1/*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57/*
58 *	Default Pager.
59 *		Memory Object Management.
60 */
61
62#include "default_pager_internal.h"
63#include <default_pager/default_pager_object_server.h>
64#include <mach/memory_object_default_server.h>
65#include <mach/memory_object_control.h>
66#include <mach/memory_object_types.h>
67#include <mach/memory_object_server.h>
68#include <mach/upl.h>
69#include <mach/vm_map.h>
70#include <vm/memory_object.h>
71#include <vm/vm_pageout.h>
72#include <vm/vm_map.h>
73#include <vm/vm_protos.h>
74
75/* forward declaration */
76vstruct_t vs_object_create(dp_size_t size);
77
78/*
79 * List of all vstructs.  A specific vstruct is
80 * found directly via its port, this list is
81 * only used for monitoring purposes by the
82 * default_pager_object* calls and by ps_delete
83 * when abstract memory objects must be scanned
84 * to remove any live storage on a segment which
85 * is to be removed.
86 */
87struct vstruct_list_head	vstruct_list;
88
89__private_extern__ void
90vstruct_list_insert(
91	vstruct_t vs)
92{
93	VSL_LOCK();
94	queue_enter(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
95	vstruct_list.vsl_count++;
96	VSL_UNLOCK();
97}
98
99
100__private_extern__ void
101vstruct_list_delete(
102	vstruct_t vs)
103{
104	queue_remove(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
105	vstruct_list.vsl_count--;
106}
107
108/*
109 * We use the sequence numbers on requests to regulate
110 * our parallelism.  In general, we allow multiple reads and writes
111 * to proceed in parallel, with the exception that reads must
112 * wait for previous writes to finish.  (Because the kernel might
113 * generate a data-request for a page on the heels of a data-write
114 * for the same page, and we must avoid returning stale data.)
115 * terminate requests wait for proceeding reads and writes to finish.
116 */
117
118static unsigned int	default_pager_total = 0;		/* debugging */
119static unsigned int	default_pager_wait_seqno = 0;		/* debugging */
120static unsigned int	default_pager_wait_read = 0;		/* debugging */
121static unsigned int	default_pager_wait_write = 0;		/* debugging */
122
123__private_extern__ void
124vs_async_wait(
125	vstruct_t	vs)
126{
127
128	ASSERT(vs->vs_async_pending >= 0);
129	while (vs->vs_async_pending > 0) {
130		vs->vs_waiting_async = TRUE;
131		assert_wait(&vs->vs_async_pending, THREAD_UNINT);
132		VS_UNLOCK(vs);
133		thread_block(THREAD_CONTINUE_NULL);
134		VS_LOCK(vs);
135	}
136	ASSERT(vs->vs_async_pending == 0);
137}
138
139
140#if	PARALLEL
141/*
142 * Waits for correct sequence number.  Leaves pager locked.
143 *
144 * JMM - Sequence numbers guarantee ordering of requests generated
145 *	 by a single thread if the receiver is multithreaded and
146 *	 the interfaces are asynchronous (i.e. sender can generate
147 *	 more than one request before the first is received in the
148 *	 pager).  Normally, IPC would generate these number in that
149 *	 case.  But we are trying to avoid using IPC for the in-kernel
150 *	 scenario. Since these are actually invoked synchronously
151 *	 anyway (in-kernel), we can just fake the sequence number
152 *	 generation here (thus avoiding the dependence on IPC).
153 */
154__private_extern__ void
155vs_lock(
156	vstruct_t		vs)
157{
158	mach_port_seqno_t	seqno;
159
160	default_pager_total++;
161	VS_LOCK(vs);
162
163	seqno = vs->vs_next_seqno++;
164
165	while (vs->vs_seqno != seqno) {
166		default_pager_wait_seqno++;
167		vs->vs_waiting_seqno = TRUE;
168		assert_wait(&vs->vs_seqno, THREAD_UNINT);
169		VS_UNLOCK(vs);
170		thread_block(THREAD_CONTINUE_NULL);
171		VS_LOCK(vs);
172	}
173}
174
175/*
176 * Increments sequence number and unlocks pager.
177 */
178__private_extern__ void
179vs_unlock(vstruct_t vs)
180{
181	vs->vs_seqno++;
182	if (vs->vs_waiting_seqno) {
183		vs->vs_waiting_seqno = FALSE;
184		VS_UNLOCK(vs);
185		thread_wakeup(&vs->vs_seqno);
186		return;
187	}
188	VS_UNLOCK(vs);
189}
190
191/*
192 * Start a read - one more reader.  Pager must be locked.
193 */
194__private_extern__ void
195vs_start_read(
196	vstruct_t vs)
197{
198	vs->vs_readers++;
199}
200
201/*
202 * Wait for readers.  Unlocks and relocks pager if wait needed.
203 */
204__private_extern__ void
205vs_wait_for_readers(
206	vstruct_t vs)
207{
208	while (vs->vs_readers != 0) {
209		default_pager_wait_read++;
210		vs->vs_waiting_read = TRUE;
211		assert_wait(&vs->vs_readers, THREAD_UNINT);
212		VS_UNLOCK(vs);
213		thread_block(THREAD_CONTINUE_NULL);
214		VS_LOCK(vs);
215	}
216}
217
218/*
219 * Finish a read.  Pager is unlocked and returns unlocked.
220 */
221__private_extern__ void
222vs_finish_read(
223	vstruct_t vs)
224{
225	VS_LOCK(vs);
226	if (--vs->vs_readers == 0 && vs->vs_waiting_read) {
227		vs->vs_waiting_read = FALSE;
228		VS_UNLOCK(vs);
229		thread_wakeup(&vs->vs_readers);
230		return;
231	}
232	VS_UNLOCK(vs);
233}
234
235/*
236 * Start a write - one more writer.  Pager must be locked.
237 */
238__private_extern__ void
239vs_start_write(
240	vstruct_t vs)
241{
242	vs->vs_writers++;
243}
244
245/*
246 * Wait for writers.  Unlocks and relocks pager if wait needed.
247 */
248__private_extern__ void
249vs_wait_for_writers(
250	vstruct_t vs)
251{
252	while (vs->vs_writers != 0) {
253		default_pager_wait_write++;
254		vs->vs_waiting_write = TRUE;
255		assert_wait(&vs->vs_writers, THREAD_UNINT);
256		VS_UNLOCK(vs);
257		thread_block(THREAD_CONTINUE_NULL);
258		VS_LOCK(vs);
259	}
260	vs_async_wait(vs);
261}
262
263/* This is to be used for the transfer from segment code ONLY */
264/* The transfer code holds off vs destruction by keeping the  */
265/* vs_async_wait count non-zero.  It will not ocnflict with   */
266/* other writers on an async basis because it only writes on  */
267/* a cluster basis into fresh (as of sync time) cluster locations */
268
269__private_extern__ void
270vs_wait_for_sync_writers(
271        vstruct_t vs)
272{
273        while (vs->vs_writers != 0) {
274                default_pager_wait_write++;
275		vs->vs_waiting_write = TRUE;
276                assert_wait(&vs->vs_writers, THREAD_UNINT);
277                VS_UNLOCK(vs);
278                thread_block(THREAD_CONTINUE_NULL);
279                VS_LOCK(vs);
280        }
281}
282
283
284/*
285 * Finish a write.  Pager is unlocked and returns unlocked.
286 */
287__private_extern__ void
288vs_finish_write(
289	vstruct_t vs)
290{
291	VS_LOCK(vs);
292	if (--vs->vs_writers == 0 && vs->vs_waiting_write) {
293		vs->vs_waiting_write = FALSE;
294		VS_UNLOCK(vs);
295		thread_wakeup(&vs->vs_writers);
296		return;
297	}
298	VS_UNLOCK(vs);
299}
300#endif	/* PARALLEL */
301
302vstruct_t
303vs_object_create(
304	dp_size_t size)
305{
306	vstruct_t	vs;
307
308	/*
309	 * Allocate a vstruct. If there are any problems, then report them
310	 * to the console.
311	 */
312	vs = ps_vstruct_create(size);
313	if (vs == VSTRUCT_NULL) {
314		dprintf(("vs_object_create: unable to allocate %s\n",
315			 "-- either run swapon command or reboot"));
316		return VSTRUCT_NULL;
317	}
318
319	return vs;
320}
321
322#if 0
323void default_pager_add(vstruct_t, boolean_t);	/* forward */
324
325void
326default_pager_add(
327	vstruct_t vs,
328	boolean_t internal)
329{
330	memory_object_t		mem_obj = vs->vs_mem_obj;
331	mach_port_t		pset;
332	mach_port_mscount_t 	sync;
333	mach_port_t		previous;
334	kern_return_t		kr;
335	static char		here[] = "default_pager_add";
336
337	/*
338	 * The port currently has a make-send count of zero,
339	 * because either we just created the port or we just
340	 * received the port in a memory_object_create request.
341	 */
342
343	if (internal) {
344		/* possibly generate an immediate no-senders notification */
345		sync = 0;
346		pset = default_pager_internal_set;
347	} else {
348		/* delay notification till send right is created */
349		sync = 1;
350		pset = default_pager_external_set;
351	}
352
353	ip_lock(mem_obj);  /* unlocked in nsrequest below */
354	ipc_port_make_sonce_locked(mem_obj);
355	ipc_port_nsrequest(mem_obj, sync, mem_obj, &previous);
356}
357
358#endif
359
360const struct memory_object_pager_ops default_pager_ops = {
361	dp_memory_object_reference,
362	dp_memory_object_deallocate,
363	dp_memory_object_init,
364	dp_memory_object_terminate,
365	dp_memory_object_data_request,
366	dp_memory_object_data_return,
367	dp_memory_object_data_initialize,
368	dp_memory_object_data_unlock,
369	dp_memory_object_synchronize,
370	dp_memory_object_map,
371	dp_memory_object_last_unmap,
372	dp_memory_object_data_reclaim,
373	"default pager"
374};
375
376kern_return_t
377dp_memory_object_init(
378	memory_object_t		mem_obj,
379	memory_object_control_t	control,
380	__unused memory_object_cluster_size_t pager_page_size)
381{
382	vstruct_t		vs;
383
384	assert(pager_page_size == vm_page_size);
385
386	memory_object_control_reference(control);
387
388	vs_lookup(mem_obj, vs);
389	vs_lock(vs);
390
391	if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
392		Panic("bad request");
393
394	vs->vs_control = control;
395	vs_unlock(vs);
396
397	return KERN_SUCCESS;
398}
399
400kern_return_t
401dp_memory_object_synchronize(
402	memory_object_t		mem_obj,
403	memory_object_offset_t	offset,
404	memory_object_size_t		length,
405	__unused vm_sync_t		flags)
406{
407	vstruct_t	vs;
408
409	vs_lookup(mem_obj, vs);
410	vs_lock(vs);
411	vs_unlock(vs);
412
413	memory_object_synchronize_completed(vs->vs_control, offset, length);
414
415	return KERN_SUCCESS;
416}
417
418kern_return_t
419dp_memory_object_map(
420	__unused memory_object_t	mem_obj,
421	__unused vm_prot_t		prot)
422{
423	panic("dp_memory_object_map");
424	return KERN_FAILURE;
425}
426
427kern_return_t
428dp_memory_object_last_unmap(
429	__unused memory_object_t	mem_obj)
430{
431	panic("dp_memory_object_last_unmap");
432	return KERN_FAILURE;
433}
434
435kern_return_t
436dp_memory_object_data_reclaim(
437	memory_object_t		mem_obj,
438	boolean_t		reclaim_backing_store)
439{
440	vstruct_t		vs;
441
442	vs_lookup(mem_obj, vs);
443	for (;;) {
444		vs_lock(vs);
445		vs_async_wait(vs);
446		if (!vs->vs_xfer_pending) {
447			break;
448		}
449	}
450	vs->vs_xfer_pending = TRUE;
451	vs_unlock(vs);
452
453	ps_vstruct_reclaim(vs, TRUE, reclaim_backing_store);
454
455	vs_lock(vs);
456	vs->vs_xfer_pending = FALSE;
457	vs_unlock(vs);
458
459	return KERN_SUCCESS;
460}
461
462kern_return_t
463dp_memory_object_terminate(
464	memory_object_t		mem_obj)
465{
466	memory_object_control_t	control;
467	vstruct_t		vs;
468
469	/*
470	 * control port is a receive right, not a send right.
471	 */
472
473	vs_lookup(mem_obj, vs);
474	vs_lock(vs);
475
476	/*
477	 * Wait for read and write requests to terminate.
478	 */
479
480	vs_wait_for_readers(vs);
481	vs_wait_for_writers(vs);
482
483	/*
484	 * After memory_object_terminate both memory_object_init
485	 * and a no-senders notification are possible, so we need
486	 * to clean up our reference to the memory_object_control
487	 * to prepare for a new init.
488	 */
489
490	control = vs->vs_control;
491	vs->vs_control = MEMORY_OBJECT_CONTROL_NULL;
492
493	/* a bit of special case ugliness here.  Wakeup any waiting reads */
494	/* these data requests had to be removed from the seqno traffic   */
495	/* based on a performance bottleneck with large memory objects    */
496	/* the problem will right itself with the new component based     */
497	/* synchronous interface.  The new async will be able to return   */
498	/* failure during its sync phase.   In the mean time ... */
499
500	thread_wakeup(&vs->vs_writers);
501	thread_wakeup(&vs->vs_async_pending);
502
503	vs_unlock(vs);
504
505	/*
506	 * Now we deallocate our reference on the control.
507	 */
508	memory_object_control_deallocate(control);
509	return KERN_SUCCESS;
510}
511
512void
513dp_memory_object_reference(
514	memory_object_t		mem_obj)
515{
516	vstruct_t		vs;
517
518	vs_lookup_safe(mem_obj, vs);
519	if (vs == VSTRUCT_NULL)
520		return;
521
522	VS_LOCK(vs);
523	assert(vs->vs_references > 0);
524	vs->vs_references++;
525	VS_UNLOCK(vs);
526}
527
528void
529dp_memory_object_deallocate(
530	memory_object_t		mem_obj)
531{
532	vstruct_t		vs;
533	mach_port_seqno_t	seqno;
534
535	/*
536	 * Because we don't give out multiple first references
537	 * for a memory object, there can't be a race
538	 * between getting a deallocate call and creating
539	 * a new reference for the object.
540	 */
541
542	vs_lookup_safe(mem_obj, vs);
543	if (vs == VSTRUCT_NULL)
544		return;
545
546	VS_LOCK(vs);
547	if (--vs->vs_references > 0) {
548		VS_UNLOCK(vs);
549		return;
550	}
551
552	seqno = vs->vs_next_seqno++;
553	while (vs->vs_seqno != seqno) {
554		default_pager_wait_seqno++;
555		vs->vs_waiting_seqno = TRUE;
556		assert_wait(&vs->vs_seqno, THREAD_UNINT);
557		VS_UNLOCK(vs);
558		thread_block(THREAD_CONTINUE_NULL);
559		VS_LOCK(vs);
560	}
561
562	vs_async_wait(vs);	/* wait for pending async IO */
563
564	/* do not delete the vs structure until the referencing pointers */
565	/* in the vstruct list have been expunged */
566
567	/* get VSL_LOCK out of order by using TRY mechanism */
568	while(!VSL_LOCK_TRY()) {
569		VS_UNLOCK(vs);
570		VSL_LOCK();
571		VSL_UNLOCK();
572		VS_LOCK(vs);
573		vs_async_wait(vs);	/* wait for pending async IO */
574	}
575
576
577	/*
578	 * We shouldn't get a deallocation call
579	 * when the kernel has the object cached.
580	 */
581	if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
582		Panic("bad request");
583
584	/*
585	 * Unlock the pager (though there should be no one
586	 * waiting for it).
587	 */
588	VS_UNLOCK(vs);
589
590	/* Lock out paging segment removal for the duration of this */
591	/* call.  We are vulnerable to losing a paging segment we rely */
592	/* on as soon as we remove ourselves from the VSL and unlock */
593
594	/* Keep our thread from blocking on attempt to trigger backing */
595	/* store release */
596	backing_store_release_trigger_disable += 1;
597
598	/*
599	 * Remove the memory object port association, and then
600	 * the destroy the port itself.  We must remove the object
601	 * from the port list before deallocating the pager,
602	 * because of default_pager_objects.
603	 */
604	vstruct_list_delete(vs);
605	VSL_UNLOCK();
606
607	ps_vstruct_dealloc(vs);
608
609	VSL_LOCK();
610	backing_store_release_trigger_disable -= 1;
611	if(backing_store_release_trigger_disable == 0) {
612		thread_wakeup((event_t)&backing_store_release_trigger_disable);
613	}
614	VSL_UNLOCK();
615}
616
617kern_return_t
618dp_memory_object_data_request(
619	memory_object_t		mem_obj,
620	memory_object_offset_t	offset,
621	memory_object_cluster_size_t		length,
622	__unused vm_prot_t	protection_required,
623        memory_object_fault_info_t	fault_info)
624{
625	vstruct_t		vs;
626	kern_return_t		kr = KERN_SUCCESS;
627
628	GSTAT(global_stats.gs_pagein_calls++);
629
630
631	/* CDY at this moment vs_lookup panics when presented with the wrong */
632	/* port.  As we are expanding this pager to support user interfaces */
633	/* this should be changed to return kern_failure */
634	vs_lookup(mem_obj, vs);
635	vs_lock(vs);
636
637	/* We are going to relax the strict sequencing here for performance */
638	/* reasons.  We can do this because we know that the read and */
639	/* write threads are different and we rely on synchronization */
640	/* of read and write requests at the cache memory_object level */
641	/* break out wait_for_writers, all of this goes away when */
642	/* we get real control of seqno with the new component interface */
643
644	if (vs->vs_writers != 0) {
645		/* you can't hold on to the seqno and go */
646		/* to sleep like that */
647		vs_unlock(vs);  /* bump internal count of seqno */
648		VS_LOCK(vs);
649		while (vs->vs_writers != 0) {
650			default_pager_wait_write++;
651			vs->vs_waiting_write = TRUE;
652			assert_wait(&vs->vs_writers, THREAD_UNINT);
653			VS_UNLOCK(vs);
654			thread_block(THREAD_CONTINUE_NULL);
655			VS_LOCK(vs);
656			vs_async_wait(vs);
657		}
658		if(vs->vs_control == MEMORY_OBJECT_CONTROL_NULL) {
659			VS_UNLOCK(vs);
660			return KERN_FAILURE;
661		}
662		vs_start_read(vs);
663		VS_UNLOCK(vs);
664	} else {
665		vs_start_read(vs);
666		vs_unlock(vs);
667	}
668
669	/*
670	 * Request must be on a page boundary and a multiple of pages.
671	 */
672	if ((offset & vm_page_mask) != 0 || (length & vm_page_mask) != 0)
673		Panic("bad alignment");
674
675	assert((dp_offset_t) offset == offset);
676	kr = pvs_cluster_read(vs, (dp_offset_t) offset, length, fault_info);
677
678	/* Regular data requests have a non-zero length and always return KERN_SUCCESS.
679	   Their actual success is determined by the fact that they provide a page or not,
680	   i.e whether we call upl_commit() or upl_abort().  A length of 0 means that the
681	   caller is only asking if the pager has a copy of that page or not.  The answer to
682	   that question is provided by the return value.  KERN_SUCCESS means that the pager
683	   does have that page.
684	*/
685	if(length) {
686		kr = KERN_SUCCESS;
687	}
688
689	vs_finish_read(vs);
690
691	return kr;
692}
693
694/*
695 * memory_object_data_initialize: check whether we already have each page, and
696 * write it if we do not.  The implementation is far from optimized, and
697 * also assumes that the default_pager is single-threaded.
698 */
699/*  It is questionable whether or not a pager should decide what is relevant */
700/* and what is not in data sent from the kernel.  Data initialize has been */
701/* changed to copy back all data sent to it in preparation for its eventual */
702/* merge with data return.  It is the kernel that should decide what pages */
703/* to write back.  As of the writing of this note, this is indeed the case */
704/* the kernel writes back one page at a time through this interface */
705
706kern_return_t
707dp_memory_object_data_initialize(
708	memory_object_t		mem_obj,
709	memory_object_offset_t	offset,
710	memory_object_cluster_size_t		size)
711{
712	vstruct_t	vs;
713
714	DP_DEBUG(DEBUG_MO_EXTERNAL,
715		 ("mem_obj=0x%x,offset=0x%x,cnt=0x%x\n",
716		  (int)mem_obj, (int)offset, (int)size));
717	GSTAT(global_stats.gs_pages_init += atop_32(size));
718
719	vs_lookup(mem_obj, vs);
720	vs_lock(vs);
721	vs_start_write(vs);
722	vs_unlock(vs);
723
724	/*
725	 * Write the data via clustered writes. vs_cluster_write will
726	 * loop if the address range specified crosses cluster
727	 * boundaries.
728	 */
729	assert((upl_offset_t) offset == offset);
730	vs_cluster_write(vs, 0, (upl_offset_t)offset, size, FALSE, 0);
731
732	vs_finish_write(vs);
733
734	return KERN_SUCCESS;
735}
736
737kern_return_t
738dp_memory_object_data_unlock(
739	__unused memory_object_t		mem_obj,
740	__unused memory_object_offset_t	offset,
741	__unused memory_object_size_t		size,
742	__unused vm_prot_t		desired_access)
743{
744	Panic("dp_memory_object_data_unlock: illegal");
745	return KERN_FAILURE;
746}
747
748
749/*ARGSUSED8*/
750kern_return_t
751dp_memory_object_data_return(
752	memory_object_t		mem_obj,
753	memory_object_offset_t	offset,
754	memory_object_cluster_size_t			size,
755	__unused memory_object_offset_t	*resid_offset,
756	__unused int		*io_error,
757	__unused boolean_t	dirty,
758	__unused boolean_t	kernel_copy,
759	__unused int	upl_flags)
760{
761	vstruct_t	vs;
762
763	DP_DEBUG(DEBUG_MO_EXTERNAL,
764		 ("mem_obj=0x%x,offset=0x%x,size=0x%x\n",
765		  (int)mem_obj, (int)offset, (int)size));
766	GSTAT(global_stats.gs_pageout_calls++);
767
768	/* This routine is called by the pageout thread.  The pageout thread */
769	/* cannot be blocked by read activities unless the read activities   */
770	/* Therefore the grant of vs lock must be done on a try versus a      */
771	/* blocking basis.  The code below relies on the fact that the       */
772	/* interface is synchronous.  Should this interface be again async   */
773	/* for some type  of pager in the future the pages will have to be   */
774	/* returned through a separate, asynchronous path.		     */
775
776	vs_lookup(mem_obj, vs);
777
778        default_pager_total++;
779	if(!VS_TRY_LOCK(vs)) {
780		/* the call below will not be done by caller when we have */
781		/* a synchronous interface */
782		/* return KERN_LOCK_OWNED; */
783		upl_t		upl;
784		unsigned int	page_list_count = 0;
785		memory_object_super_upl_request(vs->vs_control,
786					(memory_object_offset_t)offset,
787					size, size,
788					&upl, NULL, &page_list_count,
789					UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
790					| UPL_NO_SYNC | UPL_COPYOUT_FROM);
791		upl_abort(upl,0);
792		upl_deallocate(upl);
793		return KERN_SUCCESS;
794	}
795
796	if ((vs->vs_seqno != vs->vs_next_seqno++)
797			|| (vs->vs_readers)
798			|| (vs->vs_xfer_pending)) {
799		upl_t		upl;
800		unsigned int	page_list_count = 0;
801
802		vs->vs_next_seqno--;
803                VS_UNLOCK(vs);
804
805		/* the call below will not be done by caller when we have */
806		/* a synchronous interface */
807		/* return KERN_LOCK_OWNED; */
808		memory_object_super_upl_request(vs->vs_control,
809                                (memory_object_offset_t)offset,
810				size, size,
811				&upl, NULL, &page_list_count,
812				UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
813					| UPL_NO_SYNC | UPL_COPYOUT_FROM);
814		upl_abort(upl,0);
815		upl_deallocate(upl);
816		return KERN_SUCCESS;
817	}
818
819	if ((size % vm_page_size) != 0)
820		Panic("bad alignment");
821
822	vs_start_write(vs);
823
824
825        vs->vs_async_pending += 1;  /* protect from backing store contraction */
826	vs_unlock(vs);
827
828	/*
829	 * Write the data via clustered writes. vs_cluster_write will
830	 * loop if the address range specified crosses cluster
831	 * boundaries.
832	 */
833	assert((upl_offset_t) offset == offset);
834	vs_cluster_write(vs, 0, (upl_offset_t) offset, size, FALSE, 0);
835
836	vs_finish_write(vs);
837
838	/* temporary, need a finer lock based on cluster */
839
840	VS_LOCK(vs);
841	vs->vs_async_pending -= 1;  /* release vs_async_wait */
842	if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
843		vs->vs_waiting_async = FALSE;
844		VS_UNLOCK(vs);
845		thread_wakeup(&vs->vs_async_pending);
846	} else {
847		VS_UNLOCK(vs);
848	}
849
850
851	return KERN_SUCCESS;
852}
853
854/*
855 * Routine:	default_pager_memory_object_create
856 * Purpose:
857 * 	Handle requests for memory objects from the
858 * 	kernel.
859 * Notes:
860 * 	Because we only give out the default memory
861 * 	manager port to the kernel, we don't have to
862 * 	be so paranoid about the contents.
863 */
864kern_return_t
865default_pager_memory_object_create(
866	__unused memory_object_default_t	dmm,
867	vm_size_t		new_size,
868	memory_object_t		*new_mem_obj)
869{
870	vstruct_t		vs;
871
872	assert(dmm == default_pager_object);
873
874	if ((dp_size_t) new_size != new_size) {
875		/* 32-bit overflow */
876		return KERN_INVALID_ARGUMENT;
877	}
878
879	vs = vs_object_create((dp_size_t) new_size);
880	if (vs == VSTRUCT_NULL)
881		return KERN_RESOURCE_SHORTAGE;
882
883	vs->vs_next_seqno = 0;
884
885	/*
886	 * Set up associations between this memory object
887	 * and this default_pager structure
888	 */
889
890	vs->vs_pager_ops = &default_pager_ops;
891	vs->vs_pager_header.io_bits = IKOT_MEMORY_OBJECT;
892
893	/*
894	 * After this, other threads might receive requests
895	 * for this memory object or find it in the port list.
896	 */
897
898	vstruct_list_insert(vs);
899	*new_mem_obj = vs_to_mem_obj(vs);
900	return KERN_SUCCESS;
901}
902
903/*
904 * Create an external object.
905 */
906kern_return_t
907default_pager_object_create(
908	default_pager_t default_pager,
909	vm_size_t	size,
910	memory_object_t	*mem_objp)
911{
912	vstruct_t	vs;
913
914	if (default_pager != default_pager_object)
915		return KERN_INVALID_ARGUMENT;
916
917	if ((dp_size_t) size != size) {
918		/* 32-bit overflow */
919		return KERN_INVALID_ARGUMENT;
920	}
921
922	vs = vs_object_create((dp_size_t) size);
923	if (vs == VSTRUCT_NULL)
924		return KERN_RESOURCE_SHORTAGE;
925
926	/*
927	 * Set up associations between the default pager
928	 * and this vstruct structure
929	 */
930	vs->vs_pager_ops = &default_pager_ops;
931	vstruct_list_insert(vs);
932	*mem_objp = vs_to_mem_obj(vs);
933	return KERN_SUCCESS;
934}
935
936kern_return_t
937default_pager_objects(
938	default_pager_t			default_pager,
939	default_pager_object_array_t	*objectsp,
940	mach_msg_type_number_t		*ocountp,
941	mach_port_array_t		*portsp,
942	mach_msg_type_number_t		*pcountp)
943{
944	vm_offset_t		oaddr = 0;	/* memory for objects */
945	vm_size_t		osize = 0;	/* current size */
946	default_pager_object_t	* objects;
947	unsigned int		opotential = 0;
948
949	vm_map_copy_t		pcopy = 0;	/* copy handle for pagers */
950	vm_size_t		psize = 0;	/* current size */
951	memory_object_t		* pagers;
952	unsigned int		ppotential = 0;
953
954	unsigned int		actual;
955	unsigned int		num_objects;
956	kern_return_t		kr;
957	vstruct_t		entry;
958
959	if (default_pager != default_pager_object)
960		return KERN_INVALID_ARGUMENT;
961
962	/*
963	 * We will send no more than this many
964	 */
965	actual = vstruct_list.vsl_count;
966
967	/*
968	 * Out out-of-line port arrays are simply kalloc'ed.
969	 */
970	psize = round_page(actual * sizeof (*pagers));
971	ppotential = (unsigned int) (psize / sizeof (*pagers));
972	pagers = (memory_object_t *)kalloc(psize);
973	if (0 == pagers)
974		return KERN_RESOURCE_SHORTAGE;
975
976	/*
977	 * returned out of line data must be allocated out
978	 * the ipc_kernel_map, wired down, filled in, and
979	 * then "copied in" as if it had been sent by a
980	 * user process.
981	 */
982	osize = round_page(actual * sizeof (*objects));
983	opotential = (unsigned int) (osize / sizeof (*objects));
984	kr = kmem_alloc(ipc_kernel_map, &oaddr, osize);
985	if (KERN_SUCCESS != kr) {
986		kfree(pagers, psize);
987		return KERN_RESOURCE_SHORTAGE;
988	}
989	objects = (default_pager_object_t *)oaddr;
990
991
992	/*
993	 * Now scan the list.
994	 */
995
996	VSL_LOCK();
997
998	num_objects = 0;
999	queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t, vs_links) {
1000
1001		memory_object_t			pager;
1002		vm_size_t			size;
1003
1004		if ((num_objects >= opotential) ||
1005		    (num_objects >= ppotential)) {
1006
1007			/*
1008			 * This should be rare.  In any case,
1009			 * we will only miss recent objects,
1010			 * because they are added at the end.
1011			 */
1012			break;
1013		}
1014
1015		/*
1016		 * Avoid interfering with normal operations
1017		 */
1018		if (!VS_MAP_TRY_LOCK(entry))
1019			goto not_this_one;
1020		size = ps_vstruct_allocated_size(entry);
1021		VS_MAP_UNLOCK(entry);
1022
1023		VS_LOCK(entry);
1024
1025		/*
1026		 * We need a reference for our caller.  Adding this
1027		 * reference through the linked list could race with
1028		 * destruction of the object.  If we find the object
1029		 * has no references, just give up on it.
1030		 */
1031		VS_LOCK(entry);
1032		if (entry->vs_references == 0) {
1033			VS_UNLOCK(entry);
1034			goto not_this_one;
1035		}
1036		pager = vs_to_mem_obj(entry);
1037		dp_memory_object_reference(pager);
1038		VS_UNLOCK(entry);
1039
1040		/* the arrays are wired, so no deadlock worries */
1041
1042		objects[num_objects].dpo_object = (vm_offset_t) entry;
1043		objects[num_objects].dpo_size = size;
1044		pagers [num_objects++] = pager;
1045		continue;
1046
1047	    not_this_one:
1048		/*
1049		 * Do not return garbage
1050		 */
1051		objects[num_objects].dpo_object = (vm_offset_t) 0;
1052		objects[num_objects].dpo_size = 0;
1053		pagers[num_objects++] = MEMORY_OBJECT_NULL;
1054
1055	}
1056
1057	VSL_UNLOCK();
1058
1059	/* clear out any excess allocation */
1060	while (num_objects < opotential) {
1061		objects[--opotential].dpo_object = (vm_offset_t) 0;
1062		objects[opotential].dpo_size = 0;
1063	}
1064	while (num_objects < ppotential) {
1065		pagers[--ppotential] = MEMORY_OBJECT_NULL;
1066	}
1067
1068	kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(oaddr),
1069			   vm_map_round_page(oaddr + osize), FALSE);
1070	assert(KERN_SUCCESS == kr);
1071	kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)oaddr,
1072			   (vm_map_size_t)osize, TRUE, &pcopy);
1073	assert(KERN_SUCCESS == kr);
1074
1075	*objectsp = (default_pager_object_array_t)objects;
1076	*ocountp = num_objects;
1077	*portsp = (mach_port_array_t)pcopy;
1078	*pcountp = num_objects;
1079
1080	return KERN_SUCCESS;
1081}
1082
1083kern_return_t
1084default_pager_object_pages(
1085	default_pager_t		default_pager,
1086	mach_port_t			memory_object,
1087	default_pager_page_array_t	*pagesp,
1088	mach_msg_type_number_t		*countp)
1089{
1090	vm_offset_t			addr = 0; /* memory for page offsets */
1091	vm_size_t			size = 0; /* current memory size */
1092	vm_map_copy_t			copy;
1093	default_pager_page_t		* pages = 0;
1094	unsigned int			potential;
1095	unsigned int			actual;
1096	kern_return_t			kr;
1097	memory_object_t			object;
1098
1099	if (default_pager != default_pager_object)
1100		return KERN_INVALID_ARGUMENT;
1101
1102	object = (memory_object_t) memory_object;
1103
1104	potential = 0;
1105	for (;;) {
1106		vstruct_t	entry;
1107
1108		VSL_LOCK();
1109		queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t,
1110			      vs_links) {
1111			VS_LOCK(entry);
1112			if (vs_to_mem_obj(entry) == object) {
1113				VSL_UNLOCK();
1114				goto found_object;
1115			}
1116			VS_UNLOCK(entry);
1117		}
1118		VSL_UNLOCK();
1119
1120		/* did not find the object */
1121		if (0 != addr)
1122			kmem_free(ipc_kernel_map, addr, size);
1123
1124		return KERN_INVALID_ARGUMENT;
1125
1126	    found_object:
1127
1128		if (!VS_MAP_TRY_LOCK(entry)) {
1129			/* oh well bad luck */
1130			int wresult;
1131
1132			VS_UNLOCK(entry);
1133
1134			assert_wait_timeout((event_t)assert_wait_timeout, THREAD_UNINT, 1, 1000*NSEC_PER_USEC);
1135			wresult = thread_block(THREAD_CONTINUE_NULL);
1136			assert(wresult == THREAD_TIMED_OUT);
1137			continue;
1138		}
1139
1140		actual = ps_vstruct_allocated_pages(entry, pages, potential);
1141		VS_MAP_UNLOCK(entry);
1142		VS_UNLOCK(entry);
1143
1144		if (actual <= potential)
1145			break;
1146
1147		/* allocate more memory */
1148		if (0 != addr)
1149			kmem_free(ipc_kernel_map, addr, size);
1150
1151		size = round_page(actual * sizeof (*pages));
1152		kr = kmem_alloc(ipc_kernel_map, &addr, size);
1153		if (KERN_SUCCESS != kr)
1154			return KERN_RESOURCE_SHORTAGE;
1155
1156		pages = (default_pager_page_t *)addr;
1157		potential = (unsigned int) (size / sizeof (*pages));
1158	}
1159
1160	/*
1161	 * Clear unused memory.
1162	 */
1163	while (actual < potential)
1164		pages[--potential].dpp_offset = 0;
1165
1166	kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr),
1167			   vm_map_round_page(addr + size), FALSE);
1168	assert(KERN_SUCCESS == kr);
1169	kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
1170			   (vm_map_size_t)size, TRUE, &copy);
1171	assert(KERN_SUCCESS == kr);
1172
1173
1174	*pagesp = (default_pager_page_array_t)copy;
1175	*countp = actual;
1176	return KERN_SUCCESS;
1177}
1178