1/*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28#ifndef _IOMEMORYDESCRIPTOR_H
29#define _IOMEMORYDESCRIPTOR_H
30
31#include <sys/cdefs.h>
32
33#include <IOKit/IOTypes.h>
34#include <IOKit/IOLocks.h>
35#include <libkern/c++/OSContainers.h>
36
37#include <mach/memory_object_types.h>
38
39class IOMemoryMap;
40class IOMapper;
41class IOService;
42
43/*
44 * Direction of transfer, with respect to the described memory.
45 */
46#ifdef __LP64__
47enum
48#else /* !__LP64__ */
49enum IODirection
50#endif /* !__LP64__ */
51{
52    kIODirectionNone  = 0x0,	//                    same as VM_PROT_NONE
53    kIODirectionIn    = 0x1,	// User land 'read',  same as VM_PROT_READ
54    kIODirectionOut   = 0x2,	// User land 'write', same as VM_PROT_WRITE
55    kIODirectionOutIn = kIODirectionOut | kIODirectionIn,
56    kIODirectionInOut = kIODirectionIn  | kIODirectionOut
57};
58#ifdef __LP64__
59typedef IOOptionBits IODirection;
60#endif /* __LP64__ */
61
62/*
63 * IOOptionBits used in the withOptions variant
64 */
65enum {
66    kIOMemoryDirectionMask	= 0x00000007,
67#ifdef XNU_KERNEL_PRIVATE
68    kIOMemoryAutoPrepare	= 0x00000008,	// Shared with Buffer MD
69#endif
70
71    kIOMemoryTypeVirtual	= 0x00000010,
72    kIOMemoryTypePhysical	= 0x00000020,
73    kIOMemoryTypeUPL		= 0x00000030,
74    kIOMemoryTypePersistentMD	= 0x00000040,	// Persistent Memory Descriptor
75    kIOMemoryTypeUIO		= 0x00000050,
76#ifdef __LP64__
77    kIOMemoryTypeVirtual64	= kIOMemoryTypeVirtual,
78    kIOMemoryTypePhysical64	= kIOMemoryTypePhysical,
79#else /* !__LP64__ */
80    kIOMemoryTypeVirtual64	= 0x00000060,
81    kIOMemoryTypePhysical64	= 0x00000070,
82#endif /* !__LP64__ */
83    kIOMemoryTypeMask		= 0x000000f0,
84
85    kIOMemoryAsReference	= 0x00000100,
86    kIOMemoryBufferPageable	= 0x00000400,
87    kIOMemoryMapperNone		= 0x00000800,	// Shared with Buffer MD
88    kIOMemoryHostOnly           = 0x00001000,   // Never DMA accessible
89#ifdef XNU_KERNEL_PRIVATE
90    kIOMemoryRedirected		= 0x00004000,
91    kIOMemoryPreparedReadOnly	= 0x00008000,
92#endif
93    kIOMemoryPersistent		= 0x00010000,
94#ifdef XNU_KERNEL_PRIVATE
95    kIOMemoryReserved6156215	= 0x00020000,
96#endif
97    kIOMemoryThreadSafe		= 0x00100000,	// Shared with Buffer MD
98    kIOMemoryClearEncrypt	= 0x00200000,	// Shared with Buffer MD
99};
100
101#define kIOMapperSystem	((IOMapper *) 0)
102
103enum
104{
105    kIOMemoryPurgeableKeepCurrent = 1,
106    kIOMemoryPurgeableNonVolatile = 2,
107    kIOMemoryPurgeableVolatile    = 3,
108    kIOMemoryPurgeableEmpty       = 4
109};
110enum
111{
112    kIOMemoryIncoherentIOFlush	 = 1,
113    kIOMemoryIncoherentIOStore	 = 2,
114
115    kIOMemoryClearEncrypted      = 50,
116    kIOMemorySetEncrypted        = 51,
117};
118
119#define	IOMEMORYDESCRIPTOR_SUPPORTS_DMACOMMAND	1
120
121struct IODMAMapSpecification
122{
123	uint64_t    alignment;
124	IOService * device;
125	uint32_t    options;
126	uint8_t     numAddressBits;
127	uint8_t     resvA[3];
128	uint32_t    resvB[4];
129};
130
131enum
132{
133    kIODMAMapWriteAccess          = 0x00000002,
134    kIODMAMapPhysicallyContiguous = 0x00000010,
135    kIODMAMapDeviceMemory         = 0x00000020,
136    kIODMAMapPagingPath           = 0x00000040,
137    kIODMAMapIdentityMap          = 0x00000080,
138};
139
140
141enum
142{
143    kIOPreparationIDUnprepared = 0,
144    kIOPreparationIDUnsupported = 1,
145    kIOPreparationIDAlwaysPrepared = 2,
146};
147
148/*! @class IOMemoryDescriptor : public OSObject
149    @abstract An abstract base class defining common methods for describing physical or virtual memory.
150    @discussion The IOMemoryDescriptor object represents a buffer or range of memory, specified as one or more physical or virtual address ranges. It contains methods to return the memory's physically contiguous segments (fragments), for use with the IOMemoryCursor, and methods to map the memory into any address space with caching and placed mapping options. */
151
152class IOMemoryDescriptor : public OSObject
153{
154    friend class IOMemoryMap;
155
156    OSDeclareDefaultStructors(IOMemoryDescriptor);
157
158protected:
159
160/*! @var reserved
161    Reserved for future use.  (Internal use only)  */
162    struct IOMemoryDescriptorReserved * reserved;
163
164protected:
165    OSSet *		_mappings;
166    IOOptionBits 	_flags;
167    void *		_memEntry;
168
169#ifdef __LP64__
170    uint64_t		__iomd_reserved1;
171    uint64_t		__iomd_reserved2;
172    uint64_t		__iomd_reserved3;
173    uint64_t		__iomd_reserved4;
174#else /* !__LP64__ */
175    IODirection         _direction;        /* use _flags instead */
176#endif /* !__LP64__ */
177    IOByteCount         _length;           /* length of all ranges */
178    IOOptionBits 	_tag;
179
180public:
181typedef IOOptionBits DMACommandOps;
182#ifndef __LP64__
183    virtual IOPhysicalAddress getSourceSegment( IOByteCount offset,
184						IOByteCount * length ) APPLE_KEXT_DEPRECATED;
185#endif /* !__LP64__ */
186
187/*! @function initWithOptions
188    @abstract Master initialiser for all variants of memory descriptors.  For a more complete description see IOMemoryDescriptor::withOptions.
189    @discussion Note this function can be used to re-init a previously created memory descriptor.
190    @result true on success, false on failure. */
191    virtual bool initWithOptions(void *		buffers,
192                                 UInt32		count,
193                                 UInt32		offset,
194                                 task_t		task,
195                                 IOOptionBits	options,
196                                 IOMapper *	mapper = kIOMapperSystem);
197
198#ifndef __LP64__
199    virtual addr64_t getPhysicalSegment64( IOByteCount offset,
200                                            IOByteCount * length ) APPLE_KEXT_DEPRECATED; /* use getPhysicalSegment() and kIOMemoryMapperNone instead */
201#endif /* !__LP64__ */
202
203/*! @function setPurgeable
204    @abstract Control the purgeable status of a memory descriptors memory.
205    @discussion Buffers may be allocated with the ability to have their purgeable status changed - IOBufferMemoryDescriptor with the kIOMemoryPurgeable option, VM_FLAGS_PURGEABLE may be passed to vm_allocate() in user space to allocate such buffers. The purgeable status of such a buffer may be controlled with setPurgeable(). The process of making a purgeable memory descriptor non-volatile and determining its previous state is atomic - if a purgeable memory descriptor is made nonvolatile and the old state is returned as kIOMemoryPurgeableVolatile, then the memory's previous contents are completely intact and will remain so until the memory is made volatile again.  If the old state is returned as kIOMemoryPurgeableEmpty then the memory was reclaimed while it was in a volatile state and its previous contents have been lost.
206    @param newState - the desired new purgeable state of the memory:<br>
207    kIOMemoryPurgeableKeepCurrent - make no changes to the memory's purgeable state.<br>
208    kIOMemoryPurgeableVolatile    - make the memory volatile - the memory may be reclaimed by the VM system without saving its contents to backing store.<br>
209    kIOMemoryPurgeableNonVolatile - make the memory nonvolatile - the memory is treated as with usual allocations and must be saved to backing store if paged.<br>
210    kIOMemoryPurgeableEmpty       - make the memory volatile, and discard any pages allocated to it.
211    @param oldState - if non-NULL, the previous purgeable state of the memory is returned here:<br>
212    kIOMemoryPurgeableNonVolatile - the memory was nonvolatile.<br>
213    kIOMemoryPurgeableVolatile    - the memory was volatile but its content has not been discarded by the VM system.<br>
214    kIOMemoryPurgeableEmpty       - the memory was volatile and has been discarded by the VM system.<br>
215    @result An IOReturn code. */
216
217    virtual IOReturn setPurgeable( IOOptionBits newState,
218                                    IOOptionBits * oldState );
219
220/*! @function performOperation
221    @abstract Perform an operation on the memory descriptor's memory.
222    @discussion This method performs some operation on a range of the memory descriptor's memory. When a memory descriptor's memory is not mapped, it should be more efficient to use this method than mapping the memory to perform the operation virtually.
223    @param options The operation to perform on the memory:<br>
224    kIOMemoryIncoherentIOFlush - pass this option to store to memory and flush any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.<br>
225    kIOMemoryIncoherentIOStore - pass this option to store to memory any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.
226    @param offset A byte offset into the memory descriptor's memory.
227    @param length The length of the data range.
228    @result An IOReturn code. */
229
230    virtual IOReturn performOperation( IOOptionBits options,
231                                        IOByteCount offset, IOByteCount length );
232
233    // Used for dedicated communications for IODMACommand
234    virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
235
236/*! @function getPhysicalSegment
237    @abstract Break a memory descriptor into its physically contiguous segments.
238    @discussion This method returns the physical address of the byte at the given offset into the memory, and optionally the length of the physically contiguous segment from that offset.
239    @param offset A byte offset into the memory whose physical address to return.
240    @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
241    @result A physical address, or zero if the offset is beyond the length of the memory. */
242
243#ifdef __LP64__
244    virtual addr64_t getPhysicalSegment( IOByteCount   offset,
245                                         IOByteCount * length,
246                                         IOOptionBits  options = 0 ) = 0;
247#else /* !__LP64__ */
248    virtual addr64_t getPhysicalSegment( IOByteCount   offset,
249                                         IOByteCount * length,
250                                         IOOptionBits  options );
251#endif /* !__LP64__ */
252
253    virtual uint64_t getPreparationID( void );
254    void             setPreparationID( void );
255
256#ifdef XNU_KERNEL_PRIVATE
257    IOMemoryDescriptorReserved * getKernelReserved( void );
258    IOReturn dmaMap(
259	IOMapper                    * mapper,
260	const IODMAMapSpecification * mapSpec,
261	uint64_t                      offset,
262	uint64_t                      length,
263	uint64_t                    * address,
264	ppnum_t                     * mapPages);
265#endif
266
267private:
268    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 0);
269#ifdef __LP64__
270    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 1);
271    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 2);
272    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 3);
273    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 4);
274    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 5);
275    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 6);
276    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 7);
277#else /* !__LP64__ */
278    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 1);
279    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 2);
280    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 3);
281    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 4);
282    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 5);
283    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 6);
284    OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 7);
285#endif /* !__LP64__ */
286    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 8);
287    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 9);
288    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 10);
289    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 11);
290    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 12);
291    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 13);
292    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 14);
293    OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 15);
294
295protected:
296    virtual void free();
297public:
298    static void initialize( void );
299
300public:
301/*! @function withAddress
302    @abstract Create an IOMemoryDescriptor to describe one virtual range of the kernel task.
303    @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the kernel map.  This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
304    @param address The virtual address of the first byte in the memory.
305    @param withLength The length of memory.
306    @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
307    @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
308
309    static IOMemoryDescriptor * withAddress(void *       address,
310                                            IOByteCount  withLength,
311                                            IODirection  withDirection);
312
313#ifndef __LP64__
314    static IOMemoryDescriptor * withAddress(IOVirtualAddress address,
315                                            IOByteCount  withLength,
316                                            IODirection  withDirection,
317                                            task_t       withTask) APPLE_KEXT_DEPRECATED; /* use withAddressRange() and prepare() instead */
318#endif /* !__LP64__ */
319
320/*! @function withPhysicalAddress
321    @abstract Create an IOMemoryDescriptor to describe one physical range.
322    @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single physical memory range.
323    @param address The physical address of the first byte in the memory.
324    @param withLength The length of memory.
325    @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
326    @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
327
328    static IOMemoryDescriptor * withPhysicalAddress(
329				IOPhysicalAddress	address,
330				IOByteCount		withLength,
331				IODirection      	withDirection );
332
333#ifndef __LP64__
334     static IOMemoryDescriptor * withRanges(IOVirtualRange * ranges,
335                                            UInt32           withCount,
336                                            IODirection      withDirection,
337                                            task_t           withTask,
338                                            bool             asReference = false) APPLE_KEXT_DEPRECATED; /* use withAddressRanges() instead */
339#endif /* !__LP64__ */
340
341/*! @function withAddressRange
342    @abstract Create an IOMemoryDescriptor to describe one virtual range of the specified map.
343    @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map.  This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
344    @param address The virtual address of the first byte in the memory.
345    @param withLength The length of memory.
346    @param options
347        kIOMemoryDirectionMask (options:direction)	This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
348    @param task The task the virtual ranges are mapped into. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api. The task argument may be NULL to specify memory by physical address.
349    @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
350
351    static IOMemoryDescriptor * withAddressRange(
352					mach_vm_address_t address,
353					mach_vm_size_t	  length,
354					IOOptionBits      options,
355					task_t            task);
356
357/*! @function withAddressRanges
358    @abstract Create an IOMemoryDescriptor to describe one or more virtual ranges.
359    @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task.  This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
360    @param ranges An array of IOAddressRange structures which specify the virtual ranges in the specified map which make up the memory to be described. IOAddressRange is the 64bit version of IOVirtualRange.
361    @param rangeCount The member count of the ranges array.
362    @param options
363        kIOMemoryDirectionMask (options:direction)	This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
364        kIOMemoryAsReference	For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory.  This is an optimisation to try to minimise unnecessary allocations.
365    @param task The task each of the virtual ranges are mapped into. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api. The task argument may be NULL to specify memory by physical address.
366    @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
367
368    static IOMemoryDescriptor * withAddressRanges(
369					IOAddressRange * ranges,
370					UInt32           rangeCount,
371					IOOptionBits     options,
372					task_t           task);
373
374/*! @function withOptions
375    @abstract Master initialiser for all variants of memory descriptors.
376    @discussion This method creates and initializes an IOMemoryDescriptor for memory it has three main variants: Virtual, Physical & mach UPL.  These variants are selected with the options parameter, see below.  This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
377
378
379    @param buffers A pointer to an array of IOAddressRange when options:type is kIOMemoryTypeVirtual64 or kIOMemoryTypePhysical64 or a 64bit kernel. For type UPL it is a upl_t returned by the mach/memory_object_types.h apis, primarily used internally by the UBC. IOVirtualRanges or IOPhysicalRanges are 32 bit only types for use when options:type is kIOMemoryTypeVirtual or kIOMemoryTypePhysical on 32bit kernels.
380
381    @param count options:type = Virtual or Physical count contains a count of the number of entires in the buffers array.  For options:type = UPL this field contains a total length.
382
383    @param offset Only used when options:type = UPL, in which case this field contains an offset for the memory within the buffers upl.
384
385    @param task Only used options:type = Virtual, The task each of the virtual ranges are mapped into.
386
387    @param options
388        kIOMemoryDirectionMask (options:direction)	This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
389        kIOMemoryTypeMask (options:type)	kIOMemoryTypeVirtual64, kIOMemoryTypeVirtual, kIOMemoryTypePhysical64, kIOMemoryTypePhysical, kIOMemoryTypeUPL Indicates that what type of memory basic memory descriptor to use.  This sub-field also controls the interpretation of the buffers, count, offset & task parameters.
390        kIOMemoryAsReference	For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory.  This is an optimisation to try to minimise unnecessary allocations.
391        kIOMemoryBufferPageable	Only used by the IOBufferMemoryDescriptor as an indication that the kernel virtual memory is in fact pageable and we need to use the kernel pageable submap rather than the default map.
392
393    @param mapper Which IOMapper should be used to map the in-memory physical addresses into I/O space addresses.  Defaults to 0 which indicates that the system mapper is to be used, if present.
394
395    @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
396
397    static IOMemoryDescriptor *withOptions(void *	buffers,
398                                           UInt32	count,
399                                           UInt32	offset,
400                                           task_t	task,
401                                           IOOptionBits	options,
402                                           IOMapper *	mapper = kIOMapperSystem);
403
404#ifndef __LP64__
405    static IOMemoryDescriptor * withPhysicalRanges(
406                                            IOPhysicalRange *	ranges,
407                                            UInt32		withCount,
408                                            IODirection 	withDirection,
409                                            bool		asReference = false) APPLE_KEXT_DEPRECATED; /* use withOptions() and kIOMemoryTypePhysical instead */
410#endif /* !__LP64__ */
411
412#ifndef __LP64__
413    static IOMemoryDescriptor *	withSubRange(IOMemoryDescriptor *of,
414					     IOByteCount offset,
415					     IOByteCount length,
416					     IODirection withDirection) APPLE_KEXT_DEPRECATED; /* use IOSubMemoryDescriptor::withSubRange() and kIOMemoryThreadSafe instead */
417#endif /* !__LP64__ */
418
419/*! @function withPersistentMemoryDescriptor
420    @abstract Copy constructor that generates a new memory descriptor if the backing memory for the same task's virtual address and length has changed.
421    @discussion If the original memory descriptor's address and length is still backed by the same real memory, i.e. the user hasn't deallocated and the reallocated memory at the same address then the original memory descriptor is returned with a additional reference.  Otherwise we build a totally new memory descriptor with the same characteristics as the previous one but with a new view of the vm.  Note not legal to call this function with anything except an IOGeneralMemoryDescriptor that was created with the kIOMemoryPersistent option.
422    @param originalMD The memory descriptor to be duplicated.
423    @result Either the original memory descriptor with an additional retain or a new memory descriptor, 0 for a bad original memory descriptor or some other resource shortage. */
424    static IOMemoryDescriptor *
425	withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD);
426
427#ifndef __LP64__
428	// obsolete initializers
429	// - initWithOptions is the designated initializer
430    virtual bool initWithAddress(void *       address,
431                                 IOByteCount  withLength,
432                                 IODirection  withDirection) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
433    virtual bool initWithAddress(IOVirtualAddress address,
434                                 IOByteCount  withLength,
435                                 IODirection  withDirection,
436                                 task_t       withTask) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
437    virtual bool initWithPhysicalAddress(
438				 IOPhysicalAddress	address,
439				 IOByteCount		withLength,
440				 IODirection      	withDirection ) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
441    virtual bool initWithRanges(IOVirtualRange * ranges,
442                                UInt32           withCount,
443                                IODirection      withDirection,
444                                task_t           withTask,
445                                bool             asReference = false) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
446    virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
447                                        UInt32           withCount,
448                                        IODirection      withDirection,
449                                        bool             asReference = false) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
450#endif /* __LP64__ */
451
452/*! @function getDirection
453    @abstract Accessor to get the direction the memory descriptor was created with.
454    @discussion This method returns the direction the memory descriptor was created with.
455    @result The direction. */
456
457    virtual IODirection getDirection() const;
458
459/*! @function getLength
460    @abstract Accessor to get the length of the memory descriptor (over all its ranges).
461    @discussion This method returns the total length of the memory described by the descriptor, ie. the sum of its ranges' lengths.
462    @result The byte count. */
463
464    virtual IOByteCount getLength() const;
465
466/*! @function setTag
467    @abstract Set the tag for the memory descriptor.
468    @discussion This method sets the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
469    @param tag The tag. */
470
471    virtual void setTag( IOOptionBits tag );
472
473/*! @function getTag
474    @abstract Accessor to the retrieve the tag for the memory descriptor.
475    @discussion This method returns the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
476    @result The tag. */
477
478    virtual IOOptionBits getTag( void );
479
480/*! @function readBytes
481    @abstract Copy data from the memory descriptor's buffer to the specified buffer.
482    @discussion This method copies data from the memory descriptor's memory at the given offset, to the caller's buffer.  The memory descriptor MUST have the kIODirectionOut direcction bit set  and be prepared.  kIODirectionOut means that this memory descriptor will be output to an external device, so readBytes is used to get memory into a local buffer for a PIO transfer to the device.
483    @param offset A byte offset into the memory descriptor's memory.
484    @param bytes The caller supplied buffer to copy the data to.
485    @param withLength The length of the data to copy.
486    @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. Development/debug kernel builds will assert if the offset is beyond the length of the descriptor. */
487
488    virtual IOByteCount readBytes(IOByteCount offset,
489				void * bytes, IOByteCount withLength);
490
491/*! @function writeBytes
492    @abstract Copy data to the memory descriptor's buffer from the specified buffer.
493    @discussion This method copies data to the memory descriptor's memory at the given offset, from the caller's buffer.  The memory descriptor MUST have the kIODirectionIn direcction bit set  and be prepared.  kIODirectionIn means that this memory descriptor will be input from an external device, so writeBytes is used to write memory into the descriptor for PIO drivers.
494    @param offset A byte offset into the memory descriptor's memory.
495    @param bytes The caller supplied buffer to copy the data from.
496    @param withLength The length of the data to copy.
497    @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. Development/debug kernel builds will assert if the offset is beyond the length of the descriptor. */
498
499    virtual IOByteCount writeBytes(IOByteCount offset,
500				const void * bytes, IOByteCount withLength);
501
502#ifndef __LP64__
503    virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
504						 IOByteCount * length);
505#endif /* !__LP64__ */
506
507/*! @function getPhysicalAddress
508    @abstract Return the physical address of the first byte in the memory.
509    @discussion This method returns the physical address of the  first byte in the memory. It is most useful on memory known to be physically contiguous.
510    @result A physical address. */
511
512    IOPhysicalAddress getPhysicalAddress();
513
514#ifndef __LP64__
515    virtual void * getVirtualSegment(IOByteCount offset,
516					IOByteCount * length) APPLE_KEXT_DEPRECATED; /* use map() and getVirtualAddress() instead */
517#endif /* !__LP64__ */
518
519/*! @function prepare
520    @abstract Prepare the memory for an I/O transfer.
521    @discussion This involves paging in the memory, if necessary, and wiring it down for the duration of the transfer.  The complete() method completes the processing of the memory after the I/O transfer finishes.  Note that the prepare call is not thread safe and it is expected that the client will more easily be able to guarantee single threading a particular memory descriptor.
522    @param forDirection The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
523    @result An IOReturn code. */
524
525    virtual IOReturn prepare(IODirection forDirection = kIODirectionNone) = 0;
526
527/*! @function complete
528    @abstract Complete processing of the memory after an I/O transfer finishes.
529    @discussion This method should not be called unless a prepare was previously issued; the prepare() and complete() must occur in pairs, before and after an I/O transfer involving pageable memory.  In 10.3 or greater systems the direction argument to complete is not longer respected.  The direction is totally determined at prepare() time.
530    @param forDirection DEPRECATED The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
531    @result An IOReturn code. */
532
533    virtual IOReturn complete(IODirection forDirection = kIODirectionNone) = 0;
534
535    /*
536     * Mapping functions.
537     */
538
539/*! @function createMappingInTask
540    @abstract Maps a IOMemoryDescriptor into a task.
541    @discussion This is the general purpose method to map all or part of the memory described by a memory descriptor into a task at any available address, or at a fixed address if possible. Caching & read-only options may be set for the mapping. The mapping is represented as a returned reference to a IOMemoryMap object, which may be shared if the mapping is compatible with an existing mapping of the IOMemoryDescriptor. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping.
542    @param intoTask Sets the target task for the mapping. Pass kernel_task for the kernel address space.
543    @param atAddress If a placed mapping is requested, atAddress specifies its address, and the kIOMapAnywhere should not be set. Otherwise, atAddress is ignored.
544    @param options Mapping options are defined in IOTypes.h,<br>
545	kIOMapAnywhere should be passed if the mapping can be created anywhere. If not set, the atAddress parameter sets the location of the mapping, if it is available in the target map.<br>
546	kIOMapDefaultCache to inhibit the cache in I/O areas, kIOMapCopybackCache in general purpose RAM.<br>
547	kIOMapInhibitCache, kIOMapWriteThruCache, kIOMapCopybackCache to set the appropriate caching.<br>
548	kIOMapReadOnly to allow only read only accesses to the memory - writes will cause and access fault.<br>
549	kIOMapReference will only succeed if the mapping already exists, and the IOMemoryMap object is just an extra reference, ie. no new mapping will be created.<br>
550	kIOMapUnique allows a special kind of mapping to be created that may be used with the IOMemoryMap::redirect() API. These mappings will not be shared as is the default - there will always be a unique mapping created for the caller, not an existing mapping with an extra reference.<br>
551    @param offset Is a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default to map all the memory.
552    @param length Is the length of the mapping requested for a subset of the IOMemoryDescriptor. Zero is the default to map all the memory.
553    @result A reference to an IOMemoryMap object representing the mapping, which can supply the virtual address of the mapping and other information. The mapping may be shared with multiple callers - multiple maps are avoided if a compatible one exists. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping. The IOMemoryMap instance also retains the IOMemoryDescriptor it maps while it exists. */
554
555    IOMemoryMap * 	createMappingInTask(
556	task_t			intoTask,
557	mach_vm_address_t	atAddress,
558	IOOptionBits		options,
559	mach_vm_size_t		offset = 0,
560	mach_vm_size_t		length = 0 );
561
562#ifndef __LP64__
563    virtual IOMemoryMap * 	map(
564	task_t		intoTask,
565	IOVirtualAddress	atAddress,
566	IOOptionBits		options,
567	IOByteCount		offset = 0,
568	IOByteCount		length = 0 ) APPLE_KEXT_DEPRECATED; /* use createMappingInTask() instead */
569#endif /* !__LP64__ */
570
571/*! @function map
572    @abstract Maps a IOMemoryDescriptor into the kernel map.
573    @discussion This is a shortcut method to map all the memory described by a memory descriptor into the kernel map at any available address. See the full version of the createMappingInTask method for further details.
574    @param options Mapping options as in the full version of the createMappingInTask method, with kIOMapAnywhere assumed.
575    @result See the full version of the createMappingInTask method. */
576
577    virtual IOMemoryMap * 	map(
578	IOOptionBits		options = 0 );
579
580/*! @function setMapping
581    @abstract Establishes an already existing mapping.
582    @discussion This method tells the IOMemoryDescriptor about a mapping that exists, but was created elsewhere. It allows later callers of the map method to share this externally created mapping. The IOMemoryMap object returned is created to represent it. This method is not commonly needed.
583    @param task Address space in which the mapping exists.
584    @param mapAddress Virtual address of the mapping.
585    @param options Caching and read-only attributes of the mapping.
586    @result A IOMemoryMap object created to represent the mapping. */
587
588    virtual IOMemoryMap * 	setMapping(
589	task_t		task,
590	IOVirtualAddress	mapAddress,
591	IOOptionBits		options = 0 );
592
593    // Following methods are private implementation
594
595#ifdef __LP64__
596    virtual
597#endif /* __LP64__ */
598    IOReturn redirect( task_t safeTask, bool redirect );
599
600    IOReturn handleFault(
601        void *			pager,
602	vm_map_t		addressMap,
603	mach_vm_address_t	address,
604	mach_vm_size_t		sourceOffset,
605	mach_vm_size_t		length,
606        IOOptionBits		options );
607
608    virtual IOMemoryMap * 	makeMapping(
609	IOMemoryDescriptor *	owner,
610	task_t			intoTask,
611	IOVirtualAddress	atAddress,
612	IOOptionBits		options,
613	IOByteCount		offset,
614	IOByteCount		length );
615
616protected:
617    virtual void 		addMapping(
618	IOMemoryMap *		mapping );
619
620    virtual void 		removeMapping(
621	IOMemoryMap *		mapping );
622
623    virtual IOReturn doMap(
624	vm_map_t		addressMap,
625	IOVirtualAddress *	atAddress,
626	IOOptionBits		options,
627	IOByteCount		sourceOffset = 0,
628	IOByteCount		length = 0 );
629
630    virtual IOReturn doUnmap(
631	vm_map_t		addressMap,
632	IOVirtualAddress	logical,
633	IOByteCount		length );
634};
635
636/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
637
638/*! @class IOMemoryMap : public OSObject
639    @abstract A class defining common methods for describing a memory mapping.
640    @discussion The IOMemoryMap object represents a mapped range of memory, described by a IOMemoryDescriptor. The mapping may be in the kernel or a non-kernel task and has processor cache mode attributes. IOMemoryMap instances are created by IOMemoryDescriptor when it creates mappings in its map method, and returned to the caller. */
641
642class IOMemoryMap : public OSObject
643{
644    OSDeclareDefaultStructors(IOMemoryMap)
645#ifdef XNU_KERNEL_PRIVATE
646public:
647    IOMemoryDescriptor * fMemory;
648    IOMemoryMap *	 fSuperMap;
649    mach_vm_size_t	 fOffset;
650    mach_vm_address_t	 fAddress;
651    mach_vm_size_t	 fLength;
652    task_t		 fAddressTask;
653    vm_map_t		 fAddressMap;
654    IOOptionBits	 fOptions;
655    upl_t		 fRedirUPL;
656    ipc_port_t		 fRedirEntry;
657    IOMemoryDescriptor * fOwner;
658    uint8_t		 fUserClientUnmap;
659#endif /* XNU_KERNEL_PRIVATE */
660
661protected:
662    virtual void taggedRelease(const void *tag = 0) const;
663    virtual void free();
664
665public:
666/*! @function getVirtualAddress
667    @abstract Accessor to the virtual address of the first byte in the mapping.
668    @discussion This method returns the virtual address of the first byte in the mapping. Since the IOVirtualAddress is only 32bit in 32bit kernels, the getAddress() method should be used for compatibility with 64bit task mappings.
669    @result A virtual address. */
670
671    virtual IOVirtualAddress 	getVirtualAddress();
672
673/*! @function getPhysicalSegment
674    @abstract Break a mapping into its physically contiguous segments.
675    @discussion This method returns the physical address of the byte at the given offset into the mapping, and optionally the length of the physically contiguous segment from that offset. It functions similarly to IOMemoryDescriptor::getPhysicalSegment.
676    @param offset A byte offset into the mapping whose physical address to return.
677    @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
678    @result A physical address, or zero if the offset is beyond the length of the mapping. */
679
680#ifdef __LP64__
681    virtual IOPhysicalAddress 	getPhysicalSegment(IOByteCount offset,
682	       					   IOByteCount * length,
683	       					   IOOptionBits  options = 0);
684#else /* !__LP64__ */
685    virtual IOPhysicalAddress 	getPhysicalSegment(IOByteCount offset,
686	       					   IOByteCount * length);
687#endif /* !__LP64__ */
688
689/*! @function getPhysicalAddress
690    @abstract Return the physical address of the first byte in the mapping.
691    @discussion This method returns the physical address of the  first byte in the mapping. It is most useful on mappings known to be physically contiguous.
692    @result A physical address. */
693
694    IOPhysicalAddress getPhysicalAddress();
695
696/*! @function getLength
697    @abstract Accessor to the length of the mapping.
698    @discussion This method returns the length of the mapping.
699    @result A byte count. */
700
701    virtual IOByteCount 	getLength();
702
703/*! @function getAddressTask
704    @abstract Accessor to the task of the mapping.
705    @discussion This method returns the mach task the mapping exists in.
706    @result A mach task_t. */
707
708    virtual task_t		getAddressTask();
709
710/*! @function getMemoryDescriptor
711    @abstract Accessor to the IOMemoryDescriptor the mapping was created from.
712    @discussion This method returns the IOMemoryDescriptor the mapping was created from.
713    @result An IOMemoryDescriptor reference, which is valid while the IOMemoryMap object is retained. It should not be released by the caller. */
714
715    virtual IOMemoryDescriptor * getMemoryDescriptor();
716
717/*! @function getMapOptions
718    @abstract Accessor to the options the mapping was created with.
719    @discussion This method returns the options to IOMemoryDescriptor::map the mapping was created with.
720    @result Options for the mapping, including cache settings. */
721
722    virtual IOOptionBits 	getMapOptions();
723
724/*! @function unmap
725    @abstract Force the IOMemoryMap to unmap, without destroying the object.
726    @discussion IOMemoryMap instances will unmap themselves upon free, ie. when the last client with a reference calls release. This method forces the IOMemoryMap to destroy the mapping it represents, regardless of the number of clients. It is not generally used.
727    @result An IOReturn code. */
728
729    virtual IOReturn 		unmap();
730
731    virtual void		taskDied();
732
733/*! @function redirect
734    @abstract Replace the memory mapped in a process with new backing memory.
735    @discussion An IOMemoryMap created with the kIOMapUnique option to IOMemoryDescriptor::map() can remapped to a new IOMemoryDescriptor backing object. If the new IOMemoryDescriptor is specified as NULL, client access to the memory map is blocked until a new backing object has been set. By blocking access and copying data, the caller can create atomic copies of the memory while the client is potentially reading or writing the memory.
736    @param newBackingMemory The IOMemoryDescriptor that represents the physical memory that is to be now mapped in the virtual range the IOMemoryMap represents. If newBackingMemory is NULL, any access to the mapping will hang (in vm_fault()) until access has been restored by a new call to redirect() with non-NULL newBackingMemory argument.
737    @param options Mapping options are defined in IOTypes.h, and are documented in IOMemoryDescriptor::map()
738    @param offset As with IOMemoryDescriptor::map(), a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default.
739    @result An IOReturn code. */
740
741#ifndef __LP64__
742// For 32 bit XNU, there is a 32 bit (IOByteCount) and a 64 bit (mach_vm_size_t) interface;
743// for 64 bit, these fall together on the 64 bit one.
744    virtual IOReturn		redirect(IOMemoryDescriptor * newBackingMemory,
745					 IOOptionBits         options,
746					 IOByteCount          offset = 0);
747#endif
748    virtual IOReturn		redirect(IOMemoryDescriptor * newBackingMemory,
749					 IOOptionBits         options,
750					 mach_vm_size_t       offset = 0);
751
752#ifdef __LP64__
753/*! @function getAddress
754    @abstract Accessor to the virtual address of the first byte in the mapping.
755    @discussion This method returns the virtual address of the first byte in the mapping.
756    @result A virtual address. */
757/*! @function getSize
758    @abstract Accessor to the length of the mapping.
759    @discussion This method returns the length of the mapping.
760    @result A byte count. */
761    inline mach_vm_address_t 	getAddress() __attribute__((always_inline));
762    inline mach_vm_size_t 	getSize() __attribute__((always_inline));
763#else /* !__LP64__ */
764/*! @function getAddress
765    @abstract Accessor to the virtual address of the first byte in the mapping.
766    @discussion This method returns the virtual address of the first byte in the mapping.
767    @result A virtual address. */
768/*! @function getSize
769    @abstract Accessor to the length of the mapping.
770    @discussion This method returns the length of the mapping.
771    @result A byte count. */
772    virtual mach_vm_address_t 	getAddress();
773    virtual mach_vm_size_t 	getSize();
774#endif /* !__LP64__ */
775
776#ifdef XNU_KERNEL_PRIVATE
777    // for IOMemoryDescriptor use
778    IOMemoryMap * copyCompatible( IOMemoryMap * newMapping );
779
780    bool init(
781	task_t			intoTask,
782	mach_vm_address_t	toAddress,
783	IOOptionBits		options,
784        mach_vm_size_t		offset,
785        mach_vm_size_t		length );
786
787    bool    setMemoryDescriptor(IOMemoryDescriptor * _memory, mach_vm_size_t _offset);
788
789    IOReturn redirect(
790	task_t			intoTask, bool redirect );
791
792    IOReturn userClientUnmap();
793#endif /* XNU_KERNEL_PRIVATE */
794
795    IOReturn wireRange(
796    	uint32_t		options,
797        mach_vm_size_t		offset,
798        mach_vm_size_t		length);
799
800    OSMetaClassDeclareReservedUnused(IOMemoryMap, 0);
801    OSMetaClassDeclareReservedUnused(IOMemoryMap, 1);
802    OSMetaClassDeclareReservedUnused(IOMemoryMap, 2);
803    OSMetaClassDeclareReservedUnused(IOMemoryMap, 3);
804    OSMetaClassDeclareReservedUnused(IOMemoryMap, 4);
805    OSMetaClassDeclareReservedUnused(IOMemoryMap, 5);
806    OSMetaClassDeclareReservedUnused(IOMemoryMap, 6);
807    OSMetaClassDeclareReservedUnused(IOMemoryMap, 7);
808};
809
810/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
811#ifdef XNU_KERNEL_PRIVATE
812// Also these flags should not overlap with the options to
813//	IOMemoryDescriptor::initWithRanges(... IOOptionsBits options);
814enum {
815    _kIOMemorySourceSegment	= 0x00002000
816};
817#endif /* XNU_KERNEL_PRIVATE */
818
819// The following classes are private implementation of IOMemoryDescriptor - they
820// should not be referenced directly, just through the public API's in the
821// IOMemoryDescriptor class. For example, an IOGeneralMemoryDescriptor instance
822// might be created by IOMemoryDescriptor::withAddressRange(), but there should be
823// no need to reference as anything but a generic IOMemoryDescriptor *.
824
825class IOGeneralMemoryDescriptor : public IOMemoryDescriptor
826{
827    OSDeclareDefaultStructors(IOGeneralMemoryDescriptor);
828
829public:
830    union Ranges {
831        IOVirtualRange   *v;
832        IOAddressRange   *v64;
833        IOPhysicalRange  *p;
834	void 		 *uio;
835    };
836protected:
837    Ranges		_ranges;
838    unsigned		_rangesCount;       /* number of address ranges in list */
839#ifndef __LP64__
840    bool		_rangesIsAllocated; /* is list allocated by us? */
841#endif /* !__LP64__ */
842
843    task_t		_task;               /* task where all ranges are mapped to */
844
845    union {
846        IOVirtualRange	v;
847        IOPhysicalRange	p;
848    }			_singleRange;	   /* storage space for a single range */
849
850    unsigned		_wireCount;        /* number of outstanding wires */
851
852#ifndef __LP64__
853    uintptr_t _cachedVirtualAddress;
854
855    IOPhysicalAddress	_cachedPhysicalAddress;
856#endif /* !__LP64__ */
857
858    bool		_initialized;      /* has superclass been initialized? */
859
860public:
861    virtual void free();
862
863    virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
864
865    virtual uint64_t getPreparationID( void );
866
867#ifdef XNU_KERNEL_PRIVATE
868    // Internal APIs may be made virtual at some time in the future.
869    IOReturn wireVirtual(IODirection forDirection);
870    IOReturn dmaMap(
871	IOMapper                    * mapper,
872	const IODMAMapSpecification * mapSpec,
873	uint64_t                      offset,
874	uint64_t                      length,
875	uint64_t                    * address,
876	ppnum_t                     * mapPages);
877    bool initMemoryEntries(size_t size, IOMapper * mapper);
878#endif
879
880private:
881
882#ifndef __LP64__
883    virtual void setPosition(IOByteCount position);
884    virtual void mapIntoKernel(unsigned rangeIndex);
885    virtual void unmapFromKernel();
886#endif /* !__LP64__ */
887
888    void *createNamedEntry();
889
890    // Internal
891    OSData *	    _memoryEntries;
892    unsigned int    _pages;
893    ppnum_t	    _highestPage;
894    uint32_t	    __iomd_reservedA;
895    uint32_t	    __iomd_reservedB;
896
897    IOLock *	    _prepareLock;
898
899public:
900    /*
901     * IOMemoryDescriptor required methods
902     */
903
904    // Master initaliser
905    virtual bool initWithOptions(void *		buffers,
906                                 UInt32		count,
907                                 UInt32		offset,
908                                 task_t		task,
909                                 IOOptionBits	options,
910                                 IOMapper *	mapper = kIOMapperSystem);
911
912#ifndef __LP64__
913    // Secondary initialisers
914    virtual bool initWithAddress(void *		address,
915                                 IOByteCount	withLength,
916                                 IODirection	withDirection) APPLE_KEXT_DEPRECATED;
917
918    virtual bool initWithAddress(IOVirtualAddress address,
919                                 IOByteCount    withLength,
920                                 IODirection	withDirection,
921                                 task_t		withTask) APPLE_KEXT_DEPRECATED;
922
923    virtual bool initWithPhysicalAddress(
924				 IOPhysicalAddress	address,
925				 IOByteCount		withLength,
926				 IODirection      	withDirection ) APPLE_KEXT_DEPRECATED;
927
928    virtual bool initWithRanges(        IOVirtualRange * ranges,
929                                        UInt32           withCount,
930                                        IODirection      withDirection,
931                                        task_t           withTask,
932                                        bool             asReference = false) APPLE_KEXT_DEPRECATED;
933
934    virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
935                                        UInt32           withCount,
936                                        IODirection      withDirection,
937                                        bool             asReference = false) APPLE_KEXT_DEPRECATED;
938
939    virtual addr64_t getPhysicalSegment64( IOByteCount offset,
940                                            IOByteCount * length ) APPLE_KEXT_DEPRECATED;
941
942    virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
943						 IOByteCount * length);
944
945    virtual IOPhysicalAddress getSourceSegment(IOByteCount offset,
946                                               IOByteCount * length) APPLE_KEXT_DEPRECATED;
947
948    virtual void * getVirtualSegment(IOByteCount offset,
949					IOByteCount * length) APPLE_KEXT_DEPRECATED;
950#endif /* !__LP64__ */
951
952    virtual IOReturn setPurgeable( IOOptionBits newState,
953                                    IOOptionBits * oldState );
954
955    virtual addr64_t getPhysicalSegment( IOByteCount   offset,
956                                         IOByteCount * length,
957#ifdef __LP64__
958                                         IOOptionBits  options = 0 );
959#else /* !__LP64__ */
960                                         IOOptionBits  options );
961#endif /* !__LP64__ */
962
963    virtual IOReturn prepare(IODirection forDirection = kIODirectionNone);
964
965    virtual IOReturn complete(IODirection forDirection = kIODirectionNone);
966
967    virtual IOReturn doMap(
968	vm_map_t		addressMap,
969	IOVirtualAddress *	atAddress,
970	IOOptionBits		options,
971	IOByteCount		sourceOffset = 0,
972	IOByteCount		length = 0 );
973
974    virtual IOReturn doUnmap(
975	vm_map_t		addressMap,
976	IOVirtualAddress	logical,
977	IOByteCount		length );
978
979    virtual bool serialize(OSSerialize *s) const;
980
981    // Factory method for cloning a persistent IOMD, see IOMemoryDescriptor
982    static IOMemoryDescriptor *
983	withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD);
984
985};
986
987/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
988
989#ifdef __LP64__
990mach_vm_address_t 	IOMemoryMap::getAddress()
991{
992    return (getVirtualAddress());
993}
994
995mach_vm_size_t 	IOMemoryMap::getSize()
996{
997    return (getLength());
998}
999#else /* !__LP64__ */
1000#include <IOKit/IOSubMemoryDescriptor.h>
1001#endif /* !__LP64__ */
1002
1003/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
1004
1005#endif /* !_IOMEMORYDESCRIPTOR_H */
1006