pdpt_entry_t *)(current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pdpt_window_index].prv_CADDR) +
358			  ((vm_offset_t)((vaddr>>PDPTSHIFT)&(NPDPTPG-1))));
359	}
360
361	return (NULL);
362}
363
364/*
365 * maps in the pdpt page, if any, containing the pde entry requested
366 * and returns the address of the pde entry in that mapped page
367 */
368pd_entry_t *
369pmap64_pde(pmap_t pmap, vm_map_offset_t vaddr)
370{
371  pdpt_entry_t newpf;
372  pdpt_entry_t *pdpt;
373  int i;
374
375  assert(pmap);
376  assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
377  if ((vaddr > 0x00007FFFFFFFFFFFULL) && (vaddr < 0xFFFF800000000000ULL)) {
378    return(0);
379  }
380
381  /*  if (vaddr & (1ULL << 63)) panic("neg addr");*/
382  pdpt = pmap64_pdpt(pmap, vaddr);
383
384	  if (pdpt && ((*pdpt & INTEL_PTE_VALID))) {
385
386		newpf = *pdpt & PG_FRAME;
387
388		for (i=PMAP_PDE_FIRST_WINDOW; i < PMAP_PDE_FIRST_WINDOW+PMAP_PDE_NWINDOWS; i++) {
389		  if (((*(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP)) & PG_FRAME) == newpf) {
390		  return((pd_entry_t *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR) +
391			 ((vm_offset_t)((vaddr>>PDSHIFT)&(NPDPG-1))));
392		  }
393		}
394
395		  current_cpu_datap()->cpu_pmap->pde_window_index++;
396		  if (current_cpu_datap()->cpu_pmap->pde_window_index > (PMAP_PDE_FIRST_WINDOW+PMAP_PDE_NWINDOWS-1))
397		    current_cpu_datap()->cpu_pmap->pde_window_index = PMAP_PDE_FIRST_WINDOW;
398		  pmap_store_pte(
399				 (current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pde_window_index].prv_CMAP),
400				 newpf | INTEL_PTE_RW | INTEL_PTE_VALID);
401		  invlpg((u_int)(current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pde_window_index].prv_CADDR));
402		  return ((pd_entry_t *)(current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pde_window_index].prv_CADDR) +
403			  ((vm_offset_t)((vaddr>>PDSHIFT)&(NPDPG-1))));
404	}
405
406	return (NULL);
407}
408
409/*
410 * Because the page tables (top 3 levels) are mapped into per cpu windows,
411 * callers must either disable interrupts or disable preemption before calling
412 * one of the pte mapping routines (e.g. pmap_pte()) as the returned vaddr
413 * is in one of those mapped windows and that cannot be allowed to change until
414 * the caller is done using the returned pte pointer. When done, the caller
415 * restores interrupts or preemption to its previous state after which point the
416 * vaddr for the returned pte can no longer be used
417 */
418
419
420/*
421 * return address of mapped pte for vaddr va in pmap pmap.
422 * must be called with pre-emption or interrupts disabled
423 * if targeted pmap is not the kernel pmap
424 * since we may be passing back a virtual address that is
425 * associated with this cpu... pre-emption or interrupts
426 * must remain disabled until the caller is done using
427 * the pointer that was passed back .
428 *
429 * maps the pde page, if any, containing the pte in and returns
430 * the address of the pte in that mapped page
431 */
432pt_entry_t     *
433pmap_pte(pmap_t pmap, vm_map_offset_t vaddr)
434{
435        pd_entry_t     *pde;
436	pd_entry_t     newpf;
437	int i;
438
439	assert(pmap);
440	pde = pmap_pde(pmap,vaddr);
441
442	if (pde && ((*pde & INTEL_PTE_VALID))) {
443           if (*pde & INTEL_PTE_PS)
444                return pde;
445	    if (pmap == kernel_pmap)
446	        return (vtopte(vaddr)); /* compat kernel still has pte's mapped */
447#if TESTING
448	    if (ml_get_interrupts_enabled() && get_preemption_level() == 0)
449	        panic("pmap_pte: unsafe call");
450#endif
451	        assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
452
453		newpf = *pde & PG_FRAME;
454
455		for (i=PMAP_PTE_FIRST_WINDOW; i < PMAP_PTE_FIRST_WINDOW+PMAP_PTE_NWINDOWS; i++) {
456		  if (((*(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP)) & PG_FRAME) == newpf) {
457		  return((pt_entry_t *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR) +
458			 ((vm_offset_t)i386_btop(vaddr) & (NPTEPG-1)));
459		  }
460		}
461
462		  current_cpu_datap()->cpu_pmap->pte_window_index++;
463		  if (current_cpu_datap()->cpu_pmap->pte_window_index > (PMAP_PTE_FIRST_WINDOW+PMAP_PTE_NWINDOWS-1))
464		    current_cpu_datap()->cpu_pmap->pte_window_index = PMAP_PTE_FIRST_WINDOW;
465		  pmap_store_pte(
466				 (current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pte_window_index].prv_CMAP),
467				 newpf | INTEL_PTE_RW | INTEL_PTE_VALID);
468		  invlpg((u_int)(current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pte_window_index].prv_CADDR));
469		  return ((pt_entry_t *)(current_cpu_datap()->cpu_pmap->mapwindow[current_cpu_datap()->cpu_pmap->pte_window_index].prv_CADDR) +
470			  ((vm_offset_t)i386_btop(vaddr) & (NPTEPG-1)));
471	}
472
473	return(NULL);
474}
475
476
477/*
478 *	Map memory at initialization.  The physical addresses being
479 *	mapped are not managed and are never unmapped.
480 *
481 *	For now, VM is already on, we only need to map the
482 *	specified memory.
483 */
484vm_offset_t
485pmap_map(
486	vm_offset_t	virt,
487	vm_map_offset_t	start_addr,
488	vm_map_offset_t	end_addr,
489	vm_prot_t	prot,
490	unsigned int	flags)
491{
492	int		ps;
493
494	ps = PAGE_SIZE;
495	while (start_addr < end_addr) {
496		pmap_enter(kernel_pmap, (vm_map_offset_t)virt,
497			   (ppnum_t) i386_btop(start_addr), prot, VM_PROT_NONE, flags, FALSE);
498		virt += ps;
499		start_addr += ps;
500	}
501	return(virt);
502}
503
504extern	pmap_paddr_t		first_avail;
505extern	vm_offset_t		virtual_avail, virtual_end;
506extern	pmap_paddr_t		avail_start, avail_end;
507extern  vm_offset_t		sHIB;
508extern  vm_offset_t		eHIB;
509extern  vm_offset_t		stext;
510extern  vm_offset_t		etext;
511extern  vm_offset_t		sdata;
512
513extern void	*KPTphys;
514
515void
516pmap_cpu_init(void)
517{
518	/*
519	 * Here early in the life of a processor (from cpu_mode_init()).
520	 */
521
522	/*
523	 * Initialize the per-cpu, TLB-related fields.
524	 */
525	current_cpu_datap()->cpu_active_cr3 = kernel_pmap->pm_cr3;
526	current_cpu_datap()->cpu_tlb_invalid = FALSE;
527}
528
529vm_offset_t
530pmap_high_shared_remap(enum high_fixed_addresses e, vm_offset_t va, int sz)
531{
532  vm_offset_t ve = pmap_index_to_virt(e);
533  pt_entry_t *ptep;
534  pmap_paddr_t pa;
535  int i;
536  spl_t s;
537
538  assert(0 == (va & PAGE_MASK));  /* expecting page aligned */
539  s = splhigh();
540  ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)ve);
541
542  for (i=0; i< sz; i++) {
543    pa = (pmap_paddr_t) kvtophys(va);
544    pmap_store_pte(ptep, (pa & PG_FRAME)
545				| INTEL_PTE_VALID
546		                | INTEL_PTE_GLOBAL
547				| INTEL_PTE_RW
548				| INTEL_PTE_REF
549				| INTEL_PTE_MOD);
550    va+= PAGE_SIZE;
551    ptep++;
552  }
553  splx(s);
554  return ve;
555}
556
557vm_offset_t
558pmap_cpu_high_shared_remap(int cpu, enum high_cpu_types e, vm_offset_t va, int sz)
559{
560  enum high_fixed_addresses	a = e + HIGH_CPU_END * cpu;
561  return pmap_high_shared_remap(HIGH_FIXED_CPUS_BEGIN + a, va, sz);
562}
563
564void pmap_init_high_shared(void);
565
566extern vm_offset_t gdtptr, idtptr;
567
568extern uint32_t low_intstack;
569
570extern struct fake_descriptor ldt_desc_pattern;
571extern struct fake_descriptor tss_desc_pattern;
572
573extern char hi_remap_text, hi_remap_etext;
574extern char t_zero_div;
575
576pt_entry_t *pte_unique_base;
577
578void
579pmap_init_high_shared(void)
580{
581
582	vm_offset_t haddr;
583	spl_t s;
584
585	cpu_desc_index_t * cdi = &cpu_data_master.cpu_desc_index;
586
587	kprintf("HIGH_MEM_BASE 0x%x fixed per-cpu begin 0x%x\n",
588		HIGH_MEM_BASE,pmap_index_to_virt(HIGH_FIXED_CPUS_BEGIN));
589	s = splhigh();
590	pte_unique_base = pmap_pte(kernel_pmap, (vm_map_offset_t)pmap_index_to_virt(HIGH_FIXED_CPUS_BEGIN));
591	splx(s);
592
593	if (i386_btop(&hi_remap_etext - &hi_remap_text + 1) >
594				HIGH_FIXED_TRAMPS_END - HIGH_FIXED_TRAMPS + 1)
595		panic("tramps too large");
596	haddr = pmap_high_shared_remap(HIGH_FIXED_TRAMPS,
597					(vm_offset_t) &hi_remap_text, 3);
598	kprintf("tramp: 0x%x, ",haddr);
599	/* map gdt up high and update ptr for reload */
600	haddr = pmap_high_shared_remap(HIGH_FIXED_GDT,
601					(vm_offset_t) master_gdt, 1);
602	cdi->cdi_gdt.ptr = (void *)haddr;
603	kprintf("GDT: 0x%x, ",haddr);
604	/* map ldt up high */
605	haddr = pmap_high_shared_remap(HIGH_FIXED_LDT_BEGIN,
606					(vm_offset_t) master_ldt,
607					HIGH_FIXED_LDT_END - HIGH_FIXED_LDT_BEGIN + 1);
608	cdi->cdi_ldt = (struct fake_descriptor *)haddr;
609	kprintf("LDT: 0x%x, ",haddr);
610	/* put new ldt addr into gdt */
611	struct fake_descriptor temp_fake_desc;
612	temp_fake_desc = ldt_desc_pattern;
613	temp_fake_desc.offset = (vm_offset_t) haddr;
614	fix_desc(&temp_fake_desc, 1);
615
616	*(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_LDT)] = temp_fake_desc;
617	*(struct fake_descriptor *) &master_gdt[sel_idx(USER_LDT)] = temp_fake_desc;
618
619	/* map idt up high */
620	haddr = pmap_high_shared_remap(HIGH_FIXED_IDT,
621					(vm_offset_t) master_idt, 1);
622	cdi->cdi_idt.ptr = (void *)haddr;
623	kprintf("IDT: 0x%x, ", haddr);
624	/* remap ktss up high and put new high addr into gdt */
625	haddr = pmap_high_shared_remap(HIGH_FIXED_KTSS,
626					(vm_offset_t) &master_ktss, 1);
627
628	temp_fake_desc = tss_desc_pattern;
629	temp_fake_desc.offset = (vm_offset_t) haddr;
630	fix_desc(&temp_fake_desc, 1);
631	*(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_TSS)] = temp_fake_desc;
632	kprintf("KTSS: 0x%x, ",haddr);
633
634	/* remap dftss up high and put new high addr into gdt */
635	haddr = pmap_high_shared_remap(HIGH_FIXED_DFTSS,
636					(vm_offset_t) &master_dftss, 1);
637	temp_fake_desc = tss_desc_pattern;
638	temp_fake_desc.offset = (vm_offset_t) haddr;
639	fix_desc(&temp_fake_desc, 1);
640	*(struct fake_descriptor *) &master_gdt[sel_idx(DF_TSS)] = temp_fake_desc;
641	kprintf("DFTSS: 0x%x\n",haddr);
642
643	/* remap mctss up high and put new high addr into gdt */
644	haddr = pmap_high_shared_remap(HIGH_FIXED_DFTSS,
645					(vm_offset_t) &master_mctss, 1);
646	temp_fake_desc = tss_desc_pattern;
647	temp_fake_desc.offset = (vm_offset_t) haddr;
648	fix_desc(&temp_fake_desc, 1);
649	*(struct fake_descriptor *) &master_gdt[sel_idx(MC_TSS)] = temp_fake_desc;
650	kprintf("MCTSS: 0x%x\n",haddr);
651
652	cpu_desc_load(&cpu_data_master);
653}
654
655
656/*
657 *	Bootstrap the system enough to run with virtual memory.
658 *	Map the kernel's code and data, and allocate the system page table.
659 *	Called with mapping OFF.  Page_size must already be set.
660 */
661
662void
663pmap_bootstrap(
664	__unused vm_offset_t	load_start,
665	boolean_t		IA32e)
666{
667	vm_offset_t	va;
668	unsigned i;
669	pdpt_entry_t *pdpt;
670	spl_t s;
671
672	vm_last_addr = VM_MAX_KERNEL_ADDRESS;	/* Set the highest address
673						 * known to VM */
674	/*
675	 *	The kernel's pmap is statically allocated so we don't
676	 *	have to use pmap_create, which is unlikely to work
677	 *	correctly at this part of the boot sequence.
678	 */
679
680
681	kernel_pmap = &kernel_pmap_store;
682	kernel_pmap->ref_count = 1;
683	kernel_pmap->nx_enabled = FALSE;
684	kernel_pmap->pm_task_map = TASK_MAP_32BIT;
685	kernel_pmap->pm_obj = (vm_object_t) NULL;
686	kernel_pmap->dirbase = (pd_entry_t *)((unsigned int)IdlePTD | KERNBASE);
687	kernel_pmap->pdirbase = (pmap_paddr_t)((int)IdlePTD);
688	pdpt = (pd_entry_t *)((unsigned int)IdlePDPT | KERNBASE );
689	kernel_pmap->pm_pdpt = pdpt;
690	kernel_pmap->pm_cr3 = (pmap_paddr_t)((int)IdlePDPT);
691
692
693	va = (vm_offset_t)kernel_pmap->dirbase;
694	/* setup self referential mapping(s) */
695	for (i = 0; i< NPGPTD; i++, pdpt++) {
696	  pmap_paddr_t pa;
697	  pa = (pmap_paddr_t) kvtophys((vm_offset_t)(va + i386_ptob(i)));
698	  pmap_store_pte(
699	    (pd_entry_t *) (kernel_pmap->dirbase + PTDPTDI + i),
700	    (pa & PG_FRAME) | INTEL_PTE_VALID | INTEL_PTE_RW | INTEL_PTE_REF |
701	      INTEL_PTE_MOD | INTEL_PTE_WIRED) ;
702	  pmap_store_pte(pdpt, pa | INTEL_PTE_VALID);
703	}
704
705#if CONFIG_YONAH
706	/* 32-bit and legacy support depends on IA32e mode being disabled */
707	cpu_64bit = IA32e;
708#endif
709
710	lo_kernel_cr3 = kernel_pmap->pm_cr3;
711	current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3;
712
713	/* save the value we stuff into created pmaps to share the gdts etc */
714	high_shared_pde = *pmap_pde(kernel_pmap, HIGH_MEM_BASE);
715	/* make sure G bit is on for high shared pde entry */
716	high_shared_pde |= INTEL_PTE_GLOBAL;
717	s = splhigh();
718	pmap_store_pte(pmap_pde(kernel_pmap, HIGH_MEM_BASE), high_shared_pde);
719	splx(s);
720
721	nkpt = NKPT;
722	OSAddAtomic(NKPT, &inuse_ptepages_count);
723	OSAddAtomic64(NKPT, &alloc_ptepages_count);
724	bootstrap_wired_pages = NKPT;
725
726	virtual_avail = (vm_offset_t)VADDR(KPTDI,0) + (vm_offset_t)first_avail;
727	virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS);
728
729	/*
730	 * Reserve some special page table entries/VA space for temporary
731	 * mapping of pages.
732	 */
733	va = virtual_avail;
734	pt_entry_t	*pte;
735	pte = vtopte(va);
736#define	SYSMAP(c, p, v, n)	\
737	v = (c)va; va += ((n)*INTEL_PGBYTES); p = pte; pte += (n)
738
739        for (i=0; i<PMAP_NWINDOWS; i++) {
740            SYSMAP(caddr_t,
741		   (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
742                   (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR),
743		   1);
744            *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0;
745        }
746
747	/* DMAP user for debugger */
748	SYSMAP(caddr_t, DMAP1, DADDR1, 1);
749	SYSMAP(caddr_t, DMAP2, DADDR2, 1);  /* XXX temporary - can remove */
750
751	virtual_avail = va;
752
753	if (PE_parse_boot_argn("npvhash", &npvhash, sizeof (npvhash))) {
754	  if (0 != ((npvhash+1) & npvhash)) {
755	    kprintf("invalid hash %d, must be ((2^N)-1), using default %d\n",npvhash,NPVHASH);
756	    npvhash = NPVHASH;
757	  }
758	} else {
759	  npvhash = NPVHASH;
760	}
761	printf("npvhash=%d\n",npvhash);
762
763	simple_lock_init(&kernel_pmap->lock, 0);
764	simple_lock_init(&pv_hashed_free_list_lock, 0);
765	simple_lock_init(&pv_hashed_kern_free_list_lock, 0);
766	simple_lock_init(&pv_hash_table_lock,0);
767
768	pmap_init_high_shared();
769
770	pde_mapped_size = PDE_MAPPED_SIZE;
771
772	if (cpu_64bit) {
773	  pdpt_entry_t *ppdpt   = IdlePDPT;
774	  pdpt_entry_t *ppdpt64 = (pdpt_entry_t *)IdlePDPT64;
775	  pdpt_entry_t *ppml4   = (pdpt_entry_t *)IdlePML4;
776	  int istate = ml_set_interrupts_enabled(FALSE);
777
778	  /*
779	   * Clone a new 64-bit 3rd-level page table directory, IdlePML4,
780	   * with page bits set for the correct IA-32e operation and so that
781	   * the legacy-mode IdlePDPT is retained for slave processor start-up.
782	   * This is necessary due to the incompatible use of page bits between
783	   * 64-bit and legacy modes.
784	   */
785	  kernel_pmap->pm_cr3 = (pmap_paddr_t)((int)IdlePML4); /* setup in start.s for us */
786	  kernel_pmap->pm_pml4 = IdlePML4;
787	  kernel_pmap->pm_pdpt = (pd_entry_t *)
788					((unsigned int)IdlePDPT64 | KERNBASE );
789#define PAGE_BITS INTEL_PTE_VALID|INTEL_PTE_RW|INTEL_PTE_USER|INTEL_PTE_REF
790	  pmap_store_pte(kernel_pmap->pm_pml4,
791		 	 (uint32_t)IdlePDPT64 | PAGE_BITS);
792	  pmap_store_pte((ppdpt64+0), *(ppdpt+0) | PAGE_BITS);
793	  pmap_store_pte((ppdpt64+1), *(ppdpt+1) | PAGE_BITS);
794	  pmap_store_pte((ppdpt64+2), *(ppdpt+2) | PAGE_BITS);
795	  pmap_store_pte((ppdpt64+3), *(ppdpt+3) | PAGE_BITS);
796
797	  /*
798	   * The kernel is also mapped in the uber-sapce at the 4GB starting
799	   * 0xFFFFFF80:00000000. This is the highest entry in the 4th-level.
800	   */
801	  pmap_store_pte((ppml4+KERNEL_UBER_PML4_INDEX), *(ppml4+0));
802
803	  kernel64_cr3 = (addr64_t) kernel_pmap->pm_cr3;
804
805	  /* Re-initialize descriptors and prepare to switch modes */
806	  cpu_desc_init64(&cpu_data_master);
807	  current_cpu_datap()->cpu_is64bit = TRUE;
808	  current_cpu_datap()->cpu_active_cr3 = kernel64_cr3;
809
810	  pde_mapped_size = 512*4096 ;
811
812	  ml_set_interrupts_enabled(istate);
813	}
814
815	/* Sets 64-bit mode if required. */
816	cpu_mode_init(&cpu_data_master);
817	/* Update in-kernel CPUID information if we're now in 64-bit mode */
818	if (IA32e)
819		cpuid_set_info();
820
821	kernel_pmap->pm_hold = (vm_offset_t)kernel_pmap->pm_pml4;
822
823	kprintf("Kernel virtual space from 0x%x to 0x%x.\n",
824			VADDR(KPTDI,0), virtual_end);
825	printf("PAE enabled\n");
826	if (cpu_64bit){
827	  printf("64 bit mode enabled\n");kprintf("64 bit mode enabled\n"); }
828
829	kprintf("Available physical space from 0x%llx to 0x%llx\n",
830			avail_start, avail_end);
831
832	/*
833	 * By default for 64-bit users loaded at 4GB, share kernel mapping.
834	 * But this may be overridden by the -no_shared_cr3 boot-arg.
835	 */
836	if (PE_parse_boot_argn("-no_shared_cr3", &no_shared_cr3, sizeof (no_shared_cr3))) {
837		kprintf("Shared kernel address space disabled\n");
838	}
839
840#ifdef	PMAP_TRACES
841	if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) {
842		kprintf("Kernel traces for pmap operations enabled\n");
843	}
844#endif	/* PMAP_TRACES */
845}
846
847void
848pmap_virtual_space(
849	vm_offset_t *startp,
850	vm_offset_t *endp)
851{
852	*startp = virtual_avail;
853	*endp = virtual_end;
854}
855
856/*
857 *	Initialize the pmap module.
858 *	Called by vm_init, to initialize any structures that the pmap
859 *	system needs to map virtual memory.
860 */
861void
862pmap_init(void)
863{
864	long		npages;
865	vm_map_offset_t	vaddr;
866	vm_offset_t	addr;
867	vm_size_t	s, vsize;
868	ppnum_t 	ppn;
869
870	/*
871	 *	Allocate memory for the pv_head_table and its lock bits,
872	 *	the modify bit array, and the pte_page table.
873	 */
874
875	/*
876	 * zero bias all these arrays now instead of off avail_start
877	 * so we cover all memory
878	 */
879
880	npages = (long)i386_btop(avail_end);
881	s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages
882			 + (sizeof (struct pv_hashed_entry_t *) * (npvhash+1))
883			 + pv_lock_table_size(npages)
884			 + pv_hash_lock_table_size((npvhash+1))
885				+ npages);
886
887	s = round_page(s);
888	if (kernel_memory_allocate(kernel_map, &addr, s, 0,
889				   KMA_KOBJECT | KMA_PERMANENT)
890	    != KERN_SUCCESS)
891		panic("pmap_init");
892
893	memset((char *)addr, 0, s);
894
895	vaddr = addr;
896	vsize = s;
897
898#if PV_DEBUG
899	if (0 == npvhash) panic("npvhash not initialized");
900#endif
901
902	/*
903	 *	Allocate the structures first to preserve word-alignment.
904	 */
905	pv_head_table = (pv_rooted_entry_t) addr;
906	addr = (vm_offset_t) (pv_head_table + npages);
907
908	pv_hash_table = (pv_hashed_entry_t *)addr;
909	addr = (vm_offset_t) (pv_hash_table + (npvhash + 1));
910
911	pv_lock_table = (char *) addr;
912	addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages));
913
914	pv_hash_lock_table = (char *) addr;
915	addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhash+1)));
916
917	pmap_phys_attributes = (char *) addr;
918	{
919	        unsigned int i;
920		unsigned int pn;
921		ppnum_t  last_pn;
922		pmap_memory_region_t *pmptr = pmap_memory_regions;
923
924		last_pn = (ppnum_t)i386_btop(avail_end);
925
926		for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
927		        if (pmptr->type == kEfiConventionalMemory) {
928
929			        for (pn = pmptr->base; pn <= pmptr->end; pn++) {
930				        if (pn < last_pn) {
931					        pmap_phys_attributes[pn] |= PHYS_MANAGED;
932
933						if (pn > last_managed_page)
934						        last_managed_page = pn;
935
936						if (pn >= lowest_hi && pn <= highest_hi)
937							pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
938					}
939				}
940			}
941		}
942	}
943	while (vsize) {
944		ppn = pmap_find_phys(kernel_pmap, vaddr);
945
946		pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT;
947
948		vaddr += PAGE_SIZE;
949		vsize -= PAGE_SIZE;
950	}
951	/*
952	 *	Create the zone of physical maps,
953	 *	and of the physical-to-virtual entries.
954	 */
955	s = (vm_size_t) sizeof(struct pmap);
956	pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */
957	zone_change(pmap_zone, Z_NOENCRYPT, TRUE);
958
959	s = (vm_size_t) sizeof(struct pv_hashed_entry);
960	pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */,
961	    4096 * 4 /* LCM i386 */, "pv_list");
962	zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE);
963
964	s = 63;
965	pdpt_zone = zinit(s, 400*s, 4096, "pdpt"); /* XXX */
966	zone_change(pdpt_zone, Z_NOENCRYPT, TRUE);
967
968	kptobj = &kptobj_object_store;
969	_vm_object_allocate((vm_object_size_t)(NPGPTD*NPTDPG), kptobj);
970	kernel_pmap->pm_obj = kptobj;
971
972	/* create pv entries for kernel pages mapped by low level
973	   startup code.  these have to exist so we can pmap_remove()
974	   e.g. kext pages from the middle of our addr space */
975
976	vaddr = (vm_map_offset_t)0;
977	for (ppn = 0; ppn < i386_btop(avail_start) ; ppn++ ) {
978	  pv_rooted_entry_t	pv_e;
979
980	  pv_e = pai_to_pvh(ppn);
981	  pv_e->va = vaddr;
982	  vaddr += PAGE_SIZE;
983	  pv_e->pmap = kernel_pmap;
984	  queue_init(&pv_e->qlink);
985	}
986
987	pmap_initialized = TRUE;
988
989	max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t);
990
991}
992
993#ifdef	PMAP_DEBUG
994#define DBG(x...)	kprintf("DBG: " x)
995#else
996#define DBG(x...)
997#endif
998
999/*
1000 * Called once VM is fully initialized so that we can release unused
1001 * sections of low memory to the general pool.
1002 * Also complete the set-up of identity-mapped sections of the kernel:
1003 *  1) write-protect kernel text
1004 *  2) map kernel text using large pages if possible
1005 *  3) read and write-protect page zero (for K32)
1006 *  4) map the global page at the appropriate virtual address.
1007 *
1008 * Use of large pages
1009 * ------------------
1010 * To effectively map and write-protect all kernel text pages, the text
1011 * must be 2M-aligned at the base, and the data section above must also be
1012 * 2M-aligned. That is, there's padding below and above. This is achieved
1013 * through linker directives. Large pages are used only if this alignment
1014 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
1015 * memory layout is:
1016 *
1017 *                       :                :
1018 *                       |     __DATA     |
1019 *               sdata:  ==================  2Meg
1020 *                       |                |
1021 *                       |  zero-padding  |
1022 *                       |                |
1023 *               etext:  ------------------
1024 *                       |                |
1025 *                       :                :
1026 *                       |                |
1027 *                       |     __TEXT     |
1028 *                       |                |
1029 *                       :                :
1030 *                       |                |
1031 *               stext:  ==================  2Meg
1032 *                       |                |
1033 *                       |  zero-padding  |
1034 *                       |                |
1035 *               eHIB:   ------------------
1036 *                       |     __HIB      |
1037 *                       :                :
1038 *
1039 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
1040 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
1041 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
1042 * The now unused level-1 PTE pages are also freed.
1043 */
1044extern uint32_t pmap_reserved_ranges;
1045void
1046pmap_lowmem_finalize(void)
1047{
1048	spl_t           spl;
1049	int		i;
1050
1051	/* Check the kernel is linked at the expected base address */
1052	if (i386_btop(kvtophys((vm_offset_t) &IdlePML4)) !=
1053	    I386_KERNEL_IMAGE_BASE_PAGE)
1054		panic("pmap_lowmem_finalize() unexpected kernel base address");
1055
1056	/*
1057	 * Update wired memory statistics for early boot pages
1058	 */
1059	PMAP_ZINFO_PALLOC(kernel_pmap, bootstrap_wired_pages * PAGE_SIZE);
1060
1061	/*
1062	 * Free all pages in pmap regions below the base:
1063	 * rdar://6332712
1064	 *	We can't free all the pages to VM that EFI reports available.
1065	 *	Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
1066	 *	There's also a size miscalculation here: pend is one page less
1067	 *	than it should be but this is not fixed to be backwards
1068	 *	compatible.
1069	 *	Due to this current EFI limitation, we take only the first
1070	 *	entry in the memory region table. However, the loop is retained
1071	 * 	(with the intended termination criteria commented out) in the
1072	 *	hope that some day we can free all low-memory ranges.
1073	 */
1074	for (i = 0;
1075//	     pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE;
1076	     i < 1 && (pmap_reserved_ranges == 0);
1077	     i++) {
1078		vm_offset_t	pbase = (vm_offset_t)i386_ptob(pmap_memory_regions[i].base);
1079		vm_offset_t	pend  = (vm_offset_t)i386_ptob(pmap_memory_regions[i].end);
1080//		vm_offset_t	pend  = i386_ptob(pmap_memory_regions[i].end+1);
1081
1082		DBG("ml_static_mfree(%p,%p) for pmap region %d\n",
1083		    (void *) ml_static_ptovirt(pbase),
1084		    (void *) (pend - pbase), i);
1085		ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
1086	}
1087
1088	/*
1089	 * If text and data are both 2MB-aligned,
1090	 * we can map text with large-pages,
1091	 * unless the -kernel_text_ps_4K boot-arg overrides.
1092	 */
1093	if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) {
1094		kprintf("Kernel text is 2MB aligned");
1095		kernel_text_ps_4K = FALSE;
1096		if (PE_parse_boot_argn("-kernel_text_ps_4K",
1097				       &kernel_text_ps_4K,
1098				       sizeof (kernel_text_ps_4K)))
1099			kprintf(" but will be mapped with 4K pages\n");
1100		else
1101			kprintf(" and will be mapped with 2M pages\n");
1102	}
1103
1104	(void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel));
1105	if (wpkernel)
1106		kprintf("Kernel text %p-%p to be write-protected\n",
1107			(void *) stext, (void *) etext);
1108
1109	spl = splhigh();
1110
1111	/*
1112	 * Scan over text if mappings are to be changed:
1113	 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
1114 	 * - Change to large-pages if possible and not overriden.
1115	 */
1116	if (kernel_text_ps_4K && wpkernel) {
1117		vm_offset_t     myva;
1118		for (myva = stext; myva < etext; myva += PAGE_SIZE) {
1119			pt_entry_t     *ptep;
1120
1121			ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
1122			if (ptep)
1123				pmap_store_pte(ptep, *ptep & ~INTEL_PTE_RW);
1124		}
1125	}
1126
1127	if (!kernel_text_ps_4K) {
1128		vm_offset_t     myva;
1129
1130		/*
1131		 * Release zero-filled page padding used for 2M-alignment.
1132		 */
1133		DBG("ml_static_mfree(%p,%p) for padding below text\n",
1134			(void *) eHIB, (void *) (stext - eHIB));
1135		ml_static_mfree(eHIB, stext - eHIB);
1136		DBG("ml_static_mfree(%p,%p) for padding above text\n",
1137			(void *) etext, (void *) (sdata - etext));
1138		ml_static_mfree(etext, sdata - etext);
1139
1140		/*
1141		 * Coalesce text pages into large pages.
1142		 */
1143		for (myva = stext; myva < sdata; myva += I386_LPGBYTES) {
1144			pt_entry_t	*ptep;
1145			vm_offset_t	pte_phys;
1146			pt_entry_t	*pdep;
1147			pt_entry_t	pde;
1148
1149			pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva);
1150			ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
1151			DBG("myva: %p pdep: %p ptep: %p\n",
1152				(void *) myva, (void *) pdep, (void *) ptep);
1153			if ((*ptep & INTEL_PTE_VALID) == 0)
1154				continue;
1155			pte_phys = (vm_offset_t)(*ptep & PG_FRAME);
1156			pde = *pdep & PTMASK;	/* page attributes from pde */
1157			pde |= INTEL_PTE_PS;	/* make it a 2M entry */
1158			pde |= pte_phys;	/* take page frame from pte */
1159
1160			if (wpkernel)
1161				pde &= ~INTEL_PTE_RW;
1162			DBG("pmap_store_pte(%p,0x%llx)\n",
1163				(void *)pdep, pde);
1164			pmap_store_pte(pdep, pde);
1165
1166			/*
1167			 * Free the now-unused level-1 pte.
1168			 * Note: ptep is a virtual address to the pte in the
1169			 *   recursive map. We can't use this address to free
1170			 *   the page. Instead we need to compute its address
1171			 *   in the Idle PTEs in "low memory".
1172			 */
1173			vm_offset_t vm_ptep = (vm_offset_t) KPTphys
1174						+ (pte_phys >> PTPGSHIFT);
1175			DBG("ml_static_mfree(%p,0x%x) for pte\n",
1176				(void *) vm_ptep, PAGE_SIZE);
1177			ml_static_mfree(vm_ptep, PAGE_SIZE);
1178		}
1179
1180		/* Change variable read by sysctl machdep.pmap */
1181		pmap_kernel_text_ps = I386_LPGBYTES;
1182	}
1183
1184	/* no matter what,  kernel page zero is not accessible */
1185	pmap_store_pte(pmap_pte(kernel_pmap, 0), INTEL_PTE_INVALID);
1186
1187	/* map lowmem global page into fixed addr */
1188	pt_entry_t *pte = NULL;
1189	if (0 == (pte = pmap_pte(kernel_pmap,
1190				 VM_MIN_KERNEL_LOADED_ADDRESS + 0x2000)))
1191		panic("lowmem pte");
1192	/* make sure it is defined on page boundary */
1193	assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
1194	pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
1195				| INTEL_PTE_REF
1196				| INTEL_PTE_MOD
1197				| INTEL_PTE_WIRED
1198				| INTEL_PTE_VALID
1199				| INTEL_PTE_RW);
1200	splx(spl);
1201	flush_tlb();
1202}
1203
1204#define managed_page(x) ( (unsigned int)x <= last_managed_page && (pmap_phys_attributes[x] & PHYS_MANAGED) )
1205
1206/*
1207 * this function is only used for debugging fron the vm layer
1208 */
1209boolean_t
1210pmap_verify_free(
1211		 ppnum_t pn)
1212{
1213	pv_rooted_entry_t	pv_h;
1214	int		pai;
1215	boolean_t	result;
1216
1217	assert(pn != vm_page_fictitious_addr);
1218
1219	if (!pmap_initialized)
1220		return(TRUE);
1221
1222	if (pn == vm_page_guard_addr)
1223		return TRUE;
1224
1225	pai = ppn_to_pai(pn);
1226	if (!managed_page(pai))
1227		return(FALSE);
1228	pv_h = pai_to_pvh(pn);
1229	result = (pv_h->pmap == PMAP_NULL);
1230	return(result);
1231}
1232
1233boolean_t
1234pmap_is_empty(
1235       pmap_t          pmap,
1236       vm_map_offset_t va_start,
1237       vm_map_offset_t va_end)
1238{
1239	vm_map_offset_t offset;
1240	ppnum_t         phys_page;
1241
1242	if (pmap == PMAP_NULL) {
1243		return TRUE;
1244	}
1245
1246	/*
1247	 * Check the resident page count
1248	 * - if it's zero, the pmap is completely empty.
1249	 * This short-circuit test prevents a virtual address scan which is
1250	 * painfully slow for 64-bit spaces.
1251	 * This assumes the count is correct
1252	 * .. the debug kernel ought to be checking perhaps by page table walk.
1253	 */
1254	if (pmap->stats.resident_count == 0)
1255		return TRUE;
1256
1257	for (offset = va_start;
1258	     offset < va_end;
1259	     offset += PAGE_SIZE_64) {
1260		phys_page = pmap_find_phys(pmap, offset);
1261		if (phys_page) {
1262			if (pmap != kernel_pmap &&
1263			    pmap->pm_task_map == TASK_MAP_32BIT &&
1264			    offset >= HIGH_MEM_BASE) {
1265				/*
1266				 * The "high_shared_pde" is used to share
1267				 * the entire top-most 2MB of address space
1268				 * between the kernel and all 32-bit tasks.
1269				 * So none of this can be removed from 32-bit
1270				 * tasks.
1271				 * Let's pretend there's nothing up
1272				 * there...
1273				 */
1274				return TRUE;
1275			}
1276			kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
1277				"page %d at 0x%llx\n",
1278				pmap, va_start, va_end, phys_page, offset);
1279			return FALSE;
1280		}
1281	}
1282
1283	return TRUE;
1284}
1285
1286
1287/*
1288 *	Create and return a physical map.
1289 *
1290 *	If the size specified for the map
1291 *	is zero, the map is an actual physical
1292 *	map, and may be referenced by the
1293 *	hardware.
1294 *
1295 *	If the size specified is non-zero,
1296 *	the map will be used in software only, and
1297 *	is bounded by that size.
1298 */
1299pmap_t
1300pmap_create(
1301	    ledger_t		ledger,
1302	    vm_map_size_t			sz,
1303	    boolean_t				is_64bit)
1304{
1305	pmap_t		p;
1306	unsigned	i;
1307	vm_offset_t	va;
1308	vm_size_t	size;
1309	pdpt_entry_t    *pdpt;
1310	pml4_entry_t    *pml4p;
1311	pd_entry_t      *pdp;
1312	int template;
1313	spl_t s;
1314
1315	PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1316		   (int) (sz>>32), (int) sz, (int) is_64bit, 0, 0);
1317
1318	size = (vm_size_t) sz;
1319
1320	/*
1321	 *	A software use-only map doesn't even need a map.
1322	 */
1323
1324	if (size != 0) {
1325		return(PMAP_NULL);
1326	}
1327
1328	p = (pmap_t) zalloc(pmap_zone);
1329	if (PMAP_NULL == p)
1330		panic("pmap_create zalloc");
1331
1332	/* init counts now since we'll be bumping some */
1333	simple_lock_init(&p->lock, 0);
1334	p->stats.resident_count = 0;
1335	p->stats.resident_max = 0;
1336	p->stats.wired_count = 0;
1337	ledger_reference(ledger);
1338	p->ledger = ledger;
1339	p->ref_count = 1;
1340	p->nx_enabled = 1;
1341	p->pm_shared = FALSE;
1342
1343	assert(!is_64bit || cpu_64bit);
1344	p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;;
1345
1346	if (!cpu_64bit) {
1347		/* legacy 32 bit setup */
1348		/* in the legacy case the pdpt layer is hardwired to 4 entries and each
1349		 * entry covers 1GB of addr space */
1350		if (KERN_SUCCESS != kmem_alloc_kobject(kernel_map, (vm_offset_t *)(&p->dirbase), NBPTD))
1351			panic("pmap_create kmem_alloc_kobject");
1352		p->pm_hold = (vm_offset_t)zalloc(pdpt_zone);
1353		if ((vm_offset_t)NULL == p->pm_hold) {
1354			panic("pdpt zalloc");
1355		}
1356		pdpt = (pdpt_entry_t *) (( p->pm_hold + 31) & ~31);
1357		p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)pdpt);
1358		if (NULL == (p->pm_obj = vm_object_allocate((vm_object_size_t)(NPGPTD*NPTDPG))))
1359			panic("pmap_create vm_object_allocate");
1360
1361		memset((char *)p->dirbase, 0, NBPTD);
1362
1363		va = (vm_offset_t)p->dirbase;
1364		p->pdirbase = kvtophys(va);
1365
1366		PMAP_ZINFO_SALLOC(p,NBPTD);
1367
1368		template = INTEL_PTE_VALID;
1369		for (i = 0; i< NPGPTD; i++, pdpt++ ) {
1370			pmap_paddr_t pa;
1371			pa = (pmap_paddr_t) kvtophys((vm_offset_t)(va + i386_ptob(i)));
1372			pmap_store_pte(pdpt, pa | template);
1373		}
1374
1375		/* map the high shared pde */
1376		s = splhigh();
1377		pmap_store_pte(pmap_pde(p, HIGH_MEM_BASE), high_shared_pde);
1378		splx(s);
1379
1380	} else {
1381	        /* 64 bit setup  */
1382
1383	        /* alloc the pml4 page in kernel vm */
1384	        if (KERN_SUCCESS != kmem_alloc_kobject(kernel_map, (vm_offset_t *)(&p->pm_hold), PAGE_SIZE))
1385		        panic("pmap_create kmem_alloc_kobject pml4");
1386
1387	        memset((char *)p->pm_hold, 0, PAGE_SIZE);
1388		p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_hold);
1389
1390		OSAddAtomic(1,  &inuse_ptepages_count);
1391		OSAddAtomic64(1,  &alloc_ptepages_count);
1392		PMAP_ZINFO_SALLOC(p, PAGE_SIZE);
1393
1394		/* allocate the vm_objs to hold the pdpt, pde and pte pages */
1395
1396		if (NULL == (p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS))))
1397			panic("pmap_create pdpt obj");
1398
1399		if (NULL == (p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS))))
1400			panic("pmap_create pdpt obj");
1401
1402		if (NULL == (p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS))))
1403			panic("pmap_create pte obj");
1404
1405		/* uber space points to uber mapped kernel */
1406		s = splhigh();
1407		pml4p = pmap64_pml4(p, 0ULL);
1408		pmap_store_pte((pml4p+KERNEL_UBER_PML4_INDEX),*kernel_pmap->pm_pml4);
1409
1410
1411		if (!is_64bit) {
1412			while ((pdp = pmap64_pde(p, (uint64_t)HIGH_MEM_BASE)) == PD_ENTRY_NULL) {
1413				splx(s);
1414				pmap_expand_pdpt(p, (uint64_t)HIGH_MEM_BASE, PMAP_EXPAND_OPTIONS_NONE); /* need room for another pde entry */
1415				s = splhigh();
1416			}
1417			pmap_store_pte(pdp, high_shared_pde);
1418		}
1419		splx(s);
1420	}
1421
1422	PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1423		   (int) p, is_64bit, 0, 0, 0);
1424
1425	return(p);
1426}
1427
1428/*
1429 * The following routines implement the shared address optmization for 64-bit
1430 * users with a 4GB page zero.
1431 *
1432 * pmap_set_4GB_pagezero()
1433 *	is called in the exec and fork paths to mirror the kernel's
1434 *	mapping in the bottom 4G of the user's pmap. The task mapping changes
1435 *	from TASK_MAP_64BIT to TASK_MAP_64BIT_SHARED. This routine returns
1436 *	without doing anything if the -no_shared_cr3 boot-arg is set.
1437 *
1438 * pmap_clear_4GB_pagezero()
1439 *	is called in the exec/exit paths to undo this mirror. The task mapping
1440 *	reverts to TASK_MAP_64BIT. In addition, we switch to the kernel's
1441 *	CR3 by calling pmap_load_kernel_cr3().
1442 *
1443 * pmap_load_kernel_cr3()
1444 *	loads cr3 with the kernel's page table. In addition to being called
1445 * 	by pmap_clear_4GB_pagezero(), it is used both prior to teardown and
1446 *	when we go idle in the context of a shared map.
1447 *
1448 * Further notes on per-cpu data used:
1449 *
1450 *	cpu_kernel_cr3	is the cr3 for the kernel's pmap.
1451 *			This is loaded in a trampoline on entering the kernel
1452 *			from a 32-bit user (or non-shared-cr3 64-bit user).
1453 *	cpu_task_cr3	is the cr3 for the current thread.
1454 *			This is loaded in a trampoline as we exit the kernel.
1455 *	cpu_active_cr3	reflects the cr3 currently loaded.
1456 *			However, the low order bit is set when the
1457 *			processor is idle or interrupts are disabled
1458 *			while the system pmap lock is held. It is used by
1459 *			tlb shoot-down.
1460 *	cpu_task_map	indicates whether the task cr3 belongs to
1461 *			a 32-bit, a 64-bit or a 64-bit shared map.
1462 *			The latter allows the avoidance of the cr3 load
1463 *			on kernel entry and exit.
1464 *	cpu_tlb_invalid	set TRUE when a tlb flush is requested.
1465 *			If the cr3 is "inactive" (the cpu is idle or the
1466 *			system-wide pmap lock is held) this not serviced by
1467 *			an IPI but at time when the cr3 becomes "active".
1468 */
1469
1470void
1471pmap_set_4GB_pagezero(pmap_t p)
1472{
1473	pdpt_entry_t	*user_pdptp;
1474	pdpt_entry_t	*kern_pdptp;
1475
1476	assert(p->pm_task_map != TASK_MAP_32BIT);
1477
1478	/* Kernel-shared cr3 may be disabled by boot arg. */
1479	if (no_shared_cr3)
1480		return;
1481
1482	/*
1483	 * Set the bottom 4 3rd-level pte's to be the kernel's.
1484	 */
1485	PMAP_LOCK(p);
1486	while ((user_pdptp = pmap64_pdpt(p, 0x0)) == PDPT_ENTRY_NULL) {
1487		PMAP_UNLOCK(p);
1488		pmap_expand_pml4(p, 0x0, PMAP_EXPAND_OPTIONS_NONE);
1489		PMAP_LOCK(p);
1490	}
1491	kern_pdptp = kernel_pmap->pm_pdpt;
1492	pmap_store_pte(user_pdptp+0, *(kern_pdptp+0));
1493	pmap_store_pte(user_pdptp+1, *(kern_pdptp+1));
1494	pmap_store_pte(user_pdptp+2, *(kern_pdptp+2));
1495	pmap_store_pte(user_pdptp+3, *(kern_pdptp+3));
1496	p->pm_task_map = TASK_MAP_64BIT_SHARED;
1497	PMAP_UNLOCK(p);
1498}
1499
1500void
1501pmap_clear_4GB_pagezero(pmap_t p)
1502{
1503	pdpt_entry_t	*user_pdptp;
1504	boolean_t istate;
1505
1506	if (p->pm_task_map != TASK_MAP_64BIT_SHARED)
1507		return;
1508
1509	PMAP_LOCK(p);
1510
1511	p->pm_task_map = TASK_MAP_64BIT;
1512
1513	istate = ml_set_interrupts_enabled(FALSE);
1514
1515	if (current_cpu_datap()->cpu_task_map == TASK_MAP_64BIT_SHARED)
1516		current_cpu_datap()->cpu_task_map = TASK_MAP_64BIT;
1517
1518	pmap_load_kernel_cr3();
1519
1520	user_pdptp = pmap64_pdpt(p, 0x0);
1521	pmap_store_pte(user_pdptp+0, 0);
1522	pmap_store_pte(user_pdptp+1, 0);
1523	pmap_store_pte(user_pdptp+2, 0);
1524	pmap_store_pte(user_pdptp+3, 0);
1525
1526	ml_set_interrupts_enabled(istate);
1527
1528	PMAP_UNLOCK(p);
1529}
1530
1531void
1532pmap_load_kernel_cr3(void)
1533{
1534	uint64_t	kernel_cr3;
1535
1536	assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
1537
1538	/*
1539	 * Reload cr3 with the true kernel cr3.
1540	 */
1541	kernel_cr3 = current_cpu_datap()->cpu_kernel_cr3;
1542	set64_cr3(kernel_cr3);
1543	current_cpu_datap()->cpu_active_cr3 = kernel_cr3;
1544	current_cpu_datap()->cpu_tlb_invalid = FALSE;
1545	__asm__ volatile("mfence");
1546}
1547
1548/*
1549 *	Retire the given physical map from service.
1550 *	Should only be called if the map contains
1551 *	no valid mappings.
1552 */
1553
1554void
1555pmap_destroy(
1556	register pmap_t	p)
1557{
1558	register int		c;
1559
1560	if (p == PMAP_NULL)
1561		return;
1562
1563	PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START,
1564		   (int) p, 0, 0, 0, 0);
1565
1566	PMAP_LOCK(p);
1567
1568	c = --p->ref_count;
1569
1570	if (c == 0) {
1571		/*
1572		 * If some cpu is not using the physical pmap pointer that it
1573		 * is supposed to be (see set_dirbase), we might be using the
1574		 * pmap that is being destroyed! Make sure we are
1575		 * physically on the right pmap:
1576		 */
1577		PMAP_UPDATE_TLBS(p,
1578				 0x0ULL,
1579				 0xFFFFFFFFFFFFF000ULL);
1580	}
1581
1582	PMAP_UNLOCK(p);
1583
1584	if (c != 0) {
1585		PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1586			   (int) p, 1, 0, 0, 0);
1587	        return;	/* still in use */
1588	}
1589
1590	/*
1591	 *	Free the memory maps, then the
1592	 *	pmap structure.
1593	 */
1594	if (!cpu_64bit) {
1595		OSAddAtomic(-p->pm_obj->resident_page_count,  &inuse_ptepages_count);
1596		PMAP_ZINFO_PFREE(p, p->pm_obj->resident_page_count * PAGE_SIZE);
1597
1598		kmem_free(kernel_map, (vm_offset_t)p->dirbase, NBPTD);
1599		PMAP_ZINFO_SFREE(p, NBPTD);
1600
1601		zfree(pdpt_zone, (void *)p->pm_hold);
1602
1603		vm_object_deallocate(p->pm_obj);
1604	} else {
1605	        /* 64 bit */
1606	        int inuse_ptepages = 0;
1607
1608		/* free 64 bit mode structs */
1609		kmem_free(kernel_map, (vm_offset_t)p->pm_hold, PAGE_SIZE);
1610		PMAP_ZINFO_SFREE(p, PAGE_SIZE);
1611
1612		inuse_ptepages += p->pm_obj_pml4->resident_page_count;
1613		vm_object_deallocate(p->pm_obj_pml4);
1614
1615		inuse_ptepages += p->pm_obj_pdpt->resident_page_count;
1616		vm_object_deallocate(p->pm_obj_pdpt);
1617
1618		inuse_ptepages += p->pm_obj->resident_page_count;
1619		vm_object_deallocate(p->pm_obj);
1620
1621		OSAddAtomic(-(inuse_ptepages+1),  &inuse_ptepages_count);
1622		PMAP_ZINFO_PFREE(p, inuse_ptepages * PAGE_SIZE);
1623	}
1624	ledger_dereference(p->ledger);
1625
1626	zfree(pmap_zone, p);
1627
1628	PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1629		   0, 0, 0, 0, 0);
1630
1631}
1632
1633/*
1634 *	Add a reference to the specified pmap.
1635 */
1636
1637void
1638pmap_reference(
1639	register pmap_t	p)
1640{
1641
1642	if (p != PMAP_NULL) {
1643	        PMAP_LOCK(p);
1644		p->ref_count++;
1645		PMAP_UNLOCK(p);;
1646	}
1647}
1648
1649/*
1650 *	Remove phys addr if mapped in specified map
1651 *
1652 */
1653void
1654pmap_remove_some_phys(
1655	__unused pmap_t		map,
1656	__unused ppnum_t         pn)
1657{
1658
1659/* Implement to support working set code */
1660
1661}
1662
1663/*
1664 *	Set the physical protection on the
1665 *	specified range of this map as requested.
1666 *	Will not increase permissions.
1667 */
1668void
1669pmap_protect(
1670	pmap_t		map,
1671	vm_map_offset_t	sva,
1672	vm_map_offset_t	eva,
1673	vm_prot_t	prot)
1674{
1675	register pt_entry_t	*pde;
1676	register pt_entry_t	*spte, *epte;
1677	vm_map_offset_t		lva;
1678	vm_map_offset_t		orig_sva;
1679	boolean_t	set_NX;
1680	int		num_found = 0;
1681
1682	pmap_intr_assert();
1683
1684	if (map == PMAP_NULL)
1685		return;
1686
1687	if (prot == VM_PROT_NONE) {
1688		pmap_remove(map, sva, eva);
1689		return;
1690	}
1691
1692	PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START,
1693		   (int) map,
1694		   (int) (sva>>32), (int) sva,
1695		   (int) (eva>>32), (int) eva);
1696
1697	if ( (prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled )
1698	        set_NX = FALSE;
1699	else
1700	        set_NX = TRUE;
1701
1702	PMAP_LOCK(map);
1703
1704	orig_sva = sva;
1705	while (sva < eva) {
1706	    lva = (sva + pde_mapped_size) & ~(pde_mapped_size-1);
1707	    if (lva > eva)
1708		lva = eva;
1709	    pde = pmap_pde(map, sva);
1710	    if (pde && (*pde & INTEL_PTE_VALID)) {
1711	        spte = (pt_entry_t *)pmap_pte(map, (sva & ~(pde_mapped_size-1)));
1712		spte = &spte[ptenum(sva)];
1713		epte = &spte[intel_btop(lva-sva)];
1714
1715		while (spte < epte) {
1716
1717			if (*spte & INTEL_PTE_VALID) {
1718				if (prot & VM_PROT_WRITE)
1719					pmap_update_pte(spte, 0, INTEL_PTE_WRITE);
1720				else
1721					pmap_update_pte(spte, INTEL_PTE_WRITE, 0);
1722
1723				if (set_NX == TRUE)
1724					pmap_update_pte(spte,0, INTEL_PTE_NX);
1725				else
1726					pmap_update_pte(spte, INTEL_PTE_NX, 0);
1727
1728				num_found++;
1729			}
1730			spte++;
1731		}
1732	    }
1733	    sva = lva;
1734	}
1735	if (num_found)
1736	{
1737		PMAP_UPDATE_TLBS(map, orig_sva, eva);
1738	}
1739
1740	PMAP_UNLOCK(map);
1741
1742	PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END,
1743	    0, 0, 0, 0, 0);
1744
1745}
1746
1747/* Map a (possibly) autogenned block */
1748void
1749pmap_map_block(
1750	pmap_t		pmap,
1751	addr64_t	va,
1752	ppnum_t 	pa,
1753	uint32_t	size,
1754	vm_prot_t	prot,
1755	int		attr,
1756	__unused unsigned int	flags)
1757{
1758    uint32_t page;
1759
1760    for (page = 0; page < size; page++) {
1761	pmap_enter(pmap, va, pa, prot, VM_PROT_NONE, attr, TRUE);
1762	va += PAGE_SIZE;
1763	pa++;
1764    }
1765}
1766
1767/*
1768 *	Routine:	pmap_extract
1769 *	Function:
1770 *		Extract the physical page address associated
1771 *		with the given map/virtual_address pair.
1772 *     Change to shim for backwards compatibility but will not
1773 *     work for 64 bit systems.  Some old drivers that we cannot
1774 *     change need this.
1775 */
1776
1777vm_offset_t
1778pmap_extract(
1779	register pmap_t	pmap,
1780	vm_map_offset_t	vaddr)
1781{
1782        ppnum_t ppn;
1783	vm_offset_t paddr;
1784
1785	paddr = (vm_offset_t)0;
1786	ppn = pmap_find_phys(pmap, vaddr);
1787
1788	if (ppn) {
1789	        paddr = ((vm_offset_t)i386_ptob(ppn)) | ((vm_offset_t)vaddr & INTEL_OFFMASK);
1790	}
1791	return (paddr);
1792}
1793
1794kern_return_t
1795pmap_expand_pml4(
1796		 pmap_t map,
1797		 vm_map_offset_t vaddr,
1798		 __unused unsigned int options)
1799{
1800	register vm_page_t	m;
1801	register pmap_paddr_t	pa;
1802	uint64_t                i;
1803	spl_t			spl;
1804	ppnum_t                 pn;
1805	pml4_entry_t            *pml4p;
1806
1807	if (kernel_pmap == map) panic("expand kernel pml4");
1808
1809	spl = splhigh();
1810	pml4p = pmap64_pml4(map, vaddr);
1811	splx(spl);
1812	if (PML4_ENTRY_NULL == pml4p) panic("pmap_expand_pml4 no pml4p");
1813
1814	/*
1815	 *	Allocate a VM page for the pml4 page
1816	 */
1817	while ((m = vm_page_grab()) == VM_PAGE_NULL)
1818		VM_PAGE_WAIT();
1819
1820	/*
1821	 *	put the page into the pmap's obj list so it
1822	 *	can be found later.
1823	 */
1824	pn = m->phys_page;
1825	pa = i386_ptob(pn);
1826	i = pml4idx(map, vaddr);
1827
1828	/*
1829	 *	Zero the page.
1830	 */
1831	pmap_zero_page(pn);
1832
1833	vm_page_lockspin_queues();
1834	vm_page_wire(m);
1835	vm_page_unlock_queues();
1836
1837	OSAddAtomic(1,  &inuse_ptepages_count);
1838	OSAddAtomic64(1,  &alloc_ptepages_count);
1839	PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1840
1841	/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1842	vm_object_lock(map->pm_obj_pml4);
1843
1844	PMAP_LOCK(map);
1845	/*
1846	 *	See if someone else expanded us first
1847	 */
1848	if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) {
1849	        PMAP_UNLOCK(map);
1850		vm_object_unlock(map->pm_obj_pml4);
1851
1852		VM_PAGE_FREE(m);
1853
1854		OSAddAtomic(-1,  &inuse_ptepages_count);
1855		PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1856		return KERN_SUCCESS;
1857	}
1858	pmap_set_noencrypt(pn);
1859
1860#if 0 /* DEBUG */
1861       if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i)) {
1862	       panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1863		     map, map->pm_obj_pml4, vaddr, i);
1864       }
1865#endif
1866	vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i);
1867	vm_object_unlock(map->pm_obj_pml4);
1868
1869	/*
1870	 *	Set the page directory entry for this page table.
1871	 */
1872	pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */
1873
1874	pmap_store_pte(pml4p, pa_to_pte(pa)
1875				| INTEL_PTE_VALID
1876				| INTEL_PTE_USER
1877				| INTEL_PTE_WRITE);
1878
1879	PMAP_UNLOCK(map);
1880
1881	return KERN_SUCCESS;
1882}
1883
1884kern_return_t
1885pmap_expand_pdpt(pmap_t map, vm_map_offset_t vaddr, __unused unsigned int options)
1886{
1887	register vm_page_t	m;
1888	register pmap_paddr_t	pa;
1889	uint64_t                i;
1890	spl_t			spl;
1891	ppnum_t                 pn;
1892	pdpt_entry_t            *pdptp;
1893
1894	if (kernel_pmap == map) panic("expand kernel pdpt");
1895
1896	spl = splhigh();
1897	while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) {
1898	        splx(spl);
1899		pmap_expand_pml4(map, vaddr, PMAP_EXPAND_OPTIONS_NONE); /* need room for another pdpt entry */
1900		spl = splhigh();
1901	}
1902	splx(spl);
1903
1904	/*
1905	 *	Allocate a VM page for the pdpt page
1906	 */
1907	while ((m = vm_page_grab()) == VM_PAGE_NULL)
1908		VM_PAGE_WAIT();
1909
1910	/*
1911	 *	put the page into the pmap's obj list so it
1912	 *	can be found later.
1913	 */
1914	pn = m->phys_page;
1915	pa = i386_ptob(pn);
1916	i = pdptidx(map, vaddr);
1917
1918	/*
1919	 *	Zero the page.
1920	 */
1921	pmap_zero_page(pn);
1922
1923	vm_page_lockspin_queues();
1924	vm_page_wire(m);
1925	vm_page_unlock_queues();
1926
1927	OSAddAtomic(1,  &inuse_ptepages_count);
1928	OSAddAtomic64(1,  &alloc_ptepages_count);
1929	PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1930
1931	/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1932	vm_object_lock(map->pm_obj_pdpt);
1933
1934	PMAP_LOCK(map);
1935	/*
1936	 *	See if someone else expanded us first
1937	 */
1938	if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) {
1939		PMAP_UNLOCK(map);
1940		vm_object_unlock(map->pm_obj_pdpt);
1941
1942		VM_PAGE_FREE(m);
1943
1944		OSAddAtomic(-1,  &inuse_ptepages_count);
1945		PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1946		return KERN_SUCCESS;
1947	}
1948	pmap_set_noencrypt(pn);
1949
1950#if 0 /* DEBUG */
1951       if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i)) {
1952	       panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1953		     map, map->pm_obj_pdpt, vaddr, i);
1954       }
1955#endif
1956	vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i);
1957	vm_object_unlock(map->pm_obj_pdpt);
1958
1959	/*
1960	 *	Set the page directory entry for this page table.
1961	 */
1962	pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */
1963
1964	pmap_store_pte(pdptp, pa_to_pte(pa)
1965				| INTEL_PTE_VALID
1966				| INTEL_PTE_USER
1967				| INTEL_PTE_WRITE);
1968
1969	PMAP_UNLOCK(map);
1970
1971	return KERN_SUCCESS;
1972}
1973
1974
1975
1976/*
1977 *	Routine:	pmap_expand
1978 *
1979 *	Expands a pmap to be able to map the specified virtual address.
1980 *
1981 *	Allocates new virtual memory for the P0 or P1 portion of the
1982 *	pmap, then re-maps the physical pages that were in the old
1983 *	pmap to be in the new pmap.
1984 *
1985 *	Must be called with the pmap system and the pmap unlocked,
1986 *	since these must be unlocked to use vm_allocate or vm_deallocate.
1987 *	Thus it must be called in a loop that checks whether the map
1988 *	has been expanded enough.
1989 *	(We won't loop forever, since page tables aren't shrunk.)
1990 */
1991kern_return_t
1992pmap_expand(
1993	pmap_t		map,
1994	vm_map_offset_t	vaddr,
1995	__unused unsigned int options)
1996{
1997	pt_entry_t		*pdp;
1998	register vm_page_t	m;
1999	register pmap_paddr_t	pa;
2000	uint64_t                 i;
2001	spl_t			spl;
2002	ppnum_t                 pn;
2003
2004	/*
2005	 * if not the kernel map (while we are still compat kernel mode)
2006	 * and we are 64 bit, propagate expand upwards
2007	 */
2008
2009	if (cpu_64bit && (map != kernel_pmap)) {
2010	        spl = splhigh();
2011		while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) {
2012		        splx(spl);
2013			pmap_expand_pdpt(map, vaddr, PMAP_EXPAND_OPTIONS_NONE); /* need room for another pde entry */
2014			spl = splhigh();
2015		}
2016		splx(spl);
2017	}
2018
2019	/*
2020	 *	Allocate a VM page for the pde entries.
2021	 */
2022	while ((m = vm_page_grab()) == VM_PAGE_NULL)
2023		VM_PAGE_WAIT();
2024
2025	/*
2026	 *	put the page into the pmap's obj list so it
2027	 *	can be found later.
2028	 */
2029	pn = m->phys_page;
2030	pa = i386_ptob(pn);
2031	i = pdeidx(map, vaddr);
2032
2033	/*
2034	 *	Zero the page.
2035	 */
2036	pmap_zero_page(pn);
2037
2038	vm_page_lockspin_queues();
2039	vm_page_wire(m);
2040	vm_page_unlock_queues();
2041
2042	OSAddAtomic(1,  &inuse_ptepages_count);
2043	OSAddAtomic64(1,  &alloc_ptepages_count);
2044	PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
2045
2046	/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
2047	vm_object_lock(map->pm_obj);
2048
2049	PMAP_LOCK(map);
2050	/*
2051	 *	See if someone else expanded us first
2052	 */
2053
2054	if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) {
2055		PMAP_UNLOCK(map);
2056		vm_object_unlock(map->pm_obj);
2057
2058		VM_PAGE_FREE(m);
2059
2060		OSAddAtomic(-1,  &inuse_ptepages_count);
2061		PMAP_ZINFO_PFREE(map, PAGE_SIZE);
2062		return KERN_SUCCESS;
2063	}
2064	pmap_set_noencrypt(pn);
2065
2066#if 0 /* DEBUG */
2067       if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i)) {
2068	       panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
2069		     map, map->pm_obj, vaddr, i);
2070       }
2071#endif
2072	vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i);
2073	vm_object_unlock(map->pm_obj);
2074
2075	/*
2076	 * refetch while locked
2077	 */
2078
2079	pdp = pmap_pde(map, vaddr);
2080
2081	/*
2082	 *	Set the page directory entry for this page table.
2083	 */
2084	pmap_store_pte(pdp, pa_to_pte(pa)
2085				| INTEL_PTE_VALID
2086				| INTEL_PTE_USER
2087				| INTEL_PTE_WRITE);
2088
2089	PMAP_UNLOCK(map);
2090
2091	return KERN_SUCCESS;
2092}
2093
2094
2095/*
2096 * pmap_sync_page_data_phys(ppnum_t pa)
2097 *
2098 * Invalidates all of the instruction cache on a physical page and
2099 * pushes any dirty data from the data cache for the same physical page
2100 * Not required in i386.
2101 */
2102void
2103pmap_sync_page_data_phys(__unused ppnum_t pa)
2104{
2105	return;
2106}
2107
2108/*
2109 * pmap_sync_page_attributes_phys(ppnum_t pa)
2110 *
2111 * Write back and invalidate all cachelines on a physical page.
2112 */
2113void
2114pmap_sync_page_attributes_phys(ppnum_t pa)
2115{
2116	cache_flush_page_phys(pa);
2117}
2118
2119
2120
2121#ifdef CURRENTLY_UNUSED_AND_UNTESTED
2122
2123int	collect_ref;
2124int	collect_unref;
2125
2126/*
2127 *	Routine:	pmap_collect
2128 *	Function:
2129 *		Garbage collects the physical map system for
2130 *		pages which are no longer used.
2131 *		Success need not be guaranteed -- that is, there
2132 *		may well be pages which are not referenced, but
2133 *		others may be collected.
2134 *	Usage:
2135 *		Called by the pageout daemon when pages are scarce.
2136 */
2137void
2138pmap_collect(
2139	pmap_t 		p)
2140{
2141	register pt_entry_t	*pdp, *ptp;
2142	pt_entry_t		*eptp;
2143	int			wired;
2144
2145	if (p == PMAP_NULL)
2146		return;
2147
2148	if (p == kernel_pmap)
2149		return;
2150
2151	/*
2152	 *	Garbage collect map.
2153	 */
2154	PMAP_LOCK(p);
2155
2156	for (pdp = (pt_entry_t *)p->dirbase;
2157	     pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)];
2158	     pdp++)
2159	{
2160	   if (*pdp & INTEL_PTE_VALID) {
2161	      if(*pdp & INTEL_PTE_REF) {
2162		pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF);
2163		collect_ref++;
2164	      } else {
2165		collect_unref++;
2166		ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase));
2167		eptp = ptp + NPTEPG;
2168
2169		/*
2170		 * If the pte page has any wired mappings, we cannot
2171		 * free it.
2172		 */
2173		wired = 0;
2174		{
2175		    register pt_entry_t *ptep;
2176		    for (ptep = ptp; ptep < eptp; ptep++) {
2177			if (iswired(*ptep)) {
2178			    wired = 1;
2179			    break;
2180			}
2181		    }
2182		}
2183		if (!wired) {
2184		    /*
2185		     * Remove the virtual addresses mapped by this pte page.
2186		     */
2187		    pmap_remove_range(p,
2188				pdetova(pdp - (pt_entry_t *)p->dirbase),
2189				ptp,
2190				eptp);
2191
2192		    /*
2193		     * Invalidate the page directory pointer.
2194		     */
2195		    pmap_store_pte(pdp, 0x0);
2196
2197		    PMAP_UNLOCK(p);
2198
2199		    /*
2200		     * And free the pte page itself.
2201		     */
2202		    {
2203			register vm_page_t m;
2204
2205			vm_object_lock(p->pm_obj);
2206
2207			m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]));
2208			if (m == VM_PAGE_NULL)
2209			    panic("pmap_collect: pte page not in object");
2210
2211			vm_object_unlock(p->pm_obj);
2212
2213			VM_PAGE_FREE(m);
2214
2215			OSAddAtomic(-1,  &inuse_ptepages_count);
2216			PMAP_ZINFO_PFREE(map, PAGE_SIZE);
2217		    }
2218
2219		    PMAP_LOCK(p);
2220		}
2221	      }
2222	   }
2223	}
2224
2225	PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL);
2226	PMAP_UNLOCK(p);
2227	return;
2228
2229}
2230#endif
2231
2232
2233void
2234pmap_copy_page(ppnum_t src, ppnum_t dst)
2235{
2236  bcopy_phys((addr64_t)i386_ptob(src),
2237	     (addr64_t)i386_ptob(dst),
2238	     PAGE_SIZE);
2239}
2240
2241
2242/*
2243 *	Routine:	pmap_pageable
2244 *	Function:
2245 *		Make the specified pages (by pmap, offset)
2246 *		pageable (or not) as requested.
2247 *
2248 *		A page which is not pageable may not take
2249 *		a fault; therefore, its page table entry
2250 *		must remain valid for the duration.
2251 *
2252 *		This routine is merely advisory; pmap_enter
2253 *		will specify that these pages are to be wired
2254 *		down (or not) as appropriate.
2255 */
2256void
2257pmap_pageable(
2258	__unused pmap_t		pmap,
2259	__unused vm_map_offset_t	start_addr,
2260	__unused vm_map_offset_t	end_addr,
2261	__unused boolean_t	pageable)
2262{
2263#ifdef	lint
2264	pmap++; start_addr++; end_addr++; pageable++;
2265#endif	/* lint */
2266}
2267
2268void
2269invalidate_icache(__unused vm_offset_t	addr,
2270		  __unused unsigned	cnt,
2271		  __unused int		phys)
2272{
2273	return;
2274}
2275void
2276flush_dcache(__unused vm_offset_t	addr,
2277	     __unused unsigned		count,
2278	     __unused int		phys)
2279{
2280	return;
2281}
2282
2283#if CONFIG_DTRACE
2284/*
2285 * Constrain DTrace copyin/copyout actions
2286 */
2287extern kern_return_t dtrace_copyio_preflight(addr64_t);
2288extern kern_return_t dtrace_copyio_postflight(addr64_t);
2289
2290kern_return_t dtrace_copyio_preflight(__unused addr64_t va)
2291{
2292	thread_t thread = current_thread();
2293
2294	if (current_map() == kernel_map)
2295		return KERN_FAILURE;
2296	else if (thread->machine.specFlags & CopyIOActive)
2297		return KERN_FAILURE;
2298	else
2299		return KERN_SUCCESS;
2300}
2301
2302kern_return_t dtrace_copyio_postflight(__unused addr64_t va)
2303{
2304	return KERN_SUCCESS;
2305}
2306#endif /* CONFIG_DTRACE */
2307
2308#include <mach_vm_debug.h>
2309#if	MACH_VM_DEBUG
2310#include <vm/vm_debug.h>
2311
2312int
2313pmap_list_resident_pages(
2314	__unused pmap_t		pmap,
2315	__unused vm_offset_t	*listp,
2316	__unused int		space)
2317{
2318	return 0;
2319}
2320#endif	/* MACH_VM_DEBUG */
2321
2322
2323
2324/* temporary workaround */
2325boolean_t
2326coredumpok(__unused vm_map_t map, __unused vm_offset_t va)
2327{
2328#if 0
2329	pt_entry_t     *ptep;
2330
2331	ptep = pmap_pte(map->pmap, va);
2332	if (0 == ptep)
2333		return FALSE;
2334	return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED));
2335#else
2336	return TRUE;
2337#endif
2338}
2339
2340
2341boolean_t
2342phys_page_exists(
2343		 ppnum_t pn)
2344{
2345	assert(pn != vm_page_fictitious_addr);
2346
2347	if (!pmap_initialized)
2348		return (TRUE);
2349
2350	if (pn == vm_page_guard_addr)
2351		return FALSE;
2352
2353	if (!managed_page(ppn_to_pai(pn)))
2354		return (FALSE);
2355
2356	return TRUE;
2357}
2358
2359void
2360pmap_commpage32_init(vm_offset_t kernel_commpage, vm_offset_t user_commpage, int cnt)
2361{
2362	int i;
2363	pt_entry_t *opte, *npte;
2364	pt_entry_t pte;
2365	spl_t s;
2366
2367	for (i = 0; i < cnt; i++) {
2368	        s = splhigh();
2369		opte = pmap_pte(kernel_pmap, (vm_map_offset_t)kernel_commpage);
2370		if (0 == opte)
2371			panic("kernel_commpage");
2372		pte = *opte | INTEL_PTE_USER|INTEL_PTE_GLOBAL;
2373		pte &= ~INTEL_PTE_WRITE; // ensure read only
2374		npte = pmap_pte(kernel_pmap, (vm_map_offset_t)user_commpage);
2375		if (0 == npte)
2376			panic("user_commpage");
2377		pmap_store_pte(npte, pte);
2378		splx(s);
2379		kernel_commpage += INTEL_PGBYTES;
2380		user_commpage += INTEL_PGBYTES;
2381	}
2382}
2383
2384
2385#define PMAP_COMMPAGE64_CNT  (_COMM_PAGE64_AREA_USED/PAGE_SIZE)
2386pt_entry_t pmap_commpage64_ptes[PMAP_COMMPAGE64_CNT];
2387
2388void
2389pmap_commpage64_init(vm_offset_t kernel_commpage, __unused vm_map_offset_t user_commpage, int cnt)
2390{
2391    int i;
2392    pt_entry_t *kptep;
2393
2394    PMAP_LOCK(kernel_pmap);
2395
2396    for (i = 0; i < cnt; i++) {
2397        kptep = pmap_pte(kernel_pmap, (uint64_t)kernel_commpage + (i*PAGE_SIZE));
2398	if ((0 == kptep) || (0 == (*kptep & INTEL_PTE_VALID)))
2399	    panic("pmap_commpage64_init pte");
2400	pmap_commpage64_ptes[i] = ((*kptep & ~INTEL_PTE_WRITE) | INTEL_PTE_USER);
2401    }
2402    PMAP_UNLOCK(kernel_pmap);
2403}
2404
2405
2406static cpu_pmap_t		cpu_pmap_master;
2407
2408struct cpu_pmap *
2409pmap_cpu_alloc(boolean_t is_boot_cpu)
2410{
2411	int			ret;
2412	int			i;
2413	cpu_pmap_t		*cp;
2414	vm_offset_t		address;
2415	vm_map_address_t	mapaddr;
2416	vm_map_entry_t		entry;
2417	pt_entry_t		*pte;
2418
2419	if (is_boot_cpu) {
2420		cp = &cpu_pmap_master;
2421	} else {
2422		/*
2423		 * The per-cpu pmap data structure itself.
2424		 */
2425		ret = kmem_alloc(kernel_map,
2426				 (vm_offset_t *) &cp, sizeof(cpu_pmap_t));
2427		if (ret != KERN_SUCCESS) {
2428			printf("pmap_cpu_alloc() failed ret=%d\n", ret);
2429			return NULL;
2430		}
2431		bzero((void *)cp, sizeof(cpu_pmap_t));
2432
2433		/*
2434		 * The temporary windows used for copy/zero - see loose_ends.c
2435		 */
2436		ret = vm_map_find_space(kernel_map,
2437		    &mapaddr, PMAP_NWINDOWS*PAGE_SIZE, (vm_map_offset_t)0, 0, &entry);
2438		if (ret != KERN_SUCCESS) {
2439			printf("pmap_cpu_alloc() "
2440				"vm_map_find_space ret=%d\n", ret);
2441			pmap_cpu_free(cp);
2442			return NULL;
2443		}
2444		address = (vm_offset_t)mapaddr;
2445
2446		for (i = 0; i < PMAP_NWINDOWS; i++, address += PAGE_SIZE) {
2447		  spl_t s;
2448		        s = splhigh();
2449			while ((pte = pmap_pte(kernel_pmap, (vm_map_offset_t)address)) == 0)
2450				pmap_expand(kernel_pmap, (vm_map_offset_t)address, PMAP_EXPAND_OPTIONS_NONE);
2451			* (int *) pte = 0;
2452			cp->mapwindow[i].prv_CADDR = (caddr_t) address;
2453			cp->mapwindow[i].prv_CMAP = pte;
2454			splx(s);
2455		}
2456		vm_map_unlock(kernel_map);
2457	}
2458
2459	cp->pdpt_window_index = PMAP_PDPT_FIRST_WINDOW;
2460	cp->pde_window_index = PMAP_PDE_FIRST_WINDOW;
2461	cp->pte_window_index = PMAP_PTE_FIRST_WINDOW;
2462
2463	return cp;
2464}
2465
2466void
2467pmap_cpu_free(struct cpu_pmap *cp)
2468{
2469	if (cp != NULL && cp != &cpu_pmap_master) {
2470		kfree((void *) cp, sizeof(cpu_pmap_t));
2471	}
2472}
2473
2474mapwindow_t *
2475pmap_get_mapwindow(pt_entry_t pentry)
2476{
2477    mapwindow_t *mp;
2478    int i;
2479
2480    assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2481    /* fold in cache attributes for this physical page */
2482    pentry |= pmap_get_cache_attributes(i386_btop(pte_to_pa(pentry)));
2483    /*
2484     * Note: 0th map reserved for pmap_pte()
2485     */
2486    for (i = PMAP_NWINDOWS_FIRSTFREE; i < PMAP_NWINDOWS; i++) {
2487            mp = &current_cpu_datap()->cpu_pmap->mapwindow[i];
2488
2489	    if (*mp->prv_CMAP == 0) {
2490			pmap_store_pte(mp->prv_CMAP, pentry);
2491
2492			invlpg((uintptr_t)mp->prv_CADDR);
2493
2494			return (mp);
2495	    }
2496    }
2497    panic("pmap_get_mapwindow: no windows available");
2498
2499    return NULL;
2500}
2501
2502
2503void
2504pmap_put_mapwindow(mapwindow_t *mp)
2505{
2506    pmap_store_pte(mp->prv_CMAP, 0);
2507}
2508
2509void
2510pmap_switch(pmap_t tpmap)
2511{
2512        spl_t	s;
2513
2514	s = splhigh();		/* Make sure interruptions are disabled */
2515
2516	set_dirbase(tpmap, current_thread());
2517
2518	splx(s);
2519}
2520
2521
2522/*
2523 * disable no-execute capability on
2524 * the specified pmap
2525 */
2526void pmap_disable_NX(pmap_t pmap) {
2527
2528        pmap->nx_enabled = 0;
2529}
2530
2531void
2532pt_fake_zone_init(int zone_index)
2533{
2534	pt_fake_zone_index = zone_index;
2535}
2536
2537void
2538pt_fake_zone_info(int *count,
2539		  vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, vm_size_t *alloc_size,
2540		  uint64_t *sum_size, int *collectable, int *exhaustable, int *caller_acct)
2541{
2542        *count      = inuse_ptepages_count;
2543	*cur_size   = PAGE_SIZE * inuse_ptepages_count;
2544	*max_size   = PAGE_SIZE * (inuse_ptepages_count + vm_page_inactive_count + vm_page_active_count + vm_page_free_count);
2545	*elem_size  = PAGE_SIZE;
2546	*alloc_size = PAGE_SIZE;
2547	*sum_size   = alloc_ptepages_count * PAGE_SIZE;
2548
2549	*collectable = 1;
2550	*exhaustable = 0;
2551	*caller_acct = 1;
2552}
2553
2554vm_offset_t pmap_cpu_high_map_vaddr(int cpu, enum high_cpu_types e)
2555{
2556  enum high_fixed_addresses a;
2557  a = e + HIGH_CPU_END * cpu;
2558  return pmap_index_to_virt(HIGH_FIXED_CPUS_BEGIN + a);
2559}
2560
2561vm_offset_t pmap_high_map_vaddr(enum high_cpu_types e)
2562{
2563  return pmap_cpu_high_map_vaddr(cpu_number(), e);
2564}
2565
2566vm_offset_t pmap_high_map(pt_entry_t pte, enum high_cpu_types e)
2567{
2568  enum high_fixed_addresses a;
2569  vm_offset_t vaddr;
2570
2571  a = e + HIGH_CPU_END * cpu_number();
2572  vaddr = (vm_offset_t)pmap_index_to_virt(HIGH_FIXED_CPUS_BEGIN + a);
2573  pmap_store_pte(pte_unique_base + a, pte);
2574
2575  /* TLB flush for this page for this  cpu */
2576  invlpg((uintptr_t)vaddr);
2577
2578  return  vaddr;
2579}
2580
2581static inline void
2582pmap_cpuset_NMIPI(cpu_set cpu_mask) {
2583	unsigned int cpu, cpu_bit;
2584	uint64_t deadline;
2585
2586	for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2587		if (cpu_mask & cpu_bit)
2588			cpu_NMI_interrupt(cpu);
2589	}
2590	deadline = mach_absolute_time() + (((uint64_t)LockTimeOut) * 3);
2591	while (mach_absolute_time() < deadline)
2592		cpu_pause();
2593}
2594
2595/*
2596 * Called with pmap locked, we:
2597 *  - scan through per-cpu data to see which other cpus need to flush
2598 *  - send an IPI to each non-idle cpu to be flushed
2599 *  - wait for all to signal back that they are inactive or we see that
2600 *    they are in an interrupt handler or at a safe point
2601 *  - flush the local tlb is active for this pmap
2602 *  - return ... the caller will unlock the pmap
2603 */
2604void
2605pmap_flush_tlbs(pmap_t	pmap, vm_map_offset_t startv, vm_map_offset_t endv)
2606{
2607	unsigned int	cpu;
2608	unsigned int	cpu_bit;
2609	cpu_set		cpus_to_signal;
2610	unsigned int	my_cpu = cpu_number();
2611	pmap_paddr_t	pmap_cr3 = pmap->pm_cr3;
2612	boolean_t	flush_self = FALSE;
2613	uint64_t	deadline;
2614
2615	assert((processor_avail_count < 2) ||
2616	       (ml_get_interrupts_enabled() && get_preemption_level() != 0));
2617
2618	/*
2619	 * Scan other cpus for matching active or task CR3.
2620	 * For idle cpus (with no active map) we mark them invalid but
2621	 * don't signal -- they'll check as they go busy.
2622	 * Note: for the kernel pmap we look for 64-bit shared address maps.
2623	 */
2624	cpus_to_signal = 0;
2625	for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2626		if (!cpu_datap(cpu)->cpu_running)
2627			continue;
2628		if ((cpu_datap(cpu)->cpu_task_cr3 == pmap_cr3) ||
2629		    (CPU_GET_ACTIVE_CR3(cpu)      == pmap_cr3) ||
2630		    (pmap->pm_shared) ||
2631		    ((pmap == kernel_pmap) &&
2632		     (!CPU_CR3_IS_ACTIVE(cpu) ||
2633		      cpu_datap(cpu)->cpu_task_map == TASK_MAP_64BIT_SHARED))) {
2634			if (cpu == my_cpu) {
2635				flush_self = TRUE;
2636				continue;
2637			}
2638			cpu_datap(cpu)->cpu_tlb_invalid = TRUE;
2639			__asm__ volatile("mfence");
2640
2641			if (CPU_CR3_IS_ACTIVE(cpu)) {
2642				cpus_to_signal |= cpu_bit;
2643				i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
2644			}
2645		}
2646	}
2647
2648	PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_START,
2649		   (uintptr_t) pmap, cpus_to_signal, flush_self, startv, 0);
2650
2651	if (cpus_to_signal) {
2652		cpu_set	cpus_to_respond = cpus_to_signal;
2653
2654		deadline = mach_absolute_time() + LockTimeOut;
2655		/*
2656		 * Wait for those other cpus to acknowledge
2657		 */
2658		while (cpus_to_respond != 0) {
2659			long orig_acks = 0;
2660
2661			for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2662				if ((cpus_to_respond & cpu_bit) != 0) {
2663					if (!cpu_datap(cpu)->cpu_running ||
2664					    cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2665					    !CPU_CR3_IS_ACTIVE(cpu)) {
2666						cpus_to_respond &= ~cpu_bit;
2667					}
2668					cpu_pause();
2669				}
2670				if (cpus_to_respond == 0)
2671					break;
2672			}
2673
2674			if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2675				if (machine_timeout_suspended())
2676					continue;
2677				pmap_tlb_flush_timeout = TRUE;
2678				orig_acks = NMIPI_acks;
2679				pmap_cpuset_NMIPI(cpus_to_respond);
2680
2681				panic("TLB invalidation IPI timeout: "
2682				    "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2683				    cpus_to_respond, orig_acks, NMIPI_acks);
2684			}
2685		}
2686	}
2687	/*
2688	 * Flush local tlb if required.
2689	 * We need this flush even if the pmap being changed
2690	 * is the user map... in case we do a copyin/out
2691	 * before returning to user mode.
2692	 */
2693	if (flush_self)
2694		flush_tlb();
2695
2696	if ((pmap == kernel_pmap) && (flush_self != TRUE)) {
2697		panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap->pm_cr3, current_cpu_datap()->cpu_active_cr3, current_cpu_datap()->cpu_task_map);
2698	}
2699
2700	PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END,
2701		   (uintptr_t) pmap, cpus_to_signal, startv, endv, 0);
2702}
2703
2704void
2705process_pmap_updates(void)
2706{
2707	assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2708
2709	flush_tlb();
2710
2711	current_cpu_datap()->cpu_tlb_invalid = FALSE;
2712	__asm__ volatile("mfence");
2713}
2714
2715void
2716pmap_update_interrupt(void)
2717{
2718        PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START,
2719		   0, 0, 0, 0, 0);
2720
2721	process_pmap_updates();
2722
2723        PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END,
2724		   0, 0, 0, 0, 0);
2725}
2726#ifdef PMAP_DEBUG
2727void
2728pmap_dump(pmap_t p)
2729{
2730  int i;
2731
2732  kprintf("pmap 0x%x\n",p);
2733
2734  kprintf("  pm_cr3 0x%llx\n",p->pm_cr3);
2735  kprintf("  pm_pml4 0x%x\n",p->pm_pml4);
2736  kprintf("  pm_pdpt 0x%x\n",p->pm_pdpt);
2737
2738  kprintf("    pml4[0] 0x%llx\n",*p->pm_pml4);
2739  for (i=0;i<8;i++)
2740    kprintf("    pdpt[%d] 0x%llx\n",i, p->pm_pdpt[i]);
2741}
2742
2743void pmap_dump_wrap(void)
2744{
2745  pmap_dump(current_cpu_datap()->cpu_active_thread->task->map->pmap);
2746}
2747
2748void
2749dump_4GB_pdpt(pmap_t p)
2750{
2751	int		spl;
2752	pdpt_entry_t	*user_pdptp;
2753	pdpt_entry_t	*kern_pdptp;
2754	pdpt_entry_t	*pml4p;
2755
2756	spl = splhigh();
2757	while ((user_pdptp = pmap64_pdpt(p, 0x0)) == PDPT_ENTRY_NULL) {
2758		splx(spl);
2759		pmap_expand_pml4(p, 0x0, PMAP_EXPAND_OPTIONS_NONE);
2760		spl = splhigh();
2761	}
2762	kern_pdptp = kernel_pmap->pm_pdpt;
2763	if (kern_pdptp == NULL)
2764		panic("kern_pdptp == NULL");
2765	kprintf("dump_4GB_pdpt(%p)\n"
2766		"kern_pdptp=%p (phys=0x%016llx)\n"
2767		"\t 0x%08x: 0x%016llx\n"
2768		"\t 0x%08x: 0x%016llx\n"
2769		"\t 0x%08x: 0x%016llx\n"
2770		"\t 0x%08x: 0x%016llx\n"
2771		"\t 0x%08x: 0x%016llx\n"
2772		"user_pdptp=%p (phys=0x%016llx)\n"
2773		"\t 0x%08x: 0x%016llx\n"
2774		"\t 0x%08x: 0x%016llx\n"
2775		"\t 0x%08x: 0x%016llx\n"
2776		"\t 0x%08x: 0x%016llx\n"
2777		"\t 0x%08x: 0x%016llx\n",
2778		p, kern_pdptp, kvtophys(kern_pdptp),
2779		kern_pdptp+0, *(kern_pdptp+0),
2780		kern_pdptp+1, *(kern_pdptp+1),
2781		kern_pdptp+2, *(kern_pdptp+2),
2782		kern_pdptp+3, *(kern_pdptp+3),
2783		kern_pdptp+4, *(kern_pdptp+4),
2784		user_pdptp, kvtophys(user_pdptp),
2785		user_pdptp+0, *(user_pdptp+0),
2786		user_pdptp+1, *(user_pdptp+1),
2787		user_pdptp+2, *(user_pdptp+2),
2788		user_pdptp+3, *(user_pdptp+3),
2789		user_pdptp+4, *(user_pdptp+4));
2790	kprintf("user pm_cr3=0x%016llx pm_hold=0x%08x pm_pml4=0x%08x\n",
2791		p->pm_cr3, p->pm_hold, p->pm_pml4);
2792	pml4p = (pdpt_entry_t *)p->pm_hold;
2793	if (pml4p == NULL)
2794		panic("user pml4p == NULL");
2795	kprintf("\t 0x%08x: 0x%016llx\n"
2796		"\t 0x%08x: 0x%016llx\n",
2797		pml4p+0, *(pml4p),
2798		pml4p+KERNEL_UBER_PML4_INDEX, *(pml4p+KERNEL_UBER_PML4_INDEX));
2799	kprintf("kern pm_cr3=0x%016llx pm_hold=0x%08x pm_pml4=0x%08x\n",
2800		kernel_pmap->pm_cr3, kernel_pmap->pm_hold, kernel_pmap->pm_pml4);
2801	pml4p = (pdpt_entry_t *)kernel_pmap->pm_hold;
2802	if (pml4p == NULL)
2803		panic("kern pml4p == NULL");
2804	kprintf("\t 0x%08x: 0x%016llx\n"
2805		"\t 0x%08x: 0x%016llx\n",
2806		pml4p+0, *(pml4p),
2807		pml4p+511, *(pml4p+511));
2808	splx(spl);
2809}
2810
2811void dump_4GB_pdpt_thread(thread_t tp)
2812{
2813	dump_4GB_pdpt(tp->map->pmap);
2814}
2815
2816
2817#endif
2818