1/*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
30 * support for mandatory and extensible security protections.  This notice
31 * is included in support of clause 2.2 (b) of the Apple Public License,
32 * Version 2.0.
33 */
34/*
35 * IP multicast forwarding procedures
36 *
37 * Written by David Waitzman, BBN Labs, August 1988.
38 * Modified by Steve Deering, Stanford, February 1989.
39 * Modified by Mark J. Steiglitz, Stanford, May, 1991
40 * Modified by Van Jacobson, LBL, January 1993
41 * Modified by Ajit Thyagarajan, PARC, August 1993
42 * Modified by Bill Fenner, PARC, April 1995
43 *
44 * MROUTING Revision: 3.5
45 * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.2 2001/07/19 06:37:26 kris Exp $
46 */
47
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/sockio.h>
59#include <sys/syslog.h>
60
61#include <machine/endian.h>
62
63#include <net/if.h>
64#include <net/route.h>
65#include <net/kpi_protocol.h>
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/ip_var.h>
70#include <netinet/in_var.h>
71#include <netinet/igmp.h>
72#include <netinet/ip_mroute.h>
73#include <netinet/udp.h>
74
75#if CONFIG_MACF_NET
76#include <security/mac_framework.h>
77#endif
78
79
80#if !MROUTING
81extern u_int32_t	_ip_mcast_src(int vifi);
82extern int	_ip_mforward(struct ip *ip, struct ifnet *ifp,
83				  struct mbuf *m, struct ip_moptions *imo);
84extern int	_ip_mrouter_done(void);
85extern int	_ip_mrouter_get(struct socket *so, struct sockopt *sopt);
86extern int	_ip_mrouter_set(struct socket *so, struct sockopt *sopt);
87extern int	_mrt_ioctl(int req, caddr_t data, struct proc *p);
88
89/*
90 * Dummy routines and globals used when multicast routing is not compiled in.
91 */
92
93struct socket  *ip_mrouter  = NULL;
94u_int		rsvpdebug = 0;
95
96int
97_ip_mrouter_set(__unused struct socket *so,
98		__unused struct sockopt *sopt)
99{
100	return(EOPNOTSUPP);
101}
102
103int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
104
105
106int
107_ip_mrouter_get(__unused struct socket *so,
108		__unused sockopt *sopt)
109{
110	return(EOPNOTSUPP);
111}
112
113int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
114
115int
116_ip_mrouter_done(void)
117{
118	return(0);
119}
120
121int (*ip_mrouter_done)(void) = _ip_mrouter_done;
122
123int
124_ip_mforward(__unused struct ip *ip, __unused struct ifnet *ifp,
125	     __unused struct mbuf *m, __unused ip_moptions *imo)
126{
127	return(0);
128}
129
130int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
131		   struct ip_moptions *) = _ip_mforward;
132
133int
134_mrt_ioctl(__unused u_long req, __unused caddr_t data, __unused struct proc *p)
135{
136	return EOPNOTSUPP;
137}
138
139int (*mrt_ioctl)(u_long, caddr_t, struct proc *) = _mrt_ioctl;
140
141void
142rsvp_input(struct mbuf *m, int iphlen)		/* XXX must fixup manually */
143{
144    /* Can still get packets with rsvp_on = 0 if there is a local member
145     * of the group to which the RSVP packet is addressed.  But in this
146     * case we want to throw the packet away.
147     */
148    if (!rsvp_on) {
149	m_freem(m);
150	return;
151    }
152
153    if (ip_rsvpd != NULL) {
154	if (rsvpdebug)
155	    printf("rsvp_input: Sending packet up old-style socket\n");
156	rip_input(m, iphlen);
157	return;
158    }
159    /* Drop the packet */
160    m_freem(m);
161}
162
163void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
164	rip_input(m, iphlen);
165}
166
167int (*legal_vif_num)(int) = 0;
168
169/*
170 * This should never be called, since IP_MULTICAST_VIF should fail, but
171 * just in case it does get called, the code a little lower in ip_output
172 * will assign the packet a local address.
173 */
174u_int32_t
175_ip_mcast_src(int vifi) { return INADDR_ANY; }
176u_int32_t (*ip_mcast_src)(int) = _ip_mcast_src;
177
178int
179ip_rsvp_vif_init(so, sopt)
180    struct socket *so;
181    struct sockopt *sopt;
182{
183    return(EINVAL);
184}
185
186int
187ip_rsvp_vif_done(so, sopt)
188    struct socket *so;
189    struct sockopt *sopt;
190{
191    return(EINVAL);
192}
193
194void
195ip_rsvp_force_done(so)
196    struct socket *so;
197{
198    return;
199}
200
201#else /* MROUTING */
202
203#define M_HASCL(m)	((m)->m_flags & M_EXT)
204
205#define INSIZ		sizeof(struct in_addr)
206#define	same(a1, a2) \
207	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
208
209
210/*
211 * Globals.  All but ip_mrouter and ip_mrtproto could be static,
212 * except for netstat or debugging purposes.
213 */
214#ifndef MROUTE_LKM
215struct socket  *ip_mrouter  = NULL;
216static struct mrtstat	mrtstat;
217#else /* MROUTE_LKM */
218extern void	X_ipip_input(struct mbuf *m, int iphlen);
219extern struct mrtstat mrtstat;
220static int ip_mrtproto;
221#endif
222
223#define NO_RTE_FOUND 	0x1
224#define RTE_FOUND	0x2
225
226static struct mfc	*mfctable[CONFIG_MFCTBLSIZ];
227static u_char		nexpire[CONFIG_MFCTBLSIZ];
228static struct vif	viftable[CONFIG_MAXVIFS];
229static u_int	mrtdebug = 0;	  /* debug level 	*/
230#define		DEBUG_MFC	0x02
231#define		DEBUG_FORWARD	0x04
232#define		DEBUG_EXPIRE	0x08
233#define		DEBUG_XMIT	0x10
234static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
235static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
236
237#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
238#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
239
240/*
241 * Define the token bucket filter structures
242 * tbftable -> each vif has one of these for storing info
243 */
244
245static struct tbf tbftable[CONFIG_MAXVIFS];
246#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
247
248/*
249 * 'Interfaces' associated with decapsulator (so we can tell
250 * packets that went through it from ones that get reflected
251 * by a broken gateway).  These interfaces are never linked into
252 * the system ifnet list & no routes point to them.  I.e., packets
253 * can't be sent this way.  They only exist as a placeholder for
254 * multicast source verification.
255 */
256static struct ifnet multicast_decap_if[CONFIG_MAXVIFS];
257
258#define ENCAP_TTL 64
259#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
260
261/* prototype IP hdr for encapsulated packets */
262static struct ip multicast_encap_iphdr = {
263#if BYTE_ORDER == LITTLE_ENDIAN
264	sizeof(struct ip) >> 2, IPVERSION,
265#else
266	IPVERSION, sizeof(struct ip) >> 2,
267#endif
268	0,				/* tos */
269	sizeof(struct ip),		/* total length */
270	0,				/* id */
271	0,				/* frag offset */
272	ENCAP_TTL, ENCAP_PROTO,
273	0,				/* checksum */
274	{ 0 }, { 0 }
275};
276
277/*
278 * Private variables.
279 */
280static vifi_t	   numvifs = 0;
281static int have_encap_tunnel = 0;
282
283/*
284 * one-back cache used by ipip_input to locate a tunnel's vif
285 * given a datagram's src ip address.
286 */
287static u_int32_t last_encap_src;
288static struct vif *last_encap_vif;
289
290static u_int32_t	X_ip_mcast_src(int vifi);
291static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo);
292static int	X_ip_mrouter_done(void);
293static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
294static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
295static int	X_legal_vif_num(int vif);
296static int	X_mrt_ioctl(u_long cmd, caddr_t data);
297
298static int get_sg_cnt(struct sioc_sg_req *);
299static int get_vif_cnt(struct sioc_vif_req *);
300static int ip_mrouter_init(struct socket *, int);
301static int add_vif(struct vifctl *);
302static int del_vif(vifi_t);
303static int add_mfc(struct mfcctl *);
304static int del_mfc(struct mfcctl *);
305static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
306static int set_assert(int);
307static void expire_upcalls(void *);
308static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
309		  vifi_t);
310static void phyint_send(struct ip *, struct vif *, struct mbuf *);
311static void encap_send(struct ip *, struct vif *, struct mbuf *);
312static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
313static void tbf_queue(struct vif *, struct mbuf *);
314static void tbf_process_q(struct vif *);
315static void tbf_reprocess_q(void *);
316static int tbf_dq_sel(struct vif *, struct ip *);
317static void tbf_send_packet(struct vif *, struct mbuf *);
318static void tbf_update_tokens(struct vif *);
319static int priority(struct vif *, struct ip *);
320void multiencap_decap(struct mbuf *);
321
322/*
323 * whether or not special PIM assert processing is enabled.
324 */
325static int pim_assert;
326/*
327 * Rate limit for assert notification messages, in usec
328 */
329#define ASSERT_MSG_TIME		3000000
330
331/*
332 * Hash function for a source, group entry
333 */
334#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
335			((g) >> 20) ^ ((g) >> 10) ^ (g))
336
337/*
338 * Find a route for a given origin IP address and Multicast group address
339 * Type of service parameter to be added in the future!!!
340 */
341
342#define MFCFIND(o, g, rt) { \
343	struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
344	rt = NULL; \
345	++mrtstat.mrts_mfc_lookups; \
346	while (_rt) { \
347		if ((_rt->mfc_origin.s_addr == o) && \
348		    (_rt->mfc_mcastgrp.s_addr == g) && \
349		    (_rt->mfc_stall == NULL)) { \
350			rt = _rt; \
351			break; \
352		} \
353		_rt = _rt->mfc_next; \
354	} \
355	if (rt == NULL) { \
356		++mrtstat.mrts_mfc_misses; \
357	} \
358}
359
360
361/*
362 * Macros to compute elapsed time efficiently
363 * Borrowed from Van Jacobson's scheduling code
364 */
365#define TV_DELTA(a, b, delta) { \
366	    int xxs; \
367		\
368	    delta = (a).tv_usec - (b).tv_usec; \
369	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
370	       switch (xxs) { \
371		      case 2: \
372			  delta += 1000000; \
373			      /* fall through */ \
374		      case 1: \
375			  delta += 1000000; \
376			  break; \
377		      default: \
378			  delta += (1000000 * xxs); \
379	       } \
380	    } \
381}
382
383#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
384	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
385
386#if UPCALL_TIMING
387u_int32_t upcall_data[51];
388static void collate(struct timeval *);
389#endif /* UPCALL_TIMING */
390
391
392/*
393 * Handle MRT setsockopt commands to modify the multicast routing tables.
394 */
395static int
396X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
397{
398	int	error, optval;
399	vifi_t	vifi;
400	struct	vifctl vifc;
401	struct	mfcctl mfc;
402
403	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
404		return (EPERM);
405
406	error = 0;
407	switch (sopt->sopt_name) {
408	case MRT_INIT:
409		error = sooptcopyin(sopt, &optval, sizeof optval,
410				    sizeof optval);
411		if (error)
412			break;
413		error = ip_mrouter_init(so, optval);
414		break;
415
416	case MRT_DONE:
417		error = ip_mrouter_done();
418		break;
419
420	case MRT_ADD_VIF:
421		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
422		if (error)
423			break;
424		error = add_vif(&vifc);
425		break;
426
427	case MRT_DEL_VIF:
428		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
429		if (error)
430			break;
431		error = del_vif(vifi);
432		break;
433
434	case MRT_ADD_MFC:
435	case MRT_DEL_MFC:
436		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
437		if (error)
438			break;
439		if (sopt->sopt_name == MRT_ADD_MFC)
440			error = add_mfc(&mfc);
441		else
442			error = del_mfc(&mfc);
443		break;
444
445	case MRT_ASSERT:
446		error = sooptcopyin(sopt, &optval, sizeof optval,
447				    sizeof optval);
448		if (error)
449			break;
450		set_assert(optval);
451		break;
452
453	default:
454		error = EOPNOTSUPP;
455		break;
456	}
457	return (error);
458}
459
460#if !defined(MROUTE_LKM) || !MROUTE_LKM
461int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
462#endif
463
464/*
465 * Handle MRT getsockopt commands
466 */
467static int
468X_ip_mrouter_get(__unused struct socket *so, struct sockopt *sopt)
469{
470	int error;
471	static int vers = 0x0305; /* !!! why is this here? XXX */
472
473	switch (sopt->sopt_name) {
474	case MRT_VERSION:
475		error = sooptcopyout(sopt, &vers, sizeof vers);
476		break;
477
478	case MRT_ASSERT:
479		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
480		break;
481	default:
482		error = EOPNOTSUPP;
483		break;
484	}
485	return (error);
486}
487
488#if !defined(MROUTE_LKM) || !MROUTE_LKM
489int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
490#endif
491
492/*
493 * Handle ioctl commands to obtain information from the cache
494 */
495static int
496X_mrt_ioctl(u_long cmd, caddr_t data)
497{
498    int error = 0;
499
500    switch (cmd) {
501	case (SIOCGETVIFCNT):
502	    return (get_vif_cnt((struct sioc_vif_req *)data));
503	    break;
504	case (SIOCGETSGCNT):
505	    return (get_sg_cnt((struct sioc_sg_req *)data));
506	    break;
507	default:
508	    return (EINVAL);
509	    break;
510    }
511    return error;
512}
513
514#if !defined(MROUTE_LKM) || !MROUTE_LKM
515int (*mrt_ioctl)(u_long, caddr_t) = X_mrt_ioctl;
516#endif
517
518/*
519 * returns the packet, byte, rpf-failure count for the source group provided
520 */
521static int
522get_sg_cnt(struct sioc_sg_req *req)
523{
524    struct mfc *rt;
525
526    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
527    if (rt != NULL) {
528	req->pktcnt = rt->mfc_pkt_cnt;
529	req->bytecnt = rt->mfc_byte_cnt;
530	req->wrong_if = rt->mfc_wrong_if;
531    } else
532	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
533
534    return 0;
535}
536
537/*
538 * returns the input and output packet and byte counts on the vif provided
539 */
540static int
541get_vif_cnt(struct sioc_vif_req *req)
542{
543    vifi_t vifi = req->vifi;
544
545    if (vifi >= numvifs) return EINVAL;
546
547    req->icount = viftable[vifi].v_pkt_in;
548    req->ocount = viftable[vifi].v_pkt_out;
549    req->ibytes = viftable[vifi].v_bytes_in;
550    req->obytes = viftable[vifi].v_bytes_out;
551
552    return 0;
553}
554
555/*
556 * Enable multicast routing
557 */
558static int
559ip_mrouter_init(struct socket *so, int vers)
560{
561    if (mrtdebug)
562	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
563		so->so_type, so->so_proto->pr_protocol);
564
565    if (so->so_type != SOCK_RAW ||
566	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
567
568    if (vers != 1)
569	return ENOPROTOOPT;
570
571    if (ip_mrouter != NULL) return EADDRINUSE;
572
573    ip_mrouter = so;
574
575    bzero((caddr_t)mfctable, sizeof(mfctable));
576    bzero((caddr_t)nexpire, sizeof(nexpire));
577
578    pim_assert = 0;
579
580    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
581
582    if (mrtdebug)
583	log(LOG_DEBUG, "ip_mrouter_init\n");
584
585    return 0;
586}
587
588/*
589 * Disable multicast routing
590 */
591static int
592X_ip_mrouter_done(void)
593{
594    vifi_t vifi;
595    int i;
596    struct ifnet *ifp;
597    struct ifreq ifr;
598    struct mfc *rt;
599    struct rtdetq *rte;
600
601    /*
602     * For each phyint in use, disable promiscuous reception of all IP
603     * multicasts.
604     */
605    for (vifi = 0; vifi < numvifs; vifi++) {
606	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
607	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
608	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
609	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
610								= INADDR_ANY;
611	    ifp = viftable[vifi].v_ifp;
612	    if_allmulti(ifp, 0);
613	}
614    }
615    bzero((caddr_t)tbftable, sizeof(tbftable));
616    bzero((caddr_t)viftable, sizeof(viftable));
617    numvifs = 0;
618    pim_assert = 0;
619
620    untimeout(expire_upcalls, (caddr_t)NULL);
621
622    /*
623     * Free all multicast forwarding cache entries.
624     */
625    for (i = 0; i < CONFIG_MFCTBLSIZ; i++) {
626	for (rt = mfctable[i]; rt != NULL; ) {
627	    struct mfc *nr = rt->mfc_next;
628
629	    for (rte = rt->mfc_stall; rte != NULL; ) {
630		struct rtdetq *n = rte->next;
631
632		m_freem(rte->m);
633		FREE(rte, M_MRTABLE);
634		rte = n;
635	    }
636	    FREE(rt, M_MRTABLE);
637	    rt = nr;
638	}
639    }
640
641    bzero((caddr_t)mfctable, sizeof(mfctable));
642
643    /*
644     * Reset de-encapsulation cache
645     */
646    last_encap_src = 0;
647    last_encap_vif = NULL;
648    have_encap_tunnel = 0;
649
650    ip_mrouter = NULL;
651
652    if (mrtdebug)
653	log(LOG_DEBUG, "ip_mrouter_done\n");
654
655    return 0;
656}
657
658#if !defined(MROUTE_LKM) || !MROUTE_LKM
659int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
660#endif
661
662/*
663 * Set PIM assert processing global
664 */
665static int
666set_assert(int i)
667{
668    if ((i != 1) && (i != 0))
669	return EINVAL;
670
671    pim_assert = i;
672
673    return 0;
674}
675
676/*
677 * Add a vif to the vif table
678 */
679static int
680add_vif(struct vifctl *vifcp)
681{
682    struct vif *vifp = viftable + vifcp->vifc_vifi;
683    static struct sockaddr_in sin = { sizeof sin, AF_INET,
684										0 , {0}, {0,0,0,0,0,0,0,0,} };
685    struct ifaddr *ifa;
686    struct ifnet *ifp;
687    int error, s;
688    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
689
690    if (vifcp->vifc_vifi >= CONFIG_MAXVIFS)  return EINVAL;
691    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
692
693    /* Find the interface with an address in AF_INET family */
694    sin.sin_addr = vifcp->vifc_lcl_addr;
695    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
696    if (ifa == 0) return EADDRNOTAVAIL;
697    ifp = ifa->ifa_ifp;
698    IFA_REMREF(ifa);
699    ifa = NULL;
700
701    if (vifcp->vifc_flags & VIFF_TUNNEL) {
702	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
703		/*
704		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
705		 * start paying attention to encapsulated packets.
706		 */
707		if (have_encap_tunnel == 0) {
708			have_encap_tunnel = 1;
709			for (s = 0; s < CONFIG_MAXVIFS; ++s) {
710				multicast_decap_if[s].if_name = "mdecap";
711				multicast_decap_if[s].if_unit = s;
712				multicast_decap_if[s].if_family = APPLE_IF_FAM_MDECAP;
713			}
714		}
715		/*
716		 * Set interface to fake encapsulator interface
717		 */
718		ifp = &multicast_decap_if[vifcp->vifc_vifi];
719		/*
720		 * Prepare cached route entry
721		 */
722		bzero(&vifp->v_route, sizeof(vifp->v_route));
723	} else {
724	    log(LOG_ERR, "source routed tunnels not supported\n");
725	    return EOPNOTSUPP;
726	}
727    } else {
728	/* Make sure the interface supports multicast */
729	if ((ifp->if_flags & IFF_MULTICAST) == 0)
730	    return EOPNOTSUPP;
731
732	/* Enable promiscuous reception of all IP multicasts from the if */
733	error = if_allmulti(ifp, 1);
734	if (error)
735	    return error;
736    }
737
738    /* define parameters for the tbf structure */
739    vifp->v_tbf = v_tbf;
740    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
741    vifp->v_tbf->tbf_n_tok = 0;
742    vifp->v_tbf->tbf_q_len = 0;
743    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
744    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
745
746    vifp->v_flags     = vifcp->vifc_flags;
747    vifp->v_threshold = vifcp->vifc_threshold;
748    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
749    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
750    vifp->v_ifp       = ifp;
751    /* scaling up here allows division by 1024 in critical code */
752    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
753    vifp->v_rsvp_on   = 0;
754    vifp->v_rsvpd     = NULL;
755    /* initialize per vif pkt counters */
756    vifp->v_pkt_in    = 0;
757    vifp->v_pkt_out   = 0;
758    vifp->v_bytes_in  = 0;
759    vifp->v_bytes_out = 0;
760
761    /* Adjust numvifs up if the vifi is higher than numvifs */
762    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
763
764    if (mrtdebug)
765	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
766	    vifcp->vifc_vifi,
767	    (u_int32_t)ntohl(vifcp->vifc_lcl_addr.s_addr),
768	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
769	    (u_int32_t)ntohl(vifcp->vifc_rmt_addr.s_addr),
770	    vifcp->vifc_threshold,
771	    vifcp->vifc_rate_limit);
772
773    return 0;
774}
775
776/*
777 * Delete a vif from the vif table
778 */
779static int
780del_vif(vifi_t vifi)
781{
782    struct vif *vifp = &viftable[vifi];
783    struct mbuf *m;
784    struct ifnet *ifp;
785    struct ifreq ifr;
786
787    if (vifi >= numvifs) return EINVAL;
788    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
789
790    if (!(vifp->v_flags & VIFF_TUNNEL)) {
791	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
792	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
793	ifp = vifp->v_ifp;
794	if_allmulti(ifp, 0);
795    }
796
797    if (vifp == last_encap_vif) {
798	last_encap_vif = 0;
799	last_encap_src = 0;
800    }
801
802    /*
803     * Free packets queued at the interface
804     */
805    while (vifp->v_tbf->tbf_q) {
806	m = vifp->v_tbf->tbf_q;
807	vifp->v_tbf->tbf_q = m->m_act;
808	m_freem(m);
809    }
810
811    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
812    bzero((caddr_t)vifp, sizeof (*vifp));
813
814    if (mrtdebug)
815      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
816
817    /* Adjust numvifs down */
818    for (vifi = numvifs; vifi > 0; vifi--)
819	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
820    numvifs = vifi;
821
822    return 0;
823}
824
825/*
826 * Add an mfc entry
827 */
828static int
829add_mfc(struct mfcctl *mfccp)
830{
831    struct mfc *rt;
832    u_int32_t hash;
833    struct rtdetq *rte;
834    u_short nstl;
835    int i;
836
837    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
838
839    /* If an entry already exists, just update the fields */
840    if (rt) {
841	if (mrtdebug & DEBUG_MFC)
842	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
843		(u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
844		(u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
845		mfccp->mfcc_parent);
846
847	rt->mfc_parent = mfccp->mfcc_parent;
848	for (i = 0; i < numvifs; i++)
849	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
850	return 0;
851    }
852
853    /*
854     * Find the entry for which the upcall was made and update
855     */
856    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
857    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
858
859	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
860	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
861	    (rt->mfc_stall != NULL)) {
862
863	    if (nstl++)
864		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
865		    "multiple kernel entries",
866		    (u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
867		    (u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
868		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
869
870	    if (mrtdebug & DEBUG_MFC)
871		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
872		    (u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
873		    (u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
874		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
875
876	    rt->mfc_origin     = mfccp->mfcc_origin;
877	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
878	    rt->mfc_parent     = mfccp->mfcc_parent;
879	    for (i = 0; i < numvifs; i++)
880		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
881	    /* initialize pkt counters per src-grp */
882	    rt->mfc_pkt_cnt    = 0;
883	    rt->mfc_byte_cnt   = 0;
884	    rt->mfc_wrong_if   = 0;
885	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
886
887	    rt->mfc_expire = 0;	/* Don't clean this guy up */
888	    nexpire[hash]--;
889
890	    /* free packets Qed at the end of this entry */
891	    for (rte = rt->mfc_stall; rte != NULL; ) {
892		struct rtdetq *n = rte->next;
893
894		ip_mdq(rte->m, rte->ifp, rt, -1);
895		m_freem(rte->m);
896#if UPCALL_TIMING
897		collate(&(rte->t));
898#endif /* UPCALL_TIMING */
899		FREE(rte, M_MRTABLE);
900		rte = n;
901	    }
902	    rt->mfc_stall = NULL;
903	}
904    }
905
906    /*
907     * It is possible that an entry is being inserted without an upcall
908     */
909    if (nstl == 0) {
910	if (mrtdebug & DEBUG_MFC)
911	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
912		hash, (u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
913		(u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
914		mfccp->mfcc_parent);
915
916	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
917
918	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
919		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
920
921		rt->mfc_origin     = mfccp->mfcc_origin;
922		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
923		rt->mfc_parent     = mfccp->mfcc_parent;
924		for (i = 0; i < numvifs; i++)
925		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
926		/* initialize pkt counters per src-grp */
927		rt->mfc_pkt_cnt    = 0;
928		rt->mfc_byte_cnt   = 0;
929		rt->mfc_wrong_if   = 0;
930		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
931		if (rt->mfc_expire)
932		    nexpire[hash]--;
933		rt->mfc_expire	   = 0;
934	    }
935	}
936	if (rt == NULL) {
937	    /* no upcall, so make a new entry */
938	    rt = (struct mfc *) _MALLOC(sizeof(*rt), M_MRTABLE, M_NOWAIT);
939	    if (rt == NULL) {
940		return ENOBUFS;
941	    }
942
943	    /* insert new entry at head of hash chain */
944	    rt->mfc_origin     = mfccp->mfcc_origin;
945	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
946	    rt->mfc_parent     = mfccp->mfcc_parent;
947	    for (i = 0; i < numvifs; i++)
948		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
949	    /* initialize pkt counters per src-grp */
950	    rt->mfc_pkt_cnt    = 0;
951	    rt->mfc_byte_cnt   = 0;
952	    rt->mfc_wrong_if   = 0;
953	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
954	    rt->mfc_expire     = 0;
955	    rt->mfc_stall      = NULL;
956
957	    /* link into table */
958	    rt->mfc_next = mfctable[hash];
959	    mfctable[hash] = rt;
960	}
961    }
962    return 0;
963}
964
965#if UPCALL_TIMING
966/*
967 * collect delay statistics on the upcalls
968 */
969static void
970collate(struct timeval *t)
971{
972    u_int32_t d;
973    struct timeval tp;
974    u_int32_t delta;
975
976    GET_TIME(tp);
977
978    if (TV_LT(*t, tp))
979    {
980	TV_DELTA(tp, *t, delta);
981
982	d = delta >> 10;
983	if (d > 50)
984	    d = 50;
985
986	++upcall_data[d];
987    }
988}
989#endif /* UPCALL_TIMING */
990
991/*
992 * Delete an mfc entry
993 */
994static int
995del_mfc(struct mfcctl *mfccp)
996{
997    struct in_addr 	origin;
998    struct in_addr 	mcastgrp;
999    struct mfc 		*rt;
1000    struct mfc	 	**nptr;
1001    u_int32_t 		hash;
1002
1003    origin = mfccp->mfcc_origin;
1004    mcastgrp = mfccp->mfcc_mcastgrp;
1005    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1006
1007    if (mrtdebug & DEBUG_MFC)
1008	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1009	    (u_int32_t)ntohl(origin.s_addr), (u_int32_t)ntohl(mcastgrp.s_addr));
1010
1011    nptr = &mfctable[hash];
1012    while ((rt = *nptr) != NULL) {
1013	if (origin.s_addr == rt->mfc_origin.s_addr &&
1014	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1015	    rt->mfc_stall == NULL)
1016	    break;
1017
1018	nptr = &rt->mfc_next;
1019    }
1020    if (rt == NULL) {
1021	return EADDRNOTAVAIL;
1022    }
1023
1024    *nptr = rt->mfc_next;
1025    FREE(rt, M_MRTABLE);
1026
1027    return 0;
1028}
1029
1030/*
1031 * Send a message to mrouted on the multicast routing socket
1032 */
1033static int
1034socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1035{
1036	socket_lock(s, 1);
1037	if (s) {
1038		if (sbappendaddr(&s->so_rcv,
1039				 (struct sockaddr *)src,
1040				 mm, (struct mbuf *)0, NULL) != 0) {
1041			sorwakeup(s);
1042			socket_unlock(s, 1);
1043			return 0;
1044		}
1045	}
1046	socket_unlock(s, 1);
1047	m_freem(mm);
1048	return -1;
1049}
1050
1051/*
1052 * IP multicast forwarding function. This function assumes that the packet
1053 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1054 * pointed to by "ifp", and the packet is to be relayed to other networks
1055 * that have members of the packet's destination IP multicast group.
1056 *
1057 * The packet is returned unscathed to the caller, unless it is
1058 * erroneous, in which case a non-zero return value tells the caller to
1059 * discard it.
1060 */
1061
1062#define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1063#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1064
1065static int
1066X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1067	      struct ip_moptions *imo)
1068{
1069    struct mfc *rt;
1070    u_char *ipoptions;
1071    static struct sockaddr_in 	k_igmpsrc = { sizeof k_igmpsrc, AF_INET,
1072    											0 , {0}, {0,0,0,0,0,0,0,0,} };
1073    static int srctun = 0;
1074    struct mbuf *mm;
1075    vifi_t vifi;
1076    struct vif *vifp;
1077
1078    if (mrtdebug & DEBUG_FORWARD)
1079	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1080	    (u_int32_t)ntohl(ip->ip_src.s_addr), (u_int32_t)ntohl(ip->ip_dst.s_addr),
1081	    (void *)ifp);
1082
1083    if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1084	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1085	/*
1086	 * Packet arrived via a physical interface or
1087	 * an encapsulated tunnel.
1088	 */
1089    } else {
1090	/*
1091	 * Packet arrived through a source-route tunnel.
1092	 * Source-route tunnels are no longer supported.
1093	 */
1094	if ((srctun++ % 1000) == 0)
1095	    log(LOG_ERR,
1096		"ip_mforward: received source-routed packet from %lx\n",
1097		(u_int32_t)ntohl(ip->ip_src.s_addr));
1098
1099	return 1;
1100    }
1101
1102    if (imo != NULL)
1103	IMO_LOCK(imo);
1104    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1105	IMO_UNLOCK(imo);
1106	if (ip->ip_ttl < 255)
1107		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1108	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1109	    vifp = viftable + vifi;
1110	    printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s%d)\n",
1111		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1112		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1113		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1114	}
1115	return (ip_mdq(m, ifp, NULL, vifi));
1116    } else if (imo != NULL) {
1117	IMO_UNLOCK(imo);
1118    }
1119    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1120	printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1121	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1122	if(!imo)
1123		printf("In fact, no options were specified at all\n");
1124    }
1125
1126    /*
1127     * Don't forward a packet with time-to-live of zero or one,
1128     * or a packet destined to a local-only group.
1129     */
1130    if (ip->ip_ttl <= 1 ||
1131	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1132	return 0;
1133
1134    /*
1135     * Determine forwarding vifs from the forwarding cache table
1136     */
1137    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1138
1139    /* Entry exists, so forward if necessary */
1140    if (rt != NULL) {
1141	return (ip_mdq(m, ifp, rt, -1));
1142    } else {
1143	/*
1144	 * If we don't have a route for packet's origin,
1145	 * Make a copy of the packet &
1146	 * send message to routing daemon
1147	 */
1148
1149	struct mbuf *mb0;
1150	struct rtdetq *rte;
1151	u_int32_t hash;
1152	int hlen = ip->ip_hl << 2;
1153#if UPCALL_TIMING
1154	struct timeval tp;
1155
1156	GET_TIME(tp);
1157#endif
1158
1159	mrtstat.mrts_no_route++;
1160	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1161	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1162		(u_int32_t)ntohl(ip->ip_src.s_addr),
1163		(u_int32_t)ntohl(ip->ip_dst.s_addr));
1164
1165	/*
1166	 * Allocate mbufs early so that we don't do extra work if we are
1167	 * just going to fail anyway.  Make sure to pullup the header so
1168	 * that other people can't step on it.
1169	 */
1170	rte = (struct rtdetq *) _MALLOC((sizeof *rte), M_MRTABLE, M_NOWAIT);
1171	if (rte == NULL) {
1172	    return ENOBUFS;
1173	}
1174	mb0 = m_copy(m, 0, M_COPYALL);
1175	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1176	    mb0 = m_pullup(mb0, hlen);
1177	if (mb0 == NULL) {
1178	    FREE(rte, M_MRTABLE);
1179	    return ENOBUFS;
1180	}
1181
1182	/* is there an upcall waiting for this packet? */
1183	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1184	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1185	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1186		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1187		(rt->mfc_stall != NULL))
1188		break;
1189	}
1190
1191	if (rt == NULL) {
1192	    int i;
1193	    struct igmpmsg *im;
1194
1195	    /* no upcall, so make a new entry */
1196	    rt = (struct mfc *) _MALLOC(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1197	    if (rt == NULL) {
1198		FREE(rte, M_MRTABLE);
1199		m_freem(mb0);
1200		return ENOBUFS;
1201	    }
1202	    /* Make a copy of the header to send to the user level process */
1203	    mm = m_copy(mb0, 0, hlen);
1204	    if (mm == NULL) {
1205		FREE(rte, M_MRTABLE);
1206		m_freem(mb0);
1207		FREE(rt, M_MRTABLE);
1208		return ENOBUFS;
1209	    }
1210
1211	    /*
1212	     * Send message to routing daemon to install
1213	     * a route into the kernel table
1214	     */
1215	    k_igmpsrc.sin_addr = ip->ip_src;
1216
1217	    im = mtod(mm, struct igmpmsg *);
1218	    im->im_msgtype	= IGMPMSG_NOCACHE;
1219	    im->im_mbz		= 0;
1220
1221	    mrtstat.mrts_upcalls++;
1222
1223	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1224		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1225		++mrtstat.mrts_upq_sockfull;
1226		FREE(rte, M_MRTABLE);
1227		m_freem(mb0);
1228		FREE(rt, M_MRTABLE);
1229		return ENOBUFS;
1230	    }
1231
1232	    /* insert new entry at head of hash chain */
1233	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1234	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1235	    rt->mfc_expire	      = UPCALL_EXPIRE;
1236	    nexpire[hash]++;
1237	    for (i = 0; i < numvifs; i++)
1238		rt->mfc_ttls[i] = 0;
1239	    rt->mfc_parent = -1;
1240
1241	    /* link into table */
1242	    rt->mfc_next   = mfctable[hash];
1243	    mfctable[hash] = rt;
1244	    rt->mfc_stall = rte;
1245
1246	} else {
1247	    /* determine if q has overflowed */
1248	    int npkts = 0;
1249	    struct rtdetq **p;
1250
1251	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1252		npkts++;
1253
1254	    if (npkts > MAX_UPQ) {
1255		mrtstat.mrts_upq_ovflw++;
1256		FREE(rte, M_MRTABLE);
1257		m_freem(mb0);
1258		return 0;
1259	    }
1260
1261	    /* Add this entry to the end of the queue */
1262	    *p = rte;
1263	}
1264
1265	rte->m 			= mb0;
1266	rte->ifp 		= ifp;
1267#if UPCALL_TIMING
1268	rte->t			= tp;
1269#endif
1270	rte->next		= NULL;
1271
1272	return 0;
1273    }
1274}
1275
1276#if !defined(MROUTE_LKM) || !MROUTE_LKM
1277int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1278		   struct ip_moptions *) = X_ip_mforward;
1279#endif
1280
1281/*
1282 * Clean up the cache entry if upcall is not serviced
1283 */
1284static void
1285expire_upcalls(__unused void *unused)
1286{
1287    struct rtdetq *rte;
1288    struct mfc *mfc, **nptr;
1289    int i;
1290
1291    for (i = 0; i < CONFIG_MFCTBLSIZ; i++) {
1292	if (nexpire[i] == 0)
1293	    continue;
1294	nptr = &mfctable[i];
1295	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1296	    /*
1297	     * Skip real cache entries
1298	     * Make sure it wasn't marked to not expire (shouldn't happen)
1299	     * If it expires now
1300	     */
1301	    if (mfc->mfc_stall != NULL &&
1302	        mfc->mfc_expire != 0 &&
1303		--mfc->mfc_expire == 0) {
1304		if (mrtdebug & DEBUG_EXPIRE)
1305		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1306			(u_int32_t)ntohl(mfc->mfc_origin.s_addr),
1307			(u_int32_t)ntohl(mfc->mfc_mcastgrp.s_addr));
1308		/*
1309		 * drop all the packets
1310		 * free the mbuf with the pkt, if, timing info
1311		 */
1312		for (rte = mfc->mfc_stall; rte; ) {
1313		    struct rtdetq *n = rte->next;
1314
1315		    m_freem(rte->m);
1316		    FREE(rte, M_MRTABLE);
1317		    rte = n;
1318		}
1319		++mrtstat.mrts_cache_cleanups;
1320		nexpire[i]--;
1321
1322		*nptr = mfc->mfc_next;
1323		FREE(mfc, M_MRTABLE);
1324	    } else {
1325		nptr = &mfc->mfc_next;
1326	    }
1327	}
1328    }
1329    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1330}
1331
1332/*
1333 * Packet forwarding routine once entry in the cache is made
1334 */
1335static int
1336ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt,
1337       vifi_t xmt_vif)
1338{
1339    struct ip  *ip = mtod(m, struct ip *);
1340    vifi_t vifi;
1341    struct vif *vifp;
1342    int plen = ip->ip_len;
1343
1344/*
1345 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1346 * input, they shouldn't get counted on output, so statistics keeping is
1347 * seperate.
1348 */
1349#define MC_SEND(ip,vifp,m) {                             \
1350                if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1351                    encap_send((ip), (vifp), (m));       \
1352                else                                     \
1353                    phyint_send((ip), (vifp), (m));      \
1354}
1355
1356    /*
1357     * If xmt_vif is not -1, send on only the requested vif.
1358     *
1359     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1360     */
1361    if (xmt_vif < numvifs) {
1362	MC_SEND(ip, viftable + xmt_vif, m);
1363	return 1;
1364    }
1365
1366    /*
1367     * Don't forward if it didn't arrive from the parent vif for its origin.
1368     */
1369    vifi = rt->mfc_parent;
1370    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1371	/* came in the wrong interface */
1372	if (mrtdebug & DEBUG_FORWARD)
1373	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1374		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1375	++mrtstat.mrts_wrong_if;
1376	++rt->mfc_wrong_if;
1377	/*
1378	 * If we are doing PIM assert processing, and we are forwarding
1379	 * packets on this interface, and it is a broadcast medium
1380	 * interface (and not a tunnel), send a message to the routing daemon.
1381	 */
1382	if (pim_assert && rt->mfc_ttls[vifi] &&
1383		(ifp->if_flags & IFF_BROADCAST) &&
1384		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1385	    struct sockaddr_in k_igmpsrc;
1386	    struct mbuf *mm;
1387	    struct igmpmsg *im;
1388	    int hlen = ip->ip_hl << 2;
1389	    struct timeval now;
1390	    u_int32_t delta;
1391
1392	    GET_TIME(now);
1393
1394	    TV_DELTA(rt->mfc_last_assert, now, delta);
1395
1396	    if (delta > ASSERT_MSG_TIME) {
1397		mm = m_copy(m, 0, hlen);
1398		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1399		    mm = m_pullup(mm, hlen);
1400		if (mm == NULL) {
1401		    return ENOBUFS;
1402		}
1403
1404		rt->mfc_last_assert = now;
1405
1406		im = mtod(mm, struct igmpmsg *);
1407		im->im_msgtype	= IGMPMSG_WRONGVIF;
1408		im->im_mbz		= 0;
1409		im->im_vif		= vifi;
1410
1411		k_igmpsrc.sin_addr = im->im_src;
1412
1413		socket_send(ip_mrouter, mm, &k_igmpsrc);
1414	    }
1415	}
1416	return 0;
1417    }
1418
1419    /* If I sourced this packet, it counts as output, else it was input. */
1420    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1421	viftable[vifi].v_pkt_out++;
1422	viftable[vifi].v_bytes_out += plen;
1423    } else {
1424	viftable[vifi].v_pkt_in++;
1425	viftable[vifi].v_bytes_in += plen;
1426    }
1427    rt->mfc_pkt_cnt++;
1428    rt->mfc_byte_cnt += plen;
1429
1430    /*
1431     * For each vif, decide if a copy of the packet should be forwarded.
1432     * Forward if:
1433     *		- the ttl exceeds the vif's threshold
1434     *		- there are group members downstream on interface
1435     */
1436    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1437	if ((rt->mfc_ttls[vifi] > 0) &&
1438	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1439	    vifp->v_pkt_out++;
1440	    vifp->v_bytes_out += plen;
1441	    MC_SEND(ip, vifp, m);
1442	}
1443
1444    return 0;
1445}
1446
1447/*
1448 * check if a vif number is legal/ok. This is used by ip_output, to export
1449 * numvifs there,
1450 */
1451static int
1452X_legal_vif_num(int vif)
1453{
1454    if (vif >= 0 && vif < numvifs)
1455       return(1);
1456    else
1457       return(0);
1458}
1459
1460#if !defined(MROUTE_LKM) || !MROUTE_LKM
1461int (*legal_vif_num)(int) = X_legal_vif_num;
1462#endif
1463
1464/*
1465 * Return the local address used by this vif
1466 */
1467static u_int32_t
1468X_ip_mcast_src(int vifi)
1469{
1470    if (vifi >= 0 && vifi < numvifs)
1471	return viftable[vifi].v_lcl_addr.s_addr;
1472    else
1473	return INADDR_ANY;
1474}
1475
1476#if !defined(MROUTE_LKM) || !MROUTE_LKM
1477u_int32_t (*ip_mcast_src)(int) = X_ip_mcast_src;
1478#endif
1479
1480static void
1481phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1482{
1483    struct mbuf *mb_copy;
1484    int hlen = ip->ip_hl << 2;
1485
1486    /*
1487     * Make a new reference to the packet; make sure that
1488     * the IP header is actually copied, not just referenced,
1489     * so that ip_output() only scribbles on the copy.
1490     */
1491    mb_copy = m_copy(m, 0, M_COPYALL);
1492    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1493	mb_copy = m_pullup(mb_copy, hlen);
1494    if (mb_copy == NULL)
1495	return;
1496
1497    if (vifp->v_rate_limit == 0)
1498	tbf_send_packet(vifp, mb_copy);
1499    else
1500	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1501}
1502
1503static void
1504encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1505{
1506    struct mbuf *mb_copy;
1507    struct ip *ip_copy;
1508    int i, len = ip->ip_len;
1509
1510    /*
1511     * copy the old packet & pullup its IP header into the
1512     * new mbuf so we can modify it.  Try to fill the new
1513     * mbuf since if we don't the ethernet driver will.
1514     */
1515    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1516    if (mb_copy == NULL)
1517	return;
1518#if CONFIG_MACF_NET
1519    mac_mbuf_label_associate_multicast_encap(m, vifp->v_ifp, mb_copy);
1520#endif
1521    mb_copy->m_data += max_linkhdr;
1522    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1523
1524    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1525	m_freem(mb_copy);
1526	return;
1527    }
1528    i = MHLEN - M_LEADINGSPACE(mb_copy);
1529    if (i > len)
1530	i = len;
1531    mb_copy = m_pullup(mb_copy, i);
1532    if (mb_copy == NULL)
1533	return;
1534    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1535
1536    /*
1537     * fill in the encapsulating IP header.
1538     */
1539    ip_copy = mtod(mb_copy, struct ip *);
1540    *ip_copy = multicast_encap_iphdr;
1541#if RANDOM_IP_ID
1542    ip_copy->ip_id = ip_randomid();
1543#else
1544    ip_copy->ip_id = htons(ip_id++);
1545#endif
1546    ip_copy->ip_len += len;
1547    ip_copy->ip_src = vifp->v_lcl_addr;
1548    ip_copy->ip_dst = vifp->v_rmt_addr;
1549
1550    /*
1551     * turn the encapsulated IP header back into a valid one.
1552     */
1553    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1554    --ip->ip_ttl;
1555
1556#if BYTE_ORDER != BIG_ENDIAN
1557    HTONS(ip->ip_len);
1558    HTONS(ip->ip_off);
1559#endif
1560
1561    ip->ip_sum = 0;
1562    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1563    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1564    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1565
1566    if (vifp->v_rate_limit == 0)
1567	tbf_send_packet(vifp, mb_copy);
1568    else
1569	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1570}
1571
1572/*
1573 * De-encapsulate a packet and feed it back through ip input (this
1574 * routine is called whenever IP gets a packet with proto type
1575 * ENCAP_PROTO and a local destination address).
1576 */
1577void
1578#if MROUTE_LKM
1579X_ipip_input(struct mbuf *m, int iphlen)
1580#else
1581ipip_input(struct mbuf *m, int iphlen)
1582#endif
1583{
1584    struct ifnet *ifp = m->m_pkthdr.rcvif;
1585    struct ip *ip = mtod(m, struct ip *);
1586    int hlen = ip->ip_hl << 2;
1587    struct vif *vifp;
1588
1589    if (!have_encap_tunnel) {
1590	    rip_input(m, iphlen);
1591	    return;
1592    }
1593    /*
1594     * dump the packet if it's not to a multicast destination or if
1595     * we don't have an encapsulating tunnel with the source.
1596     * Note:  This code assumes that the remote site IP address
1597     * uniquely identifies the tunnel (i.e., that this site has
1598     * at most one tunnel with the remote site).
1599     */
1600    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1601	++mrtstat.mrts_bad_tunnel;
1602	m_freem(m);
1603	return;
1604    }
1605    if (ip->ip_src.s_addr != last_encap_src) {
1606	struct vif *vife;
1607
1608	vifp = viftable;
1609	vife = vifp + numvifs;
1610	last_encap_src = ip->ip_src.s_addr;
1611	last_encap_vif = 0;
1612	for ( ; vifp < vife; ++vifp)
1613	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1614		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1615		    == VIFF_TUNNEL)
1616		    last_encap_vif = vifp;
1617		break;
1618	    }
1619    }
1620    if ((vifp = last_encap_vif) == 0) {
1621	last_encap_src = 0;
1622	mrtstat.mrts_cant_tunnel++; /*XXX*/
1623	m_freem(m);
1624	if (mrtdebug)
1625	  log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1626		(u_int32_t)ntohl(ip->ip_src.s_addr));
1627	return;
1628    }
1629    ifp = vifp->v_ifp;
1630
1631    if (hlen > IP_HDR_LEN)
1632      ip_stripoptions(m, (struct mbuf *) 0);
1633    m->m_data += IP_HDR_LEN;
1634    m->m_len -= IP_HDR_LEN;
1635    m->m_pkthdr.len -= IP_HDR_LEN;
1636    m->m_pkthdr.rcvif = ifp;
1637
1638    proto_inject(PF_INET, m);
1639}
1640
1641/*
1642 * Token bucket filter module
1643 */
1644
1645static void
1646tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip,
1647	    u_int32_t p_len)
1648{
1649    struct tbf *t = vifp->v_tbf;
1650
1651    if (p_len > MAX_BKT_SIZE) {
1652	/* drop if packet is too large */
1653	mrtstat.mrts_pkt2large++;
1654	m_freem(m);
1655	return;
1656    }
1657
1658    tbf_update_tokens(vifp);
1659
1660    /* if there are enough tokens,
1661     * and the queue is empty,
1662     * send this packet out
1663     */
1664
1665    if (t->tbf_q_len == 0) {
1666	/* queue empty, send packet if enough tokens */
1667	if (p_len <= t->tbf_n_tok) {
1668	    t->tbf_n_tok -= p_len;
1669	    tbf_send_packet(vifp, m);
1670	} else {
1671	    /* queue packet and timeout till later */
1672	    tbf_queue(vifp, m);
1673	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1674	}
1675    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1676	/* finite queue length, so queue pkts and process queue */
1677	tbf_queue(vifp, m);
1678	tbf_process_q(vifp);
1679    } else {
1680	/* queue length too much, try to dq and queue and process */
1681	if (!tbf_dq_sel(vifp, ip)) {
1682	    mrtstat.mrts_q_overflow++;
1683	    m_freem(m);
1684	    return;
1685	} else {
1686	    tbf_queue(vifp, m);
1687	    tbf_process_q(vifp);
1688	}
1689    }
1690    return;
1691}
1692
1693/*
1694 * adds a packet to the queue at the interface
1695 */
1696static void
1697tbf_queue(struct vif *vifp, struct mbuf *m)
1698{
1699    struct tbf *t = vifp->v_tbf;
1700
1701    if (t->tbf_t == NULL) {
1702	/* Queue was empty */
1703	t->tbf_q = m;
1704    } else {
1705	/* Insert at tail */
1706	t->tbf_t->m_act = m;
1707    }
1708
1709    /* Set new tail pointer */
1710    t->tbf_t = m;
1711
1712#if DIAGNOSTIC
1713    /* Make sure we didn't get fed a bogus mbuf */
1714    if (m->m_act)
1715	panic("tbf_queue: m_act");
1716#endif
1717    m->m_act = NULL;
1718
1719    t->tbf_q_len++;
1720}
1721
1722
1723/*
1724 * processes the queue at the interface
1725 */
1726static void
1727tbf_process_q(struct vif *vifp)
1728{
1729    struct mbuf *m;
1730    int len;
1731    struct tbf *t = vifp->v_tbf;
1732
1733    /* loop through the queue at the interface and send as many packets
1734     * as possible
1735     */
1736    while (t->tbf_q_len > 0) {
1737	m = t->tbf_q;
1738
1739	len = mtod(m, struct ip *)->ip_len;
1740
1741	/* determine if the packet can be sent */
1742	if (len <= t->tbf_n_tok) {
1743	    /* if so,
1744	     * reduce no of tokens, dequeue the packet,
1745	     * send the packet.
1746	     */
1747	    t->tbf_n_tok -= len;
1748
1749	    t->tbf_q = m->m_act;
1750	    if (--t->tbf_q_len == 0)
1751		t->tbf_t = NULL;
1752
1753	    m->m_act = NULL;
1754	    tbf_send_packet(vifp, m);
1755
1756	} else break;
1757    }
1758}
1759
1760static void
1761tbf_reprocess_q(void *xvifp)
1762{
1763    struct vif *vifp = xvifp;
1764
1765    if (ip_mrouter == NULL)  {
1766	return;
1767     }
1768
1769    tbf_update_tokens(vifp);
1770
1771    tbf_process_q(vifp);
1772
1773    if (vifp->v_tbf->tbf_q_len)
1774	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1775}
1776
1777/* function that will selectively discard a member of the queue
1778 * based on the precedence value and the priority
1779 */
1780static int
1781tbf_dq_sel(struct vif *vifp, struct ip *ip)
1782{
1783    u_int p;
1784    struct mbuf *m, *last;
1785    struct mbuf **np;
1786    struct tbf *t = vifp->v_tbf;
1787
1788    p = priority(vifp, ip);
1789
1790    np = &t->tbf_q;
1791    last = NULL;
1792    while ((m = *np) != NULL) {
1793	if (p > priority(vifp, mtod(m, struct ip *))) {
1794	    *np = m->m_act;
1795	    /* If we're removing the last packet, fix the tail pointer */
1796	    if (m == t->tbf_t)
1797		t->tbf_t = last;
1798	    m_freem(m);
1799	    /* it's impossible for the queue to be empty, but
1800	     * we check anyway. */
1801	    if (--t->tbf_q_len == 0)
1802		t->tbf_t = NULL;
1803	    mrtstat.mrts_drop_sel++;
1804	    return(1);
1805	}
1806	np = &m->m_act;
1807	last = m;
1808    }
1809    return(0);
1810}
1811
1812static void
1813tbf_send_packet(struct vif *vifp, struct mbuf *m)
1814{
1815    int error;
1816    static struct route ro;
1817
1818    if (vifp->v_flags & VIFF_TUNNEL) {
1819	/* If tunnel options */
1820	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1821		  IP_FORWARDING, (struct ip_moptions *)0, NULL);
1822    } else {
1823	struct ip_moptions *imo;
1824
1825	imo = ip_allocmoptions(M_DONTWAIT);
1826	if (imo == NULL) {
1827		error = ENOMEM;
1828		goto done;
1829	}
1830
1831	imo->imo_multicast_ifp  = vifp->v_ifp;
1832	imo->imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1833	imo->imo_multicast_loop = 1;
1834	imo->imo_multicast_vif  = -1;
1835
1836	/*
1837	 * Re-entrancy should not be a problem here, because
1838	 * the packets that we send out and are looped back at us
1839	 * should get rejected because they appear to come from
1840	 * the loopback interface, thus preventing looping.
1841	 */
1842	error = ip_output(m, (struct mbuf *)0, &ro,
1843			  IP_FORWARDING, imo, NULL);
1844
1845	IMO_REMREF(imo);
1846done:
1847	if (mrtdebug & DEBUG_XMIT)
1848	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1849		vifp - viftable, error);
1850    }
1851}
1852
1853/* determine the current time and then
1854 * the elapsed time (between the last time and time now)
1855 * in milliseconds & update the no. of tokens in the bucket
1856 */
1857static void
1858tbf_update_tokens(struct vif *vifp)
1859{
1860    struct timeval tp;
1861    u_int32_t tm;
1862    struct tbf *t = vifp->v_tbf;
1863
1864    GET_TIME(tp);
1865
1866    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1867
1868    /*
1869     * This formula is actually
1870     * "time in seconds" * "bytes/second".
1871     *
1872     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1873     *
1874     * The (1000/1024) was introduced in add_vif to optimize
1875     * this divide into a shift.
1876     */
1877    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1878    t->tbf_last_pkt_t = tp;
1879
1880    if (t->tbf_n_tok > MAX_BKT_SIZE)
1881	t->tbf_n_tok = MAX_BKT_SIZE;
1882}
1883
1884static int
1885priority(__unused struct vif *vifp, struct ip *ip)
1886{
1887    int prio;
1888
1889    /* temporary hack; may add general packet classifier some day */
1890
1891    /*
1892     * The UDP port space is divided up into four priority ranges:
1893     * [0, 16384)     : unclassified - lowest priority
1894     * [16384, 32768) : audio - highest priority
1895     * [32768, 49152) : whiteboard - medium priority
1896     * [49152, 65536) : video - low priority
1897     */
1898    if (ip->ip_p == IPPROTO_UDP) {
1899	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1900	switch (ntohs(udp->uh_dport) & 0xc000) {
1901	    case 0x4000:
1902		prio = 70;
1903		break;
1904	    case 0x8000:
1905		prio = 60;
1906		break;
1907	    case 0xc000:
1908		prio = 55;
1909		break;
1910	    default:
1911		prio = 50;
1912		break;
1913	}
1914	if (tbfdebug > 1)
1915		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1916    } else {
1917	    prio = 50;
1918    }
1919    return prio;
1920}
1921
1922/*
1923 * End of token bucket filter modifications
1924 */
1925
1926int
1927ip_rsvp_vif_init(struct socket *so, struct sockopt *sopt)
1928{
1929    int error, i;
1930
1931    if (rsvpdebug)
1932	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1933	       so->so_type, so->so_proto->pr_protocol);
1934
1935    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1936	return EOPNOTSUPP;
1937
1938    /* Check mbuf. */
1939    error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1940    if (error)
1941	    return (error);
1942
1943    if (rsvpdebug)
1944	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
1945
1946    /* Check vif. */
1947    if (!legal_vif_num(i)) {
1948	return EADDRNOTAVAIL;
1949    }
1950
1951    /* Check if socket is available. */
1952    if (viftable[i].v_rsvpd != NULL) {
1953	return EADDRINUSE;
1954    }
1955
1956    viftable[i].v_rsvpd = so;
1957    /* This may seem silly, but we need to be sure we don't over-increment
1958     * the RSVP counter, in case something slips up.
1959     */
1960    if (!viftable[i].v_rsvp_on) {
1961	viftable[i].v_rsvp_on = 1;
1962	rsvp_on++;
1963    }
1964
1965    return 0;
1966}
1967
1968int
1969ip_rsvp_vif_done(struct socket *so, struct sockopt *sopt)
1970{
1971	int error, i;
1972
1973	if (rsvpdebug)
1974		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1975		       so->so_type, so->so_proto->pr_protocol);
1976
1977	if (so->so_type != SOCK_RAW ||
1978	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1979		return EOPNOTSUPP;
1980
1981	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1982	if (error)
1983		return (error);
1984
1985	/* Check vif. */
1986	if (!legal_vif_num(i)) {
1987		return EADDRNOTAVAIL;
1988	}
1989
1990	if (rsvpdebug)
1991		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
1992		       viftable[i].v_rsvpd, so);
1993
1994	viftable[i].v_rsvpd = NULL;
1995	/*
1996	 * This may seem silly, but we need to be sure we don't over-decrement
1997	 * the RSVP counter, in case something slips up.
1998	 */
1999	if (viftable[i].v_rsvp_on) {
2000		viftable[i].v_rsvp_on = 0;
2001		rsvp_on--;
2002	}
2003
2004	return 0;
2005}
2006
2007void
2008ip_rsvp_force_done(struct socket *so)
2009{
2010    int vifi;
2011
2012    /* Don't bother if it is not the right type of socket. */
2013    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2014	return;
2015
2016    /* The socket may be attached to more than one vif...this
2017     * is perfectly legal.
2018     */
2019    for (vifi = 0; vifi < numvifs; vifi++) {
2020	if (viftable[vifi].v_rsvpd == so) {
2021	    viftable[vifi].v_rsvpd = NULL;
2022	    /* This may seem silly, but we need to be sure we don't
2023	     * over-decrement the RSVP counter, in case something slips up.
2024	     */
2025	    if (viftable[vifi].v_rsvp_on) {
2026		viftable[vifi].v_rsvp_on = 0;
2027		rsvp_on--;
2028	    }
2029	}
2030    }
2031
2032    return;
2033}
2034
2035void
2036rsvp_input(struct mbuf *m, int iphlen)
2037{
2038    int vifi;
2039    struct ip *ip = mtod(m, struct ip *);
2040    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET,
2041    										0 , {0}, {0,0,0,0,0,0,0,0,} };
2042    struct ifnet *ifp;
2043
2044    if (rsvpdebug)
2045	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2046
2047    /* Can still get packets with rsvp_on = 0 if there is a local member
2048     * of the group to which the RSVP packet is addressed.  But in this
2049     * case we want to throw the packet away.
2050     */
2051    if (!rsvp_on) {
2052	m_freem(m);
2053	return;
2054    }
2055
2056    if (rsvpdebug)
2057	printf("rsvp_input: check vifs\n");
2058
2059#if DIAGNOSTIC
2060    if (!(m->m_flags & M_PKTHDR))
2061	    panic("rsvp_input no hdr");
2062#endif
2063
2064    ifp = m->m_pkthdr.rcvif;
2065    /* Find which vif the packet arrived on. */
2066    for (vifi = 0; vifi < numvifs; vifi++)
2067	if (viftable[vifi].v_ifp == ifp)
2068	    break;
2069
2070    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2071	/*
2072	 * If the old-style non-vif-associated socket is set,
2073	 * then use it.  Otherwise, drop packet since there
2074	 * is no specific socket for this vif.
2075	 */
2076	if (ip_rsvpd != NULL) {
2077	    if (rsvpdebug)
2078		printf("rsvp_input: Sending packet up old-style socket\n");
2079	    rip_input(m, iphlen);  /* xxx */
2080	} else {
2081	    if (rsvpdebug && vifi == numvifs)
2082		printf("rsvp_input: Can't find vif for packet.\n");
2083	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2084		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2085	    m_freem(m);
2086	}
2087	return;
2088    }
2089    rsvp_src.sin_addr = ip->ip_src;
2090
2091    if (rsvpdebug && m)
2092	printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2093	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2094
2095    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2096	if (rsvpdebug)
2097	    printf("rsvp_input: Failed to append to socket\n");
2098    } else {
2099	if (rsvpdebug)
2100	    printf("rsvp_input: send packet up\n");
2101    }
2102
2103}
2104
2105#if MROUTE_LKM
2106#include <sys/conf.h>
2107#include <sys/exec.h>
2108#include <sys/sysent.h>
2109#include <sys/lkm.h>
2110
2111MOD_MISC("ip_mroute_mod")
2112
2113static int
2114ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2115{
2116	int i;
2117	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2118	int err = 0;
2119
2120	switch(cmd) {
2121		static int (*old_ip_mrouter_cmd)();
2122		static int (*old_ip_mrouter_done)();
2123		static int (*old_ip_mforward)();
2124		static int (*old_mrt_ioctl)();
2125		static void (*old_proto4_input)();
2126		static int (*old_legal_vif_num)();
2127		extern struct protosw inetsw[];
2128
2129	case LKM_E_LOAD:
2130		if(lkmexists(lkmtp) || ip_mrtproto)
2131		  return(EEXIST);
2132		old_ip_mrouter_cmd = ip_mrouter_cmd;
2133		ip_mrouter_cmd = X_ip_mrouter_cmd;
2134		old_ip_mrouter_done = ip_mrouter_done;
2135		ip_mrouter_done = X_ip_mrouter_done;
2136		old_ip_mforward = ip_mforward;
2137		ip_mforward = X_ip_mforward;
2138		old_mrt_ioctl = mrt_ioctl;
2139		mrt_ioctl = X_mrt_ioctl;
2140              old_proto4_input = ip_protox[ENCAP_PROTO]->pr_input;
2141              ip_protox[ENCAP_PROTO]->pr_input = X_ipip_input;
2142		old_legal_vif_num = legal_vif_num;
2143		legal_vif_num = X_legal_vif_num;
2144		ip_mrtproto = IGMP_DVMRP;
2145
2146		printf("\nIP multicast routing loaded\n");
2147		break;
2148
2149	case LKM_E_UNLOAD:
2150		if (ip_mrouter)
2151		  return EINVAL;
2152
2153		ip_mrouter_cmd = old_ip_mrouter_cmd;
2154		ip_mrouter_done = old_ip_mrouter_done;
2155		ip_mforward = old_ip_mforward;
2156		mrt_ioctl = old_mrt_ioctl;
2157              ip_protox[ENCAP_PROTO]->pr_input = old_proto4_input;
2158		legal_vif_num = old_legal_vif_num;
2159		ip_mrtproto = 0;
2160		break;
2161
2162	default:
2163		err = EINVAL;
2164		break;
2165	}
2166
2167	return(err);
2168}
2169
2170int
2171ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2172	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2173		 nosys);
2174}
2175
2176#endif /* MROUTE_LKM */
2177#endif /* MROUTING */
2178