1/*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29#include <sys/systm.h>
30#include <sys/param.h>
31#include <sys/kernel.h>
32#include <sys/file_internal.h>
33#include <sys/dirent.h>
34#include <sys/stat.h>
35#include <sys/buf.h>
36#include <sys/buf_internal.h>
37#include <sys/mount.h>
38#include <sys/vnode_if.h>
39#include <sys/vnode_internal.h>
40#include <sys/malloc.h>
41#include <sys/ubc.h>
42#include <sys/ubc_internal.h>
43#include <sys/paths.h>
44#include <sys/quota.h>
45#include <sys/time.h>
46#include <sys/disk.h>
47#include <sys/kauth.h>
48#include <sys/uio_internal.h>
49#include <sys/fsctl.h>
50#include <sys/cprotect.h>
51#include <sys/xattr.h>
52#include <string.h>
53
54#include <miscfs/specfs/specdev.h>
55#include <miscfs/fifofs/fifo.h>
56#include <vfs/vfs_support.h>
57#include <machine/spl.h>
58
59#include <sys/kdebug.h>
60#include <sys/sysctl.h>
61
62#include "hfs.h"
63#include "hfs_catalog.h"
64#include "hfs_cnode.h"
65#include "hfs_dbg.h"
66#include "hfs_mount.h"
67#include "hfs_quota.h"
68#include "hfs_endian.h"
69
70#include "hfscommon/headers/BTreesInternal.h"
71#include "hfscommon/headers/FileMgrInternal.h"
72
73#define KNDETACH_VNLOCKED 0x00000001
74
75/* Global vfs data structures for hfs */
76
77/* Always F_FULLFSYNC? 1=yes,0=no (default due to "various" reasons is 'no') */
78int always_do_fullfsync = 0;
79SYSCTL_DECL(_vfs_generic);
80SYSCTL_INT (_vfs_generic, OID_AUTO, always_do_fullfsync, CTLFLAG_RW | CTLFLAG_LOCKED, &always_do_fullfsync, 0, "always F_FULLFSYNC when fsync is called");
81
82int hfs_makenode(struct vnode *dvp, struct vnode **vpp,
83                        struct componentname *cnp, struct vnode_attr *vap,
84                        vfs_context_t ctx);
85int hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p);
86int hfs_metasync_all(struct hfsmount *hfsmp);
87
88int hfs_removedir(struct vnode *, struct vnode *, struct componentname *,
89                         int, int);
90int hfs_removefile(struct vnode *, struct vnode *, struct componentname *,
91                          int, int, int, struct vnode *, int);
92
93/* Used here and in cnode teardown -- for symlinks */
94int hfs_removefile_callback(struct buf *bp, void *hfsmp);
95
96int hfs_movedata (struct vnode *, struct vnode*);
97static int hfs_move_fork (struct filefork *srcfork, struct cnode *src,
98						  struct filefork *dstfork, struct cnode *dst);
99
100#if FIFO
101static int hfsfifo_read(struct vnop_read_args *);
102static int hfsfifo_write(struct vnop_write_args *);
103static int hfsfifo_close(struct vnop_close_args *);
104
105extern int (**fifo_vnodeop_p)(void *);
106#endif /* FIFO */
107
108int hfs_vnop_close(struct vnop_close_args*);
109int hfs_vnop_create(struct vnop_create_args*);
110int hfs_vnop_exchange(struct vnop_exchange_args*);
111int hfs_vnop_fsync(struct vnop_fsync_args*);
112int hfs_vnop_mkdir(struct vnop_mkdir_args*);
113int hfs_vnop_mknod(struct vnop_mknod_args*);
114int hfs_vnop_getattr(struct vnop_getattr_args*);
115int hfs_vnop_open(struct vnop_open_args*);
116int hfs_vnop_readdir(struct vnop_readdir_args*);
117int hfs_vnop_remove(struct vnop_remove_args*);
118int hfs_vnop_rename(struct vnop_rename_args*);
119int hfs_vnop_rmdir(struct vnop_rmdir_args*);
120int hfs_vnop_symlink(struct vnop_symlink_args*);
121int hfs_vnop_setattr(struct vnop_setattr_args*);
122int hfs_vnop_readlink(struct vnop_readlink_args *);
123int hfs_vnop_pathconf(struct vnop_pathconf_args *);
124int hfs_vnop_whiteout(struct vnop_whiteout_args *);
125int hfs_vnop_mmap(struct vnop_mmap_args *ap);
126int hfsspec_read(struct vnop_read_args *);
127int hfsspec_write(struct vnop_write_args *);
128int hfsspec_close(struct vnop_close_args *);
129
130/* Options for hfs_removedir and hfs_removefile */
131#define HFSRM_SKIP_RESERVE  0x01
132
133
134
135
136/*****************************************************************************
137*
138* Common Operations on vnodes
139*
140*****************************************************************************/
141
142/*
143 * Is the given cnode either the .journal or .journal_info_block file on
144 * a volume with an active journal?  Many VNOPs use this to deny access
145 * to those files.
146 *
147 * Note: the .journal file on a volume with an external journal still
148 * returns true here, even though it does not actually hold the contents
149 * of the volume's journal.
150 */
151static _Bool
152hfs_is_journal_file(struct hfsmount *hfsmp, struct cnode *cp)
153{
154	if (hfsmp->jnl != NULL &&
155	    (cp->c_fileid == hfsmp->hfs_jnlinfoblkid ||
156	     cp->c_fileid == hfsmp->hfs_jnlfileid)) {
157		return true;
158	} else {
159		return false;
160	}
161}
162
163/*
164 * Create a regular file.
165 */
166int
167hfs_vnop_create(struct vnop_create_args *ap)
168{
169	int error;
170
171again:
172	error = hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
173
174	/*
175	 * We speculatively skipped the original lookup of the leaf
176	 * for CREATE.  Since it exists, go get it as long as they
177	 * didn't want an exclusive create.
178	 */
179	if ((error == EEXIST) && !(ap->a_vap->va_vaflags & VA_EXCLUSIVE)) {
180		struct vnop_lookup_args args;
181
182		args.a_desc = &vnop_lookup_desc;
183		args.a_dvp = ap->a_dvp;
184		args.a_vpp = ap->a_vpp;
185		args.a_cnp = ap->a_cnp;
186		args.a_context = ap->a_context;
187		args.a_cnp->cn_nameiop = LOOKUP;
188		error = hfs_vnop_lookup(&args);
189		/*
190		 * We can also race with remove for this file.
191		 */
192		if (error == ENOENT) {
193			goto again;
194		}
195
196		/* Make sure it was file. */
197		if ((error == 0) && !vnode_isreg(*args.a_vpp)) {
198			vnode_put(*args.a_vpp);
199			*args.a_vpp = NULLVP;
200			error = EEXIST;
201		}
202		args.a_cnp->cn_nameiop = CREATE;
203	}
204	return (error);
205}
206
207/*
208 * Make device special file.
209 */
210int
211hfs_vnop_mknod(struct vnop_mknod_args *ap)
212{
213	struct vnode_attr *vap = ap->a_vap;
214	struct vnode *dvp = ap->a_dvp;
215	struct vnode **vpp = ap->a_vpp;
216	struct cnode *cp;
217	int error;
218
219	if (VTOVCB(dvp)->vcbSigWord != kHFSPlusSigWord) {
220		return (ENOTSUP);
221	}
222
223	/* Create the vnode */
224	error = hfs_makenode(dvp, vpp, ap->a_cnp, vap, ap->a_context);
225	if (error)
226		return (error);
227
228	cp = VTOC(*vpp);
229	cp->c_touch_acctime = TRUE;
230	cp->c_touch_chgtime = TRUE;
231	cp->c_touch_modtime = TRUE;
232
233	if ((vap->va_rdev != VNOVAL) &&
234	    (vap->va_type == VBLK || vap->va_type == VCHR))
235		cp->c_rdev = vap->va_rdev;
236
237	return (0);
238}
239
240#if HFS_COMPRESSION
241/*
242 *	hfs_ref_data_vp(): returns the data fork vnode for a given cnode.
243 *	In the (hopefully rare) case where the data fork vnode is not
244 *	present, it will use hfs_vget() to create a new vnode for the
245 *	data fork.
246 *
247 *	NOTE: If successful and a vnode is returned, the caller is responsible
248 *	for releasing the returned vnode with vnode_rele().
249 */
250static int
251hfs_ref_data_vp(struct cnode *cp, struct vnode **data_vp, int skiplock)
252{
253	int vref = 0;
254
255	if (!data_vp || !cp) /* sanity check incoming parameters */
256		return EINVAL;
257
258	/* maybe we should take the hfs cnode lock here, and if so, use the skiplock parameter to tell us not to */
259
260	if (!skiplock) hfs_lock(cp, HFS_SHARED_LOCK);
261	struct vnode *c_vp = cp->c_vp;
262	if (c_vp) {
263		/* we already have a data vnode */
264		*data_vp = c_vp;
265		vref = vnode_ref(*data_vp);
266		if (!skiplock) hfs_unlock(cp);
267		if (vref == 0) {
268			return 0;
269		}
270		return EINVAL;
271	}
272	/* no data fork vnode in the cnode, so ask hfs for one. */
273
274	if (!cp->c_rsrc_vp) {
275		/* if we don't have either a c_vp or c_rsrc_vp, we can't really do anything useful */
276		*data_vp = NULL;
277		if (!skiplock) hfs_unlock(cp);
278		return EINVAL;
279	}
280
281	if (0 == hfs_vget(VTOHFS(cp->c_rsrc_vp), cp->c_cnid, data_vp, 1, 0) &&
282		0 != data_vp) {
283		vref = vnode_ref(*data_vp);
284		vnode_put(*data_vp);
285		if (!skiplock) hfs_unlock(cp);
286		if (vref == 0) {
287			return 0;
288		}
289		return EINVAL;
290	}
291	/* there was an error getting the vnode */
292	*data_vp = NULL;
293	if (!skiplock) hfs_unlock(cp);
294	return EINVAL;
295}
296
297/*
298 *	hfs_lazy_init_decmpfs_cnode(): returns the decmpfs_cnode for a cnode,
299 *	allocating it if necessary; returns NULL if there was an allocation error
300 */
301static decmpfs_cnode *
302hfs_lazy_init_decmpfs_cnode(struct cnode *cp)
303{
304	if (!cp->c_decmp) {
305		decmpfs_cnode *dp = NULL;
306		MALLOC_ZONE(dp, decmpfs_cnode *, sizeof(decmpfs_cnode), M_DECMPFS_CNODE, M_WAITOK);
307		if (!dp) {
308			/* error allocating a decmpfs cnode */
309			return NULL;
310		}
311		decmpfs_cnode_init(dp);
312		if (!OSCompareAndSwapPtr(NULL, dp, (void * volatile *)&cp->c_decmp)) {
313			/* another thread got here first, so free the decmpfs_cnode we allocated */
314			decmpfs_cnode_destroy(dp);
315			FREE_ZONE(dp, sizeof(*dp), M_DECMPFS_CNODE);
316		}
317	}
318
319	return cp->c_decmp;
320}
321
322/*
323 *	hfs_file_is_compressed(): returns 1 if the file is compressed, and 0 (zero) if not.
324 *	if the file's compressed flag is set, makes sure that the decmpfs_cnode field
325 *	is allocated by calling hfs_lazy_init_decmpfs_cnode(), then makes sure it is populated,
326 *	or else fills it in via the decmpfs_file_is_compressed() function.
327 */
328int
329hfs_file_is_compressed(struct cnode *cp, int skiplock)
330{
331	int ret = 0;
332
333	/* fast check to see if file is compressed. If flag is clear, just answer no */
334	if (!(cp->c_bsdflags & UF_COMPRESSED)) {
335		return 0;
336	}
337
338	decmpfs_cnode *dp = hfs_lazy_init_decmpfs_cnode(cp);
339	if (!dp) {
340		/* error allocating a decmpfs cnode, treat the file as uncompressed */
341		return 0;
342	}
343
344	/* flag was set, see if the decmpfs_cnode state is valid (zero == invalid) */
345	uint32_t decmpfs_state = decmpfs_cnode_get_vnode_state(dp);
346	switch(decmpfs_state) {
347		case FILE_IS_COMPRESSED:
348		case FILE_IS_CONVERTING: /* treat decompressing files as if they are compressed */
349			return 1;
350		case FILE_IS_NOT_COMPRESSED:
351			return 0;
352		/* otherwise the state is not cached yet */
353	}
354
355	/* decmpfs hasn't seen this file yet, so call decmpfs_file_is_compressed() to init the decmpfs_cnode struct */
356	struct vnode *data_vp = NULL;
357	if (0 == hfs_ref_data_vp(cp, &data_vp, skiplock)) {
358		if (data_vp) {
359			ret = decmpfs_file_is_compressed(data_vp, VTOCMP(data_vp)); // fill in decmpfs_cnode
360			vnode_rele(data_vp);
361		}
362	}
363	return ret;
364}
365
366/*	hfs_uncompressed_size_of_compressed_file() - get the uncompressed size of the file.
367 *	if the caller has passed a valid vnode (has a ref count > 0), then hfsmp and fid are not required.
368 *	if the caller doesn't have a vnode, pass NULL in vp, and pass valid hfsmp and fid.
369 *	files size is returned in size (required)
370 *	if the indicated file is a directory (or something that doesn't have a data fork), then this call
371 *	will return an error and the caller should fall back to treating the item as an uncompressed file
372 */
373int
374hfs_uncompressed_size_of_compressed_file(struct hfsmount *hfsmp, struct vnode *vp, cnid_t fid, off_t *size, int skiplock)
375{
376	int ret = 0;
377	int putaway = 0;									/* flag to remember if we used hfs_vget() */
378
379	if (!size) {
380		return EINVAL;									/* no place to put the file size */
381	}
382
383	if (NULL == vp) {
384		if (!hfsmp || !fid) {							/* make sure we have the required parameters */
385			return EINVAL;
386		}
387		if (0 != hfs_vget(hfsmp, fid, &vp, skiplock, 0)) {		/* vnode is null, use hfs_vget() to get it */
388			vp = NULL;
389		} else {
390			putaway = 1;								/* note that hfs_vget() was used to aquire the vnode */
391		}
392	}
393	/* this double check for compression (hfs_file_is_compressed)
394	 * ensures the cached size is present in case decmpfs hasn't
395	 * encountered this node yet.
396	 */
397	if (vp) {
398		if (hfs_file_is_compressed(VTOC(vp), skiplock) ) {
399			*size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp));	/* file info will be cached now, so get size */
400		} else {
401			if (VTOCMP(vp) && VTOCMP(vp)->cmp_type >= CMP_MAX) {
402				if (VTOCMP(vp)->cmp_type != DATALESS_CMPFS_TYPE) {
403					// if we don't recognize this type, just use the real data fork size
404					if (VTOC(vp)->c_datafork) {
405						*size = VTOC(vp)->c_datafork->ff_size;
406						ret = 0;
407					} else {
408						ret = EINVAL;
409					}
410				} else {
411					*size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp));	/* file info will be cached now, so get size */
412					ret = 0;
413				}
414			} else {
415				ret = EINVAL;
416			}
417		}
418	}
419
420	if (putaway) {		/* did we use hfs_vget() to get this vnode? */
421		vnode_put(vp);	/* if so, release it and set it to null */
422		vp = NULL;
423	}
424	return ret;
425}
426
427int
428hfs_hides_rsrc(vfs_context_t ctx, struct cnode *cp, int skiplock)
429{
430	if (ctx == decmpfs_ctx)
431		return 0;
432	if (!hfs_file_is_compressed(cp, skiplock))
433		return 0;
434	return decmpfs_hides_rsrc(ctx, cp->c_decmp);
435}
436
437int
438hfs_hides_xattr(vfs_context_t ctx, struct cnode *cp, const char *name, int skiplock)
439{
440	if (ctx == decmpfs_ctx)
441		return 0;
442	if (!hfs_file_is_compressed(cp, skiplock))
443		return 0;
444	return decmpfs_hides_xattr(ctx, cp->c_decmp, name);
445}
446#endif /* HFS_COMPRESSION */
447
448/*
449 * Open a file/directory.
450 */
451int
452hfs_vnop_open(struct vnop_open_args *ap)
453{
454	struct vnode *vp = ap->a_vp;
455	struct filefork *fp;
456	struct timeval tv;
457	int error;
458	static int past_bootup = 0;
459	struct cnode *cp = VTOC(vp);
460	struct hfsmount *hfsmp = VTOHFS(vp);
461
462#if HFS_COMPRESSION
463	if (ap->a_mode & FWRITE) {
464		/* open for write */
465		if ( hfs_file_is_compressed(cp, 1) ) { /* 1 == don't take the cnode lock */
466			/* opening a compressed file for write, so convert it to decompressed */
467			struct vnode *data_vp = NULL;
468			error = hfs_ref_data_vp(cp, &data_vp, 1); /* 1 == don't take the cnode lock */
469			if (0 == error) {
470				if (data_vp) {
471					error = decmpfs_decompress_file(data_vp, VTOCMP(data_vp), -1, 1, 0);
472					vnode_rele(data_vp);
473				} else {
474					error = EINVAL;
475				}
476			}
477			if (error != 0)
478				return error;
479		}
480	} else {
481		/* open for read */
482		if (hfs_file_is_compressed(cp, 1) ) { /* 1 == don't take the cnode lock */
483			if (VNODE_IS_RSRC(vp)) {
484				/* opening the resource fork of a compressed file, so nothing to do */
485			} else {
486				/* opening a compressed file for read, make sure it validates */
487				error = decmpfs_validate_compressed_file(vp, VTOCMP(vp));
488				if (error != 0)
489					return error;
490			}
491		}
492	}
493#endif
494
495	/*
496	 * Files marked append-only must be opened for appending.
497	 */
498	if ((cp->c_bsdflags & APPEND) && !vnode_isdir(vp) &&
499	    (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE)
500		return (EPERM);
501
502	if (vnode_isreg(vp) && !UBCINFOEXISTS(vp))
503		return (EBUSY);  /* file is in use by the kernel */
504
505	/* Don't allow journal to be opened externally. */
506	if (hfs_is_journal_file(hfsmp, cp))
507		return (EPERM);
508
509	if ((hfsmp->hfs_flags & HFS_READ_ONLY) ||
510	    (hfsmp->jnl == NULL) ||
511#if NAMEDSTREAMS
512	    !vnode_isreg(vp) || vnode_isinuse(vp, 0) || vnode_isnamedstream(vp)) {
513#else
514	    !vnode_isreg(vp) || vnode_isinuse(vp, 0)) {
515#endif
516		return (0);
517	}
518
519	if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK)))
520		return (error);
521
522#if QUOTA
523	/* If we're going to write to the file, initialize quotas. */
524	if ((ap->a_mode & FWRITE) && (hfsmp->hfs_flags & HFS_QUOTAS))
525		(void)hfs_getinoquota(cp);
526#endif /* QUOTA */
527
528	/*
529	 * On the first (non-busy) open of a fragmented
530	 * file attempt to de-frag it (if its less than 20MB).
531	 */
532	fp = VTOF(vp);
533	if (fp->ff_blocks &&
534	    fp->ff_extents[7].blockCount != 0 &&
535	    fp->ff_size <= (20 * 1024 * 1024)) {
536		int no_mods = 0;
537		struct timeval now;
538		/*
539		 * Wait until system bootup is done (3 min).
540		 * And don't relocate a file that's been modified
541		 * within the past minute -- this can lead to
542		 * system thrashing.
543		 */
544
545		if (!past_bootup) {
546			microuptime(&tv);
547			if (tv.tv_sec > (60*3)) {
548				past_bootup = 1;
549			}
550		}
551
552		microtime(&now);
553		if ((now.tv_sec - cp->c_mtime) > 60) {
554			no_mods = 1;
555		}
556
557		if (past_bootup && no_mods) {
558			(void) hfs_relocate(vp, hfsmp->nextAllocation + 4096,
559					vfs_context_ucred(ap->a_context),
560					vfs_context_proc(ap->a_context));
561		}
562	}
563
564	hfs_unlock(cp);
565
566	return (0);
567}
568
569
570/*
571 * Close a file/directory.
572 */
573int
574hfs_vnop_close(ap)
575	struct vnop_close_args /* {
576		struct vnode *a_vp;
577		int a_fflag;
578		vfs_context_t a_context;
579	} */ *ap;
580{
581	register struct vnode *vp = ap->a_vp;
582 	register struct cnode *cp;
583	struct proc *p = vfs_context_proc(ap->a_context);
584	struct hfsmount *hfsmp;
585	int busy;
586	int tooktrunclock = 0;
587	int knownrefs = 0;
588
589	if ( hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) != 0)
590		return (0);
591	cp = VTOC(vp);
592	hfsmp = VTOHFS(vp);
593
594	/*
595	 * If the rsrc fork is a named stream, it can cause the data fork to
596	 * stay around, preventing de-allocation of these blocks.
597	 * Do checks for truncation on close. Purge extra extents if they exist.
598	 * Make sure the vp is not a directory, and that it has a resource fork,
599	 * and that resource fork is also a named stream.
600	 */
601
602	if ((vp->v_type == VREG) && (cp->c_rsrc_vp)
603			&& (vnode_isnamedstream(cp->c_rsrc_vp))) {
604		uint32_t blks;
605
606		blks = howmany(VTOF(vp)->ff_size, VTOVCB(vp)->blockSize);
607		/*
608		 * If there are extra blocks and there are only 2 refs on
609		 * this vp (ourselves + rsrc fork holding ref on us), go ahead
610		 * and try to truncate.
611		 */
612		if ((blks < VTOF(vp)->ff_blocks) && (!vnode_isinuse(vp, 2))) {
613			// release cnode lock; must acquire truncate lock BEFORE cnode lock
614			hfs_unlock(cp);
615
616			hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
617			tooktrunclock = 1;
618
619			if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) != 0) {
620				hfs_unlock_truncate(cp, 0);
621				// bail out if we can't re-acquire cnode lock
622				return 0;
623			}
624			// now re-test to make sure it's still valid
625			if (cp->c_rsrc_vp) {
626				knownrefs = 1 + vnode_isnamedstream(cp->c_rsrc_vp);
627				if (!vnode_isinuse(vp, knownrefs)){
628					// now we can truncate the file, if necessary
629					blks = howmany(VTOF(vp)->ff_size, VTOVCB(vp)->blockSize);
630					if (blks < VTOF(vp)->ff_blocks){
631						(void) hfs_truncate(vp, VTOF(vp)->ff_size, IO_NDELAY, 0, 0, ap->a_context);
632					}
633				}
634			}
635		}
636	}
637
638
639	// if we froze the fs and we're exiting, then "thaw" the fs
640	if (hfsmp->hfs_freezing_proc == p && proc_exiting(p)) {
641	    hfsmp->hfs_freezing_proc = NULL;
642	    hfs_unlock_global (hfsmp);
643		lck_rw_unlock_exclusive(&hfsmp->hfs_insync);
644	}
645
646	busy = vnode_isinuse(vp, 1);
647
648	if (busy) {
649		hfs_touchtimes(VTOHFS(vp), cp);
650	}
651	if (vnode_isdir(vp)) {
652		hfs_reldirhints(cp, busy);
653	} else if (vnode_issystem(vp) && !busy) {
654		vnode_recycle(vp);
655	}
656
657	if (tooktrunclock){
658		hfs_unlock_truncate(cp, 0);
659	}
660	hfs_unlock(cp);
661
662	if (ap->a_fflag & FWASWRITTEN) {
663		hfs_sync_ejectable(hfsmp);
664	}
665
666	return (0);
667}
668
669/*
670 * Get basic attributes.
671 */
672int
673hfs_vnop_getattr(struct vnop_getattr_args *ap)
674{
675#define VNODE_ATTR_TIMES  \
676	(VNODE_ATTR_va_access_time|VNODE_ATTR_va_change_time|VNODE_ATTR_va_modify_time)
677#define VNODE_ATTR_AUTH  \
678	(VNODE_ATTR_va_mode | VNODE_ATTR_va_uid | VNODE_ATTR_va_gid | \
679         VNODE_ATTR_va_flags | VNODE_ATTR_va_acl)
680
681	struct vnode *vp = ap->a_vp;
682	struct vnode_attr *vap = ap->a_vap;
683	struct vnode *rvp = NULLVP;
684	struct hfsmount *hfsmp;
685	struct cnode *cp;
686	uint64_t data_size;
687	enum vtype v_type;
688	int error = 0;
689	cp = VTOC(vp);
690
691#if HFS_COMPRESSION
692	/* we need to inspect the decmpfs state of the file before we take the hfs cnode lock */
693	int compressed = 0;
694	int hide_size = 0;
695	off_t uncompressed_size = -1;
696	if (VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_alloc) || VATTR_IS_ACTIVE(vap, va_data_alloc) || VATTR_IS_ACTIVE(vap, va_total_size)) {
697		/* we only care about whether the file is compressed if asked for the uncompressed size */
698		if (VNODE_IS_RSRC(vp)) {
699			/* if it's a resource fork, decmpfs may want us to hide the size */
700			hide_size = hfs_hides_rsrc(ap->a_context, cp, 0);
701		} else {
702			/* if it's a data fork, we need to know if it was compressed so we can report the uncompressed size */
703			compressed = hfs_file_is_compressed(cp, 0);
704		}
705		if ((VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_size))) {
706			// if it's compressed
707			if (compressed || (!VNODE_IS_RSRC(vp) && cp->c_decmp && cp->c_decmp->cmp_type >= CMP_MAX)) {
708				if (0 != hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0)) {
709					/* failed to get the uncompressed size, we'll check for this later */
710					uncompressed_size = -1;
711				} else {
712					// fake that it's compressed
713					compressed = 1;
714				}
715			}
716		}
717	}
718#endif
719
720	/*
721	 * Shortcut for vnode_authorize path.  Each of the attributes
722	 * in this set is updated atomically so we don't need to take
723	 * the cnode lock to access them.
724	 */
725	if ((vap->va_active & ~VNODE_ATTR_AUTH) == 0) {
726		/* Make sure file still exists. */
727		if (cp->c_flag & C_NOEXISTS)
728			return (ENOENT);
729
730		vap->va_uid = cp->c_uid;
731		vap->va_gid = cp->c_gid;
732		vap->va_mode = cp->c_mode;
733		vap->va_flags = cp->c_bsdflags;
734		vap->va_supported |= VNODE_ATTR_AUTH & ~VNODE_ATTR_va_acl;
735
736		if ((cp->c_attr.ca_recflags & kHFSHasSecurityMask) == 0) {
737			vap->va_acl = (kauth_acl_t) KAUTH_FILESEC_NONE;
738			VATTR_SET_SUPPORTED(vap, va_acl);
739		}
740
741		return (0);
742	}
743
744	hfsmp = VTOHFS(vp);
745	v_type = vnode_vtype(vp);
746	/*
747	 * If time attributes are requested and we have cnode times
748	 * that require updating, then acquire an exclusive lock on
749	 * the cnode before updating the times.  Otherwise we can
750	 * just acquire a shared lock.
751	 */
752	if ((vap->va_active & VNODE_ATTR_TIMES) &&
753	    (cp->c_touch_acctime || cp->c_touch_chgtime || cp->c_touch_modtime)) {
754		if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK)))
755			return (error);
756		hfs_touchtimes(hfsmp, cp);
757	}
758 	else {
759		if ((error = hfs_lock(cp, HFS_SHARED_LOCK)))
760			return (error);
761	}
762
763	if (v_type == VDIR) {
764		data_size = (cp->c_entries + 2) * AVERAGE_HFSDIRENTRY_SIZE;
765
766		if (VATTR_IS_ACTIVE(vap, va_nlink)) {
767			int nlink;
768
769			/*
770			 * For directories, the va_nlink is esentially a count
771			 * of the ".." references to a directory plus the "."
772			 * reference and the directory itself. So for HFS+ this
773			 * becomes the sub-directory count plus two.
774			 *
775			 * In the absence of a sub-directory count we use the
776			 * directory's item count.  This will be too high in
777			 * most cases since it also includes files.
778			 */
779			if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
780			    (cp->c_attr.ca_recflags & kHFSHasFolderCountMask))
781				nlink = cp->c_attr.ca_dircount;  /* implied ".." entries */
782			else
783				nlink = cp->c_entries;
784
785			/* Account for ourself and our "." entry */
786			nlink += 2;
787			 /* Hide our private directories. */
788			if (cp->c_cnid == kHFSRootFolderID) {
789				if (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid != 0) {
790					--nlink;
791				}
792				if (hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid != 0) {
793					--nlink;
794				}
795			}
796			VATTR_RETURN(vap, va_nlink, (u_int64_t)nlink);
797		}
798		if (VATTR_IS_ACTIVE(vap, va_nchildren)) {
799			int entries;
800
801			entries = cp->c_entries;
802			/* Hide our private files and directories. */
803			if (cp->c_cnid == kHFSRootFolderID) {
804				if (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid != 0)
805					--entries;
806				if (hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid != 0)
807					--entries;
808				if (hfsmp->jnl || ((hfsmp->vcbAtrb & kHFSVolumeJournaledMask) && (hfsmp->hfs_flags & HFS_READ_ONLY)))
809					entries -= 2;   /* hide the journal files */
810			}
811			VATTR_RETURN(vap, va_nchildren, entries);
812		}
813		/*
814		 * The va_dirlinkcount is the count of real directory hard links.
815		 * (i.e. its not the sum of the implied "." and ".." references)
816		 */
817		if (VATTR_IS_ACTIVE(vap, va_dirlinkcount)) {
818			VATTR_RETURN(vap, va_dirlinkcount, (uint32_t)cp->c_linkcount);
819		}
820	} else /* !VDIR */ {
821		data_size = VCTOF(vp, cp)->ff_size;
822
823		VATTR_RETURN(vap, va_nlink, (u_int64_t)cp->c_linkcount);
824		if (VATTR_IS_ACTIVE(vap, va_data_alloc)) {
825			u_int64_t blocks;
826
827#if HFS_COMPRESSION
828			if (hide_size) {
829				VATTR_RETURN(vap, va_data_alloc, 0);
830			} else if (compressed) {
831				/* for compressed files, we report all allocated blocks as belonging to the data fork */
832				blocks = cp->c_blocks;
833				VATTR_RETURN(vap, va_data_alloc, blocks * (u_int64_t)hfsmp->blockSize);
834			}
835			else
836#endif
837			{
838				blocks = VCTOF(vp, cp)->ff_blocks;
839				VATTR_RETURN(vap, va_data_alloc, blocks * (u_int64_t)hfsmp->blockSize);
840			}
841		}
842	}
843
844	/* conditional because 64-bit arithmetic can be expensive */
845	if (VATTR_IS_ACTIVE(vap, va_total_size)) {
846		if (v_type == VDIR) {
847			VATTR_RETURN(vap, va_total_size, (cp->c_entries + 2) * AVERAGE_HFSDIRENTRY_SIZE);
848		} else {
849			u_int64_t total_size = ~0ULL;
850			struct cnode *rcp;
851#if HFS_COMPRESSION
852			if (hide_size) {
853				/* we're hiding the size of this file, so just return 0 */
854				total_size = 0;
855			} else if (compressed) {
856				if (uncompressed_size == -1) {
857					/*
858					 * We failed to get the uncompressed size above,
859					 * so we'll fall back to the standard path below
860					 * since total_size is still -1
861					 */
862				} else {
863					/* use the uncompressed size we fetched above */
864					total_size = uncompressed_size;
865				}
866			}
867#endif
868			if (total_size == ~0ULL) {
869				if (cp->c_datafork) {
870					total_size = cp->c_datafork->ff_size;
871				}
872
873				if (cp->c_blocks - VTOF(vp)->ff_blocks) {
874					/* We deal with rsrc fork vnode iocount at the end of the function */
875					error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, FALSE);
876					if (error) {
877						/*
878						 * Note that we call hfs_vgetrsrc with error_on_unlinked
879						 * set to FALSE.  This is because we may be invoked via
880						 * fstat() on an open-unlinked file descriptor and we must
881						 * continue to support access to the rsrc fork until it disappears.
882						 * The code at the end of this function will be
883						 * responsible for releasing the iocount generated by
884						 * hfs_vgetrsrc.  This is because we can't drop the iocount
885						 * without unlocking the cnode first.
886						 */
887						goto out;
888					}
889
890					rcp = VTOC(rvp);
891					if (rcp && rcp->c_rsrcfork) {
892						total_size += rcp->c_rsrcfork->ff_size;
893					}
894				}
895			}
896
897			VATTR_RETURN(vap, va_total_size, total_size);
898		}
899	}
900	if (VATTR_IS_ACTIVE(vap, va_total_alloc)) {
901		if (v_type == VDIR) {
902			VATTR_RETURN(vap, va_total_alloc, 0);
903		} else {
904			VATTR_RETURN(vap, va_total_alloc, (u_int64_t)cp->c_blocks * (u_int64_t)hfsmp->blockSize);
905		}
906	}
907
908	/*
909	 * If the VFS wants extended security data, and we know that we
910	 * don't have any (because it never told us it was setting any)
911	 * then we can return the supported bit and no data.  If we do
912	 * have extended security, we can just leave the bit alone and
913	 * the VFS will use the fallback path to fetch it.
914	 */
915	if (VATTR_IS_ACTIVE(vap, va_acl)) {
916		if ((cp->c_attr.ca_recflags & kHFSHasSecurityMask) == 0) {
917			vap->va_acl = (kauth_acl_t) KAUTH_FILESEC_NONE;
918			VATTR_SET_SUPPORTED(vap, va_acl);
919		}
920	}
921	if (VATTR_IS_ACTIVE(vap, va_access_time)) {
922		/* Access times are lazily updated, get current time if needed */
923		if (cp->c_touch_acctime) {
924			struct timeval tv;
925
926			microtime(&tv);
927			vap->va_access_time.tv_sec = tv.tv_sec;
928		} else {
929			vap->va_access_time.tv_sec = cp->c_atime;
930		}
931		vap->va_access_time.tv_nsec = 0;
932		VATTR_SET_SUPPORTED(vap, va_access_time);
933	}
934	vap->va_create_time.tv_sec = cp->c_itime;
935	vap->va_create_time.tv_nsec = 0;
936	vap->va_modify_time.tv_sec = cp->c_mtime;
937	vap->va_modify_time.tv_nsec = 0;
938	vap->va_change_time.tv_sec = cp->c_ctime;
939	vap->va_change_time.tv_nsec = 0;
940	vap->va_backup_time.tv_sec = cp->c_btime;
941	vap->va_backup_time.tv_nsec = 0;
942
943	/* See if we need to emit the date added field to the user */
944	if (VATTR_IS_ACTIVE(vap, va_addedtime)) {
945		u_int32_t dateadded = hfs_get_dateadded (cp);
946		if (dateadded) {
947			vap->va_addedtime.tv_sec = dateadded;
948			vap->va_addedtime.tv_nsec = 0;
949			VATTR_SET_SUPPORTED (vap, va_addedtime);
950		}
951	}
952
953	/* XXX is this really a good 'optimal I/O size'? */
954	vap->va_iosize = hfsmp->hfs_logBlockSize;
955	vap->va_uid = cp->c_uid;
956	vap->va_gid = cp->c_gid;
957	vap->va_mode = cp->c_mode;
958	vap->va_flags = cp->c_bsdflags;
959
960	/*
961	 * Exporting file IDs from HFS Plus:
962	 *
963	 * For "normal" files the c_fileid is the same value as the
964	 * c_cnid.  But for hard link files, they are different - the
965	 * c_cnid belongs to the active directory entry (ie the link)
966	 * and the c_fileid is for the actual inode (ie the data file).
967	 *
968	 * The stat call (getattr) uses va_fileid and the Carbon APIs,
969	 * which are hardlink-ignorant, will ask for va_linkid.
970	 */
971	vap->va_fileid = (u_int64_t)cp->c_fileid;
972	/*
973	 * We need to use the origin cache for both hardlinked files
974	 * and directories. Hardlinked directories have multiple cnids
975	 * and parents (one per link). Hardlinked files also have their
976	 * own parents and link IDs separate from the indirect inode number.
977	 * If we don't use the cache, we could end up vending the wrong ID
978	 * because the cnode will only reflect the link that was looked up most recently.
979	 */
980	if (cp->c_flag & C_HARDLINK) {
981		vap->va_linkid = (u_int64_t)hfs_currentcnid(cp);
982		vap->va_parentid = (u_int64_t)hfs_currentparent(cp);
983	} else {
984		vap->va_linkid = (u_int64_t)cp->c_cnid;
985		vap->va_parentid = (u_int64_t)cp->c_parentcnid;
986	}
987	vap->va_fsid = hfsmp->hfs_raw_dev;
988	vap->va_filerev = 0;
989	vap->va_encoding = cp->c_encoding;
990	vap->va_rdev = (v_type == VBLK || v_type == VCHR) ? cp->c_rdev : 0;
991#if HFS_COMPRESSION
992	if (VATTR_IS_ACTIVE(vap, va_data_size)) {
993		if (hide_size)
994			vap->va_data_size = 0;
995		else if (compressed) {
996			if (uncompressed_size == -1) {
997				/* failed to get the uncompressed size above, so just return data_size */
998				vap->va_data_size = data_size;
999			} else {
1000				/* use the uncompressed size we fetched above */
1001				vap->va_data_size = uncompressed_size;
1002			}
1003		} else
1004			vap->va_data_size = data_size;
1005//		vap->va_supported |= VNODE_ATTR_va_data_size;
1006		VATTR_SET_SUPPORTED(vap, va_data_size);
1007	}
1008#else
1009	vap->va_data_size = data_size;
1010	vap->va_supported |= VNODE_ATTR_va_data_size;
1011#endif
1012
1013	/* Mark them all at once instead of individual VATTR_SET_SUPPORTED calls. */
1014	vap->va_supported |= VNODE_ATTR_va_create_time | VNODE_ATTR_va_modify_time |
1015	                     VNODE_ATTR_va_change_time| VNODE_ATTR_va_backup_time |
1016	                     VNODE_ATTR_va_iosize | VNODE_ATTR_va_uid |
1017	                     VNODE_ATTR_va_gid | VNODE_ATTR_va_mode |
1018	                     VNODE_ATTR_va_flags |VNODE_ATTR_va_fileid |
1019	                     VNODE_ATTR_va_linkid | VNODE_ATTR_va_parentid |
1020	                     VNODE_ATTR_va_fsid | VNODE_ATTR_va_filerev |
1021	                     VNODE_ATTR_va_encoding | VNODE_ATTR_va_rdev;
1022
1023	/* If this is the root, let VFS to find out the mount name, which
1024	 * may be different from the real name.  Otherwise, we need to take care
1025	 * for hardlinked files, which need to be looked up, if necessary
1026	 */
1027	if (VATTR_IS_ACTIVE(vap, va_name) && (cp->c_cnid != kHFSRootFolderID)) {
1028		struct cat_desc linkdesc;
1029		int lockflags;
1030		int uselinkdesc = 0;
1031		cnid_t nextlinkid = 0;
1032		cnid_t prevlinkid = 0;
1033
1034		/* Get the name for ATTR_CMN_NAME.  We need to take special care for hardlinks
1035		 * here because the info. for the link ID requested by getattrlist may be
1036		 * different than what's currently in the cnode.  This is because the cnode
1037		 * will be filled in with the information for the most recent link ID that went
1038		 * through namei/lookup().  If there are competing lookups for hardlinks that point
1039	 	 * to the same inode, one (or more) getattrlists could be vended incorrect name information.
1040		 * Also, we need to beware of open-unlinked files which could have a namelen of 0.
1041		 */
1042
1043		if ((cp->c_flag & C_HARDLINK) &&
1044				((cp->c_desc.cd_namelen == 0) || (vap->va_linkid != cp->c_cnid))) {
1045			/* If we have no name and our link ID is the raw inode number, then we may
1046			 * have an open-unlinked file.  Go to the next link in this case.
1047			 */
1048			if ((cp->c_desc.cd_namelen == 0) && (vap->va_linkid == cp->c_fileid)) {
1049				if ((error = hfs_lookup_siblinglinks(hfsmp, vap->va_linkid, &prevlinkid, &nextlinkid))){
1050					goto out;
1051				}
1052			}
1053			else {
1054				/* just use link obtained from vap above */
1055				nextlinkid = vap->va_linkid;
1056			}
1057
1058			/* We need to probe the catalog for the descriptor corresponding to the link ID
1059			 * stored in nextlinkid.  Note that we don't know if we have the exclusive lock
1060			 * for the cnode here, so we can't just update the descriptor.  Instead,
1061			 * we should just store the descriptor's value locally and then use it to pass
1062			 * out the name value as needed below.
1063			 */
1064			if (nextlinkid){
1065				lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
1066				error = cat_findname(hfsmp, nextlinkid, &linkdesc);
1067				hfs_systemfile_unlock(hfsmp, lockflags);
1068				if (error == 0) {
1069					uselinkdesc = 1;
1070				}
1071			}
1072		}
1073
1074		/* By this point, we've either patched up the name above and the c_desc
1075		 * points to the correct data, or it already did, in which case we just proceed
1076		 * by copying the name into the vap.  Note that we will never set va_name to
1077		 * supported if nextlinkid is never initialized.  This could happen in the degenerate
1078		 * case above involving the raw inode number, where it has no nextlinkid.  In this case
1079		 * we will simply not mark the name bit as supported.
1080		 */
1081		if (uselinkdesc) {
1082			strlcpy(vap->va_name, (const char*) linkdesc.cd_nameptr, MAXPATHLEN);
1083			VATTR_SET_SUPPORTED(vap, va_name);
1084			cat_releasedesc(&linkdesc);
1085		}
1086		else if (cp->c_desc.cd_namelen) {
1087			strlcpy(vap->va_name, (const char*) cp->c_desc.cd_nameptr, MAXPATHLEN);
1088			VATTR_SET_SUPPORTED(vap, va_name);
1089		}
1090	}
1091
1092out:
1093	hfs_unlock(cp);
1094	/*
1095	 * We need to vnode_put the rsrc fork vnode only *after* we've released
1096	 * the cnode lock, since vnode_put can trigger an inactive call, which
1097	 * will go back into HFS and try to acquire a cnode lock.
1098	 */
1099	if (rvp) {
1100		vnode_put (rvp);
1101	}
1102
1103	return (error);
1104}
1105
1106int
1107hfs_vnop_setattr(ap)
1108	struct vnop_setattr_args /* {
1109		struct vnode *a_vp;
1110		struct vnode_attr *a_vap;
1111		vfs_context_t a_context;
1112	} */ *ap;
1113{
1114	struct vnode_attr *vap = ap->a_vap;
1115	struct vnode *vp = ap->a_vp;
1116	struct cnode *cp = NULL;
1117	struct hfsmount *hfsmp;
1118	kauth_cred_t cred = vfs_context_ucred(ap->a_context);
1119	struct proc *p = vfs_context_proc(ap->a_context);
1120	int error = 0;
1121	uid_t nuid;
1122	gid_t ngid;
1123	time_t orig_ctime;
1124
1125	orig_ctime = VTOC(vp)->c_ctime;
1126
1127#if HFS_COMPRESSION
1128	int decmpfs_reset_state = 0;
1129	/*
1130	 we call decmpfs_update_attributes even if the file is not compressed
1131	 because we want to update the incoming flags if the xattrs are invalid
1132	 */
1133	error = decmpfs_update_attributes(vp, vap);
1134	if (error)
1135		return error;
1136
1137	//
1138	// if this is not a size-changing setattr and it is not just
1139	// an atime update, then check for a snapshot.
1140	//
1141	if (!VATTR_IS_ACTIVE(vap, va_data_size) && !(vap->va_active == VNODE_ATTR_va_access_time)) {
1142		check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_METADATA_MOD, NULL);
1143	}
1144#endif
1145
1146
1147#if CONFIG_PROTECT
1148	if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) {
1149		return (error);
1150	}
1151#endif /* CONFIG_PROTECT */
1152
1153	hfsmp = VTOHFS(vp);
1154
1155	/* Don't allow modification of the journal. */
1156	if (hfs_is_journal_file(hfsmp, VTOC(vp))) {
1157		return (EPERM);
1158	}
1159
1160	/*
1161	 * File size change request.
1162	 * We are guaranteed that this is not a directory, and that
1163	 * the filesystem object is writeable.
1164	 *
1165	 * NOTE: HFS COMPRESSION depends on the data_size being set *before* the bsd flags are updated
1166	 */
1167	VATTR_SET_SUPPORTED(vap, va_data_size);
1168	if (VATTR_IS_ACTIVE(vap, va_data_size) && !vnode_islnk(vp)) {
1169#if HFS_COMPRESSION
1170		/* keep the compressed state locked until we're done truncating the file */
1171		decmpfs_cnode *dp = VTOCMP(vp);
1172		if (!dp) {
1173			/*
1174			 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1175			 * is filled in; we need a decmpfs_cnode to lock out decmpfs state changes
1176			 * on this file while it's truncating
1177			 */
1178			dp = hfs_lazy_init_decmpfs_cnode(VTOC(vp));
1179			if (!dp) {
1180				/* failed to allocate a decmpfs_cnode */
1181				return ENOMEM; /* what should this be? */
1182			}
1183		}
1184
1185		check_for_tracked_file(vp, orig_ctime, vap->va_data_size == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL);
1186
1187		decmpfs_lock_compressed_data(dp, 1);
1188		if (hfs_file_is_compressed(VTOC(vp), 1)) {
1189			error = decmpfs_decompress_file(vp, dp, -1/*vap->va_data_size*/, 0, 1);
1190			if (error != 0) {
1191				decmpfs_unlock_compressed_data(dp, 1);
1192				return error;
1193			}
1194		}
1195#endif
1196
1197		/* Take truncate lock before taking cnode lock. */
1198		hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK);
1199
1200		/* Perform the ubc_setsize before taking the cnode lock. */
1201		ubc_setsize(vp, vap->va_data_size);
1202
1203		if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) {
1204			hfs_unlock_truncate(VTOC(vp), 0);
1205#if HFS_COMPRESSION
1206			decmpfs_unlock_compressed_data(dp, 1);
1207#endif
1208			return (error);
1209		}
1210		cp = VTOC(vp);
1211
1212		error = hfs_truncate(vp, vap->va_data_size, vap->va_vaflags & 0xffff, 1, 0, ap->a_context);
1213
1214		hfs_unlock_truncate(cp, 0);
1215#if HFS_COMPRESSION
1216		decmpfs_unlock_compressed_data(dp, 1);
1217#endif
1218		if (error)
1219			goto out;
1220	}
1221	if (cp == NULL) {
1222		if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
1223			return (error);
1224		cp = VTOC(vp);
1225	}
1226
1227	/*
1228	 * If it is just an access time update request by itself
1229	 * we know the request is from kernel level code, and we
1230	 * can delay it without being as worried about consistency.
1231	 * This change speeds up mmaps, in the rare case that they
1232	 * get caught behind a sync.
1233	 */
1234
1235	if (vap->va_active == VNODE_ATTR_va_access_time) {
1236		cp->c_touch_acctime=TRUE;
1237		goto out;
1238	}
1239
1240
1241
1242	/*
1243	 * Owner/group change request.
1244	 * We are guaranteed that the new owner/group is valid and legal.
1245	 */
1246	VATTR_SET_SUPPORTED(vap, va_uid);
1247	VATTR_SET_SUPPORTED(vap, va_gid);
1248	nuid = VATTR_IS_ACTIVE(vap, va_uid) ? vap->va_uid : (uid_t)VNOVAL;
1249	ngid = VATTR_IS_ACTIVE(vap, va_gid) ? vap->va_gid : (gid_t)VNOVAL;
1250	if (((nuid != (uid_t)VNOVAL) || (ngid != (gid_t)VNOVAL)) &&
1251	    ((error = hfs_chown(vp, nuid, ngid, cred, p)) != 0))
1252		goto out;
1253
1254	/*
1255	 * Mode change request.
1256	 * We are guaranteed that the mode value is valid and that in
1257	 * conjunction with the owner and group, this change is legal.
1258   	*/
1259	VATTR_SET_SUPPORTED(vap, va_mode);
1260	if (VATTR_IS_ACTIVE(vap, va_mode) &&
1261	    ((error = hfs_chmod(vp, (int)vap->va_mode, cred, p)) != 0))
1262	    goto out;
1263
1264	/*
1265	 * File flags change.
1266	 * We are guaranteed that only flags allowed to change given the
1267	 * current securelevel are being changed.
1268	 */
1269	VATTR_SET_SUPPORTED(vap, va_flags);
1270	if (VATTR_IS_ACTIVE(vap, va_flags)) {
1271		u_int16_t *fdFlags;
1272
1273#if HFS_COMPRESSION
1274		if ((cp->c_bsdflags ^ vap->va_flags) & UF_COMPRESSED) {
1275			/*
1276			 * the UF_COMPRESSED was toggled, so reset our cached compressed state
1277			 * but we don't want to actually do the update until we've released the cnode lock down below
1278			 * NOTE: turning the flag off doesn't actually decompress the file, so that we can
1279			 * turn off the flag and look at the "raw" file for debugging purposes
1280			 */
1281			decmpfs_reset_state = 1;
1282		}
1283#endif
1284
1285		cp->c_bsdflags = vap->va_flags;
1286		cp->c_touch_chgtime = TRUE;
1287
1288		/*
1289		 * Mirror the UF_HIDDEN flag to the invisible bit of the Finder Info.
1290		 *
1291		 * The fdFlags for files and frFlags for folders are both 8 bytes
1292		 * into the userInfo (the first 16 bytes of the Finder Info).  They
1293		 * are both 16-bit fields.
1294		 */
1295		fdFlags = (u_int16_t *) &cp->c_finderinfo[8];
1296		if (vap->va_flags & UF_HIDDEN)
1297			*fdFlags |= OSSwapHostToBigConstInt16(kFinderInvisibleMask);
1298		else
1299			*fdFlags &= ~OSSwapHostToBigConstInt16(kFinderInvisibleMask);
1300	}
1301
1302	/*
1303	 * Timestamp updates.
1304	 */
1305	VATTR_SET_SUPPORTED(vap, va_create_time);
1306	VATTR_SET_SUPPORTED(vap, va_access_time);
1307	VATTR_SET_SUPPORTED(vap, va_modify_time);
1308	VATTR_SET_SUPPORTED(vap, va_backup_time);
1309	VATTR_SET_SUPPORTED(vap, va_change_time);
1310	if (VATTR_IS_ACTIVE(vap, va_create_time) ||
1311	    VATTR_IS_ACTIVE(vap, va_access_time) ||
1312	    VATTR_IS_ACTIVE(vap, va_modify_time) ||
1313	    VATTR_IS_ACTIVE(vap, va_backup_time)) {
1314		if (VATTR_IS_ACTIVE(vap, va_create_time))
1315			cp->c_itime = vap->va_create_time.tv_sec;
1316		if (VATTR_IS_ACTIVE(vap, va_access_time)) {
1317			cp->c_atime = vap->va_access_time.tv_sec;
1318			cp->c_touch_acctime = FALSE;
1319		}
1320		if (VATTR_IS_ACTIVE(vap, va_modify_time)) {
1321			cp->c_mtime = vap->va_modify_time.tv_sec;
1322			cp->c_touch_modtime = FALSE;
1323			cp->c_touch_chgtime = TRUE;
1324
1325			/*
1326			 * The utimes system call can reset the modification
1327			 * time but it doesn't know about HFS create times.
1328			 * So we need to ensure that the creation time is
1329			 * always at least as old as the modification time.
1330			 */
1331			if ((VTOVCB(vp)->vcbSigWord == kHFSPlusSigWord) &&
1332			    (cp->c_cnid != kHFSRootFolderID) &&
1333			    (cp->c_mtime < cp->c_itime)) {
1334				cp->c_itime = cp->c_mtime;
1335			}
1336		}
1337		if (VATTR_IS_ACTIVE(vap, va_backup_time))
1338			cp->c_btime = vap->va_backup_time.tv_sec;
1339		cp->c_flag |= C_MODIFIED;
1340	}
1341
1342	/*
1343	 * Set name encoding.
1344	 */
1345	VATTR_SET_SUPPORTED(vap, va_encoding);
1346	if (VATTR_IS_ACTIVE(vap, va_encoding)) {
1347		cp->c_encoding = vap->va_encoding;
1348		hfs_setencodingbits(hfsmp, cp->c_encoding);
1349	}
1350
1351	if ((error = hfs_update(vp, TRUE)) != 0)
1352		goto out;
1353out:
1354	if (cp) {
1355		/* Purge origin cache for cnode, since caller now has correct link ID for it
1356		 * We purge it here since it was acquired for us during lookup, and we no longer need it.
1357		 */
1358		if ((cp->c_flag & C_HARDLINK) && (vp->v_type != VDIR)){
1359			hfs_relorigin(cp, 0);
1360		}
1361
1362		hfs_unlock(cp);
1363#if HFS_COMPRESSION
1364		if (decmpfs_reset_state) {
1365			/*
1366			 * we've changed the UF_COMPRESSED flag, so reset the decmpfs state for this cnode
1367			 * but don't do it while holding the hfs cnode lock
1368			 */
1369			decmpfs_cnode *dp = VTOCMP(vp);
1370			if (!dp) {
1371				/*
1372				 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1373				 * is filled in; we need a decmpfs_cnode to prevent decmpfs state changes
1374				 * on this file if it's locked
1375				 */
1376				dp = hfs_lazy_init_decmpfs_cnode(VTOC(vp));
1377				if (!dp) {
1378					/* failed to allocate a decmpfs_cnode */
1379					return ENOMEM; /* what should this be? */
1380				}
1381			}
1382			decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
1383		}
1384#endif
1385	}
1386	return (error);
1387}
1388
1389
1390/*
1391 * Change the mode on a file.
1392 * cnode must be locked before calling.
1393 */
1394int
1395hfs_chmod(struct vnode *vp, int mode, __unused kauth_cred_t cred, __unused struct proc *p)
1396{
1397	register struct cnode *cp = VTOC(vp);
1398
1399	if (VTOVCB(vp)->vcbSigWord != kHFSPlusSigWord)
1400		return (0);
1401
1402	// Don't allow modification of the journal or journal_info_block
1403	if (hfs_is_journal_file(VTOHFS(vp), cp)) {
1404		return EPERM;
1405	}
1406
1407#if OVERRIDE_UNKNOWN_PERMISSIONS
1408	if (((unsigned int)vfs_flags(VTOVFS(vp))) & MNT_UNKNOWNPERMISSIONS) {
1409		return (0);
1410	};
1411#endif
1412	cp->c_mode &= ~ALLPERMS;
1413	cp->c_mode |= (mode & ALLPERMS);
1414	cp->c_touch_chgtime = TRUE;
1415	return (0);
1416}
1417
1418
1419int
1420hfs_write_access(struct vnode *vp, kauth_cred_t cred, struct proc *p, Boolean considerFlags)
1421{
1422	struct cnode *cp = VTOC(vp);
1423	int retval = 0;
1424	int is_member;
1425
1426	/*
1427	 * Disallow write attempts on read-only file systems;
1428	 * unless the file is a socket, fifo, or a block or
1429	 * character device resident on the file system.
1430	 */
1431	switch (vnode_vtype(vp)) {
1432	case VDIR:
1433 	case VLNK:
1434	case VREG:
1435		if (VTOHFS(vp)->hfs_flags & HFS_READ_ONLY)
1436			return (EROFS);
1437		break;
1438	default:
1439		break;
1440 	}
1441
1442	/* If immutable bit set, nobody gets to write it. */
1443	if (considerFlags && (cp->c_bsdflags & IMMUTABLE))
1444		return (EPERM);
1445
1446	/* Otherwise, user id 0 always gets access. */
1447	if (!suser(cred, NULL))
1448		return (0);
1449
1450	/* Otherwise, check the owner. */
1451	if ((retval = hfs_owner_rights(VTOHFS(vp), cp->c_uid, cred, p, false)) == 0)
1452		return ((cp->c_mode & S_IWUSR) == S_IWUSR ? 0 : EACCES);
1453
1454	/* Otherwise, check the groups. */
1455	if (kauth_cred_ismember_gid(cred, cp->c_gid, &is_member) == 0 && is_member) {
1456		return ((cp->c_mode & S_IWGRP) == S_IWGRP ? 0 : EACCES);
1457 	}
1458
1459	/* Otherwise, check everyone else. */
1460	return ((cp->c_mode & S_IWOTH) == S_IWOTH ? 0 : EACCES);
1461}
1462
1463
1464/*
1465 * Perform chown operation on cnode cp;
1466 * code must be locked prior to call.
1467 */
1468int
1469#if !QUOTA
1470hfs_chown(struct vnode *vp, uid_t uid, gid_t gid, __unused kauth_cred_t cred,
1471	__unused struct proc *p)
1472#else
1473hfs_chown(struct vnode *vp, uid_t uid, gid_t gid, kauth_cred_t cred,
1474	__unused struct proc *p)
1475#endif
1476{
1477	register struct cnode *cp = VTOC(vp);
1478	uid_t ouid;
1479	gid_t ogid;
1480#if QUOTA
1481	int error = 0;
1482	register int i;
1483	int64_t change;
1484#endif /* QUOTA */
1485
1486	if (VTOVCB(vp)->vcbSigWord != kHFSPlusSigWord)
1487		return (ENOTSUP);
1488
1489	if (((unsigned int)vfs_flags(VTOVFS(vp))) & MNT_UNKNOWNPERMISSIONS)
1490		return (0);
1491
1492	if (uid == (uid_t)VNOVAL)
1493		uid = cp->c_uid;
1494	if (gid == (gid_t)VNOVAL)
1495		gid = cp->c_gid;
1496
1497#if 0	/* we are guaranteed that this is already the case */
1498	/*
1499	 * If we don't own the file, are trying to change the owner
1500	 * of the file, or are not a member of the target group,
1501	 * the caller must be superuser or the call fails.
1502	 */
1503	if ((kauth_cred_getuid(cred) != cp->c_uid || uid != cp->c_uid ||
1504	    (gid != cp->c_gid &&
1505	     (kauth_cred_ismember_gid(cred, gid, &is_member) || !is_member))) &&
1506	    (error = suser(cred, 0)))
1507		return (error);
1508#endif
1509
1510	ogid = cp->c_gid;
1511	ouid = cp->c_uid;
1512#if QUOTA
1513	if ((error = hfs_getinoquota(cp)))
1514		return (error);
1515	if (ouid == uid) {
1516		dqrele(cp->c_dquot[USRQUOTA]);
1517		cp->c_dquot[USRQUOTA] = NODQUOT;
1518	}
1519	if (ogid == gid) {
1520		dqrele(cp->c_dquot[GRPQUOTA]);
1521		cp->c_dquot[GRPQUOTA] = NODQUOT;
1522	}
1523
1524	/*
1525	 * Eventually need to account for (fake) a block per directory
1526	 * if (vnode_isdir(vp))
1527	 *     change = VTOHFS(vp)->blockSize;
1528	 * else
1529	 */
1530
1531	change = (int64_t)(cp->c_blocks) * (int64_t)VTOVCB(vp)->blockSize;
1532	(void) hfs_chkdq(cp, -change, cred, CHOWN);
1533	(void) hfs_chkiq(cp, -1, cred, CHOWN);
1534	for (i = 0; i < MAXQUOTAS; i++) {
1535		dqrele(cp->c_dquot[i]);
1536		cp->c_dquot[i] = NODQUOT;
1537	}
1538#endif /* QUOTA */
1539	cp->c_gid = gid;
1540	cp->c_uid = uid;
1541#if QUOTA
1542	if ((error = hfs_getinoquota(cp)) == 0) {
1543		if (ouid == uid) {
1544			dqrele(cp->c_dquot[USRQUOTA]);
1545			cp->c_dquot[USRQUOTA] = NODQUOT;
1546		}
1547		if (ogid == gid) {
1548			dqrele(cp->c_dquot[GRPQUOTA]);
1549			cp->c_dquot[GRPQUOTA] = NODQUOT;
1550		}
1551		if ((error = hfs_chkdq(cp, change, cred, CHOWN)) == 0) {
1552			if ((error = hfs_chkiq(cp, 1, cred, CHOWN)) == 0)
1553				goto good;
1554			else
1555				(void) hfs_chkdq(cp, -change, cred, CHOWN|FORCE);
1556		}
1557		for (i = 0; i < MAXQUOTAS; i++) {
1558			dqrele(cp->c_dquot[i]);
1559			cp->c_dquot[i] = NODQUOT;
1560		}
1561	}
1562	cp->c_gid = ogid;
1563	cp->c_uid = ouid;
1564	if (hfs_getinoquota(cp) == 0) {
1565		if (ouid == uid) {
1566			dqrele(cp->c_dquot[USRQUOTA]);
1567			cp->c_dquot[USRQUOTA] = NODQUOT;
1568		}
1569		if (ogid == gid) {
1570			dqrele(cp->c_dquot[GRPQUOTA]);
1571			cp->c_dquot[GRPQUOTA] = NODQUOT;
1572		}
1573		(void) hfs_chkdq(cp, change, cred, FORCE|CHOWN);
1574		(void) hfs_chkiq(cp, 1, cred, FORCE|CHOWN);
1575		(void) hfs_getinoquota(cp);
1576	}
1577	return (error);
1578good:
1579	if (hfs_getinoquota(cp))
1580		panic("hfs_chown: lost quota");
1581#endif /* QUOTA */
1582
1583
1584	/*
1585	  According to the SUSv3 Standard, chown() shall mark
1586	  for update the st_ctime field of the file.
1587	  (No exceptions mentioned)
1588	*/
1589		cp->c_touch_chgtime = TRUE;
1590	return (0);
1591}
1592
1593
1594/*
1595 * The hfs_exchange routine swaps the fork data in two files by
1596 * exchanging some of the information in the cnode.  It is used
1597 * to preserve the file ID when updating an existing file, in
1598 * case the file is being tracked through its file ID. Typically
1599 * its used after creating a new file during a safe-save.
1600 */
1601int
1602hfs_vnop_exchange(ap)
1603	struct vnop_exchange_args /* {
1604		struct vnode *a_fvp;
1605		struct vnode *a_tvp;
1606		int a_options;
1607		vfs_context_t a_context;
1608	} */ *ap;
1609{
1610	struct vnode *from_vp = ap->a_fvp;
1611	struct vnode *to_vp = ap->a_tvp;
1612	struct cnode *from_cp;
1613	struct cnode *to_cp;
1614	struct hfsmount *hfsmp;
1615	struct cat_desc tempdesc;
1616	struct cat_attr tempattr;
1617	const unsigned char *from_nameptr;
1618	const unsigned char *to_nameptr;
1619	char from_iname[32];
1620	char to_iname[32];
1621	uint32_t to_flag_special;
1622	uint32_t from_flag_special;
1623	cnid_t  from_parid;
1624	cnid_t  to_parid;
1625	int lockflags;
1626	int error = 0, started_tr = 0, got_cookie = 0;
1627	cat_cookie_t cookie;
1628	time_t orig_from_ctime, orig_to_ctime;
1629
1630	/* The files must be on the same volume. */
1631	if (vnode_mount(from_vp) != vnode_mount(to_vp))
1632		return (EXDEV);
1633
1634	if (from_vp == to_vp)
1635		return (EINVAL);
1636
1637	orig_from_ctime = VTOC(from_vp)->c_ctime;
1638	orig_to_ctime = VTOC(to_vp)->c_ctime;
1639
1640
1641#if CONFIG_PROTECT
1642	/*
1643	 * Do not allow exchangedata/F_MOVEDATAEXTENTS on data-protected filesystems
1644	 * because the EAs will not be swapped.  As a result, the persistent keys would not
1645	 * match and the files will be garbage.
1646	 */
1647	if (cp_fs_protected (vnode_mount(from_vp))) {
1648		return EINVAL;
1649	}
1650#endif
1651
1652#if HFS_COMPRESSION
1653	if ( hfs_file_is_compressed(VTOC(from_vp), 0) ) {
1654		if ( 0 != ( error = decmpfs_decompress_file(from_vp, VTOCMP(from_vp), -1, 0, 1) ) ) {
1655			return error;
1656		}
1657	}
1658
1659	if ( hfs_file_is_compressed(VTOC(to_vp), 0) ) {
1660		if ( 0 != ( error = decmpfs_decompress_file(to_vp, VTOCMP(to_vp), -1, 0, 1) ) ) {
1661			return error;
1662		}
1663	}
1664#endif // HFS_COMPRESSION
1665
1666	/*
1667	 * Normally, we want to notify the user handlers about the event,
1668	 * except if it's a handler driving the event.
1669	 */
1670	if ((ap->a_options & FSOPT_EXCHANGE_DATA_ONLY) == 0) {
1671		check_for_tracked_file(from_vp, orig_from_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
1672		check_for_tracked_file(to_vp, orig_to_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
1673	} else {
1674		/*
1675		 * We're doing a data-swap.
1676		 * Take the truncate lock/cnode lock, then verify there are no mmap references.
1677		 * Issue a hfs_filedone to flush out all of the remaining state for this file.
1678		 * Allow the rest of the codeflow to re-acquire the cnode locks in order.
1679		 */
1680
1681		hfs_lock_truncate (VTOC(from_vp), HFS_SHARED_LOCK);
1682
1683		if ((error = hfs_lock(VTOC(from_vp), HFS_EXCLUSIVE_LOCK))) {
1684			hfs_unlock_truncate (VTOC(from_vp), 0);
1685			return error;
1686		}
1687
1688		/* Verify the source file is not in use by anyone besides us (including mmap refs) */
1689		if (vnode_isinuse(from_vp, 1)) {
1690			error = EBUSY;
1691			hfs_unlock(VTOC(from_vp));
1692			hfs_unlock_truncate (VTOC(from_vp), 0);
1693			return error;
1694		}
1695
1696		/* Flush out the data in the source file */
1697		VTOC(from_vp)->c_flag |= C_SWAPINPROGRESS;
1698		error = hfs_filedone (from_vp, ap->a_context);
1699		VTOC(from_vp)->c_flag &= ~C_SWAPINPROGRESS;
1700		hfs_unlock(VTOC(from_vp));
1701		hfs_unlock_truncate(VTOC(from_vp), 0);
1702
1703		if (error) {
1704			return error;
1705		}
1706	}
1707
1708	if ((error = hfs_lockpair(VTOC(from_vp), VTOC(to_vp), HFS_EXCLUSIVE_LOCK)))
1709		return (error);
1710
1711	from_cp = VTOC(from_vp);
1712	to_cp = VTOC(to_vp);
1713	hfsmp = VTOHFS(from_vp);
1714
1715	/* Resource forks cannot be exchanged. */
1716	if (VNODE_IS_RSRC(from_vp) || VNODE_IS_RSRC(to_vp)) {
1717		error = EINVAL;
1718		goto exit;
1719	}
1720
1721	// Don't allow modification of the journal or journal_info_block
1722	if (hfs_is_journal_file(hfsmp, from_cp) ||
1723	    hfs_is_journal_file(hfsmp, to_cp)) {
1724		error = EPERM;
1725		goto exit;
1726	}
1727
1728	/*
1729	 * Ok, now that all of the pre-flighting is done, call the underlying
1730	 * function if needed.
1731	 */
1732	if (ap->a_options & FSOPT_EXCHANGE_DATA_ONLY) {
1733		error = hfs_movedata(from_vp, to_vp);
1734		goto exit;
1735	}
1736
1737
1738	if ((error = hfs_start_transaction(hfsmp)) != 0) {
1739	    goto exit;
1740	}
1741	started_tr = 1;
1742
1743	/*
1744	 * Reserve some space in the Catalog file.
1745	 */
1746	if ((error = cat_preflight(hfsmp, CAT_EXCHANGE, &cookie, vfs_context_proc(ap->a_context)))) {
1747		goto exit;
1748	}
1749	got_cookie = 1;
1750
1751	/* The backend code always tries to delete the virtual
1752	 * extent id for exchanging files so we need to lock
1753	 * the extents b-tree.
1754	 */
1755	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
1756
1757	/* Account for the location of the catalog objects. */
1758	if (from_cp->c_flag & C_HARDLINK) {
1759		MAKE_INODE_NAME(from_iname, sizeof(from_iname),
1760				from_cp->c_attr.ca_linkref);
1761		from_nameptr = (unsigned char *)from_iname;
1762		from_parid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
1763		from_cp->c_hint = 0;
1764	} else {
1765		from_nameptr = from_cp->c_desc.cd_nameptr;
1766		from_parid = from_cp->c_parentcnid;
1767	}
1768	if (to_cp->c_flag & C_HARDLINK) {
1769		MAKE_INODE_NAME(to_iname, sizeof(to_iname),
1770				to_cp->c_attr.ca_linkref);
1771		to_nameptr = (unsigned char *)to_iname;
1772		to_parid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
1773		to_cp->c_hint = 0;
1774	} else {
1775		to_nameptr = to_cp->c_desc.cd_nameptr;
1776		to_parid = to_cp->c_parentcnid;
1777	}
1778
1779	/* Do the exchange */
1780	error = ExchangeFileIDs(hfsmp, from_nameptr, to_nameptr, from_parid,
1781	                        to_parid, from_cp->c_hint, to_cp->c_hint);
1782	hfs_systemfile_unlock(hfsmp, lockflags);
1783
1784	/*
1785	 * Note that we don't need to exchange any extended attributes
1786	 * since the attributes are keyed by file ID.
1787	 */
1788
1789	if (error != E_NONE) {
1790		error = MacToVFSError(error);
1791		goto exit;
1792	}
1793
1794	/* Purge the vnodes from the name cache */
1795 	if (from_vp)
1796		cache_purge(from_vp);
1797	if (to_vp)
1798		cache_purge(to_vp);
1799
1800	/* Save a copy of from attributes before swapping. */
1801	bcopy(&from_cp->c_desc, &tempdesc, sizeof(struct cat_desc));
1802	bcopy(&from_cp->c_attr, &tempattr, sizeof(struct cat_attr));
1803
1804	/* Save whether or not each cnode is a hardlink or has EAs */
1805	from_flag_special = from_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
1806	to_flag_special = to_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
1807
1808	/* Drop the special bits from each cnode */
1809	from_cp->c_flag &= ~(C_HARDLINK | C_HASXATTRS);
1810	to_cp->c_flag &= ~(C_HARDLINK | C_HASXATTRS);
1811
1812	/*
1813	 * Swap the descriptors and all non-fork related attributes.
1814	 * (except the modify date)
1815	 */
1816	bcopy(&to_cp->c_desc, &from_cp->c_desc, sizeof(struct cat_desc));
1817
1818	from_cp->c_hint = 0;
1819	/*
1820	 * If 'to' was a hardlink, then we copied over its link ID/CNID/(namespace ID)
1821	 * when we bcopy'd the descriptor above.  However, we need to be careful
1822	 * when setting up the fileID below, because we cannot assume that the
1823	 * file ID is the same as the CNID if either one was a hardlink.
1824	 * The file ID is stored in the c_attr as the ca_fileid. So it needs
1825	 * to be pulled explicitly; we cannot just use the CNID.
1826	 */
1827	from_cp->c_fileid = to_cp->c_attr.ca_fileid;
1828
1829	from_cp->c_itime = to_cp->c_itime;
1830	from_cp->c_btime = to_cp->c_btime;
1831	from_cp->c_atime = to_cp->c_atime;
1832	from_cp->c_ctime = to_cp->c_ctime;
1833	from_cp->c_gid = to_cp->c_gid;
1834	from_cp->c_uid = to_cp->c_uid;
1835	from_cp->c_bsdflags = to_cp->c_bsdflags;
1836	from_cp->c_mode = to_cp->c_mode;
1837	from_cp->c_linkcount = to_cp->c_linkcount;
1838	from_cp->c_attr.ca_linkref = to_cp->c_attr.ca_linkref;
1839	from_cp->c_attr.ca_firstlink = to_cp->c_attr.ca_firstlink;
1840
1841	/*
1842	 * The cnode flags need to stay with the cnode and not get transferred
1843	 * over along with everything else because they describe the content; they are
1844	 * not attributes that reflect changes specific to the file ID.  In general,
1845	 * fields that are tied to the file ID are the ones that will move.
1846	 *
1847	 * This reflects the fact that the file may have borrowed blocks, dirty metadata,
1848	 * or other extents, which may not yet have been written to the catalog.  If
1849	 * they were, they would have been transferred above in the ExchangeFileIDs call above...
1850	 *
1851	 * The flags that are special are:
1852	 * C_HARDLINK, C_HASXATTRS
1853	 *
1854	 * These flags move with the item and file ID in the namespace since their
1855	 * state is tied to that of the file ID.
1856	 *
1857	 * So to transfer the flags, we have to take the following steps
1858	 * 1) Store in a localvar whether or not the special bits are set.
1859	 * 2) Drop the special bits from the current flags
1860	 * 3) swap the special flag bits to their destination
1861	 */
1862	from_cp->c_flag |= to_flag_special;
1863
1864	from_cp->c_attr.ca_recflags = to_cp->c_attr.ca_recflags;
1865	bcopy(to_cp->c_finderinfo, from_cp->c_finderinfo, 32);
1866
1867	bcopy(&tempdesc, &to_cp->c_desc, sizeof(struct cat_desc));
1868	to_cp->c_hint = 0;
1869	/*
1870	 * Pull the file ID from the tempattr we copied above. We can't assume
1871	 * it is the same as the CNID.
1872	 */
1873	to_cp->c_fileid = tempattr.ca_fileid;
1874	to_cp->c_itime = tempattr.ca_itime;
1875	to_cp->c_btime = tempattr.ca_btime;
1876	to_cp->c_atime = tempattr.ca_atime;
1877	to_cp->c_ctime = tempattr.ca_ctime;
1878	to_cp->c_gid = tempattr.ca_gid;
1879	to_cp->c_uid = tempattr.ca_uid;
1880	to_cp->c_bsdflags = tempattr.ca_flags;
1881	to_cp->c_mode = tempattr.ca_mode;
1882	to_cp->c_linkcount = tempattr.ca_linkcount;
1883	to_cp->c_attr.ca_linkref = tempattr.ca_linkref;
1884	to_cp->c_attr.ca_firstlink = tempattr.ca_firstlink;
1885
1886	/*
1887	 * Only OR in the "from" flags into our cnode flags below.
1888	 * Leave the rest of the flags alone.
1889	 */
1890	to_cp->c_flag |= from_flag_special;
1891
1892	to_cp->c_attr.ca_recflags = tempattr.ca_recflags;
1893	bcopy(tempattr.ca_finderinfo, to_cp->c_finderinfo, 32);
1894
1895	/* Rehash the cnodes using their new file IDs */
1896	hfs_chash_rehash(hfsmp, from_cp, to_cp);
1897
1898	/*
1899	 * When a file moves out of "Cleanup At Startup"
1900	 * we can drop its NODUMP status.
1901	 */
1902	if ((from_cp->c_bsdflags & UF_NODUMP) &&
1903	    (from_cp->c_parentcnid != to_cp->c_parentcnid)) {
1904		from_cp->c_bsdflags &= ~UF_NODUMP;
1905		from_cp->c_touch_chgtime = TRUE;
1906	}
1907	if ((to_cp->c_bsdflags & UF_NODUMP) &&
1908	    (to_cp->c_parentcnid != from_cp->c_parentcnid)) {
1909		to_cp->c_bsdflags &= ~UF_NODUMP;
1910		to_cp->c_touch_chgtime = TRUE;
1911	}
1912
1913exit:
1914	if (got_cookie) {
1915	        cat_postflight(hfsmp, &cookie, vfs_context_proc(ap->a_context));
1916	}
1917	if (started_tr) {
1918	    hfs_end_transaction(hfsmp);
1919	}
1920
1921	hfs_unlockpair(from_cp, to_cp);
1922	return (error);
1923}
1924
1925int
1926hfs_vnop_mmap(struct vnop_mmap_args *ap)
1927{
1928	struct vnode *vp = ap->a_vp;
1929	int error;
1930
1931	if (VNODE_IS_RSRC(vp)) {
1932		/* allow pageins of the resource fork */
1933	} else {
1934		int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */
1935		time_t orig_ctime = VTOC(vp)->c_ctime;
1936
1937		if (!compressed && (VTOC(vp)->c_bsdflags & UF_COMPRESSED)) {
1938			error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
1939			if (error != 0) {
1940				return error;
1941			}
1942		}
1943
1944		if (ap->a_fflags & PROT_WRITE) {
1945			check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
1946		}
1947	}
1948
1949	//
1950	// NOTE: we return ENOTSUP because we want the cluster layer
1951	//       to actually do all the real work.
1952	//
1953	return (ENOTSUP);
1954}
1955
1956/*
1957 * hfs_movedata
1958 *
1959 * This is a non-symmetric variant of exchangedata.  In this function,
1960 * the contents of the fork in from_vp are moved to the fork
1961 * specified by to_vp.
1962 *
1963 * The cnodes pointed to by 'from_vp' and 'to_vp' must be locked.
1964 *
1965 * The vnode pointed to by 'to_vp' *must* be empty prior to invoking this function.
1966 * We impose this restriction because we may not be able to fully delete the entire
1967 * file's contents in a single transaction, particularly if it has a lot of extents.
1968 * In the normal file deletion codepath, the file is screened for two conditions:
1969 * 1) bigger than 400MB, and 2) more than 8 extents.  If so, the file is relocated to
1970 * the hidden directory and the deletion is broken up into multiple truncates.  We can't
1971 * do that here because both files need to exist in the namespace. The main reason this
1972 * is imposed is that we may have to touch a whole lot of bitmap blocks if there are
1973 * many extents.
1974 *
1975 * Any data written to 'from_vp' after this call completes is not guaranteed
1976 * to be moved.
1977 *
1978 * Arguments:
1979 * vnode from_vp: source file
1980 * vnode to_vp: destination file; must be empty
1981 *
1982 * Returns:
1983 *	EFBIG - Destination file was not empty
1984 *	0	- success
1985 *
1986 *
1987 */
1988int hfs_movedata (struct vnode *from_vp, struct vnode *to_vp) {
1989
1990	struct cnode *from_cp;
1991	struct cnode *to_cp;
1992	struct hfsmount *hfsmp = NULL;
1993	int error = 0;
1994	int started_tr = 0;
1995	int lockflags = 0;
1996	int overflow_blocks;
1997	int rsrc = 0;
1998
1999
2000	/* Get the HFS pointers */
2001	from_cp = VTOC(from_vp);
2002	to_cp = VTOC(to_vp);
2003	hfsmp = VTOHFS(from_vp);
2004
2005	/* Verify that neither source/dest file is open-unlinked */
2006	if (from_cp->c_flag & (C_DELETED | C_NOEXISTS)) {
2007		error = EBUSY;
2008		goto movedata_exit;
2009	}
2010
2011	if (to_cp->c_flag & (C_DELETED | C_NOEXISTS)) {
2012		error = EBUSY;
2013		goto movedata_exit;
2014	}
2015
2016	/*
2017	 * Verify the source file is not in use by anyone besides us.
2018	 *
2019	 * This function is typically invoked by a namespace handler
2020	 * process responding to a temporarily stalled system call.
2021	 * The FD that it is working off of is opened O_EVTONLY, so
2022	 * it really has no active usecounts (the kusecount from O_EVTONLY
2023	 * is subtracted from the total usecounts).
2024	 *
2025	 * As a result, we shouldn't have any active usecounts against
2026	 * this vnode when we go to check it below.
2027	 */
2028	if (vnode_isinuse(from_vp, 0)) {
2029		error = EBUSY;
2030		goto movedata_exit;
2031	}
2032
2033	if (from_cp->c_rsrc_vp == from_vp) {
2034		rsrc = 1;
2035	}
2036
2037	/*
2038	 * We assume that the destination file is already empty.
2039	 * Verify that it is.
2040	 */
2041	if (rsrc) {
2042		if (to_cp->c_rsrcfork->ff_size > 0) {
2043			error = EFBIG;
2044			goto movedata_exit;
2045		}
2046	}
2047	else {
2048		if (to_cp->c_datafork->ff_size > 0) {
2049			error = EFBIG;
2050			goto movedata_exit;
2051		}
2052	}
2053
2054	/* If the source has the rsrc open, make sure the destination is also the rsrc */
2055	if (rsrc) {
2056		if (to_vp != to_cp->c_rsrc_vp) {
2057			error = EINVAL;
2058			goto movedata_exit;
2059		}
2060	}
2061	else {
2062		/* Verify that both forks are data forks */
2063		if (to_vp != to_cp->c_vp) {
2064			error = EINVAL;
2065			goto movedata_exit;
2066		}
2067	}
2068
2069	/*
2070	 * See if the source file has overflow extents.  If it doesn't, we don't
2071	 * need to call into MoveData, and the catalog will be enough.
2072	 */
2073	if (rsrc) {
2074		overflow_blocks = overflow_extents(from_cp->c_rsrcfork);
2075	}
2076	else {
2077		overflow_blocks = overflow_extents(from_cp->c_datafork);
2078	}
2079
2080	if ((error = hfs_start_transaction (hfsmp)) != 0) {
2081		goto movedata_exit;
2082	}
2083	started_tr = 1;
2084
2085	/* Lock the system files: catalog, extents, attributes */
2086	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
2087
2088	/* Copy over any catalog allocation data into the new spot. */
2089	if (rsrc) {
2090		if ((error = hfs_move_fork (from_cp->c_rsrcfork, from_cp, to_cp->c_rsrcfork, to_cp))){
2091			hfs_systemfile_unlock(hfsmp, lockflags);
2092			goto movedata_exit;
2093		}
2094	}
2095	else {
2096		if ((error = hfs_move_fork (from_cp->c_datafork, from_cp, to_cp->c_datafork, to_cp))) {
2097			hfs_systemfile_unlock(hfsmp, lockflags);
2098			goto movedata_exit;
2099		}
2100	}
2101
2102	/*
2103	 * Note that because all we're doing is moving the extents around, we can
2104	 * probably do this in a single transaction:  Each extent record (group of 8)
2105	 * is 64 bytes.  A extent overflow B-Tree node is typically 4k.  This means
2106	 * each node can hold roughly ~60 extent records == (480 extents).
2107	 *
2108	 * If a file was massively fragmented and had 20k extents, this means we'd
2109	 * roughly touch 20k/480 == 41 to 42 nodes, plus the index nodes, for half
2110	 * of the operation.  (inserting or deleting). So if we're manipulating 80-100
2111	 * nodes, this is basically 320k of data to write to the journal in
2112	 * a bad case.
2113	 */
2114	if (overflow_blocks != 0) {
2115		if (rsrc) {
2116			error = MoveData(hfsmp, from_cp->c_cnid, to_cp->c_cnid, 1);
2117		}
2118		else {
2119			error = MoveData (hfsmp, from_cp->c_cnid, to_cp->c_cnid, 0);
2120		}
2121	}
2122
2123	if (error) {
2124		/* Reverse the operation. Copy the fork data back into the source */
2125		if (rsrc) {
2126			hfs_move_fork (to_cp->c_rsrcfork, to_cp, from_cp->c_rsrcfork, from_cp);
2127		}
2128		else {
2129			hfs_move_fork (to_cp->c_datafork, to_cp, from_cp->c_datafork, from_cp);
2130		}
2131	}
2132	else {
2133		struct cat_fork *src_data = NULL;
2134		struct cat_fork *src_rsrc = NULL;
2135		struct cat_fork *dst_data = NULL;
2136		struct cat_fork *dst_rsrc = NULL;
2137
2138		/* Touch the times*/
2139		to_cp->c_touch_acctime = TRUE;
2140		to_cp->c_touch_chgtime = TRUE;
2141		to_cp->c_touch_modtime = TRUE;
2142
2143		from_cp->c_touch_acctime = TRUE;
2144		from_cp->c_touch_chgtime = TRUE;
2145		from_cp->c_touch_modtime = TRUE;
2146
2147		hfs_touchtimes(hfsmp, to_cp);
2148		hfs_touchtimes(hfsmp, from_cp);
2149
2150		if (from_cp->c_datafork) {
2151			src_data = &from_cp->c_datafork->ff_data;
2152		}
2153		if (from_cp->c_rsrcfork) {
2154			src_rsrc = &from_cp->c_rsrcfork->ff_data;
2155		}
2156
2157		if (to_cp->c_datafork) {
2158			dst_data = &to_cp->c_datafork->ff_data;
2159		}
2160		if (to_cp->c_rsrcfork) {
2161			dst_rsrc = &to_cp->c_rsrcfork->ff_data;
2162		}
2163
2164		/* Update the catalog nodes */
2165		(void) cat_update(hfsmp, &from_cp->c_desc, &from_cp->c_attr,
2166						  src_data, src_rsrc);
2167
2168		(void) cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr,
2169						  dst_data, dst_rsrc);
2170
2171	}
2172	/* unlock the system files */
2173	hfs_systemfile_unlock(hfsmp, lockflags);
2174
2175
2176movedata_exit:
2177	if (started_tr) {
2178		hfs_end_transaction(hfsmp);
2179	}
2180
2181	return error;
2182
2183}
2184
2185/*
2186 * Copy all of the catalog and runtime data in srcfork to dstfork.
2187 *
2188 * This allows us to maintain the invalid ranges across the movedata operation so
2189 * we don't need to force all of the pending IO right now. In addition, we move all
2190 * non overflow-extent extents into the destination here.
2191 */
2192static int hfs_move_fork (struct filefork *srcfork, struct cnode *src_cp,
2193						  struct filefork *dstfork, struct cnode *dst_cp) {
2194	struct rl_entry *invalid_range;
2195	int size = sizeof(struct HFSPlusExtentDescriptor);
2196	size = size * kHFSPlusExtentDensity;
2197
2198	/* If the dstfork has any invalid ranges, bail out */
2199	invalid_range = TAILQ_FIRST(&dstfork->ff_invalidranges);
2200	if (invalid_range != NULL) {
2201		return EFBIG;
2202	}
2203
2204	if (dstfork->ff_data.cf_size != 0 || dstfork->ff_data.cf_new_size != 0) {
2205		return EFBIG;
2206	}
2207
2208	/* First copy the invalid ranges */
2209	while ((invalid_range = TAILQ_FIRST(&srcfork->ff_invalidranges))) {
2210		off_t start = invalid_range->rl_start;
2211		off_t end = invalid_range->rl_end;
2212
2213		/* Remove it from the srcfork and add it to dstfork */
2214		rl_remove(start, end, &srcfork->ff_invalidranges);
2215		rl_add(start, end, &dstfork->ff_invalidranges);
2216	}
2217
2218	/*
2219	 * Ignore the ff_union.  We don't move symlinks or system files.
2220	 * Now copy the in-catalog extent information
2221	 */
2222	dstfork->ff_data.cf_size = srcfork->ff_data.cf_size;
2223	dstfork->ff_data.cf_new_size = srcfork->ff_data.cf_new_size;
2224	dstfork->ff_data.cf_vblocks = srcfork->ff_data.cf_vblocks;
2225	dstfork->ff_data.cf_blocks = srcfork->ff_data.cf_blocks;
2226
2227	/* just memcpy the whole array of extents to the new location. */
2228	memcpy (dstfork->ff_data.cf_extents, srcfork->ff_data.cf_extents, size);
2229
2230	/*
2231	 * Copy the cnode attribute data.
2232	 *
2233	 */
2234	src_cp->c_blocks -= srcfork->ff_data.cf_vblocks;
2235	src_cp->c_blocks -= srcfork->ff_data.cf_blocks;
2236
2237	dst_cp->c_blocks += srcfork->ff_data.cf_vblocks;
2238	dst_cp->c_blocks += srcfork->ff_data.cf_blocks;
2239
2240	/* Now delete the entries in the source fork */
2241	srcfork->ff_data.cf_size = 0;
2242	srcfork->ff_data.cf_new_size = 0;
2243	srcfork->ff_data.cf_union.cfu_bytesread = 0;
2244	srcfork->ff_data.cf_vblocks = 0;
2245	srcfork->ff_data.cf_blocks = 0;
2246
2247	/* Zero out the old extents */
2248	bzero (srcfork->ff_data.cf_extents, size);
2249	return 0;
2250}
2251
2252
2253/*
2254 *  cnode must be locked
2255 */
2256int
2257hfs_fsync(struct vnode *vp, int waitfor, int fullsync, struct proc *p)
2258{
2259	struct cnode *cp = VTOC(vp);
2260	struct filefork *fp = NULL;
2261	int retval = 0;
2262	struct hfsmount *hfsmp = VTOHFS(vp);
2263	struct rl_entry *invalid_range;
2264	struct timeval tv;
2265	int waitdata;		/* attributes necessary for data retrieval */
2266	int wait;		/* all other attributes (e.g. atime, etc.) */
2267	int lockflag;
2268	int took_trunc_lock = 0;
2269	int locked_buffers = 0;
2270
2271	/*
2272	 * Applications which only care about data integrity rather than full
2273	 * file integrity may opt out of (delay) expensive metadata update
2274	 * operations as a performance optimization.
2275	 */
2276	wait = (waitfor == MNT_WAIT);
2277	waitdata = (waitfor == MNT_DWAIT) | wait;
2278	if (always_do_fullfsync)
2279		fullsync = 1;
2280
2281	/* HFS directories don't have any data blocks. */
2282	if (vnode_isdir(vp))
2283		goto metasync;
2284	fp = VTOF(vp);
2285
2286	/*
2287	 * For system files flush the B-tree header and
2288	 * for regular files write out any clusters
2289	 */
2290	if (vnode_issystem(vp)) {
2291	    if (VTOF(vp)->fcbBTCBPtr != NULL) {
2292			// XXXdbg
2293			if (hfsmp->jnl == NULL) {
2294				BTFlushPath(VTOF(vp));
2295			}
2296	    }
2297	} else if (UBCINFOEXISTS(vp)) {
2298		hfs_unlock(cp);
2299		hfs_lock_truncate(cp, HFS_SHARED_LOCK);
2300		took_trunc_lock = 1;
2301
2302		if (fp->ff_unallocblocks != 0) {
2303			hfs_unlock_truncate(cp, 0);
2304
2305			hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
2306		}
2307		/* Don't hold cnode lock when calling into cluster layer. */
2308		(void) cluster_push(vp, waitdata ? IO_SYNC : 0);
2309
2310		hfs_lock(cp, HFS_FORCE_LOCK);
2311	}
2312	/*
2313	 * When MNT_WAIT is requested and the zero fill timeout
2314	 * has expired then we must explicitly zero out any areas
2315	 * that are currently marked invalid (holes).
2316	 *
2317	 * Files with NODUMP can bypass zero filling here.
2318	 */
2319	if (fp && (((cp->c_flag & C_ALWAYS_ZEROFILL) && !TAILQ_EMPTY(&fp->ff_invalidranges)) ||
2320	    ((wait || (cp->c_flag & C_ZFWANTSYNC)) &&
2321		((cp->c_bsdflags & UF_NODUMP) == 0) &&
2322		UBCINFOEXISTS(vp) && (vnode_issystem(vp) ==0) &&
2323		cp->c_zftimeout != 0))) {
2324
2325		microuptime(&tv);
2326		if ((cp->c_flag & C_ALWAYS_ZEROFILL) == 0 && !fullsync && tv.tv_sec < (long)cp->c_zftimeout) {
2327			/* Remember that a force sync was requested. */
2328			cp->c_flag |= C_ZFWANTSYNC;
2329			goto datasync;
2330		}
2331		if (!TAILQ_EMPTY(&fp->ff_invalidranges)) {
2332			if (!took_trunc_lock || (cp->c_truncatelockowner == HFS_SHARED_OWNER)) {
2333				hfs_unlock(cp);
2334				if (took_trunc_lock) {
2335					hfs_unlock_truncate(cp, 0);
2336				}
2337				hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
2338				hfs_lock(cp, HFS_FORCE_LOCK);
2339				took_trunc_lock = 1;
2340			}
2341			while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) {
2342				off_t start = invalid_range->rl_start;
2343				off_t end = invalid_range->rl_end;
2344
2345				/* The range about to be written must be validated
2346				 * first, so that VNOP_BLOCKMAP() will return the
2347				 * appropriate mapping for the cluster code:
2348				 */
2349				rl_remove(start, end, &fp->ff_invalidranges);
2350
2351				/* Don't hold cnode lock when calling into cluster layer. */
2352				hfs_unlock(cp);
2353				(void) cluster_write(vp, (struct uio *) 0,
2354						     fp->ff_size, end + 1, start, (off_t)0,
2355						     IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE);
2356				hfs_lock(cp, HFS_FORCE_LOCK);
2357				cp->c_flag |= C_MODIFIED;
2358			}
2359			hfs_unlock(cp);
2360			(void) cluster_push(vp, waitdata ? IO_SYNC : 0);
2361			hfs_lock(cp, HFS_FORCE_LOCK);
2362		}
2363		cp->c_flag &= ~C_ZFWANTSYNC;
2364		cp->c_zftimeout = 0;
2365	}
2366datasync:
2367	if (took_trunc_lock) {
2368		hfs_unlock_truncate(cp, 0);
2369		took_trunc_lock = 0;
2370	}
2371	/*
2372	 * if we have a journal and if journal_active() returns != 0 then the
2373	 * we shouldn't do anything to a locked block (because it is part
2374	 * of a transaction).  otherwise we'll just go through the normal
2375	 * code path and flush the buffer.  note journal_active() can return
2376	 * -1 if the journal is invalid -- however we still need to skip any
2377	 * locked blocks as they get cleaned up when we finish the transaction
2378	 * or close the journal.
2379	 */
2380	// if (hfsmp->jnl && journal_active(hfsmp->jnl) >= 0)
2381	if (hfsmp->jnl)
2382	        lockflag = BUF_SKIP_LOCKED;
2383	else
2384	        lockflag = 0;
2385
2386	/*
2387	 * Flush all dirty buffers associated with a vnode.
2388	 * Record how many of them were dirty AND locked (if necessary).
2389	 */
2390	locked_buffers = buf_flushdirtyblks_skipinfo(vp, waitdata, lockflag, "hfs_fsync");
2391	if ((lockflag & BUF_SKIP_LOCKED) && (locked_buffers) && (vnode_vtype(vp) == VLNK)) {
2392		/*
2393		 * If there are dirty symlink buffers, then we may need to take action
2394		 * to prevent issues later on if we are journaled. If we're fsyncing a
2395		 * symlink vnode then we are in one of three cases:
2396		 *
2397		 * 1) automatic sync has fired.  In this case, we don't want the behavior to change.
2398		 *
2399		 * 2) Someone has opened the FD for the symlink (not what it points to)
2400		 * and has issued an fsync against it.  This should be rare, and we don't
2401		 * want the behavior to change.
2402		 *
2403		 * 3) We are being called by a vclean which is trying to reclaim this
2404		 * symlink vnode.  If this is the case, then allowing this fsync to
2405		 * proceed WITHOUT flushing the journal could result in the vclean
2406		 * invalidating the buffer's blocks before the journal transaction is
2407		 * written to disk.  To prevent this, we force a journal flush
2408		 * if the vnode is in the middle of a recycle (VL_TERMINATE or VL_DEAD is set).
2409		 */
2410		if (vnode_isrecycled(vp)) {
2411			fullsync = 1;
2412		}
2413	}
2414
2415metasync:
2416	if (vnode_isreg(vp) && vnode_issystem(vp)) {
2417		if (VTOF(vp)->fcbBTCBPtr != NULL) {
2418			microuptime(&tv);
2419			BTSetLastSync(VTOF(vp), tv.tv_sec);
2420		}
2421		cp->c_touch_acctime = FALSE;
2422		cp->c_touch_chgtime = FALSE;
2423		cp->c_touch_modtime = FALSE;
2424	} else if ( !(vp->v_flag & VSWAP) ) /* User file */ {
2425		retval = hfs_update(vp, wait);
2426
2427		/*
2428		 * When MNT_WAIT is requested push out the catalog record for
2429		 * this file.  If they asked for a full fsync, we can skip this
2430		 * because the journal_flush or hfs_metasync_all will push out
2431		 * all of the metadata changes.
2432		 */
2433   		if ((retval == 0) && wait && !fullsync && cp->c_hint &&
2434   		    !ISSET(cp->c_flag, C_DELETED | C_NOEXISTS)) {
2435   			hfs_metasync(VTOHFS(vp), (daddr64_t)cp->c_hint, p);
2436		}
2437
2438		/*
2439		 * If this was a full fsync, make sure all metadata
2440		 * changes get to stable storage.
2441		 */
2442		if (fullsync) {
2443			if (hfsmp->jnl) {
2444				hfs_journal_flush(hfsmp, FALSE);
2445
2446				if (journal_uses_fua(hfsmp->jnl)) {
2447					/*
2448					 * the journal_flush did NOT issue a sync track cache command,
2449					 * and the fullsync indicates we are supposed to flush all cached
2450					 * data to the media, so issue the sync track cache command
2451					 * explicitly
2452					 */
2453					VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL);
2454				}
2455			} else {
2456				retval = hfs_metasync_all(hfsmp);
2457				/* XXX need to pass context! */
2458				VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL);
2459			}
2460		}
2461	}
2462
2463	return (retval);
2464}
2465
2466
2467/* Sync an hfs catalog b-tree node */
2468int
2469hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p)
2470{
2471	vnode_t	vp;
2472	buf_t	bp;
2473	int lockflags;
2474
2475	vp = HFSTOVCB(hfsmp)->catalogRefNum;
2476
2477	// XXXdbg - don't need to do this on a journaled volume
2478	if (hfsmp->jnl) {
2479		return 0;
2480	}
2481
2482	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
2483	/*
2484	 * Look for a matching node that has been delayed
2485	 * but is not part of a set (B_LOCKED).
2486	 *
2487	 * BLK_ONLYVALID causes buf_getblk to return a
2488	 * buf_t for the daddr64_t specified only if it's
2489	 * currently resident in the cache... the size
2490	 * parameter to buf_getblk is ignored when this flag
2491	 * is set
2492	 */
2493	bp = buf_getblk(vp, node, 0, 0, 0, BLK_META | BLK_ONLYVALID);
2494
2495	if (bp) {
2496	        if ((buf_flags(bp) & (B_LOCKED | B_DELWRI)) == B_DELWRI)
2497		        (void) VNOP_BWRITE(bp);
2498		else
2499		        buf_brelse(bp);
2500	}
2501
2502	hfs_systemfile_unlock(hfsmp, lockflags);
2503
2504	return (0);
2505}
2506
2507
2508/*
2509 * Sync all hfs B-trees.  Use this instead of journal_flush for a volume
2510 * without a journal.  Note that the volume bitmap does not get written;
2511 * we rely on fsck_hfs to fix that up (which it can do without any loss
2512 * of data).
2513 */
2514int
2515hfs_metasync_all(struct hfsmount *hfsmp)
2516{
2517	int lockflags;
2518
2519	/* Lock all of the B-trees so we get a mutually consistent state */
2520	lockflags = hfs_systemfile_lock(hfsmp,
2521		SFL_CATALOG|SFL_EXTENTS|SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
2522
2523	/* Sync each of the B-trees */
2524	if (hfsmp->hfs_catalog_vp)
2525		hfs_btsync(hfsmp->hfs_catalog_vp, 0);
2526	if (hfsmp->hfs_extents_vp)
2527		hfs_btsync(hfsmp->hfs_extents_vp, 0);
2528	if (hfsmp->hfs_attribute_vp)
2529		hfs_btsync(hfsmp->hfs_attribute_vp, 0);
2530
2531	/* Wait for all of the writes to complete */
2532	if (hfsmp->hfs_catalog_vp)
2533		vnode_waitforwrites(hfsmp->hfs_catalog_vp, 0, 0, 0, "hfs_metasync_all");
2534	if (hfsmp->hfs_extents_vp)
2535		vnode_waitforwrites(hfsmp->hfs_extents_vp, 0, 0, 0, "hfs_metasync_all");
2536	if (hfsmp->hfs_attribute_vp)
2537		vnode_waitforwrites(hfsmp->hfs_attribute_vp, 0, 0, 0, "hfs_metasync_all");
2538
2539	hfs_systemfile_unlock(hfsmp, lockflags);
2540
2541	return 0;
2542}
2543
2544
2545/*ARGSUSED 1*/
2546static int
2547hfs_btsync_callback(struct buf *bp, __unused void *dummy)
2548{
2549	buf_clearflags(bp, B_LOCKED);
2550	(void) buf_bawrite(bp);
2551
2552	return(BUF_CLAIMED);
2553}
2554
2555
2556int
2557hfs_btsync(struct vnode *vp, int sync_transaction)
2558{
2559	struct cnode *cp = VTOC(vp);
2560	struct timeval tv;
2561	int    flags = 0;
2562
2563	if (sync_transaction)
2564	        flags |= BUF_SKIP_NONLOCKED;
2565	/*
2566	 * Flush all dirty buffers associated with b-tree.
2567	 */
2568	buf_iterate(vp, hfs_btsync_callback, flags, 0);
2569
2570	microuptime(&tv);
2571	if (vnode_issystem(vp) && (VTOF(vp)->fcbBTCBPtr != NULL))
2572		(void) BTSetLastSync(VTOF(vp), tv.tv_sec);
2573	cp->c_touch_acctime = FALSE;
2574	cp->c_touch_chgtime = FALSE;
2575	cp->c_touch_modtime = FALSE;
2576
2577	return 0;
2578}
2579
2580/*
2581 * Remove a directory.
2582 */
2583int
2584hfs_vnop_rmdir(ap)
2585	struct vnop_rmdir_args /* {
2586		struct vnode *a_dvp;
2587		struct vnode *a_vp;
2588		struct componentname *a_cnp;
2589		vfs_context_t a_context;
2590	} */ *ap;
2591{
2592	struct vnode *dvp = ap->a_dvp;
2593	struct vnode *vp = ap->a_vp;
2594	struct cnode *dcp = VTOC(dvp);
2595	struct cnode *cp = VTOC(vp);
2596	int error;
2597	time_t orig_ctime;
2598
2599	orig_ctime = VTOC(vp)->c_ctime;
2600
2601	if (!S_ISDIR(cp->c_mode)) {
2602		return (ENOTDIR);
2603	}
2604	if (dvp == vp) {
2605		return (EINVAL);
2606	}
2607
2608	check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
2609	cp = VTOC(vp);
2610
2611	if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
2612		return (error);
2613	}
2614
2615	/* Check for a race with rmdir on the parent directory */
2616	if (dcp->c_flag & (C_DELETED | C_NOEXISTS)) {
2617		hfs_unlockpair (dcp, cp);
2618		return ENOENT;
2619	}
2620	error = hfs_removedir(dvp, vp, ap->a_cnp, 0, 0);
2621
2622	hfs_unlockpair(dcp, cp);
2623
2624	return (error);
2625}
2626
2627/*
2628 * Remove a directory
2629 *
2630 * Both dvp and vp cnodes are locked
2631 */
2632int
2633hfs_removedir(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2634              int skip_reserve, int only_unlink)
2635{
2636	struct cnode *cp;
2637	struct cnode *dcp;
2638	struct hfsmount * hfsmp;
2639	struct cat_desc desc;
2640	int lockflags;
2641	int error = 0, started_tr = 0;
2642
2643	cp = VTOC(vp);
2644	dcp = VTOC(dvp);
2645	hfsmp = VTOHFS(vp);
2646
2647	if (dcp == cp) {
2648		return (EINVAL);	/* cannot remove "." */
2649	}
2650	if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
2651		return (0);
2652	}
2653	if (cp->c_entries != 0) {
2654		return (ENOTEMPTY);
2655	}
2656
2657	/*
2658	 * If the directory is open or in use (e.g. opendir() or current working
2659	 * directory for some process); wait for inactive/reclaim to actually
2660	 * remove cnode from the catalog.  Both inactive and reclaim codepaths are capable
2661	 * of removing open-unlinked directories from the catalog, as well as getting rid
2662	 * of EAs still on the element.  So change only_unlink to true, so that it will get
2663	 * cleaned up below.
2664	 *
2665	 * Otherwise, we can get into a weird old mess where the directory has C_DELETED,
2666	 * but it really means C_NOEXISTS because the item was actually removed from the
2667	 * catalog.  Then when we try to remove the entry from the catalog later on, it won't
2668	 * really be there anymore.
2669	 */
2670	if (vnode_isinuse(vp, 0))  {
2671		only_unlink = 1;
2672	}
2673
2674	/* Deal with directory hardlinks */
2675	if (cp->c_flag & C_HARDLINK) {
2676		/*
2677		 * Note that if we have a directory which was a hardlink at any point,
2678		 * its actual directory data is stored in the directory inode in the hidden
2679		 * directory rather than the leaf element(s) present in the namespace.
2680		 *
2681		 * If there are still other hardlinks to this directory,
2682		 * then we'll just eliminate this particular link and the vnode will still exist.
2683		 * If this is the last link to an empty directory, then we'll open-unlink the
2684		 * directory and it will be only tagged with C_DELETED (as opposed to C_NOEXISTS).
2685		 *
2686		 * We could also return EBUSY here.
2687		 */
2688
2689		return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
2690	}
2691
2692	/*
2693	 * In a few cases, we may want to allow the directory to persist in an
2694	 * open-unlinked state.  If the directory is being open-unlinked (still has usecount
2695	 * references), or if it has EAs, or if it was being deleted as part of a rename,
2696	 * then we go ahead and move it to the hidden directory.
2697	 *
2698	 * If the directory is being open-unlinked, then we want to keep the catalog entry
2699	 * alive so that future EA calls and fchmod/fstat etc. do not cause issues later.
2700	 *
2701	 * If the directory had EAs, then we want to use the open-unlink trick so that the
2702	 * EA removal is not done in one giant transaction.  Otherwise, it could cause a panic
2703	 * due to overflowing the journal.
2704	 *
2705	 * Finally, if it was deleted as part of a rename, we move it to the hidden directory
2706	 * in order to maintain rename atomicity.
2707	 *
2708	 * Note that the allow_dirs argument to hfs_removefile specifies that it is
2709	 * supposed to handle directories for this case.
2710     */
2711
2712	if (((hfsmp->hfs_attribute_vp != NULL) &&
2713	    ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0)) ||
2714		(only_unlink != 0)) {
2715
2716		int ret = hfs_removefile(dvp, vp, cnp, 0, 0, 1, NULL, only_unlink);
2717		/*
2718		 * Even though hfs_vnop_rename calls vnode_recycle for us on tvp we call
2719		 * it here just in case we were invoked by rmdir() on a directory that had
2720		 * EAs.  To ensure that we start reclaiming the space as soon as possible,
2721		 * we call vnode_recycle on the directory.
2722		 */
2723		vnode_recycle(vp);
2724
2725		return ret;
2726
2727	}
2728
2729	dcp->c_flag |= C_DIR_MODIFICATION;
2730
2731#if QUOTA
2732	if (hfsmp->hfs_flags & HFS_QUOTAS)
2733		(void)hfs_getinoquota(cp);
2734#endif
2735	if ((error = hfs_start_transaction(hfsmp)) != 0) {
2736	    goto out;
2737	}
2738	started_tr = 1;
2739
2740	/*
2741	 * Verify the directory is empty (and valid).
2742	 * (Rmdir ".." won't be valid since
2743	 *  ".." will contain a reference to
2744	 *  the current directory and thus be
2745	 *  non-empty.)
2746	 */
2747	if ((dcp->c_bsdflags & APPEND) || (cp->c_bsdflags & (IMMUTABLE | APPEND))) {
2748		error = EPERM;
2749		goto out;
2750	}
2751
2752	/* Remove the entry from the namei cache: */
2753	cache_purge(vp);
2754
2755	/*
2756	 * Protect against a race with rename by using the component
2757	 * name passed in and parent id from dvp (instead of using
2758	 * the cp->c_desc which may have changed).
2759	 */
2760	desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
2761	desc.cd_namelen = cnp->cn_namelen;
2762	desc.cd_parentcnid = dcp->c_fileid;
2763	desc.cd_cnid = cp->c_cnid;
2764	desc.cd_flags = CD_ISDIR;
2765	desc.cd_encoding = cp->c_encoding;
2766	desc.cd_hint = 0;
2767
2768	if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
2769	    error = 0;
2770	    goto out;
2771	}
2772
2773	/* Remove entry from catalog */
2774	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
2775
2776	if (!skip_reserve) {
2777		/*
2778		 * Reserve some space in the Catalog file.
2779		 */
2780		if ((error = cat_preflight(hfsmp, CAT_DELETE, NULL, 0))) {
2781			hfs_systemfile_unlock(hfsmp, lockflags);
2782			goto out;
2783		}
2784	}
2785
2786	error = cat_delete(hfsmp, &desc, &cp->c_attr);
2787	if (error == 0) {
2788		/* The parent lost a child */
2789		if (dcp->c_entries > 0)
2790			dcp->c_entries--;
2791		DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
2792		dcp->c_dirchangecnt++;
2793		dcp->c_touch_chgtime = TRUE;
2794		dcp->c_touch_modtime = TRUE;
2795		hfs_touchtimes(hfsmp, cp);
2796		(void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
2797		cp->c_flag &= ~(C_MODIFIED | C_FORCEUPDATE);
2798	}
2799
2800	hfs_systemfile_unlock(hfsmp, lockflags);
2801
2802	if (error)
2803		goto out;
2804
2805#if QUOTA
2806	if (hfsmp->hfs_flags & HFS_QUOTAS)
2807		(void)hfs_chkiq(cp, -1, NOCRED, 0);
2808#endif /* QUOTA */
2809
2810	hfs_volupdate(hfsmp, VOL_RMDIR, (dcp->c_cnid == kHFSRootFolderID));
2811
2812	/* Mark C_NOEXISTS since the catalog entry is now gone */
2813	cp->c_flag |= C_NOEXISTS;
2814out:
2815	dcp->c_flag &= ~C_DIR_MODIFICATION;
2816	wakeup((caddr_t)&dcp->c_flag);
2817
2818	if (started_tr) {
2819	    hfs_end_transaction(hfsmp);
2820	}
2821
2822	return (error);
2823}
2824
2825
2826/*
2827 * Remove a file or link.
2828 */
2829int
2830hfs_vnop_remove(ap)
2831	struct vnop_remove_args /* {
2832		struct vnode *a_dvp;
2833		struct vnode *a_vp;
2834		struct componentname *a_cnp;
2835		int a_flags;
2836		vfs_context_t a_context;
2837	} */ *ap;
2838{
2839	struct vnode *dvp = ap->a_dvp;
2840	struct vnode *vp = ap->a_vp;
2841	struct cnode *dcp = VTOC(dvp);
2842	struct cnode *cp;
2843	struct vnode *rvp = NULL;
2844	int error=0, recycle_rsrc=0;
2845	time_t orig_ctime;
2846	uint32_t rsrc_vid = 0;
2847
2848	if (dvp == vp) {
2849		return (EINVAL);
2850	}
2851
2852	orig_ctime = VTOC(vp)->c_ctime;
2853	if ( (!vnode_isnamedstream(vp)) && ((ap->a_flags & VNODE_REMOVE_SKIP_NAMESPACE_EVENT) == 0)) {
2854		error = check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
2855		if (error) {
2856			// XXXdbg - decide on a policy for handling namespace handler failures!
2857			// for now we just let them proceed.
2858		}
2859	}
2860	error = 0;
2861
2862	cp = VTOC(vp);
2863
2864relock:
2865
2866	hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
2867
2868	if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
2869		hfs_unlock_truncate(cp, 0);
2870		if (rvp) {
2871			vnode_put (rvp);
2872		}
2873		return (error);
2874	}
2875
2876	/*
2877	 * Lazily respond to determining if there is a valid resource fork
2878	 * vnode attached to 'cp' if it is a regular file or symlink.
2879	 * If the vnode does not exist, then we may proceed without having to
2880	 * create it.
2881	 *
2882	 * If, however, it does exist, then we need to acquire an iocount on the
2883	 * vnode after acquiring its vid.  This ensures that if we have to do I/O
2884	 * against it, it can't get recycled from underneath us in the middle
2885	 * of this call.
2886	 *
2887	 * Note: this function may be invoked for directory hardlinks, so just skip these
2888	 * steps if 'vp' is a directory.
2889	 */
2890
2891
2892	if ((vp->v_type == VLNK) || (vp->v_type == VREG)) {
2893		if ((cp->c_rsrc_vp) && (rvp == NULL)) {
2894			/* We need to acquire the rsrc vnode */
2895			rvp = cp->c_rsrc_vp;
2896			rsrc_vid = vnode_vid (rvp);
2897
2898			/* Unlock everything to acquire iocount on the rsrc vnode */
2899			hfs_unlock_truncate (cp, 0);
2900			hfs_unlockpair (dcp, cp);
2901
2902			/* Use the vid to maintain identity on rvp */
2903			if (vnode_getwithvid(rvp, rsrc_vid)) {
2904				/*
2905				 * If this fails, then it was recycled or
2906				 * reclaimed in the interim.  Reset fields and
2907				 * start over.
2908				 */
2909				rvp = NULL;
2910				rsrc_vid = 0;
2911			}
2912			goto relock;
2913		}
2914	}
2915
2916	/*
2917	 * Check to see if we raced rmdir for the parent directory
2918	 * hfs_removefile already checks for a race on vp/cp
2919	 */
2920	if (dcp->c_flag & (C_DELETED | C_NOEXISTS)) {
2921		error = ENOENT;
2922		goto rm_done;
2923	}
2924
2925	error = hfs_removefile(dvp, vp, ap->a_cnp, ap->a_flags, 0, 0, NULL, 0);
2926
2927	/*
2928	 * If the remove succeeded in deleting the file, then we may need to mark
2929	 * the resource fork for recycle so that it is reclaimed as quickly
2930	 * as possible.  If it were not recycled quickly, then this resource fork
2931	 * vnode could keep a v_parent reference on the data fork, which prevents it
2932	 * from going through reclaim (by giving it extra usecounts), except in the force-
2933	 * unmount case.
2934	 *
2935	 * However, a caveat:  we need to continue to supply resource fork
2936	 * access to open-unlinked files even if the resource fork is not open.  This is
2937	 * a requirement for the compressed files work.  Luckily, hfs_vgetrsrc will handle
2938	 * this already if the data fork has been re-parented to the hidden directory.
2939	 *
2940	 * As a result, all we really need to do here is mark the resource fork vnode
2941	 * for recycle.  If it goes out of core, it can be brought in again if needed.
2942	 * If the cnode was instead marked C_NOEXISTS, then there wouldn't be any
2943	 * more work.
2944	 */
2945	if ((error == 0) && (rvp)) {
2946	    recycle_rsrc = 1;
2947	}
2948
2949	/*
2950	 * Drop the truncate lock before unlocking the cnode
2951	 * (which can potentially perform a vnode_put and
2952	 * recycle the vnode which in turn might require the
2953	 * truncate lock)
2954	 */
2955rm_done:
2956	hfs_unlock_truncate(cp, 0);
2957	hfs_unlockpair(dcp, cp);
2958
2959	if (recycle_rsrc) {
2960		/* inactive or reclaim on rvp will clean up the blocks from the rsrc fork */
2961		vnode_recycle(rvp);
2962	}
2963
2964	if (rvp) {
2965		/* drop iocount on rsrc fork, was obtained at beginning of fxn */
2966		vnode_put(rvp);
2967	}
2968
2969	return (error);
2970}
2971
2972
2973int
2974hfs_removefile_callback(struct buf *bp, void *hfsmp) {
2975
2976        if ( !(buf_flags(bp) & B_META))
2977	        panic("hfs: symlink bp @ %p is not marked meta-data!\n", bp);
2978	/*
2979	 * it's part of the current transaction, kill it.
2980	 */
2981	journal_kill_block(((struct hfsmount *)hfsmp)->jnl, bp);
2982
2983	return (BUF_CLAIMED);
2984}
2985
2986/*
2987 * hfs_removefile
2988 *
2989 * Similar to hfs_vnop_remove except there are additional options.
2990 * This function may be used to remove directories if they have
2991 * lots of EA's -- note the 'allow_dirs' argument.
2992 *
2993 * This function is able to delete blocks & fork data for the resource
2994 * fork even if it does not exist in core (and have a backing vnode).
2995 * It should infer the correct behavior based on the number of blocks
2996 * in the cnode and whether or not the resource fork pointer exists or
2997 * not.  As a result, one only need pass in the 'vp' corresponding to the
2998 * data fork of this file (or main vnode in the case of a directory).
2999 * Passing in a resource fork will result in an error.
3000 *
3001 * Because we do not create any vnodes in this function, we are not at
3002 * risk of deadlocking against ourselves by double-locking.
3003 *
3004 * Requires cnode and truncate locks to be held.
3005 */
3006int
3007hfs_removefile(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
3008               int flags, int skip_reserve, int allow_dirs,
3009			   __unused struct vnode *rvp, int only_unlink)
3010{
3011	struct cnode *cp;
3012	struct cnode *dcp;
3013	struct vnode *rsrc_vp = NULL;
3014	struct hfsmount *hfsmp;
3015	struct cat_desc desc;
3016	struct timeval tv;
3017	int dataforkbusy = 0;
3018	int rsrcforkbusy = 0;
3019	int lockflags;
3020	int error = 0;
3021	int started_tr = 0;
3022	int isbigfile = 0, defer_remove=0, isdir=0;
3023	int update_vh = 0;
3024
3025	cp = VTOC(vp);
3026	dcp = VTOC(dvp);
3027	hfsmp = VTOHFS(vp);
3028
3029	/* Check if we lost a race post lookup. */
3030	if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
3031		return (0);
3032	}
3033
3034	if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
3035	    return 0;
3036	}
3037
3038	/* Make sure a remove is permitted */
3039	if (VNODE_IS_RSRC(vp)) {
3040		return (EPERM);
3041	}
3042	else {
3043		/*
3044		 * We know it's a data fork.
3045		 * Probe the cnode to see if we have a valid resource fork
3046		 * in hand or not.
3047		 */
3048		rsrc_vp = cp->c_rsrc_vp;
3049	}
3050
3051	/* Don't allow deleting the journal or journal_info_block. */
3052	if (hfs_is_journal_file(hfsmp, cp)) {
3053		return (EPERM);
3054	}
3055
3056 	/*
3057	 * If removing a symlink, then we need to ensure that the
3058	 * data blocks for the symlink are not still in-flight or pending.
3059	 * If so, we will unlink the symlink here, making its blocks
3060	 * available for re-allocation by a subsequent transaction.  That is OK, but
3061	 * then the I/O for the data blocks could then go out before the journal
3062	 * transaction that created it was flushed, leading to I/O ordering issues.
3063	 */
3064	if (vp->v_type == VLNK) {
3065		/*
3066		 * This will block if the asynchronous journal flush is in progress.
3067		 * If this symlink is not being renamed over and doesn't have any open FDs,
3068		 * then we'll remove it from the journal's bufs below in kill_block.
3069		 */
3070		buf_wait_for_shadow_io (vp, 0);
3071	}
3072
3073	/*
3074	 * Hard links require special handling.
3075	 */
3076	if (cp->c_flag & C_HARDLINK) {
3077		if ((flags & VNODE_REMOVE_NODELETEBUSY) && vnode_isinuse(vp, 0)) {
3078			return (EBUSY);
3079		} else {
3080			/* A directory hard link with a link count of one is
3081			 * treated as a regular directory.  Therefore it should
3082			 * only be removed using rmdir().
3083			 */
3084			if ((vnode_isdir(vp) == 1) && (cp->c_linkcount == 1) &&
3085			    (allow_dirs == 0)) {
3086			    	return (EPERM);
3087			}
3088			return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
3089		}
3090	}
3091
3092	/* Directories should call hfs_rmdir! (unless they have a lot of attributes) */
3093	if (vnode_isdir(vp)) {
3094		if (allow_dirs == 0)
3095			return (EPERM);  /* POSIX */
3096		isdir = 1;
3097	}
3098	/* Sanity check the parent ids. */
3099	if ((cp->c_parentcnid != hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid) &&
3100	    (cp->c_parentcnid != dcp->c_fileid)) {
3101		return (EINVAL);
3102	}
3103
3104	dcp->c_flag |= C_DIR_MODIFICATION;
3105
3106	// this guy is going away so mark him as such
3107	cp->c_flag |= C_DELETED;
3108
3109
3110	/* Remove our entry from the namei cache. */
3111	cache_purge(vp);
3112
3113	/*
3114	 * If the caller was operating on a file (as opposed to a
3115	 * directory with EAs), then we need to figure out
3116	 * whether or not it has a valid resource fork vnode.
3117	 *
3118	 * If there was a valid resource fork vnode, then we need
3119	 * to use hfs_truncate to eliminate its data.  If there is
3120	 * no vnode, then we hold the cnode lock which would
3121	 * prevent it from being created.  As a result,
3122	 * we can use the data deletion functions which do not
3123	 * require that a cnode/vnode pair exist.
3124	 */
3125
3126	/* Check if this file is being used. */
3127	if (isdir == 0) {
3128		dataforkbusy = vnode_isinuse(vp, 0);
3129		/*
3130		 * At this point, we know that 'vp' points to the
3131		 * a data fork because we checked it up front. And if
3132		 * there is no rsrc fork, rsrc_vp will be NULL.
3133		 */
3134		if (rsrc_vp && (cp->c_blocks - VTOF(vp)->ff_blocks)) {
3135			rsrcforkbusy = vnode_isinuse(rsrc_vp, 0);
3136		}
3137	}
3138
3139	/* Check if we have to break the deletion into multiple pieces. */
3140	if (isdir == 0) {
3141		isbigfile = ((cp->c_datafork->ff_size >= HFS_BIGFILE_SIZE) && overflow_extents(VTOF(vp)));
3142	}
3143
3144	/* Check if the file has xattrs.  If it does we'll have to delete them in
3145	   individual transactions in case there are too many */
3146	if ((hfsmp->hfs_attribute_vp != NULL) &&
3147	    (cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0) {
3148	    defer_remove = 1;
3149	}
3150
3151	/* If we are explicitly told to only unlink item and move to hidden dir, then do it */
3152	if (only_unlink) {
3153		defer_remove = 1;
3154	}
3155
3156	/*
3157	 * Carbon semantics prohibit deleting busy files.
3158	 * (enforced when VNODE_REMOVE_NODELETEBUSY is requested)
3159	 */
3160	if (dataforkbusy || rsrcforkbusy) {
3161		if ((flags & VNODE_REMOVE_NODELETEBUSY) ||
3162		    (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid == 0)) {
3163			error = EBUSY;
3164			goto out;
3165		}
3166	}
3167
3168#if QUOTA
3169	if (hfsmp->hfs_flags & HFS_QUOTAS)
3170		(void)hfs_getinoquota(cp);
3171#endif /* QUOTA */
3172
3173	/*
3174	 * Do a ubc_setsize to indicate we need to wipe contents if:
3175	 *  1) item is a regular file.
3176	 *  2) Neither fork is busy AND we are not told to unlink this.
3177	 *
3178	 * We need to check for the defer_remove since it can be set without
3179	 * having a busy data or rsrc fork
3180	 */
3181	if (isdir == 0 && (!dataforkbusy || !rsrcforkbusy) && (defer_remove == 0)) {
3182		/*
3183		 * A ubc_setsize can cause a pagein so defer it
3184		 * until after the cnode lock is dropped.  The
3185		 * cnode lock cannot be dropped/reacquired here
3186		 * since we might already hold the journal lock.
3187		 */
3188		if (!dataforkbusy && cp->c_datafork->ff_blocks && !isbigfile) {
3189			cp->c_flag |= C_NEED_DATA_SETSIZE;
3190		}
3191		if (!rsrcforkbusy && rsrc_vp) {
3192			cp->c_flag |= C_NEED_RSRC_SETSIZE;
3193		}
3194	}
3195
3196	if ((error = hfs_start_transaction(hfsmp)) != 0) {
3197	    goto out;
3198	}
3199	started_tr = 1;
3200
3201	// XXXdbg - if we're journaled, kill any dirty symlink buffers
3202	if (hfsmp->jnl && vnode_islnk(vp) && (defer_remove == 0)) {
3203	        buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
3204	}
3205
3206	/*
3207	 * Prepare to truncate any non-busy forks.  Busy forks will
3208	 * get truncated when their vnode goes inactive.
3209	 * Note that we will only enter this region if we
3210	 * can avoid creating an open-unlinked file.  If
3211	 * either region is busy, we will have to create an open
3212	 * unlinked file.
3213	 *
3214	 * Since we are deleting the file, we need to stagger the runtime
3215	 * modifications to do things in such a way that a crash won't
3216	 * result in us getting overlapped extents or any other
3217	 * bad inconsistencies.  As such, we call prepare_release_storage
3218	 * which updates the UBC, updates quota information, and releases
3219	 * any loaned blocks that belong to this file.  No actual
3220	 * truncation or bitmap manipulation is done until *AFTER*
3221	 * the catalog record is removed.
3222	 */
3223	if (isdir == 0 && (!dataforkbusy && !rsrcforkbusy) && (only_unlink == 0)) {
3224
3225		if (!dataforkbusy && !isbigfile && cp->c_datafork->ff_blocks != 0) {
3226
3227			error = hfs_prepare_release_storage (hfsmp, vp);
3228			if (error) {
3229				goto out;
3230			}
3231			update_vh = 1;
3232		}
3233
3234		/*
3235		 * If the resource fork vnode does not exist, we can skip this step.
3236		 */
3237		if (!rsrcforkbusy && rsrc_vp) {
3238			error = hfs_prepare_release_storage (hfsmp, rsrc_vp);
3239			if (error) {
3240				goto out;
3241			}
3242			update_vh = 1;
3243		}
3244	}
3245
3246	/*
3247	 * Protect against a race with rename by using the component
3248	 * name passed in and parent id from dvp (instead of using
3249	 * the cp->c_desc which may have changed).   Also, be aware that
3250	 * because we allow directories to be passed in, we need to special case
3251	 * this temporary descriptor in case we were handed a directory.
3252	 */
3253	if (isdir) {
3254		desc.cd_flags = CD_ISDIR;
3255	}
3256	else {
3257		desc.cd_flags = 0;
3258	}
3259	desc.cd_encoding = cp->c_desc.cd_encoding;
3260	desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
3261	desc.cd_namelen = cnp->cn_namelen;
3262	desc.cd_parentcnid = dcp->c_fileid;
3263	desc.cd_hint = cp->c_desc.cd_hint;
3264	desc.cd_cnid = cp->c_cnid;
3265	microtime(&tv);
3266
3267	/*
3268	 * There are two cases to consider:
3269	 *  1. File/Dir is busy/big/defer_remove ==> move/rename the file/dir
3270	 *  2. File is not in use ==> remove the file
3271	 *
3272	 * We can get a directory in case 1 because it may have had lots of attributes,
3273	 * which need to get removed here.
3274	 */
3275	if (dataforkbusy || rsrcforkbusy || isbigfile || defer_remove) {
3276		char delname[32];
3277		struct cat_desc to_desc;
3278		struct cat_desc todir_desc;
3279
3280		/*
3281		 * Orphan this file or directory (move to hidden directory).
3282		 * Again, we need to take care that we treat directories as directories,
3283		 * and files as files.  Because directories with attributes can be passed in
3284		 * check to make sure that we have a directory or a file before filling in the
3285		 * temporary descriptor's flags.  We keep orphaned directories AND files in
3286		 * the FILE_HARDLINKS private directory since we're generalizing over all
3287		 * orphaned filesystem objects.
3288		 */
3289		bzero(&todir_desc, sizeof(todir_desc));
3290		todir_desc.cd_parentcnid = 2;
3291
3292		MAKE_DELETED_NAME(delname, sizeof(delname), cp->c_fileid);
3293		bzero(&to_desc, sizeof(to_desc));
3294		to_desc.cd_nameptr = (const u_int8_t *)delname;
3295		to_desc.cd_namelen = strlen(delname);
3296		to_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
3297		if (isdir) {
3298			to_desc.cd_flags = CD_ISDIR;
3299		}
3300		else {
3301			to_desc.cd_flags = 0;
3302		}
3303		to_desc.cd_cnid = cp->c_cnid;
3304
3305		lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
3306		if (!skip_reserve) {
3307			if ((error = cat_preflight(hfsmp, CAT_RENAME, NULL, 0))) {
3308				hfs_systemfile_unlock(hfsmp, lockflags);
3309				goto out;
3310			}
3311		}
3312
3313		error = cat_rename(hfsmp, &desc, &todir_desc,
3314				&to_desc, (struct cat_desc *)NULL);
3315
3316		if (error == 0) {
3317			hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries++;
3318			if (isdir == 1) {
3319				INC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
3320			}
3321			(void) cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
3322			                  &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
3323
3324			/* Update the parent directory */
3325			if (dcp->c_entries > 0)
3326				dcp->c_entries--;
3327			if (isdir == 1) {
3328				DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
3329			}
3330			dcp->c_dirchangecnt++;
3331			dcp->c_ctime = tv.tv_sec;
3332			dcp->c_mtime = tv.tv_sec;
3333			(void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
3334
3335			/* Update the file or directory's state */
3336			cp->c_flag |= C_DELETED;
3337			cp->c_ctime = tv.tv_sec;
3338			--cp->c_linkcount;
3339			(void) cat_update(hfsmp, &to_desc, &cp->c_attr, NULL, NULL);
3340		}
3341		hfs_systemfile_unlock(hfsmp, lockflags);
3342		if (error)
3343			goto out;
3344
3345	}
3346	else {
3347		/*
3348		 * Nobody is using this item; we can safely remove everything.
3349		 */
3350		struct filefork *temp_rsrc_fork = NULL;
3351#if QUOTA
3352		off_t savedbytes;
3353		int blksize = hfsmp->blockSize;
3354#endif
3355		u_int32_t fileid = cp->c_fileid;
3356
3357		/*
3358		 * Figure out if we need to read the resource fork data into
3359		 * core before wiping out the catalog record.
3360		 *
3361		 * 1) Must not be a directory
3362		 * 2) cnode's c_rsrcfork ptr must be NULL.
3363		 * 3) rsrc fork must have actual blocks
3364		 */
3365		if ((isdir == 0) && (cp->c_rsrcfork == NULL) &&
3366				(cp->c_blocks - VTOF(vp)->ff_blocks)) {
3367			/*
3368			 * The resource fork vnode & filefork did not exist.
3369			 * Create a temporary one for use in this function only.
3370			 */
3371			MALLOC_ZONE (temp_rsrc_fork, struct filefork *, sizeof (struct filefork), M_HFSFORK, M_WAITOK);
3372			bzero(temp_rsrc_fork, sizeof(struct filefork));
3373			temp_rsrc_fork->ff_cp = cp;
3374			rl_init(&temp_rsrc_fork->ff_invalidranges);
3375		}
3376
3377		lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
3378
3379		/* Look up the resource fork first, if necessary */
3380		if (temp_rsrc_fork) {
3381			error = cat_lookup (hfsmp, &desc, 1, (struct cat_desc*) NULL,
3382					(struct cat_attr*) NULL, &temp_rsrc_fork->ff_data, NULL);
3383			if (error) {
3384				FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
3385				hfs_systemfile_unlock (hfsmp, lockflags);
3386				goto out;
3387			}
3388		}
3389
3390		if (!skip_reserve) {
3391			if ((error = cat_preflight(hfsmp, CAT_DELETE, NULL, 0))) {
3392				if (temp_rsrc_fork) {
3393					FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
3394				}
3395				hfs_systemfile_unlock(hfsmp, lockflags);
3396				goto out;
3397			}
3398		}
3399
3400		error = cat_delete(hfsmp, &desc, &cp->c_attr);
3401
3402		if (error && error != ENXIO && error != ENOENT) {
3403			printf("hfs_removefile: deleting file %s (%d), err: %d\n",
3404				   cp->c_desc.cd_nameptr, cp->c_attr.ca_fileid, error);
3405		}
3406
3407		if (error == 0) {
3408			/* Update the parent directory */
3409			if (dcp->c_entries > 0)
3410				dcp->c_entries--;
3411			dcp->c_dirchangecnt++;
3412			dcp->c_ctime = tv.tv_sec;
3413			dcp->c_mtime = tv.tv_sec;
3414			(void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
3415		}
3416		hfs_systemfile_unlock(hfsmp, lockflags);
3417
3418		if (error) {
3419			if (temp_rsrc_fork) {
3420				FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
3421			}
3422			goto out;
3423		}
3424
3425		/*
3426		 * Now that we've wiped out the catalog record, the file effectively doesn't
3427		 * exist anymore. So update the quota records to reflect the loss of the
3428		 * data fork and the resource fork.
3429		 */
3430#if QUOTA
3431		if (cp->c_datafork->ff_blocks > 0) {
3432			savedbytes = ((off_t)cp->c_datafork->ff_blocks * (off_t)blksize);
3433			(void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
3434		}
3435
3436		/*
3437		 * We may have just deleted the catalog record for a resource fork even
3438		 * though it did not exist in core as a vnode. However, just because there
3439		 * was a resource fork pointer in the cnode does not mean that it had any blocks.
3440		 */
3441		if (temp_rsrc_fork || cp->c_rsrcfork) {
3442			if (cp->c_rsrcfork) {
3443			   	if (cp->c_rsrcfork->ff_blocks > 0) {
3444					savedbytes = ((off_t)cp->c_rsrcfork->ff_blocks * (off_t)blksize);
3445					(void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
3446				}
3447			}
3448			else {
3449				/* we must have used a temporary fork */
3450				savedbytes = ((off_t)temp_rsrc_fork->ff_blocks * (off_t)blksize);
3451				(void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
3452			}
3453		}
3454
3455		if (hfsmp->hfs_flags & HFS_QUOTAS) {
3456			(void)hfs_chkiq(cp, -1, NOCRED, 0);
3457		}
3458#endif
3459
3460		/*
3461		 * If we didn't get any errors deleting the catalog entry, then go ahead
3462		 * and release the backing store now.  The filefork pointers are still valid.
3463		 */
3464		if (temp_rsrc_fork) {
3465			error = hfs_release_storage (hfsmp, cp->c_datafork, temp_rsrc_fork, fileid);
3466		}
3467		else {
3468			/* if cp->c_rsrcfork == NULL, hfs_release_storage will skip over it. */
3469			error = hfs_release_storage (hfsmp, cp->c_datafork, cp->c_rsrcfork, fileid);
3470		}
3471		if (error) {
3472			/*
3473			 * If we encountered an error updating the extents and bitmap,
3474			 * mark the volume inconsistent.  At this point, the catalog record has
3475			 * already been deleted, so we can't recover it at this point. We need
3476			 * to proceed and update the volume header and mark the cnode C_NOEXISTS.
3477			 * The subsequent fsck should be able to recover the free space for us.
3478			 */
3479			hfs_mark_volume_inconsistent(hfsmp);
3480		}
3481		else {
3482			/* reset update_vh to 0, since hfs_release_storage should have done it for us */
3483			update_vh = 0;
3484		}
3485
3486		/* Get rid of the temporary rsrc fork */
3487		if (temp_rsrc_fork) {
3488			FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
3489		}
3490
3491		cp->c_flag |= C_NOEXISTS;
3492		cp->c_flag &= ~C_DELETED;
3493
3494		cp->c_touch_chgtime = TRUE;   /* XXX needed ? */
3495		--cp->c_linkcount;
3496
3497		/*
3498		 * We must never get a directory if we're in this else block.  We could
3499		 * accidentally drop the number of files in the volume header if we did.
3500		 */
3501		hfs_volupdate(hfsmp, VOL_RMFILE, (dcp->c_cnid == kHFSRootFolderID));
3502
3503	}
3504
3505	/*
3506	 * All done with this cnode's descriptor...
3507	 *
3508	 * Note: all future catalog calls for this cnode must be by
3509	 * fileid only.  This is OK for HFS (which doesn't have file
3510	 * thread records) since HFS doesn't support the removal of
3511	 * busy files.
3512	 */
3513	cat_releasedesc(&cp->c_desc);
3514
3515out:
3516	if (error) {
3517	    cp->c_flag &= ~C_DELETED;
3518	}
3519
3520	if (update_vh) {
3521		/*
3522		 * If we bailed out earlier, we may need to update the volume header
3523		 * to deal with the borrowed blocks accounting.
3524		 */
3525		hfs_volupdate (hfsmp, VOL_UPDATE, 0);
3526	}
3527
3528	if (started_tr) {
3529	    hfs_end_transaction(hfsmp);
3530	}
3531
3532	dcp->c_flag &= ~C_DIR_MODIFICATION;
3533	wakeup((caddr_t)&dcp->c_flag);
3534
3535	return (error);
3536}
3537
3538
3539__private_extern__ void
3540replace_desc(struct cnode *cp, struct cat_desc *cdp)
3541{
3542	// fixes 4348457 and 4463138
3543	if (&cp->c_desc == cdp) {
3544	    return;
3545	}
3546
3547	/* First release allocated name buffer */
3548	if (cp->c_desc.cd_flags & CD_HASBUF && cp->c_desc.cd_nameptr != 0) {
3549		const u_int8_t *name = cp->c_desc.cd_nameptr;
3550
3551		cp->c_desc.cd_nameptr = 0;
3552		cp->c_desc.cd_namelen = 0;
3553		cp->c_desc.cd_flags &= ~CD_HASBUF;
3554		vfs_removename((const char *)name);
3555	}
3556	bcopy(cdp, &cp->c_desc, sizeof(cp->c_desc));
3557
3558	/* Cnode now owns the name buffer */
3559	cdp->cd_nameptr = 0;
3560	cdp->cd_namelen = 0;
3561	cdp->cd_flags &= ~CD_HASBUF;
3562}
3563
3564
3565/*
3566 * Rename a cnode.
3567 *
3568 * The VFS layer guarantees that:
3569 *   - source and destination will either both be directories, or
3570 *     both not be directories.
3571 *   - all the vnodes are from the same file system
3572 *
3573 * When the target is a directory, HFS must ensure that its empty.
3574 *
3575 * Note that this function requires up to 6 vnodes in order to work properly
3576 * if it is operating on files (and not on directories).  This is because only
3577 * files can have resource forks, and we now require iocounts to be held on the
3578 * vnodes corresponding to the resource forks (if applicable) as well as
3579 * the files or directories undergoing rename.  The problem with not holding
3580 * iocounts on the resource fork vnodes is that it can lead to a deadlock
3581 * situation: The rsrc fork of the source file may be recycled and reclaimed
3582 * in order to provide a vnode for the destination file's rsrc fork.  Since
3583 * data and rsrc forks share the same cnode, we'd eventually try to lock the
3584 * source file's cnode in order to sync its rsrc fork to disk, but it's already
3585 * been locked.  By taking the rsrc fork vnodes up front we ensure that they
3586 * cannot be recycled, and that the situation mentioned above cannot happen.
3587 */
3588int
3589hfs_vnop_rename(ap)
3590	struct vnop_rename_args  /* {
3591		struct vnode *a_fdvp;
3592		struct vnode *a_fvp;
3593		struct componentname *a_fcnp;
3594		struct vnode *a_tdvp;
3595		struct vnode *a_tvp;
3596		struct componentname *a_tcnp;
3597		vfs_context_t a_context;
3598	} */ *ap;
3599{
3600	struct vnode *tvp = ap->a_tvp;
3601	struct vnode *tdvp = ap->a_tdvp;
3602	struct vnode *fvp = ap->a_fvp;
3603	struct vnode *fdvp = ap->a_fdvp;
3604	/*
3605	 * Note that we only need locals for the target/destination's
3606 	 * resource fork vnode (and only if necessary).  We don't care if the
3607	 * source has a resource fork vnode or not.
3608	 */
3609	struct vnode *tvp_rsrc = NULLVP;
3610	uint32_t tvp_rsrc_vid = 0;
3611	struct componentname *tcnp = ap->a_tcnp;
3612	struct componentname *fcnp = ap->a_fcnp;
3613	struct proc *p = vfs_context_proc(ap->a_context);
3614	struct cnode *fcp;
3615	struct cnode *fdcp;
3616	struct cnode *tdcp;
3617	struct cnode *tcp;
3618	struct cnode *error_cnode;
3619	struct cat_desc from_desc;
3620	struct cat_desc to_desc;
3621	struct cat_desc out_desc;
3622	struct hfsmount *hfsmp;
3623	cat_cookie_t cookie;
3624	int tvp_deleted = 0;
3625	int started_tr = 0, got_cookie = 0;
3626	int took_trunc_lock = 0;
3627	int lockflags;
3628	int error;
3629	time_t orig_from_ctime, orig_to_ctime;
3630	int emit_rename = 1;
3631	int emit_delete = 1;
3632
3633	orig_from_ctime = VTOC(fvp)->c_ctime;
3634	if (tvp && VTOC(tvp)) {
3635		orig_to_ctime = VTOC(tvp)->c_ctime;
3636	} else {
3637		orig_to_ctime = ~0;
3638	}
3639
3640	hfsmp = VTOHFS(tdvp);
3641	/*
3642	 * Do special case checks here.  If fvp == tvp then we need to check the
3643	 * cnode with locks held.
3644	 */
3645	if (fvp == tvp) {
3646		int is_hardlink = 0;
3647		/*
3648		 * In this case, we do *NOT* ever emit a DELETE event.
3649		 * We may not necessarily emit a RENAME event
3650		 */
3651		emit_delete = 0;
3652		if ((error = hfs_lock(VTOC(fvp), HFS_SHARED_LOCK))) {
3653			return error;
3654		}
3655		/* Check to see if the item is a hardlink or not */
3656		is_hardlink = (VTOC(fvp)->c_flag & C_HARDLINK);
3657		hfs_unlock (VTOC(fvp));
3658
3659		/*
3660		 * If the item is not a hardlink, then case sensitivity must be off, otherwise
3661		 * two names should not resolve to the same cnode unless they were case variants.
3662		 */
3663		if (is_hardlink) {
3664			emit_rename = 0;
3665			/*
3666			 * Hardlinks are a little trickier.  We only want to emit a rename event
3667			 * if the item is a hardlink, the parent directories are the same, case sensitivity
3668			 * is off, and the case folded names are the same.  See the fvp == tvp case below for more
3669			 * info.
3670			 */
3671
3672			if ((fdvp == tdvp) && ((hfsmp->hfs_flags & HFS_CASE_SENSITIVE) == 0)) {
3673				if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
3674							(const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
3675					/* Then in this case only it is ok to emit a rename */
3676					emit_rename = 1;
3677				}
3678			}
3679		}
3680	}
3681	if (emit_rename) {
3682		check_for_tracked_file(fvp, orig_from_ctime, NAMESPACE_HANDLER_RENAME_OP, NULL);
3683	}
3684
3685	if (tvp && VTOC(tvp)) {
3686		if (emit_delete) {
3687			check_for_tracked_file(tvp, orig_to_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
3688		}
3689	}
3690
3691retry:
3692	/* When tvp exists, take the truncate lock for hfs_removefile(). */
3693	if (tvp && (vnode_isreg(tvp) || vnode_islnk(tvp))) {
3694		hfs_lock_truncate(VTOC(tvp), HFS_EXCLUSIVE_LOCK);
3695		took_trunc_lock = 1;
3696	}
3697
3698	error = hfs_lockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL,
3699	                     HFS_EXCLUSIVE_LOCK, &error_cnode);
3700	if (error) {
3701		if (took_trunc_lock) {
3702			hfs_unlock_truncate(VTOC(tvp), 0);
3703			took_trunc_lock = 0;
3704		}
3705
3706		/*
3707		 * We hit an error path.  If we were trying to re-acquire the locks
3708		 * after coming through here once, we might have already obtained
3709		 * an iocount on tvp's resource fork vnode.  Drop that before dealing
3710		 * with the failure.  Note this is safe -- since we are in an
3711		 * error handling path, we can't be holding the cnode locks.
3712		 */
3713		if (tvp_rsrc) {
3714			vnode_put (tvp_rsrc);
3715			tvp_rsrc_vid = 0;
3716			tvp_rsrc = NULL;
3717		}
3718
3719		/*
3720		 * tvp might no longer exist.  If the cause of the lock failure
3721		 * was tvp, then we can try again with tvp/tcp set to NULL.
3722		 * This is ok because the vfs syscall will vnode_put the vnodes
3723		 * after we return from hfs_vnop_rename.
3724		 */
3725		if ((error == ENOENT) && (tvp != NULL) && (error_cnode == VTOC(tvp))) {
3726			tcp = NULL;
3727			tvp = NULL;
3728			goto retry;
3729		}
3730
3731		return (error);
3732	}
3733
3734	fdcp = VTOC(fdvp);
3735	fcp = VTOC(fvp);
3736	tdcp = VTOC(tdvp);
3737	tcp = tvp ? VTOC(tvp) : NULL;
3738
3739	/*
3740	 * Acquire iocounts on the destination's resource fork vnode
3741	 * if necessary. If dst/src are files and the dst has a resource
3742	 * fork vnode, then we need to try and acquire an iocount on the rsrc vnode.
3743	 * If it does not exist, then we don't care and can skip it.
3744	 */
3745	if ((vnode_isreg(fvp)) || (vnode_islnk(fvp))) {
3746		if ((tvp) && (tcp->c_rsrc_vp) && (tvp_rsrc == NULL)) {
3747			tvp_rsrc = tcp->c_rsrc_vp;
3748			/*
3749			 * We can look at the vid here because we're holding the
3750			 * cnode lock on the underlying cnode for this rsrc vnode.
3751			 */
3752			tvp_rsrc_vid = vnode_vid (tvp_rsrc);
3753
3754			/* Unlock everything to acquire iocount on this rsrc vnode */
3755			if (took_trunc_lock) {
3756				hfs_unlock_truncate (VTOC(tvp), 0);
3757				took_trunc_lock = 0;
3758			}
3759			hfs_unlockfour(fdcp, fcp, tdcp, tcp);
3760
3761			if (vnode_getwithvid (tvp_rsrc, tvp_rsrc_vid)) {
3762				/* iocount acquisition failed.  Reset fields and start over.. */
3763				tvp_rsrc_vid = 0;
3764				tvp_rsrc = NULL;
3765			}
3766			goto retry;
3767		}
3768	}
3769
3770	/* Ensure we didn't race src or dst parent directories with rmdir. */
3771	if (fdcp->c_flag & (C_NOEXISTS | C_DELETED)) {
3772		error = ENOENT;
3773		goto out;
3774	}
3775
3776	if (tdcp->c_flag & (C_NOEXISTS | C_DELETED)) {
3777		error = ENOENT;
3778		goto out;
3779	}
3780
3781
3782	/* Check for a race against unlink.  The hfs_valid_cnode checks validate
3783	 * the parent/child relationship with fdcp and tdcp, as well as the
3784	 * component name of the target cnodes.
3785	 */
3786	if ((fcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, fdvp, fcnp, fcp->c_fileid, NULL, &error)) {
3787		error = ENOENT;
3788		goto out;
3789	}
3790
3791	if (tcp && ((tcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, tdvp, tcnp, tcp->c_fileid, NULL, &error))) {
3792	    //
3793	    // hmm, the destination vnode isn't valid any more.
3794	    // in this case we can just drop him and pretend he
3795	    // never existed in the first place.
3796	    //
3797	    if (took_trunc_lock) {
3798			hfs_unlock_truncate(VTOC(tvp), 0);
3799			took_trunc_lock = 0;
3800	    }
3801		error = 0;
3802
3803	    hfs_unlockfour(fdcp, fcp, tdcp, tcp);
3804
3805	    tcp = NULL;
3806	    tvp = NULL;
3807
3808	    // retry the locking with tvp null'ed out
3809	    goto retry;
3810	}
3811
3812	fdcp->c_flag |= C_DIR_MODIFICATION;
3813	if (fdvp != tdvp) {
3814	    tdcp->c_flag |= C_DIR_MODIFICATION;
3815	}
3816
3817	/*
3818	 * Disallow renaming of a directory hard link if the source and
3819	 * destination parent directories are different, or a directory whose
3820	 * descendant is a directory hard link and the one of the ancestors
3821	 * of the destination directory is a directory hard link.
3822	 */
3823	if (vnode_isdir(fvp) && (fdvp != tdvp)) {
3824		if (fcp->c_flag & C_HARDLINK) {
3825			error = EPERM;
3826			goto out;
3827		}
3828		if (fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) {
3829		    lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
3830		    if (cat_check_link_ancestry(hfsmp, tdcp->c_fileid, 0)) {
3831				error = EPERM;
3832				hfs_systemfile_unlock(hfsmp, lockflags);
3833				goto out;
3834			}
3835			hfs_systemfile_unlock(hfsmp, lockflags);
3836		}
3837	}
3838
3839	/*
3840	 * The following edge case is caught here:
3841	 * (to cannot be a descendent of from)
3842	 *
3843	 *       o fdvp
3844	 *      /
3845	 *     /
3846	 *    o fvp
3847	 *     \
3848	 *      \
3849	 *       o tdvp
3850	 *      /
3851	 *     /
3852	 *    o tvp
3853	 */
3854	if (tdcp->c_parentcnid == fcp->c_fileid) {
3855		error = EINVAL;
3856		goto out;
3857	}
3858
3859	/*
3860	 * The following two edge cases are caught here:
3861	 * (note tvp is not empty)
3862	 *
3863	 *       o tdvp               o tdvp
3864	 *      /                    /
3865	 *     /                    /
3866	 *    o tvp            tvp o fdvp
3867	 *     \                    \
3868	 *      \                    \
3869	 *       o fdvp               o fvp
3870	 *      /
3871	 *     /
3872	 *    o fvp
3873	 */
3874	if (tvp && vnode_isdir(tvp) && (tcp->c_entries != 0) && fvp != tvp) {
3875		error = ENOTEMPTY;
3876		goto out;
3877	}
3878
3879	/*
3880	 * The following edge case is caught here:
3881	 * (the from child and parent are the same)
3882	 *
3883	 *          o tdvp
3884	 *         /
3885	 *        /
3886	 *  fdvp o fvp
3887	 */
3888	if (fdvp == fvp) {
3889		error = EINVAL;
3890		goto out;
3891	}
3892
3893	/*
3894	 * Make sure "from" vnode and its parent are changeable.
3895	 */
3896	if ((fcp->c_bsdflags & (IMMUTABLE | APPEND)) || (fdcp->c_bsdflags & APPEND)) {
3897		error = EPERM;
3898		goto out;
3899	}
3900
3901	/*
3902	 * If the destination parent directory is "sticky", then the
3903	 * user must own the parent directory, or the destination of
3904	 * the rename, otherwise the destination may not be changed
3905	 * (except by root). This implements append-only directories.
3906	 *
3907	 * Note that checks for immutable and write access are done
3908	 * by the call to hfs_removefile.
3909	 */
3910	if (tvp && (tdcp->c_mode & S_ISTXT) &&
3911	    (suser(vfs_context_ucred(tcnp->cn_context), NULL)) &&
3912	    (kauth_cred_getuid(vfs_context_ucred(tcnp->cn_context)) != tdcp->c_uid) &&
3913	    (hfs_owner_rights(hfsmp, tcp->c_uid, vfs_context_ucred(tcnp->cn_context), p, false)) ) {
3914		error = EPERM;
3915		goto out;
3916	}
3917
3918	/* Don't allow modification of the journal or journal_info_block */
3919	if (hfs_is_journal_file(hfsmp, fcp) ||
3920	    (tcp && hfs_is_journal_file(hfsmp, tcp))) {
3921		error = EPERM;
3922		goto out;
3923	}
3924
3925#if QUOTA
3926	if (tvp)
3927		(void)hfs_getinoquota(tcp);
3928#endif
3929	/* Preflighting done, take fvp out of the name space. */
3930	cache_purge(fvp);
3931
3932	bzero(&from_desc, sizeof(from_desc));
3933	from_desc.cd_nameptr = (const u_int8_t *)fcnp->cn_nameptr;
3934	from_desc.cd_namelen = fcnp->cn_namelen;
3935	from_desc.cd_parentcnid = fdcp->c_fileid;
3936	from_desc.cd_flags = fcp->c_desc.cd_flags & ~(CD_HASBUF | CD_DECOMPOSED);
3937	from_desc.cd_cnid = fcp->c_cnid;
3938
3939	bzero(&to_desc, sizeof(to_desc));
3940	to_desc.cd_nameptr = (const u_int8_t *)tcnp->cn_nameptr;
3941	to_desc.cd_namelen = tcnp->cn_namelen;
3942	to_desc.cd_parentcnid = tdcp->c_fileid;
3943	to_desc.cd_flags = fcp->c_desc.cd_flags & ~(CD_HASBUF | CD_DECOMPOSED);
3944	to_desc.cd_cnid = fcp->c_cnid;
3945
3946	if ((error = hfs_start_transaction(hfsmp)) != 0) {
3947	    goto out;
3948	}
3949	started_tr = 1;
3950
3951	/* hfs_vnop_link() and hfs_vnop_rename() set kHFSHasChildLinkMask
3952	 * inside a journal transaction and without holding a cnode lock.
3953	 * As setting of this bit depends on being in journal transaction for
3954	 * concurrency, check this bit again after we start journal transaction for rename
3955	 * to ensure that this directory does not have any descendant that
3956	 * is a directory hard link.
3957	 */
3958	if (vnode_isdir(fvp) && (fdvp != tdvp)) {
3959		if (fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) {
3960		    lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
3961		    if (cat_check_link_ancestry(hfsmp, tdcp->c_fileid, 0)) {
3962				error = EPERM;
3963				hfs_systemfile_unlock(hfsmp, lockflags);
3964				goto out;
3965			}
3966			hfs_systemfile_unlock(hfsmp, lockflags);
3967		}
3968	}
3969
3970	// if it's a hardlink then re-lookup the name so
3971	// that we get the correct cnid in from_desc (see
3972	// the comment in hfs_removefile for more details)
3973	//
3974	if (fcp->c_flag & C_HARDLINK) {
3975	    struct cat_desc tmpdesc;
3976	    cnid_t real_cnid;
3977
3978	    tmpdesc.cd_nameptr = (const u_int8_t *)fcnp->cn_nameptr;
3979	    tmpdesc.cd_namelen = fcnp->cn_namelen;
3980	    tmpdesc.cd_parentcnid = fdcp->c_fileid;
3981	    tmpdesc.cd_hint = fdcp->c_childhint;
3982	    tmpdesc.cd_flags = fcp->c_desc.cd_flags & CD_ISDIR;
3983	    tmpdesc.cd_encoding = 0;
3984
3985	    lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
3986
3987	    if (cat_lookup(hfsmp, &tmpdesc, 0, NULL, NULL, NULL, &real_cnid) != 0) {
3988		hfs_systemfile_unlock(hfsmp, lockflags);
3989		goto out;
3990	    }
3991
3992	    // use the real cnid instead of whatever happened to be there
3993	    from_desc.cd_cnid = real_cnid;
3994	    hfs_systemfile_unlock(hfsmp, lockflags);
3995	}
3996
3997	/*
3998	 * Reserve some space in the Catalog file.
3999	 */
4000	if ((error = cat_preflight(hfsmp, CAT_RENAME + CAT_DELETE, &cookie, p))) {
4001		goto out;
4002	}
4003	got_cookie = 1;
4004
4005	/*
4006	 * If the destination exists then it may need to be removed.
4007	 *
4008	 * Due to HFS's locking system, we should always move the
4009	 * existing 'tvp' element to the hidden directory in hfs_vnop_rename.
4010	 * Because the VNOP_LOOKUP call enters and exits the filesystem independently
4011	 * of the actual vnop that it was trying to do (stat, link, readlink),
4012	 * we must release the cnode lock of that element during the interim to
4013	 * do MAC checking, vnode authorization, and other calls.  In that time,
4014	 * the item can be deleted (or renamed over). However, only in the rename
4015	 * case is it inappropriate to return ENOENT from any of those calls.  Either
4016	 * the call should return information about the old element (stale), or get
4017	 * information about the newer element that we are about to write in its place.
4018	 *
4019	 * HFS lookup has been modified to detect a rename and re-drive its
4020	 * lookup internally. For other calls that have already succeeded in
4021	 * their lookup call and are waiting to acquire the cnode lock in order
4022	 * to proceed, that cnode lock will not fail due to the cnode being marked
4023	 * C_NOEXISTS, because it won't have been marked as such.  It will only
4024	 * have C_DELETED.  Thus, they will simply act on the stale open-unlinked
4025	 * element.  All future callers will get the new element.
4026	 *
4027	 * To implement this behavior, we pass the "only_unlink" argument to
4028	 * hfs_removefile and hfs_removedir.  This will result in the vnode acting
4029	 * as though it is open-unlinked.  Additionally, when we are done moving the
4030	 * element to the hidden directory, we vnode_recycle the target so that it is
4031	 * reclaimed as soon as possible.  Reclaim and inactive are both
4032	 * capable of clearing out unused blocks for an open-unlinked file or dir.
4033	 */
4034	if (tvp) {
4035		/*
4036		 * When fvp matches tvp they could be case variants
4037		 * or matching hard links.
4038		 */
4039		if (fvp == tvp) {
4040			if (!(fcp->c_flag & C_HARDLINK)) {
4041				/*
4042				 * If they're not hardlinks, then fvp == tvp must mean we
4043				 * are using case-insensitive HFS because case-sensitive would
4044				 * not use the same vnode for both.  In this case we just update
4045				 * the catalog for: a -> A
4046				 */
4047				goto skip_rm;  /* simple case variant */
4048
4049			}
4050		   	/* For all cases below, we must be using hardlinks */
4051			else if ((fdvp != tdvp) ||
4052			           (hfsmp->hfs_flags & HFS_CASE_SENSITIVE)) {
4053				/*
4054				 * If the parent directories are not the same, AND the two items
4055				 * are hardlinks, posix says to do nothing:
4056				 * dir1/fred <-> dir2/bob   and the op was mv dir1/fred -> dir2/bob
4057				 * We just return 0 in this case.
4058				 *
4059				 * If case sensitivity is on, and we are using hardlinks
4060				 * then renaming is supposed to do nothing.
4061				 * dir1/fred <-> dir2/FRED, and op == mv dir1/fred -> dir2/FRED
4062				 */
4063				goto out;  /* matching hardlinks, nothing to do */
4064
4065			} else if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
4066			                       (const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
4067				/*
4068				 * If we get here, then the following must be true:
4069				 * a) We are running case-insensitive HFS+.
4070				 * b) Both paths 'fvp' and 'tvp' are in the same parent directory.
4071				 * c) the two names are case-variants of each other.
4072				 *
4073				 * In this case, we are really only dealing with a single catalog record
4074				 * whose name is being updated.
4075				 *
4076				 * op is dir1/fred -> dir1/FRED
4077				 *
4078				 * We need to special case the name matching, because if
4079				 * dir1/fred <-> dir1/bob were the two links, and the
4080				 * op was dir1/fred -> dir1/bob
4081				 * That would fail/do nothing.
4082				 */
4083				goto skip_rm;  /* case-variant hardlink in the same dir */
4084			} else {
4085				goto out;  /* matching hardlink, nothing to do */
4086			}
4087		}
4088
4089
4090		if (vnode_isdir(tvp)) {
4091			/*
4092			 * hfs_removedir will eventually call hfs_removefile on the directory
4093			 * we're working on, because only hfs_removefile does the renaming of the
4094			 * item to the hidden directory.  The directory will stay around in the
4095			 * hidden directory with C_DELETED until it gets an inactive or a reclaim.
4096			 * That way, we can destroy all of the EAs as needed and allow new ones to be
4097			 * written.
4098			 */
4099			error = hfs_removedir(tdvp, tvp, tcnp, HFSRM_SKIP_RESERVE, 1);
4100		}
4101		else {
4102			error = hfs_removefile(tdvp, tvp, tcnp, 0, HFSRM_SKIP_RESERVE, 0, NULL, 1);
4103
4104			/*
4105			 * If the destination file had a resource fork vnode, then we need to get rid of
4106			 * its blocks when there are no more references to it.  Because the call to
4107			 * hfs_removefile above always open-unlinks things, we need to force an inactive/reclaim
4108			 * on the resource fork vnode, in order to prevent block leaks.  Otherwise,
4109			 * the resource fork vnode could prevent the data fork vnode from going out of scope
4110			 * because it holds a v_parent reference on it.  So we mark it for termination
4111			 * with a call to vnode_recycle. hfs_vnop_reclaim has been modified so that it
4112			 * can clean up the blocks of open-unlinked files and resource forks.
4113			 *
4114			 * We can safely call vnode_recycle on the resource fork because we took an iocount
4115			 * reference on it at the beginning of the function.
4116			 */
4117
4118			if ((error == 0) && (tcp->c_flag & C_DELETED) && (tvp_rsrc)) {
4119				vnode_recycle(tvp_rsrc);
4120			}
4121		}
4122
4123		if (error) {
4124			goto out;
4125		}
4126
4127		tvp_deleted = 1;
4128
4129		/* Mark 'tcp' as being deleted due to a rename */
4130		tcp->c_flag |= C_RENAMED;
4131
4132		/*
4133		 * Aggressively mark tvp/tcp for termination to ensure that we recover all blocks
4134		 * as quickly as possible.
4135		 */
4136		vnode_recycle(tvp);
4137	}
4138skip_rm:
4139	/*
4140	 * All done with tvp and fvp.
4141	 *
4142	 * We also jump to this point if there was no destination observed during lookup and namei.
4143	 * However, because only iocounts are held at the VFS layer, there is nothing preventing a
4144	 * competing thread from racing us and creating a file or dir at the destination of this rename
4145	 * operation.  If this occurs, it may cause us to get a spurious EEXIST out of the cat_rename
4146	 * call below.  To preserve rename's atomicity, we need to signal VFS to re-drive the
4147	 * namei/lookup and restart the rename operation.  EEXIST is an allowable errno to be bubbled
4148	 * out of the rename syscall, but not for this reason, since it is a synonym errno for ENOTEMPTY.
4149	 * To signal VFS, we return ERECYCLE (which is also used for lookup restarts). This errno
4150	 * will be swallowed and it will restart the operation.
4151	 */
4152
4153	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
4154	error = cat_rename(hfsmp, &from_desc, &tdcp->c_desc, &to_desc, &out_desc);
4155	hfs_systemfile_unlock(hfsmp, lockflags);
4156
4157	if (error) {
4158		if (error == EEXIST) {
4159			error = ERECYCLE;
4160		}
4161		goto out;
4162	}
4163
4164	/* Invalidate negative cache entries in the destination directory */
4165	if (tdcp->c_flag & C_NEG_ENTRIES) {
4166		cache_purge_negatives(tdvp);
4167		tdcp->c_flag &= ~C_NEG_ENTRIES;
4168	}
4169
4170	/* Update cnode's catalog descriptor */
4171	replace_desc(fcp, &out_desc);
4172	fcp->c_parentcnid = tdcp->c_fileid;
4173	fcp->c_hint = 0;
4174
4175	/* Now indicate this cnode needs to have date-added written to the finderinfo */
4176	fcp->c_flag |= C_NEEDS_DATEADDED;
4177	(void) hfs_update (fvp, 0);
4178
4179
4180	hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_RMDIR : VOL_RMFILE,
4181	              (fdcp->c_cnid == kHFSRootFolderID));
4182	hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_MKDIR : VOL_MKFILE,
4183	              (tdcp->c_cnid == kHFSRootFolderID));
4184
4185	/* Update both parent directories. */
4186	if (fdvp != tdvp) {
4187		if (vnode_isdir(fvp)) {
4188			/* If the source directory has directory hard link
4189			 * descendants, set the kHFSHasChildLinkBit in the
4190			 * destination parent hierarchy
4191			 */
4192			if ((fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) &&
4193			    !(tdcp->c_attr.ca_recflags & kHFSHasChildLinkMask)) {
4194
4195				tdcp->c_attr.ca_recflags |= kHFSHasChildLinkMask;
4196
4197				error = cat_set_childlinkbit(hfsmp, tdcp->c_parentcnid);
4198				if (error) {
4199					printf ("hfs_vnop_rename: error updating parent chain for %u\n", tdcp->c_cnid);
4200					error = 0;
4201				}
4202			}
4203			INC_FOLDERCOUNT(hfsmp, tdcp->c_attr);
4204			DEC_FOLDERCOUNT(hfsmp, fdcp->c_attr);
4205		}
4206		tdcp->c_entries++;
4207		tdcp->c_dirchangecnt++;
4208		if (fdcp->c_entries > 0)
4209			fdcp->c_entries--;
4210		fdcp->c_dirchangecnt++;
4211		fdcp->c_touch_chgtime = TRUE;
4212		fdcp->c_touch_modtime = TRUE;
4213
4214		fdcp->c_flag |= C_FORCEUPDATE;  // XXXdbg - force it out!
4215		(void) hfs_update(fdvp, 0);
4216	}
4217	tdcp->c_childhint = out_desc.cd_hint;	/* Cache directory's location */
4218	tdcp->c_touch_chgtime = TRUE;
4219	tdcp->c_touch_modtime = TRUE;
4220
4221	tdcp->c_flag |= C_FORCEUPDATE;  // XXXdbg - force it out!
4222	(void) hfs_update(tdvp, 0);
4223
4224	/* Update the vnode's name now that the rename has completed. */
4225	vnode_update_identity(fvp, tdvp, tcnp->cn_nameptr, tcnp->cn_namelen,
4226			tcnp->cn_hash, (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
4227
4228	/*
4229	 * At this point, we may have a resource fork vnode attached to the
4230	 * 'from' vnode.  If it exists, we will want to update its name, because
4231	 * it contains the old name + _PATH_RSRCFORKSPEC. ("/..namedfork/rsrc").
4232	 *
4233	 * Note that the only thing we need to update here is the name attached to
4234	 * the vnode, since a resource fork vnode does not have a separate resource
4235	 * cnode -- it's still 'fcp'.
4236	 */
4237	if (fcp->c_rsrc_vp) {
4238		char* rsrc_path = NULL;
4239		int len;
4240
4241		/* Create a new temporary buffer that's going to hold the new name */
4242		MALLOC_ZONE (rsrc_path, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
4243		len = snprintf (rsrc_path, MAXPATHLEN, "%s%s", tcnp->cn_nameptr, _PATH_RSRCFORKSPEC);
4244		len = MIN(len, MAXPATHLEN);
4245
4246		/*
4247		 * vnode_update_identity will do the following for us:
4248		 * 1) release reference on the existing rsrc vnode's name.
4249		 * 2) copy/insert new name into the name cache
4250		 * 3) attach the new name to the resource vnode
4251		 * 4) update the vnode's vid
4252		 */
4253		vnode_update_identity (fcp->c_rsrc_vp, fvp, rsrc_path, len, 0, (VNODE_UPDATE_NAME | VNODE_UPDATE_CACHE));
4254
4255		/* Free the memory associated with the resource fork's name */
4256		FREE_ZONE (rsrc_path, MAXPATHLEN, M_NAMEI);
4257	}
4258out:
4259	if (got_cookie) {
4260		cat_postflight(hfsmp, &cookie, p);
4261	}
4262	if (started_tr) {
4263	    hfs_end_transaction(hfsmp);
4264	}
4265
4266	fdcp->c_flag &= ~C_DIR_MODIFICATION;
4267	wakeup((caddr_t)&fdcp->c_flag);
4268	if (fdvp != tdvp) {
4269	    tdcp->c_flag &= ~C_DIR_MODIFICATION;
4270	    wakeup((caddr_t)&tdcp->c_flag);
4271	}
4272
4273	if (took_trunc_lock) {
4274		hfs_unlock_truncate(VTOC(tvp), 0);
4275	}
4276
4277	hfs_unlockfour(fdcp, fcp, tdcp, tcp);
4278
4279	/* Now vnode_put the resource fork vnode if necessary */
4280	if (tvp_rsrc) {
4281		vnode_put(tvp_rsrc);
4282		tvp_rsrc = NULL;
4283	}
4284
4285	/* After tvp is removed the only acceptable error is EIO */
4286	if (error && tvp_deleted)
4287		error = EIO;
4288
4289	return (error);
4290}
4291
4292
4293/*
4294 * Make a directory.
4295 */
4296int
4297hfs_vnop_mkdir(struct vnop_mkdir_args *ap)
4298{
4299	/***** HACK ALERT ********/
4300	ap->a_cnp->cn_flags |= MAKEENTRY;
4301	return hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
4302}
4303
4304
4305/*
4306 * Create a symbolic link.
4307 */
4308int
4309hfs_vnop_symlink(struct vnop_symlink_args *ap)
4310{
4311	struct vnode **vpp = ap->a_vpp;
4312	struct vnode *dvp = ap->a_dvp;
4313	struct vnode *vp = NULL;
4314	struct cnode *cp = NULL;
4315	struct hfsmount *hfsmp;
4316	struct filefork *fp;
4317	struct buf *bp = NULL;
4318	char *datap;
4319	int started_tr = 0;
4320	u_int32_t len;
4321	int error;
4322
4323	/* HFS standard disks don't support symbolic links */
4324	if (VTOVCB(dvp)->vcbSigWord != kHFSPlusSigWord)
4325		return (ENOTSUP);
4326
4327	/* Check for empty target name */
4328	if (ap->a_target[0] == 0)
4329		return (EINVAL);
4330
4331	hfsmp = VTOHFS(dvp);
4332	len = strlen(ap->a_target);
4333
4334	/* Check for free space */
4335	if (((u_int64_t)hfs_freeblks(hfsmp, 0) * (u_int64_t)hfsmp->blockSize) < len) {
4336		return (ENOSPC);
4337	}
4338
4339	/* Create the vnode */
4340	ap->a_vap->va_mode |= S_IFLNK;
4341	if ((error = hfs_makenode(dvp, vpp, ap->a_cnp, ap->a_vap, ap->a_context))) {
4342		goto out;
4343	}
4344	vp = *vpp;
4345	if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) {
4346		goto out;
4347	}
4348	cp = VTOC(vp);
4349	fp = VTOF(vp);
4350
4351	if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
4352	    goto out;
4353	}
4354
4355#if QUOTA
4356	(void)hfs_getinoquota(cp);
4357#endif /* QUOTA */
4358
4359	if ((error = hfs_start_transaction(hfsmp)) != 0) {
4360	    goto out;
4361	}
4362	started_tr = 1;
4363
4364	/*
4365	 * Allocate space for the link.
4366	 *
4367	 * Since we're already inside a transaction,
4368	 * tell hfs_truncate to skip the ubc_setsize.
4369	 *
4370	 * Don't need truncate lock since a symlink is treated as a system file.
4371	 */
4372	error = hfs_truncate(vp, len, IO_NOZEROFILL, 1, 0, ap->a_context);
4373
4374	/* On errors, remove the symlink file */
4375	if (error) {
4376		/*
4377		 * End the transaction so we don't re-take the cnode lock
4378		 * below while inside a transaction (lock order violation).
4379		 */
4380		hfs_end_transaction(hfsmp);
4381
4382		/* hfs_removefile() requires holding the truncate lock */
4383		hfs_unlock(cp);
4384		hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
4385		hfs_lock(cp, HFS_FORCE_LOCK);
4386
4387		if (hfs_start_transaction(hfsmp) != 0) {
4388			started_tr = 0;
4389			hfs_unlock_truncate(cp, TRUE);
4390			goto out;
4391		}
4392
4393		(void) hfs_removefile(dvp, vp, ap->a_cnp, 0, 0, 0, NULL, 0);
4394		hfs_unlock_truncate(cp, 0);
4395		goto out;
4396	}
4397
4398	/* Write the link to disk */
4399	bp = buf_getblk(vp, (daddr64_t)0, roundup((int)fp->ff_size, hfsmp->hfs_physical_block_size),
4400			0, 0, BLK_META);
4401	if (hfsmp->jnl) {
4402		journal_modify_block_start(hfsmp->jnl, bp);
4403	}
4404	datap = (char *)buf_dataptr(bp);
4405	bzero(datap, buf_size(bp));
4406	bcopy(ap->a_target, datap, len);
4407
4408	if (hfsmp->jnl) {
4409		journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
4410	} else {
4411		buf_bawrite(bp);
4412	}
4413	/*
4414	 * We defered the ubc_setsize for hfs_truncate
4415	 * since we were inside a transaction.
4416	 *
4417	 * We don't need to drop the cnode lock here
4418	 * since this is a symlink.
4419	 */
4420	ubc_setsize(vp, len);
4421out:
4422	if (started_tr)
4423	    hfs_end_transaction(hfsmp);
4424	if ((cp != NULL) && (vp != NULL)) {
4425		hfs_unlock(cp);
4426	}
4427	if (error) {
4428		if (vp) {
4429			vnode_put(vp);
4430		}
4431		*vpp = NULL;
4432	}
4433	return (error);
4434}
4435
4436
4437/* structures to hold a "." or ".." directory entry */
4438struct hfs_stddotentry {
4439	u_int32_t	d_fileno;   /* unique file number */
4440	u_int16_t	d_reclen;   /* length of this structure */
4441	u_int8_t	d_type;     /* dirent file type */
4442	u_int8_t	d_namlen;   /* len of filename */
4443	char		d_name[4];  /* "." or ".." */
4444};
4445
4446struct hfs_extdotentry {
4447	u_int64_t  d_fileno;   /* unique file number */
4448	u_int64_t  d_seekoff;  /* seek offset (optional, used by servers) */
4449	u_int16_t  d_reclen;   /* length of this structure */
4450	u_int16_t  d_namlen;   /* len of filename */
4451	u_int8_t   d_type;     /* dirent file type */
4452	u_char     d_name[3];  /* "." or ".." */
4453};
4454
4455typedef union {
4456	struct hfs_stddotentry  std;
4457	struct hfs_extdotentry  ext;
4458} hfs_dotentry_t;
4459
4460/*
4461 *  hfs_vnop_readdir reads directory entries into the buffer pointed
4462 *  to by uio, in a filesystem independent format.  Up to uio_resid
4463 *  bytes of data can be transferred.  The data in the buffer is a
4464 *  series of packed dirent structures where each one contains the
4465 *  following entries:
4466 *
4467 *	u_int32_t   d_fileno;              // file number of entry
4468 *	u_int16_t   d_reclen;              // length of this record
4469 *	u_int8_t    d_type;                // file type
4470 *	u_int8_t    d_namlen;              // length of string in d_name
4471 *	char        d_name[MAXNAMELEN+1];  // null terminated file name
4472 *
4473 *  The current position (uio_offset) refers to the next block of
4474 *  entries.  The offset can only be set to a value previously
4475 *  returned by hfs_vnop_readdir or zero.  This offset does not have
4476 *  to match the number of bytes returned (in uio_resid).
4477 *
4478 *  In fact, the offset used by HFS is essentially an index (26 bits)
4479 *  with a tag (6 bits).  The tag is for associating the next request
4480 *  with the current request.  This enables us to have multiple threads
4481 *  reading the directory while the directory is also being modified.
4482 *
4483 *  Each tag/index pair is tied to a unique directory hint.  The hint
4484 *  contains information (filename) needed to build the catalog b-tree
4485 *  key for finding the next set of entries.
4486 *
4487 * If the directory is marked as deleted-but-in-use (cp->c_flag & C_DELETED),
4488 * do NOT synthesize entries for "." and "..".
4489 */
4490int
4491hfs_vnop_readdir(ap)
4492	struct vnop_readdir_args /* {
4493		vnode_t a_vp;
4494		uio_t a_uio;
4495		int a_flags;
4496		int *a_eofflag;
4497		int *a_numdirent;
4498		vfs_context_t a_context;
4499	} */ *ap;
4500{
4501	struct vnode *vp = ap->a_vp;
4502	uio_t uio = ap->a_uio;
4503	struct cnode *cp;
4504	struct hfsmount *hfsmp;
4505	directoryhint_t *dirhint = NULL;
4506	directoryhint_t localhint;
4507	off_t offset;
4508	off_t startoffset;
4509	int error = 0;
4510	int eofflag = 0;
4511	user_addr_t user_start = 0;
4512	user_size_t user_len = 0;
4513	int index;
4514	unsigned int tag;
4515	int items;
4516	int lockflags;
4517	int extended;
4518	int nfs_cookies;
4519	cnid_t cnid_hint = 0;
4520
4521	items = 0;
4522	startoffset = offset = uio_offset(uio);
4523	extended = (ap->a_flags & VNODE_READDIR_EXTENDED);
4524	nfs_cookies = extended && (ap->a_flags & VNODE_READDIR_REQSEEKOFF);
4525
4526	/* Sanity check the uio data. */
4527	if (uio_iovcnt(uio) > 1)
4528		return (EINVAL);
4529
4530	if (VTOC(vp)->c_bsdflags & UF_COMPRESSED) {
4531		int compressed = hfs_file_is_compressed(VTOC(vp), 0);  /* 0 == take the cnode lock */
4532		if (VTOCMP(vp) != NULL && !compressed) {
4533			error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
4534			if (error) {
4535				return error;
4536			}
4537		}
4538	}
4539
4540	cp = VTOC(vp);
4541	hfsmp = VTOHFS(vp);
4542
4543	/* Note that the dirhint calls require an exclusive lock. */
4544	if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
4545		return (error);
4546
4547	/* Pick up cnid hint (if any). */
4548	if (nfs_cookies) {
4549		cnid_hint = (cnid_t)(uio_offset(uio) >> 32);
4550		uio_setoffset(uio, uio_offset(uio) & 0x00000000ffffffffLL);
4551		if (cnid_hint == INT_MAX) { /* searching pass the last item */
4552			eofflag = 1;
4553			goto out;
4554		}
4555	}
4556	/*
4557	 * Synthesize entries for "." and "..", unless the directory has
4558	 * been deleted, but not closed yet (lazy delete in progress).
4559	 */
4560	if (offset == 0 && !(cp->c_flag & C_DELETED)) {
4561		hfs_dotentry_t  dotentry[2];
4562		size_t  uiosize;
4563
4564		if (extended) {
4565			struct hfs_extdotentry *entry = &dotentry[0].ext;
4566
4567			entry->d_fileno = cp->c_cnid;
4568			entry->d_reclen = sizeof(struct hfs_extdotentry);
4569			entry->d_type = DT_DIR;
4570			entry->d_namlen = 1;
4571			entry->d_name[0] = '.';
4572			entry->d_name[1] = '\0';
4573			entry->d_name[2] = '\0';
4574			entry->d_seekoff = 1;
4575
4576			++entry;
4577			entry->d_fileno = cp->c_parentcnid;
4578			entry->d_reclen = sizeof(struct hfs_extdotentry);
4579			entry->d_type = DT_DIR;
4580			entry->d_namlen = 2;
4581			entry->d_name[0] = '.';
4582			entry->d_name[1] = '.';
4583			entry->d_name[2] = '\0';
4584			entry->d_seekoff = 2;
4585			uiosize = 2 * sizeof(struct hfs_extdotentry);
4586		} else {
4587			struct hfs_stddotentry *entry = &dotentry[0].std;
4588
4589			entry->d_fileno = cp->c_cnid;
4590			entry->d_reclen = sizeof(struct hfs_stddotentry);
4591			entry->d_type = DT_DIR;
4592			entry->d_namlen = 1;
4593			*(int *)&entry->d_name[0] = 0;
4594			entry->d_name[0] = '.';
4595
4596			++entry;
4597			entry->d_fileno = cp->c_parentcnid;
4598			entry->d_reclen = sizeof(struct hfs_stddotentry);
4599			entry->d_type = DT_DIR;
4600			entry->d_namlen = 2;
4601			*(int *)&entry->d_name[0] = 0;
4602			entry->d_name[0] = '.';
4603			entry->d_name[1] = '.';
4604			uiosize = 2 * sizeof(struct hfs_stddotentry);
4605		}
4606		if ((error = uiomove((caddr_t)&dotentry, uiosize, uio))) {
4607			goto out;
4608		}
4609		offset += 2;
4610	}
4611
4612	/* If there are no real entries then we're done. */
4613	if (cp->c_entries == 0) {
4614		error = 0;
4615		eofflag = 1;
4616		uio_setoffset(uio, offset);
4617		goto seekoffcalc;
4618	}
4619
4620	//
4621	// We have to lock the user's buffer here so that we won't
4622	// fault on it after we've acquired a shared lock on the
4623	// catalog file.  The issue is that you can get a 3-way
4624	// deadlock if someone else starts a transaction and then
4625	// tries to lock the catalog file but can't because we're
4626	// here and we can't service our page fault because VM is
4627	// blocked trying to start a transaction as a result of
4628	// trying to free up pages for our page fault.  It's messy
4629	// but it does happen on dual-processors that are paging
4630	// heavily (see radar 3082639 for more info).  By locking
4631	// the buffer up-front we prevent ourselves from faulting
4632	// while holding the shared catalog file lock.
4633	//
4634	// Fortunately this and hfs_search() are the only two places
4635	// currently (10/30/02) that can fault on user data with a
4636	// shared lock on the catalog file.
4637	//
4638	if (hfsmp->jnl && uio_isuserspace(uio)) {
4639		user_start = uio_curriovbase(uio);
4640		user_len = uio_curriovlen(uio);
4641
4642		if ((error = vslock(user_start, user_len)) != 0) {
4643			user_start = 0;
4644			goto out;
4645		}
4646	}
4647	/* Convert offset into a catalog directory index. */
4648	index = (offset & HFS_INDEX_MASK) - 2;
4649	tag = offset & ~HFS_INDEX_MASK;
4650
4651	/* Lock catalog during cat_findname and cat_getdirentries. */
4652	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
4653
4654	/* When called from NFS, try and resolve a cnid hint. */
4655	if (nfs_cookies && cnid_hint != 0) {
4656		if (cat_findname(hfsmp, cnid_hint, &localhint.dh_desc) == 0) {
4657			if ( localhint.dh_desc.cd_parentcnid == cp->c_fileid) {
4658				localhint.dh_index = index - 1;
4659				localhint.dh_time = 0;
4660				bzero(&localhint.dh_link, sizeof(localhint.dh_link));
4661				dirhint = &localhint;  /* don't forget to release the descriptor */
4662			} else {
4663				cat_releasedesc(&localhint.dh_desc);
4664			}
4665		}
4666	}
4667
4668	/* Get a directory hint (cnode must be locked exclusive) */
4669	if (dirhint == NULL) {
4670		dirhint = hfs_getdirhint(cp, ((index - 1) & HFS_INDEX_MASK) | tag, 0);
4671
4672		/* Hide tag from catalog layer. */
4673		dirhint->dh_index &= HFS_INDEX_MASK;
4674		if (dirhint->dh_index == HFS_INDEX_MASK) {
4675			dirhint->dh_index = -1;
4676		}
4677	}
4678
4679	if (index == 0) {
4680		dirhint->dh_threadhint = cp->c_dirthreadhint;
4681	}
4682	else {
4683		/*
4684		 * If we have a non-zero index, there is a possibility that during the last
4685		 * call to hfs_vnop_readdir we hit EOF for this directory.  If that is the case
4686		 * then we don't want to return any new entries for the caller.  Just return 0
4687		 * items, mark the eofflag, and bail out.  Because we won't have done any work, the
4688		 * code at the end of the function will release the dirhint for us.
4689		 *
4690		 * Don't forget to unlock the catalog lock on the way out, too.
4691		 */
4692		if (dirhint->dh_desc.cd_flags & CD_EOF) {
4693			error = 0;
4694			eofflag = 1;
4695			uio_setoffset(uio, startoffset);
4696			hfs_systemfile_unlock (hfsmp, lockflags);
4697
4698			goto seekoffcalc;
4699		}
4700	}
4701
4702	/* Pack the buffer with dirent entries. */
4703	error = cat_getdirentries(hfsmp, cp->c_entries, dirhint, uio, ap->a_flags, &items, &eofflag);
4704
4705	if (index == 0 && error == 0) {
4706		cp->c_dirthreadhint = dirhint->dh_threadhint;
4707	}
4708
4709	hfs_systemfile_unlock(hfsmp, lockflags);
4710
4711	if (error != 0) {
4712		goto out;
4713	}
4714
4715	/* Get index to the next item */
4716	index += items;
4717
4718	if (items >= (int)cp->c_entries) {
4719		eofflag = 1;
4720	}
4721
4722	/* Convert catalog directory index back into an offset. */
4723	while (tag == 0)
4724		tag = (++cp->c_dirhinttag) << HFS_INDEX_BITS;
4725	uio_setoffset(uio, (index + 2) | tag);
4726	dirhint->dh_index |= tag;
4727
4728seekoffcalc:
4729	cp->c_touch_acctime = TRUE;
4730
4731	if (ap->a_numdirent) {
4732		if (startoffset == 0)
4733			items += 2;
4734		*ap->a_numdirent = items;
4735	}
4736
4737out:
4738	if (user_start) {
4739		vsunlock(user_start, user_len, TRUE);
4740	}
4741	/* If we didn't do anything then go ahead and dump the hint. */
4742	if ((dirhint != NULL) &&
4743	    (dirhint != &localhint) &&
4744	    (uio_offset(uio) == startoffset)) {
4745		hfs_reldirhint(cp, dirhint);
4746		eofflag = 1;
4747	}
4748	if (ap->a_eofflag) {
4749		*ap->a_eofflag = eofflag;
4750	}
4751	if (dirhint == &localhint) {
4752		cat_releasedesc(&localhint.dh_desc);
4753	}
4754	hfs_unlock(cp);
4755	return (error);
4756}
4757
4758
4759/*
4760 * Read contents of a symbolic link.
4761 */
4762int
4763hfs_vnop_readlink(ap)
4764	struct vnop_readlink_args /* {
4765		struct vnode *a_vp;
4766		struct uio *a_uio;
4767		vfs_context_t a_context;
4768	} */ *ap;
4769{
4770	struct vnode *vp = ap->a_vp;
4771	struct cnode *cp;
4772	struct filefork *fp;
4773	int error;
4774
4775	if (!vnode_islnk(vp))
4776		return (EINVAL);
4777
4778	if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
4779		return (error);
4780	cp = VTOC(vp);
4781	fp = VTOF(vp);
4782
4783	/* Zero length sym links are not allowed */
4784	if (fp->ff_size == 0 || fp->ff_size > MAXPATHLEN) {
4785		error = EINVAL;
4786		goto exit;
4787	}
4788
4789	/* Cache the path so we don't waste buffer cache resources */
4790	if (fp->ff_symlinkptr == NULL) {
4791		struct buf *bp = NULL;
4792
4793		MALLOC(fp->ff_symlinkptr, char *, fp->ff_size, M_TEMP, M_WAITOK);
4794		if (fp->ff_symlinkptr == NULL) {
4795			error = ENOMEM;
4796			goto exit;
4797		}
4798		error = (int)buf_meta_bread(vp, (daddr64_t)0,
4799		                            roundup((int)fp->ff_size, VTOHFS(vp)->hfs_physical_block_size),
4800		                            vfs_context_ucred(ap->a_context), &bp);
4801		if (error) {
4802			if (bp)
4803				buf_brelse(bp);
4804			if (fp->ff_symlinkptr) {
4805				FREE(fp->ff_symlinkptr, M_TEMP);
4806				fp->ff_symlinkptr = NULL;
4807			}
4808			goto exit;
4809		}
4810		bcopy((char *)buf_dataptr(bp), fp->ff_symlinkptr, (size_t)fp->ff_size);
4811
4812		if (VTOHFS(vp)->jnl && (buf_flags(bp) & B_LOCKED) == 0) {
4813		        buf_markinvalid(bp);		/* data no longer needed */
4814		}
4815		buf_brelse(bp);
4816	}
4817	error = uiomove((caddr_t)fp->ff_symlinkptr, (int)fp->ff_size, ap->a_uio);
4818
4819	/*
4820	 * Keep track blocks read
4821	 */
4822	if ((VTOHFS(vp)->hfc_stage == HFC_RECORDING) && (error == 0)) {
4823
4824		/*
4825		 * If this file hasn't been seen since the start of
4826		 * the current sampling period then start over.
4827		 */
4828		if (cp->c_atime < VTOHFS(vp)->hfc_timebase)
4829			VTOF(vp)->ff_bytesread = fp->ff_size;
4830		else
4831			VTOF(vp)->ff_bytesread += fp->ff_size;
4832
4833	//	if (VTOF(vp)->ff_bytesread > fp->ff_size)
4834	//		cp->c_touch_acctime = TRUE;
4835	}
4836
4837exit:
4838	hfs_unlock(cp);
4839	return (error);
4840}
4841
4842
4843/*
4844 * Get configurable pathname variables.
4845 */
4846int
4847hfs_vnop_pathconf(ap)
4848	struct vnop_pathconf_args /* {
4849		struct vnode *a_vp;
4850		int a_name;
4851		int *a_retval;
4852		vfs_context_t a_context;
4853	} */ *ap;
4854{
4855	switch (ap->a_name) {
4856	case _PC_LINK_MAX:
4857		if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4858			*ap->a_retval = 1;
4859		else
4860			*ap->a_retval = HFS_LINK_MAX;
4861		break;
4862	case _PC_NAME_MAX:
4863		if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4864			*ap->a_retval = kHFSMaxFileNameChars;  /* 31 */
4865		else
4866			*ap->a_retval = kHFSPlusMaxFileNameChars;  /* 255 */
4867		break;
4868	case _PC_PATH_MAX:
4869		*ap->a_retval = PATH_MAX;  /* 1024 */
4870		break;
4871	case _PC_PIPE_BUF:
4872		*ap->a_retval = PIPE_BUF;
4873		break;
4874	case _PC_CHOWN_RESTRICTED:
4875		*ap->a_retval = 200112;		/* _POSIX_CHOWN_RESTRICTED */
4876		break;
4877	case _PC_NO_TRUNC:
4878		*ap->a_retval = 200112;		/* _POSIX_NO_TRUNC */
4879		break;
4880	case _PC_NAME_CHARS_MAX:
4881		if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4882			*ap->a_retval = kHFSMaxFileNameChars; /* 31 */
4883		else
4884			*ap->a_retval = kHFSPlusMaxFileNameChars; /* 255 */
4885		break;
4886	case _PC_CASE_SENSITIVE:
4887		if (VTOHFS(ap->a_vp)->hfs_flags & HFS_CASE_SENSITIVE)
4888			*ap->a_retval = 1;
4889		else
4890			*ap->a_retval = 0;
4891		break;
4892	case _PC_CASE_PRESERVING:
4893		*ap->a_retval = 1;
4894		break;
4895	case _PC_FILESIZEBITS:
4896		if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4897			*ap->a_retval = 32;
4898		else
4899			*ap->a_retval = 64;	/* number of bits to store max file size */
4900		break;
4901	case _PC_XATTR_SIZE_BITS:
4902		/* Number of bits to store maximum extended attribute size */
4903		*ap->a_retval = HFS_XATTR_SIZE_BITS;
4904		break;
4905	default:
4906		return (EINVAL);
4907	}
4908
4909	return (0);
4910}
4911
4912
4913/*
4914 * Update a cnode's on-disk metadata.
4915 *
4916 * If waitfor is set, then wait for the disk write of
4917 * the node to complete.
4918 *
4919 * The cnode must be locked exclusive
4920 */
4921int
4922hfs_update(struct vnode *vp, __unused int waitfor)
4923{
4924	struct cnode *cp = VTOC(vp);
4925	struct proc *p;
4926	struct cat_fork *dataforkp = NULL;
4927	struct cat_fork *rsrcforkp = NULL;
4928	struct cat_fork datafork;
4929	struct cat_fork rsrcfork;
4930	struct hfsmount *hfsmp;
4931	int lockflags;
4932	int error;
4933
4934	p = current_proc();
4935	hfsmp = VTOHFS(vp);
4936
4937	if (((vnode_issystem(vp) && (cp->c_cnid < kHFSFirstUserCatalogNodeID))) ||
4938	   	hfsmp->hfs_catalog_vp == NULL){
4939		return (0);
4940	}
4941	if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (cp->c_mode == 0)) {
4942		cp->c_flag &= ~C_MODIFIED;
4943		cp->c_touch_acctime = 0;
4944		cp->c_touch_chgtime = 0;
4945		cp->c_touch_modtime = 0;
4946		return (0);
4947	}
4948
4949	hfs_touchtimes(hfsmp, cp);
4950
4951	/* Nothing to update. */
4952	if ((cp->c_flag & (C_MODIFIED | C_FORCEUPDATE)) == 0) {
4953		return (0);
4954	}
4955
4956	if (cp->c_datafork)
4957		dataforkp = &cp->c_datafork->ff_data;
4958	if (cp->c_rsrcfork)
4959		rsrcforkp = &cp->c_rsrcfork->ff_data;
4960
4961	/*
4962	 * For delayed allocations updates are
4963	 * postponed until an fsync or the file
4964	 * gets written to disk.
4965	 *
4966	 * Deleted files can defer meta data updates until inactive.
4967	 *
4968	 * If we're ever called with the C_FORCEUPDATE flag though
4969	 * we have to do the update.
4970	 */
4971	if (ISSET(cp->c_flag, C_FORCEUPDATE) == 0 &&
4972	    (ISSET(cp->c_flag, C_DELETED) ||
4973	    (dataforkp && cp->c_datafork->ff_unallocblocks) ||
4974	    (rsrcforkp && cp->c_rsrcfork->ff_unallocblocks))) {
4975	//	cp->c_flag &= ~(C_ACCESS | C_CHANGE | C_UPDATE);
4976		cp->c_flag |= C_MODIFIED;
4977
4978		return (0);
4979	}
4980
4981	if ((error = hfs_start_transaction(hfsmp)) != 0) {
4982	    return error;
4983	}
4984
4985    /*
4986     * Modify the values passed to cat_update based on whether or not
4987     * the file has invalid ranges or borrowed blocks.
4988     */
4989    if (dataforkp) {
4990        off_t numbytes = 0;
4991
4992        /* copy the datafork into a temporary copy so we don't pollute the cnode's */
4993        bcopy(dataforkp, &datafork, sizeof(datafork));
4994        dataforkp = &datafork;
4995
4996        /*
4997         * If there are borrowed blocks, ensure that they are subtracted
4998         * from the total block count before writing the cnode entry to disk.
4999         * Only extents that have actually been marked allocated in the bitmap
5000         * should be reflected in the total block count for this fork.
5001         */
5002        if (cp->c_datafork->ff_unallocblocks != 0) {
5003            // make sure that we don't assign a negative block count
5004            if (cp->c_datafork->ff_blocks < cp->c_datafork->ff_unallocblocks) {
5005                panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
5006                        cp->c_datafork->ff_blocks, cp->c_datafork->ff_unallocblocks);
5007            }
5008
5009            /* Also cap the LEOF to the total number of bytes that are allocated. */
5010            datafork.cf_blocks = (cp->c_datafork->ff_blocks - cp->c_datafork->ff_unallocblocks);
5011            datafork.cf_size   = datafork.cf_blocks * HFSTOVCB(hfsmp)->blockSize;
5012        }
5013
5014        /*
5015         * For files with invalid ranges (holes) the on-disk
5016         * field representing the size of the file (cf_size)
5017         * must be no larger than the start of the first hole.
5018         * However, note that if the first invalid range exists
5019         * solely within borrowed blocks, then our LEOF and block
5020         * count should both be zero.  As a result, set it to the
5021         * min of the current cf_size and the start of the first
5022         * invalid range, because it may have already been reduced
5023         * to zero by the borrowed blocks check above.
5024         */
5025        if (!TAILQ_EMPTY(&cp->c_datafork->ff_invalidranges))  {
5026            numbytes = TAILQ_FIRST(&cp->c_datafork->ff_invalidranges)->rl_start;
5027            datafork.cf_size = MIN((numbytes), (datafork.cf_size));
5028        }
5029    }
5030
5031	/*
5032	 * For resource forks with delayed allocations, make sure
5033	 * the block count and file size match the number of blocks
5034	 * actually allocated to the file on disk.
5035	 */
5036	if (rsrcforkp && (cp->c_rsrcfork->ff_unallocblocks != 0)) {
5037		bcopy(rsrcforkp, &rsrcfork, sizeof(rsrcfork));
5038		rsrcfork.cf_blocks = (cp->c_rsrcfork->ff_blocks - cp->c_rsrcfork->ff_unallocblocks);
5039		rsrcfork.cf_size   = rsrcfork.cf_blocks * HFSTOVCB(hfsmp)->blockSize;
5040		rsrcforkp = &rsrcfork;
5041	}
5042
5043	/*
5044	 * Lock the Catalog b-tree file.
5045	 */
5046	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
5047
5048	/* XXX - waitfor is not enforced */
5049	error = cat_update(hfsmp, &cp->c_desc, &cp->c_attr, dataforkp, rsrcforkp);
5050
5051	hfs_systemfile_unlock(hfsmp, lockflags);
5052
5053	/* After the updates are finished, clear the flags */
5054	cp->c_flag &= ~(C_MODIFIED | C_FORCEUPDATE);
5055
5056	hfs_end_transaction(hfsmp);
5057
5058	return (error);
5059}
5060
5061/*
5062 * Allocate a new node
5063 * Note - Function does not create and return a vnode for whiteout creation.
5064 */
5065int
5066hfs_makenode(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
5067             struct vnode_attr *vap, vfs_context_t ctx)
5068{
5069	struct cnode *cp = NULL;
5070	struct cnode *dcp = NULL;
5071	struct vnode *tvp;
5072	struct hfsmount *hfsmp;
5073	struct cat_desc in_desc, out_desc;
5074	struct cat_attr attr;
5075	struct timeval tv;
5076	int lockflags;
5077	int error, started_tr = 0;
5078	enum vtype vnodetype;
5079	int mode;
5080	int newvnode_flags = 0;
5081	u_int32_t gnv_flags = 0;
5082	int protectable_target = 0;
5083
5084#if CONFIG_PROTECT
5085	struct cprotect *entry = NULL;
5086	uint32_t cp_class = 0;
5087	if (VATTR_IS_ACTIVE(vap, va_dataprotect_class)) {
5088		cp_class = vap->va_dataprotect_class;
5089	}
5090	int protected_mount = 0;
5091#endif
5092
5093
5094	if ((error = hfs_lock(VTOC(dvp), HFS_EXCLUSIVE_LOCK)))
5095		return (error);
5096
5097	/* set the cnode pointer only after successfully acquiring lock */
5098	dcp = VTOC(dvp);
5099
5100	/* Don't allow creation of new entries in open-unlinked directories */
5101	if ((error = hfs_checkdeleted(dcp))) {
5102		hfs_unlock(dcp);
5103		return error;
5104	}
5105
5106	dcp->c_flag |= C_DIR_MODIFICATION;
5107
5108	hfsmp = VTOHFS(dvp);
5109
5110	*vpp = NULL;
5111	tvp = NULL;
5112	out_desc.cd_flags = 0;
5113	out_desc.cd_nameptr = NULL;
5114
5115	vnodetype = vap->va_type;
5116	if (vnodetype == VNON)
5117		vnodetype = VREG;
5118	mode = MAKEIMODE(vnodetype, vap->va_mode);
5119
5120	if (S_ISDIR (mode) || S_ISREG (mode)) {
5121		protectable_target = 1;
5122	}
5123
5124
5125	/* Check if were out of usable disk space. */
5126	if ((hfs_freeblks(hfsmp, 1) == 0) && (vfs_context_suser(ctx) != 0)) {
5127		error = ENOSPC;
5128		goto exit;
5129	}
5130
5131	microtime(&tv);
5132
5133	/* Setup the default attributes */
5134	bzero(&attr, sizeof(attr));
5135	attr.ca_mode = mode;
5136	attr.ca_linkcount = 1;
5137	if (VATTR_IS_ACTIVE(vap, va_rdev)) {
5138		attr.ca_rdev = vap->va_rdev;
5139	}
5140	if (VATTR_IS_ACTIVE(vap, va_create_time)) {
5141		VATTR_SET_SUPPORTED(vap, va_create_time);
5142		attr.ca_itime = vap->va_create_time.tv_sec;
5143	} else {
5144		attr.ca_itime = tv.tv_sec;
5145	}
5146	if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
5147		attr.ca_itime += 3600;	/* Same as what hfs_update does */
5148	}
5149	attr.ca_atime = attr.ca_ctime = attr.ca_mtime = attr.ca_itime;
5150	attr.ca_atimeondisk = attr.ca_atime;
5151	if (VATTR_IS_ACTIVE(vap, va_flags)) {
5152		VATTR_SET_SUPPORTED(vap, va_flags);
5153		attr.ca_flags = vap->va_flags;
5154	}
5155
5156	/*
5157	 * HFS+ only: all files get ThreadExists
5158	 * HFSX only: dirs get HasFolderCount
5159	 */
5160	if (!(hfsmp->hfs_flags & HFS_STANDARD)) {
5161		if (vnodetype == VDIR) {
5162			if (hfsmp->hfs_flags & HFS_FOLDERCOUNT)
5163				attr.ca_recflags = kHFSHasFolderCountMask;
5164		} else {
5165			attr.ca_recflags = kHFSThreadExistsMask;
5166		}
5167	}
5168
5169#if CONFIG_PROTECT
5170	if (cp_fs_protected(hfsmp->hfs_mp)) {
5171		protected_mount = 1;
5172	}
5173	/*
5174	 * On a content-protected HFS+/HFSX filesystem, files and directories
5175	 * cannot be created without atomically setting/creating the EA that
5176	 * contains the protection class metadata and keys at the same time, in
5177	 * the same transaction.  As a result, pre-set the "EAs exist" flag
5178	 * on the cat_attr for protectable catalog record creations.  This will
5179	 * cause the cnode creation routine in hfs_getnewvnode to mark the cnode
5180	 * as having EAs.
5181	 */
5182	if ((protected_mount) && (protectable_target)) {
5183		attr.ca_recflags |= kHFSHasAttributesMask;
5184	}
5185#endif
5186
5187
5188	/*
5189	 * Add the date added to the item. See above, as
5190	 * all of the dates are set to the itime.
5191	 */
5192	hfs_write_dateadded (&attr, attr.ca_atime);
5193
5194	attr.ca_uid = vap->va_uid;
5195	attr.ca_gid = vap->va_gid;
5196	VATTR_SET_SUPPORTED(vap, va_mode);
5197	VATTR_SET_SUPPORTED(vap, va_uid);
5198	VATTR_SET_SUPPORTED(vap, va_gid);
5199
5200#if QUOTA
5201	/* check to see if this node's creation would cause us to go over
5202	 * quota.  If so, abort this operation.
5203	 */
5204   	if (hfsmp->hfs_flags & HFS_QUOTAS) {
5205		if ((error = hfs_quotacheck(hfsmp, 1, attr.ca_uid, attr.ca_gid,
5206									vfs_context_ucred(ctx)))) {
5207			goto exit;
5208		}
5209	}
5210#endif
5211
5212
5213	/* Tag symlinks with a type and creator. */
5214	if (vnodetype == VLNK) {
5215		struct FndrFileInfo *fip;
5216
5217		fip = (struct FndrFileInfo *)&attr.ca_finderinfo;
5218		fip->fdType    = SWAP_BE32(kSymLinkFileType);
5219		fip->fdCreator = SWAP_BE32(kSymLinkCreator);
5220	}
5221	if (cnp->cn_flags & ISWHITEOUT)
5222		attr.ca_flags |= UF_OPAQUE;
5223
5224	/* Setup the descriptor */
5225	in_desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
5226	in_desc.cd_namelen = cnp->cn_namelen;
5227	in_desc.cd_parentcnid = dcp->c_fileid;
5228	in_desc.cd_flags = S_ISDIR(mode) ? CD_ISDIR : 0;
5229	in_desc.cd_hint = dcp->c_childhint;
5230	in_desc.cd_encoding = 0;
5231
5232#if CONFIG_PROTECT
5233	/*
5234	 * To preserve file creation atomicity with regards to the content protection EA,
5235	 * we must create the file in the catalog and then write out the EA in the same
5236	 * transaction.  Pre-flight any operations that we can (such as allocating/preparing
5237	 * the buffer, wrapping the keys) before we start the txn and take the requisite
5238	 * b-tree locks.   We pass '0' as the fileid because we do not know it yet.
5239	 */
5240	if ((protected_mount) && (protectable_target)) {
5241		error = cp_entry_create_keys (&entry, dcp, hfsmp, cp_class, 0, attr.ca_mode);
5242		if (error) {
5243			goto exit;
5244		}
5245	}
5246#endif
5247
5248	if ((error = hfs_start_transaction(hfsmp)) != 0) {
5249	    goto exit;
5250	}
5251	started_tr = 1;
5252
5253	// have to also lock the attribute file because cat_create() needs
5254	// to check that any fileID it wants to use does not have orphaned
5255	// attributes in it.
5256	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
5257
5258	/* Reserve some space in the Catalog file. */
5259	if ((error = cat_preflight(hfsmp, CAT_CREATE, NULL, 0))) {
5260		hfs_systemfile_unlock(hfsmp, lockflags);
5261		goto exit;
5262	}
5263	error = cat_create(hfsmp, &in_desc, &attr, &out_desc);
5264	if (error == 0) {
5265		/* Update the parent directory */
5266		dcp->c_childhint = out_desc.cd_hint;	/* Cache directory's location */
5267		dcp->c_entries++;
5268		if (vnodetype == VDIR) {
5269			INC_FOLDERCOUNT(hfsmp, dcp->c_attr);
5270		}
5271		dcp->c_dirchangecnt++;
5272		dcp->c_ctime = tv.tv_sec;
5273		dcp->c_mtime = tv.tv_sec;
5274		(void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
5275
5276#if CONFIG_PROTECT
5277		/*
5278		 * If we are creating a content protected file, now is when
5279		 * we create the EA. We must create it in the same transaction
5280		 * that creates the file.  We can also guarantee that the file
5281		 * MUST exist because we are still holding the catalog lock
5282		 * at this point.
5283		 */
5284		if ((attr.ca_fileid != 0) && (protected_mount) && (protectable_target)) {
5285			error = cp_setxattr (NULL, entry, hfsmp, attr.ca_fileid, XATTR_CREATE);
5286
5287			if (error) {
5288				int delete_err;
5289				/*
5290				 * If we fail the EA creation, then we need to delete the file.
5291				 * Luckily, we are still holding all of the right locks.
5292				 */
5293				delete_err = cat_delete (hfsmp, &out_desc, &attr);
5294				if (delete_err == 0) {
5295					/* Update the parent directory */
5296					if (dcp->c_entries > 0)
5297						dcp->c_entries--;
5298					dcp->c_dirchangecnt++;
5299					dcp->c_ctime = tv.tv_sec;
5300					dcp->c_mtime = tv.tv_sec;
5301					(void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
5302				}
5303
5304				/* Emit EINVAL if we fail to create EA*/
5305				error = EINVAL;
5306			}
5307		}
5308#endif
5309	}
5310	hfs_systemfile_unlock(hfsmp, lockflags);
5311	if (error)
5312		goto exit;
5313
5314	/* Invalidate negative cache entries in the directory */
5315	if (dcp->c_flag & C_NEG_ENTRIES) {
5316		cache_purge_negatives(dvp);
5317		dcp->c_flag &= ~C_NEG_ENTRIES;
5318	}
5319
5320	hfs_volupdate(hfsmp, vnodetype == VDIR ? VOL_MKDIR : VOL_MKFILE,
5321		(dcp->c_cnid == kHFSRootFolderID));
5322
5323	// XXXdbg
5324	// have to end the transaction here before we call hfs_getnewvnode()
5325	// because that can cause us to try and reclaim a vnode on a different
5326	// file system which could cause us to start a transaction which can
5327	// deadlock with someone on that other file system (since we could be
5328	// holding two transaction locks as well as various vnodes and we did
5329	// not obtain the locks on them in the proper order).
5330	//
5331	// NOTE: this means that if the quota check fails or we have to update
5332	//       the change time on a block-special device that those changes
5333	//       will happen as part of independent transactions.
5334	//
5335	if (started_tr) {
5336	    hfs_end_transaction(hfsmp);
5337	    started_tr = 0;
5338	}
5339
5340#if CONFIG_PROTECT
5341	/*
5342	 * At this point, we must have encountered success with writing the EA.
5343	 * Update MKB with the data for the cached key, then destroy it.  This may
5344	 * prevent information leakage by ensuring the cache key is only unwrapped
5345	 * to perform file I/O and it is allowed.
5346	 */
5347
5348	if ((attr.ca_fileid != 0) && (protected_mount) && (protectable_target))  {
5349		cp_update_mkb (entry, attr.ca_fileid);
5350		cp_entry_destroy (&entry);
5351	}
5352#endif
5353
5354	/* Do not create vnode for whiteouts */
5355	if (S_ISWHT(mode)) {
5356		goto exit;
5357	}
5358
5359	gnv_flags |= GNV_CREATE;
5360
5361	/*
5362	 * Create a vnode for the object just created.
5363	 *
5364	 * NOTE: Maintaining the cnode lock on the parent directory is important,
5365	 * as it prevents race conditions where other threads want to look up entries
5366	 * in the directory and/or add things as we are in the process of creating
5367	 * the vnode below.  However, this has the potential for causing a
5368	 * double lock panic when dealing with shadow files on a HFS boot partition.
5369	 * The panic could occur if we are not cleaning up after ourselves properly
5370	 * when done with a shadow file or in the error cases.  The error would occur if we
5371	 * try to create a new vnode, and then end up reclaiming another shadow vnode to
5372	 * create the new one.  However, if everything is working properly, this should
5373	 * be a non-issue as we would never enter that reclaim codepath.
5374	 *
5375	 * The cnode is locked on successful return.
5376	 */
5377	error = hfs_getnewvnode(hfsmp, dvp, cnp, &out_desc, gnv_flags, &attr,
5378							NULL, &tvp, &newvnode_flags);
5379	if (error)
5380		goto exit;
5381
5382	cp = VTOC(tvp);
5383	*vpp = tvp;
5384
5385#if QUOTA
5386	/*
5387	 * Once we create this vnode, we need to initialize its quota data
5388	 * structures, if necessary.  We know that it is OK to just go ahead and
5389	 * initialize because we've already validated earlier (through the hfs_quotacheck
5390	 * function) to see if creating this cnode/vnode would cause us to go over quota.
5391	 */
5392	if (hfsmp->hfs_flags & HFS_QUOTAS) {
5393		(void) hfs_getinoquota(cp);
5394	}
5395#endif
5396
5397exit:
5398	cat_releasedesc(&out_desc);
5399
5400#if CONFIG_PROTECT
5401	/*
5402	 * We may have jumped here in error-handling various situations above.
5403	 * If we haven't already dumped the temporary CP used to initialize
5404	 * the file atomically, then free it now. cp_entry_destroy should null
5405	 * out the pointer if it was called already.
5406	 */
5407	if (entry) {
5408		cp_entry_destroy (&entry);
5409	}
5410#endif
5411
5412	/*
5413	 * Make sure we release cnode lock on dcp.
5414	 */
5415	if (dcp) {
5416		dcp->c_flag &= ~C_DIR_MODIFICATION;
5417		wakeup((caddr_t)&dcp->c_flag);
5418
5419		hfs_unlock(dcp);
5420	}
5421	if (error == 0 && cp != NULL) {
5422		hfs_unlock(cp);
5423	}
5424	if (started_tr) {
5425	    hfs_end_transaction(hfsmp);
5426	    started_tr = 0;
5427	}
5428
5429	return (error);
5430}
5431
5432
5433/*
5434 * hfs_vgetrsrc acquires a resource fork vnode corresponding to the cnode that is
5435 * found in 'vp'.  The rsrc fork vnode is returned with the cnode locked and iocount
5436 * on the rsrc vnode.
5437 *
5438 * *rvpp is an output argument for returning the pointer to the resource fork vnode.
5439 * In most cases, the resource fork vnode will not be set if we return an error.
5440 * However, if error_on_unlinked is set, we may have already acquired the resource fork vnode
5441 * before we discover the error (the file has gone open-unlinked).  In this case only,
5442 * we may return a vnode in the output argument despite an error.
5443 *
5444 * If can_drop_lock is set, then it is safe for this function to temporarily drop
5445 * and then re-acquire the cnode lock.  We may need to do this, for example, in order to
5446 * acquire an iocount or promote our lock.
5447 *
5448 * error_on_unlinked is an argument which indicates that we are to return an error if we
5449 * discover that the cnode has gone into an open-unlinked state ( C_DELETED or C_NOEXISTS)
5450 * is set in the cnode flags.  This is only necessary if can_drop_lock is true, otherwise
5451 * there's really no reason to double-check for errors on the cnode.
5452 */
5453
5454int
5455hfs_vgetrsrc(struct hfsmount *hfsmp, struct vnode *vp, struct vnode **rvpp,
5456		int can_drop_lock, int error_on_unlinked)
5457{
5458	struct vnode *rvp;
5459	struct vnode *dvp = NULLVP;
5460	struct cnode *cp = VTOC(vp);
5461	int error;
5462	int vid;
5463	int delete_status = 0;
5464
5465	if (vnode_vtype(vp) == VDIR) {
5466		return EINVAL;
5467	}
5468
5469	/*
5470	 * Need to check the status of the cnode to validate it hasn't gone
5471	 * open-unlinked on us before we can actually do work with it.
5472	 */
5473	delete_status = hfs_checkdeleted(cp);
5474	if ((delete_status) && (error_on_unlinked)) {
5475		return delete_status;
5476	}
5477
5478restart:
5479	/* Attempt to use existing vnode */
5480	if ((rvp = cp->c_rsrc_vp)) {
5481	        vid = vnode_vid(rvp);
5482
5483		/*
5484		 * It is not safe to hold the cnode lock when calling vnode_getwithvid()
5485		 * for the alternate fork -- vnode_getwithvid() could deadlock waiting
5486		 * for a VL_WANTTERM while another thread has an iocount on the alternate
5487		 * fork vnode and is attempting to acquire the common cnode lock.
5488		 *
5489		 * But it's also not safe to drop the cnode lock when we're holding
5490		 * multiple cnode locks, like during a hfs_removefile() operation
5491		 * since we could lock out of order when re-acquiring the cnode lock.
5492		 *
5493		 * So we can only drop the lock here if its safe to drop it -- which is
5494		 * most of the time with the exception being hfs_removefile().
5495		 */
5496		if (can_drop_lock)
5497			hfs_unlock(cp);
5498
5499		error = vnode_getwithvid(rvp, vid);
5500
5501		if (can_drop_lock) {
5502			(void) hfs_lock(cp, HFS_FORCE_LOCK);
5503
5504			/*
5505			 * When we relinquished our cnode lock, the cnode could have raced
5506			 * with a delete and gotten deleted.  If the caller did not want
5507			 * us to ignore open-unlinked files, then re-check the C_DELETED
5508			 * state and see if we need to return an ENOENT here because the item
5509			 * got deleted in the intervening time.
5510			 */
5511			if (error_on_unlinked) {
5512				if ((delete_status = hfs_checkdeleted(cp))) {
5513					/*
5514					 * If error == 0, this means that we succeeded in acquiring an iocount on the
5515					 * rsrc fork vnode.  However, if we're in this block of code, that means that we noticed
5516					 * that the cnode has gone open-unlinked.  In this case, the caller requested that we
5517					 * not do any other work and return an errno.  The caller will be responsible for
5518					 * dropping the iocount we just acquired because we can't do it until we've released
5519					 * the cnode lock.
5520					 */
5521					if (error == 0) {
5522						*rvpp = rvp;
5523					}
5524					return delete_status;
5525				}
5526			}
5527
5528			/*
5529			 * When our lock was relinquished, the resource fork
5530			 * could have been recycled.  Check for this and try
5531			 * again.
5532			 */
5533			if (error == ENOENT)
5534				goto restart;
5535		}
5536		if (error) {
5537			const char * name = (const char *)VTOC(vp)->c_desc.cd_nameptr;
5538
5539			if (name)
5540				printf("hfs_vgetrsrc: couldn't get resource"
5541				       " fork for %s, err %d\n", name, error);
5542			return (error);
5543		}
5544	} else {
5545		struct cat_fork rsrcfork;
5546		struct componentname cn;
5547		struct cat_desc *descptr = NULL;
5548		struct cat_desc to_desc;
5549		char delname[32];
5550		int lockflags;
5551		int newvnode_flags = 0;
5552
5553		/*
5554		 * Make sure cnode lock is exclusive, if not upgrade it.
5555		 *
5556		 * We assume that we were called from a read-only VNOP (getattr)
5557		 * and that its safe to have the cnode lock dropped and reacquired.
5558		 */
5559		if (cp->c_lockowner != current_thread()) {
5560			if (!can_drop_lock) {
5561				return (EINVAL);
5562			}
5563			/*
5564			 * If the upgrade fails we lose the lock and
5565			 * have to take the exclusive lock on our own.
5566			 */
5567			if (lck_rw_lock_shared_to_exclusive(&cp->c_rwlock) == FALSE)
5568				lck_rw_lock_exclusive(&cp->c_rwlock);
5569			cp->c_lockowner = current_thread();
5570		}
5571
5572		/*
5573		 * hfs_vgetsrc may be invoked for a cnode that has already been marked
5574		 * C_DELETED.  This is because we need to continue to provide rsrc
5575		 * fork access to open-unlinked files.  In this case, build a fake descriptor
5576		 * like in hfs_removefile.  If we don't do this, buildkey will fail in
5577		 * cat_lookup because this cnode has no name in its descriptor. However,
5578		 * only do this if the caller did not specify that they wanted us to
5579		 * error out upon encountering open-unlinked files.
5580		 */
5581
5582		if ((error_on_unlinked) && (can_drop_lock)) {
5583			if ((error = hfs_checkdeleted(cp))) {
5584				return error;
5585			}
5586		}
5587
5588		if ((cp->c_flag & C_DELETED ) && (cp->c_desc.cd_namelen == 0)) {
5589			bzero (&to_desc, sizeof(to_desc));
5590			bzero (delname, 32);
5591			MAKE_DELETED_NAME(delname, sizeof(delname), cp->c_fileid);
5592			to_desc.cd_nameptr = (const u_int8_t*) delname;
5593			to_desc.cd_namelen = strlen(delname);
5594			to_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
5595			to_desc.cd_flags = 0;
5596			to_desc.cd_cnid = cp->c_cnid;
5597
5598			descptr = &to_desc;
5599		}
5600		else {
5601			descptr = &cp->c_desc;
5602		}
5603
5604
5605		lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
5606
5607		/*
5608		 * Get resource fork data
5609		 *
5610		 * We call cat_idlookup (instead of cat_lookup) below because we can't
5611		 * trust the descriptor in the provided cnode for lookups at this point.
5612		 * Between the time of the original lookup of this vnode and now, the
5613		 * descriptor could have gotten swapped or replaced.  If this occurred,
5614		 * the parent/name combo originally desired may not necessarily be provided
5615		 * if we use the descriptor.  Even worse, if the vnode represents
5616		 * a hardlink, we could have removed one of the links from the namespace
5617		 * but left the descriptor alone, since hfs_unlink does not invalidate
5618		 * the descriptor in the cnode if other links still point to the inode.
5619		 *
5620		 * Consider the following (slightly contrived) scenario:
5621		 * /tmp/a <--> /tmp/b (hardlinks).
5622		 * 1. Thread A: open rsrc fork on /tmp/b.
5623		 * 1a. Thread A: does lookup, goes out to lunch right before calling getnamedstream.
5624		 * 2. Thread B does 'mv /foo/b /tmp/b'
5625		 * 2. Thread B succeeds.
5626		 * 3. Thread A comes back and wants rsrc fork info for /tmp/b.
5627		 *
5628		 * Even though the hardlink backing /tmp/b is now eliminated, the descriptor
5629		 * is not removed/updated during the unlink process.  So, if you were to
5630		 * do a lookup on /tmp/b, you'd acquire an entirely different record's resource
5631		 * fork.
5632		 *
5633 		 * As a result, we use the fileid, which should be invariant for the lifetime
5634 		 * of the cnode (possibly barring calls to exchangedata).
5635		 *
5636		 * Addendum: We can't do the above for HFS standard since we aren't guaranteed to
5637		 * have thread records for files.  They were only required for directories.  So
5638		 * we need to do the lookup with the catalog name. This is OK since hardlinks were
5639		 * never allowed on HFS standard.
5640		 */
5641
5642		if (hfsmp->hfs_flags & HFS_STANDARD) {
5643			/*
5644			 * HFS standard only:
5645			 *
5646			 * Get the resource fork for this item via catalog lookup
5647			 * since HFS standard was case-insensitive only. We don't want the
5648			 * descriptor; just the fork data here.
5649			 */
5650			error = cat_lookup (hfsmp, descptr, 1, (struct cat_desc*)NULL,
5651					(struct cat_attr*)NULL, &rsrcfork, NULL);
5652		}
5653		else {
5654			error = cat_idlookup (hfsmp, cp->c_fileid, 0, 1, NULL, NULL, &rsrcfork);
5655		}
5656
5657		hfs_systemfile_unlock(hfsmp, lockflags);
5658		if (error) {
5659			return (error);
5660		}
5661
5662		/*
5663		 * Supply hfs_getnewvnode with a component name.
5664		 */
5665		cn.cn_pnbuf = NULL;
5666		if (descptr->cd_nameptr) {
5667			MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
5668			cn.cn_nameiop = LOOKUP;
5669			cn.cn_flags = ISLASTCN | HASBUF;
5670			cn.cn_context = NULL;
5671			cn.cn_pnlen = MAXPATHLEN;
5672			cn.cn_nameptr = cn.cn_pnbuf;
5673			cn.cn_hash = 0;
5674			cn.cn_consume = 0;
5675			cn.cn_namelen = snprintf(cn.cn_nameptr, MAXPATHLEN,
5676						 "%s%s", descptr->cd_nameptr,
5677						 _PATH_RSRCFORKSPEC);
5678		}
5679		dvp = vnode_getparent(vp);
5680		error = hfs_getnewvnode(hfsmp, dvp, cn.cn_pnbuf ? &cn : NULL,
5681		                        descptr, GNV_WANTRSRC | GNV_SKIPLOCK, &cp->c_attr,
5682		                        &rsrcfork, &rvp, &newvnode_flags);
5683		if (dvp)
5684			vnode_put(dvp);
5685		if (cn.cn_pnbuf)
5686			FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
5687		if (error)
5688			return (error);
5689	}
5690
5691	*rvpp = rvp;
5692	return (0);
5693}
5694
5695/*
5696 * Wrapper for special device reads
5697 */
5698int
5699hfsspec_read(ap)
5700	struct vnop_read_args /* {
5701		struct vnode *a_vp;
5702		struct uio *a_uio;
5703		int  a_ioflag;
5704		vfs_context_t a_context;
5705	} */ *ap;
5706{
5707	/*
5708	 * Set access flag.
5709	 */
5710	VTOC(ap->a_vp)->c_touch_acctime = TRUE;
5711	return (VOCALL (spec_vnodeop_p, VOFFSET(vnop_read), ap));
5712}
5713
5714/*
5715 * Wrapper for special device writes
5716 */
5717int
5718hfsspec_write(ap)
5719	struct vnop_write_args /* {
5720		struct vnode *a_vp;
5721		struct uio *a_uio;
5722		int  a_ioflag;
5723		vfs_context_t a_context;
5724	} */ *ap;
5725{
5726	/*
5727	 * Set update and change flags.
5728	 */
5729	VTOC(ap->a_vp)->c_touch_chgtime = TRUE;
5730	VTOC(ap->a_vp)->c_touch_modtime = TRUE;
5731	return (VOCALL (spec_vnodeop_p, VOFFSET(vnop_write), ap));
5732}
5733
5734/*
5735 * Wrapper for special device close
5736 *
5737 * Update the times on the cnode then do device close.
5738 */
5739int
5740hfsspec_close(ap)
5741	struct vnop_close_args /* {
5742		struct vnode *a_vp;
5743		int  a_fflag;
5744		vfs_context_t a_context;
5745	} */ *ap;
5746{
5747	struct vnode *vp = ap->a_vp;
5748	struct cnode *cp;
5749
5750	if (vnode_isinuse(ap->a_vp, 0)) {
5751		if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) == 0) {
5752			cp = VTOC(vp);
5753			hfs_touchtimes(VTOHFS(vp), cp);
5754			hfs_unlock(cp);
5755		}
5756	}
5757	return (VOCALL (spec_vnodeop_p, VOFFSET(vnop_close), ap));
5758}
5759
5760#if FIFO
5761/*
5762 * Wrapper for fifo reads
5763 */
5764static int
5765hfsfifo_read(ap)
5766	struct vnop_read_args /* {
5767		struct vnode *a_vp;
5768		struct uio *a_uio;
5769		int  a_ioflag;
5770		vfs_context_t a_context;
5771	} */ *ap;
5772{
5773	/*
5774	 * Set access flag.
5775	 */
5776	VTOC(ap->a_vp)->c_touch_acctime = TRUE;
5777	return (VOCALL (fifo_vnodeop_p, VOFFSET(vnop_read), ap));
5778}
5779
5780/*
5781 * Wrapper for fifo writes
5782 */
5783static int
5784hfsfifo_write(ap)
5785	struct vnop_write_args /* {
5786		struct vnode *a_vp;
5787		struct uio *a_uio;
5788		int  a_ioflag;
5789		vfs_context_t a_context;
5790	} */ *ap;
5791{
5792	/*
5793	 * Set update and change flags.
5794	 */
5795	VTOC(ap->a_vp)->c_touch_chgtime = TRUE;
5796	VTOC(ap->a_vp)->c_touch_modtime = TRUE;
5797	return (VOCALL (fifo_vnodeop_p, VOFFSET(vnop_write), ap));
5798}
5799
5800/*
5801 * Wrapper for fifo close
5802 *
5803 * Update the times on the cnode then do device close.
5804 */
5805static int
5806hfsfifo_close(ap)
5807	struct vnop_close_args /* {
5808		struct vnode *a_vp;
5809		int  a_fflag;
5810		vfs_context_t a_context;
5811	} */ *ap;
5812{
5813	struct vnode *vp = ap->a_vp;
5814	struct cnode *cp;
5815
5816	if (vnode_isinuse(ap->a_vp, 1)) {
5817		if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) == 0) {
5818			cp = VTOC(vp);
5819			hfs_touchtimes(VTOHFS(vp), cp);
5820			hfs_unlock(cp);
5821		}
5822	}
5823	return (VOCALL (fifo_vnodeop_p, VOFFSET(vnop_close), ap));
5824}
5825
5826
5827#endif /* FIFO */
5828
5829/*
5830 * Synchronize a file's in-core state with that on disk.
5831 */
5832int
5833hfs_vnop_fsync(ap)
5834	struct vnop_fsync_args /* {
5835		struct vnode *a_vp;
5836		int a_waitfor;
5837		vfs_context_t a_context;
5838	} */ *ap;
5839{
5840	struct vnode* vp = ap->a_vp;
5841	int error;
5842
5843	/* Note: We check hfs flags instead of vfs mount flag because during
5844	 * read-write update, hfs marks itself read-write much earlier than
5845	 * the vfs, and hence won't result in skipping of certain writes like
5846	 * zero'ing out of unused nodes, creation of hotfiles btree, etc.
5847	 */
5848	if (VTOHFS(vp)->hfs_flags & HFS_READ_ONLY) {
5849		return 0;
5850	}
5851
5852#if CONFIG_PROTECT
5853	if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) {
5854		return (error);
5855	}
5856#endif /* CONFIG_PROTECT */
5857
5858	/*
5859	 * We need to allow ENOENT lock errors since unlink
5860	 * systenm call can call VNOP_FSYNC during vclean.
5861	 */
5862	error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK);
5863	if (error)
5864		return (0);
5865
5866	error = hfs_fsync(vp, ap->a_waitfor, 0, vfs_context_proc(ap->a_context));
5867
5868	hfs_unlock(VTOC(vp));
5869	return (error);
5870}
5871
5872
5873int
5874hfs_vnop_whiteout(ap)
5875	struct vnop_whiteout_args /* {
5876		struct vnode *a_dvp;
5877		struct componentname *a_cnp;
5878		int a_flags;
5879		vfs_context_t a_context;
5880	} */ *ap;
5881{
5882	int error = 0;
5883	struct vnode *vp = NULL;
5884	struct vnode_attr va;
5885	struct vnop_lookup_args lookup_args;
5886	struct vnop_remove_args remove_args;
5887	struct hfsmount *hfsmp;
5888
5889	hfsmp = VTOHFS(ap->a_dvp);
5890	if (hfsmp->hfs_flags & HFS_STANDARD) {
5891		error = ENOTSUP;
5892		goto exit;
5893	}
5894
5895	switch (ap->a_flags) {
5896		case LOOKUP:
5897			error = 0;
5898			break;
5899
5900		case CREATE:
5901			VATTR_INIT(&va);
5902			VATTR_SET(&va, va_type, VREG);
5903			VATTR_SET(&va, va_mode, S_IFWHT);
5904			VATTR_SET(&va, va_uid, 0);
5905			VATTR_SET(&va, va_gid, 0);
5906
5907			error = hfs_makenode(ap->a_dvp, &vp, ap->a_cnp, &va, ap->a_context);
5908			/* No need to release the vnode as no vnode is created for whiteouts */
5909			break;
5910
5911		case DELETE:
5912			lookup_args.a_dvp = ap->a_dvp;
5913			lookup_args.a_vpp = &vp;
5914			lookup_args.a_cnp = ap->a_cnp;
5915			lookup_args.a_context = ap->a_context;
5916
5917			error = hfs_vnop_lookup(&lookup_args);
5918			if (error) {
5919				break;
5920			}
5921
5922			remove_args.a_dvp = ap->a_dvp;
5923			remove_args.a_vp = vp;
5924			remove_args.a_cnp = ap->a_cnp;
5925			remove_args.a_flags = 0;
5926			remove_args.a_context = ap->a_context;
5927
5928			error = hfs_vnop_remove(&remove_args);
5929			vnode_put(vp);
5930			break;
5931
5932		default:
5933			panic("hfs_vnop_whiteout: unknown operation (flag = %x)\n", ap->a_flags);
5934	};
5935
5936exit:
5937	return (error);
5938}
5939
5940int (**hfs_vnodeop_p)(void *);
5941int (**hfs_std_vnodeop_p) (void *);
5942
5943#define VOPFUNC int (*)(void *)
5944
5945static int hfs_readonly_op (__unused void* ap) { return (EROFS); }
5946
5947/*
5948 * In 10.6 and forward, HFS Standard is read-only and deprecated.  The vnop table below
5949 * is for use with HFS standard to block out operations that would modify the file system
5950 */
5951
5952struct vnodeopv_entry_desc hfs_standard_vnodeop_entries[] = {
5953    { &vnop_default_desc, (VOPFUNC)vn_default_error },
5954    { &vnop_lookup_desc, (VOPFUNC)hfs_vnop_lookup },		/* lookup */
5955    { &vnop_create_desc, (VOPFUNC)hfs_readonly_op },		/* create (READONLY) */
5956    { &vnop_mknod_desc, (VOPFUNC)hfs_readonly_op },             /* mknod (READONLY) */
5957    { &vnop_open_desc, (VOPFUNC)hfs_vnop_open },			/* open */
5958    { &vnop_close_desc, (VOPFUNC)hfs_vnop_close },		/* close */
5959    { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr },		/* getattr */
5960    { &vnop_setattr_desc, (VOPFUNC)hfs_readonly_op },		/* setattr */
5961    { &vnop_read_desc, (VOPFUNC)hfs_vnop_read },			/* read */
5962    { &vnop_write_desc, (VOPFUNC)hfs_readonly_op },		/* write (READONLY) */
5963    { &vnop_ioctl_desc, (VOPFUNC)hfs_vnop_ioctl },		/* ioctl */
5964    { &vnop_select_desc, (VOPFUNC)hfs_vnop_select },		/* select */
5965    { &vnop_revoke_desc, (VOPFUNC)nop_revoke },			/* revoke */
5966    { &vnop_exchange_desc, (VOPFUNC)hfs_readonly_op },		/* exchange  (READONLY)*/
5967    { &vnop_mmap_desc, (VOPFUNC)err_mmap },			/* mmap */
5968    { &vnop_fsync_desc, (VOPFUNC)hfs_readonly_op},		/* fsync (READONLY) */
5969    { &vnop_remove_desc, (VOPFUNC)hfs_readonly_op },		/* remove (READONLY) */
5970    { &vnop_link_desc, (VOPFUNC)hfs_readonly_op },			/* link ( READONLLY) */
5971    { &vnop_rename_desc, (VOPFUNC)hfs_readonly_op },		/* rename (READONLY)*/
5972    { &vnop_mkdir_desc, (VOPFUNC)hfs_readonly_op },             /* mkdir (READONLY) */
5973    { &vnop_rmdir_desc, (VOPFUNC)hfs_readonly_op },		/* rmdir (READONLY) */
5974    { &vnop_symlink_desc, (VOPFUNC)hfs_readonly_op },         /* symlink (READONLY) */
5975    { &vnop_readdir_desc, (VOPFUNC)hfs_vnop_readdir },		/* readdir */
5976    { &vnop_readdirattr_desc, (VOPFUNC)hfs_vnop_readdirattr },	/* readdirattr */
5977    { &vnop_readlink_desc, (VOPFUNC)hfs_vnop_readlink },		/* readlink */
5978    { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive },		/* inactive */
5979    { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim },		/* reclaim */
5980    { &vnop_strategy_desc, (VOPFUNC)hfs_vnop_strategy },		/* strategy */
5981    { &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf },		/* pathconf */
5982    { &vnop_advlock_desc, (VOPFUNC)err_advlock },		/* advlock */
5983    { &vnop_allocate_desc, (VOPFUNC)hfs_readonly_op },		/* allocate (READONLY) */
5984#if CONFIG_SEARCHFS
5985    { &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search },		/* search fs */
5986#else
5987    { &vnop_searchfs_desc, (VOPFUNC)err_searchfs },		/* search fs */
5988#endif
5989    { &vnop_bwrite_desc, (VOPFUNC)hfs_readonly_op },		/* bwrite (READONLY) */
5990    { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein },		/* pagein */
5991    { &vnop_pageout_desc,(VOPFUNC) hfs_readonly_op },		/* pageout (READONLY)  */
5992    { &vnop_copyfile_desc, (VOPFUNC)hfs_readonly_op },		/* copyfile (READONLY)*/
5993    { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff },		/* blktooff */
5994    { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk },		/* offtoblk */
5995    { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap },			/* blockmap */
5996    { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
5997    { &vnop_setxattr_desc, (VOPFUNC)hfs_readonly_op},         /* set xattr (READONLY) */
5998    { &vnop_removexattr_desc, (VOPFUNC)hfs_readonly_op},      /* remove xattr (READONLY) */
5999    { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
6000    { &vnop_whiteout_desc, (VOPFUNC)hfs_readonly_op},       /* whiteout (READONLY) */
6001#if NAMEDSTREAMS
6002    { &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
6003    { &vnop_makenamedstream_desc, (VOPFUNC)hfs_readonly_op },
6004    { &vnop_removenamedstream_desc, (VOPFUNC)hfs_readonly_op },
6005#endif
6006    { NULL, (VOPFUNC)NULL }
6007};
6008
6009struct vnodeopv_desc hfs_std_vnodeop_opv_desc =
6010{ &hfs_std_vnodeop_p, hfs_standard_vnodeop_entries };
6011
6012
6013/* VNOP table for HFS+ */
6014struct vnodeopv_entry_desc hfs_vnodeop_entries[] = {
6015    { &vnop_default_desc, (VOPFUNC)vn_default_error },
6016    { &vnop_lookup_desc, (VOPFUNC)hfs_vnop_lookup },		/* lookup */
6017    { &vnop_create_desc, (VOPFUNC)hfs_vnop_create },		/* create */
6018    { &vnop_mknod_desc, (VOPFUNC)hfs_vnop_mknod },             /* mknod */
6019    { &vnop_open_desc, (VOPFUNC)hfs_vnop_open },			/* open */
6020    { &vnop_close_desc, (VOPFUNC)hfs_vnop_close },		/* close */
6021    { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr },		/* getattr */
6022    { &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr },		/* setattr */
6023    { &vnop_read_desc, (VOPFUNC)hfs_vnop_read },			/* read */
6024    { &vnop_write_desc, (VOPFUNC)hfs_vnop_write },		/* write */
6025    { &vnop_ioctl_desc, (VOPFUNC)hfs_vnop_ioctl },		/* ioctl */
6026    { &vnop_select_desc, (VOPFUNC)hfs_vnop_select },		/* select */
6027    { &vnop_revoke_desc, (VOPFUNC)nop_revoke },			/* revoke */
6028    { &vnop_exchange_desc, (VOPFUNC)hfs_vnop_exchange },		/* exchange */
6029    { &vnop_mmap_desc, (VOPFUNC)hfs_vnop_mmap },			/* mmap */
6030    { &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync },		/* fsync */
6031    { &vnop_remove_desc, (VOPFUNC)hfs_vnop_remove },		/* remove */
6032    { &vnop_link_desc, (VOPFUNC)hfs_vnop_link },			/* link */
6033    { &vnop_rename_desc, (VOPFUNC)hfs_vnop_rename },		/* rename */
6034    { &vnop_mkdir_desc, (VOPFUNC)hfs_vnop_mkdir },             /* mkdir */
6035    { &vnop_rmdir_desc, (VOPFUNC)hfs_vnop_rmdir },		/* rmdir */
6036    { &vnop_symlink_desc, (VOPFUNC)hfs_vnop_symlink },         /* symlink */
6037    { &vnop_readdir_desc, (VOPFUNC)hfs_vnop_readdir },		/* readdir */
6038    { &vnop_readdirattr_desc, (VOPFUNC)hfs_vnop_readdirattr },	/* readdirattr */
6039    { &vnop_readlink_desc, (VOPFUNC)hfs_vnop_readlink },		/* readlink */
6040    { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive },		/* inactive */
6041    { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim },		/* reclaim */
6042    { &vnop_strategy_desc, (VOPFUNC)hfs_vnop_strategy },		/* strategy */
6043    { &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf },		/* pathconf */
6044    { &vnop_advlock_desc, (VOPFUNC)err_advlock },		/* advlock */
6045    { &vnop_allocate_desc, (VOPFUNC)hfs_vnop_allocate },		/* allocate */
6046#if CONFIG_SEARCHFS
6047    { &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search },		/* search fs */
6048#else
6049    { &vnop_searchfs_desc, (VOPFUNC)err_searchfs },		/* search fs */
6050#endif
6051    { &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite },		/* bwrite */
6052    { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein },		/* pagein */
6053    { &vnop_pageout_desc,(VOPFUNC) hfs_vnop_pageout },		/* pageout */
6054    { &vnop_copyfile_desc, (VOPFUNC)err_copyfile },		/* copyfile */
6055    { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff },		/* blktooff */
6056    { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk },		/* offtoblk */
6057    { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap },			/* blockmap */
6058    { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
6059    { &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
6060    { &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
6061    { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
6062    { &vnop_whiteout_desc, (VOPFUNC)hfs_vnop_whiteout},
6063#if NAMEDSTREAMS
6064    { &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
6065    { &vnop_makenamedstream_desc, (VOPFUNC)hfs_vnop_makenamedstream },
6066    { &vnop_removenamedstream_desc, (VOPFUNC)hfs_vnop_removenamedstream },
6067#endif
6068    { NULL, (VOPFUNC)NULL }
6069};
6070
6071struct vnodeopv_desc hfs_vnodeop_opv_desc =
6072{ &hfs_vnodeop_p, hfs_vnodeop_entries };
6073
6074
6075/* Spec Op vnop table for HFS+ */
6076int (**hfs_specop_p)(void *);
6077struct vnodeopv_entry_desc hfs_specop_entries[] = {
6078	{ &vnop_default_desc, (VOPFUNC)vn_default_error },
6079	{ &vnop_lookup_desc, (VOPFUNC)spec_lookup },		/* lookup */
6080	{ &vnop_create_desc, (VOPFUNC)spec_create },		/* create */
6081	{ &vnop_mknod_desc, (VOPFUNC)spec_mknod },              /* mknod */
6082	{ &vnop_open_desc, (VOPFUNC)spec_open },			/* open */
6083	{ &vnop_close_desc, (VOPFUNC)hfsspec_close },		/* close */
6084	{ &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr },	/* getattr */
6085	{ &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr },	/* setattr */
6086	{ &vnop_read_desc, (VOPFUNC)hfsspec_read },		/* read */
6087	{ &vnop_write_desc, (VOPFUNC)hfsspec_write },		/* write */
6088	{ &vnop_ioctl_desc, (VOPFUNC)spec_ioctl },		/* ioctl */
6089	{ &vnop_select_desc, (VOPFUNC)spec_select },		/* select */
6090	{ &vnop_revoke_desc, (VOPFUNC)spec_revoke },		/* revoke */
6091	{ &vnop_mmap_desc, (VOPFUNC)spec_mmap },			/* mmap */
6092	{ &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync },		/* fsync */
6093	{ &vnop_remove_desc, (VOPFUNC)spec_remove },		/* remove */
6094	{ &vnop_link_desc, (VOPFUNC)spec_link },			/* link */
6095	{ &vnop_rename_desc, (VOPFUNC)spec_rename },		/* rename */
6096	{ &vnop_mkdir_desc, (VOPFUNC)spec_mkdir },              /* mkdir */
6097	{ &vnop_rmdir_desc, (VOPFUNC)spec_rmdir },		/* rmdir */
6098	{ &vnop_symlink_desc, (VOPFUNC)spec_symlink },          /* symlink */
6099	{ &vnop_readdir_desc, (VOPFUNC)spec_readdir },		/* readdir */
6100	{ &vnop_readlink_desc, (VOPFUNC)spec_readlink },		/* readlink */
6101	{ &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive },	/* inactive */
6102	{ &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim },	/* reclaim */
6103	{ &vnop_strategy_desc, (VOPFUNC)spec_strategy },		/* strategy */
6104	{ &vnop_pathconf_desc, (VOPFUNC)spec_pathconf },		/* pathconf */
6105	{ &vnop_advlock_desc, (VOPFUNC)err_advlock },		/* advlock */
6106	{ &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite },
6107	{ &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein },		/* Pagein */
6108	{ &vnop_pageout_desc, (VOPFUNC)hfs_vnop_pageout },	/* Pageout */
6109    { &vnop_copyfile_desc, (VOPFUNC)err_copyfile },		/* copyfile */
6110	{ &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff },	/* blktooff */
6111	{ &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk },	/* offtoblk */
6112	{ (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
6113};
6114struct vnodeopv_desc hfs_specop_opv_desc =
6115	{ &hfs_specop_p, hfs_specop_entries };
6116
6117#if FIFO
6118/* HFS+ FIFO VNOP table  */
6119int (**hfs_fifoop_p)(void *);
6120struct vnodeopv_entry_desc hfs_fifoop_entries[] = {
6121	{ &vnop_default_desc, (VOPFUNC)vn_default_error },
6122	{ &vnop_lookup_desc, (VOPFUNC)fifo_lookup },		/* lookup */
6123	{ &vnop_create_desc, (VOPFUNC)fifo_create },		/* create */
6124	{ &vnop_mknod_desc, (VOPFUNC)fifo_mknod },              /* mknod */
6125	{ &vnop_open_desc, (VOPFUNC)fifo_open },			/* open */
6126	{ &vnop_close_desc, (VOPFUNC)hfsfifo_close },		/* close */
6127	{ &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr },	/* getattr */
6128	{ &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr },	/* setattr */
6129	{ &vnop_read_desc, (VOPFUNC)hfsfifo_read },		/* read */
6130	{ &vnop_write_desc, (VOPFUNC)hfsfifo_write },		/* write */
6131	{ &vnop_ioctl_desc, (VOPFUNC)fifo_ioctl },		/* ioctl */
6132	{ &vnop_select_desc, (VOPFUNC)fifo_select },		/* select */
6133	{ &vnop_revoke_desc, (VOPFUNC)fifo_revoke },		/* revoke */
6134	{ &vnop_mmap_desc, (VOPFUNC)fifo_mmap },			/* mmap */
6135	{ &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync },		/* fsync */
6136	{ &vnop_remove_desc, (VOPFUNC)fifo_remove },		/* remove */
6137	{ &vnop_link_desc, (VOPFUNC)fifo_link },			/* link */
6138	{ &vnop_rename_desc, (VOPFUNC)fifo_rename },		/* rename */
6139	{ &vnop_mkdir_desc, (VOPFUNC)fifo_mkdir },              /* mkdir */
6140	{ &vnop_rmdir_desc, (VOPFUNC)fifo_rmdir },		/* rmdir */
6141	{ &vnop_symlink_desc, (VOPFUNC)fifo_symlink },          /* symlink */
6142	{ &vnop_readdir_desc, (VOPFUNC)fifo_readdir },		/* readdir */
6143	{ &vnop_readlink_desc, (VOPFUNC)fifo_readlink },		/* readlink */
6144	{ &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive },	/* inactive */
6145	{ &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim },	/* reclaim */
6146	{ &vnop_strategy_desc, (VOPFUNC)fifo_strategy },		/* strategy */
6147	{ &vnop_pathconf_desc, (VOPFUNC)fifo_pathconf },		/* pathconf */
6148	{ &vnop_advlock_desc, (VOPFUNC)err_advlock },		/* advlock */
6149	{ &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite },
6150	{ &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein },		/* Pagein */
6151	{ &vnop_pageout_desc, (VOPFUNC)hfs_vnop_pageout },	/* Pageout */
6152	{ &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, 		/* copyfile */
6153	{ &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff },	/* blktooff */
6154	{ &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk },	/* offtoblk */
6155  	{ &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap },		/* blockmap */
6156	{ (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
6157};
6158struct vnodeopv_desc hfs_fifoop_opv_desc =
6159	{ &hfs_fifoop_p, hfs_fifoop_entries };
6160#endif /* FIFO */
6161
6162
6163
6164