1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD$");
55
56#include "opt_vm.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/proc.h>
61#include <sys/vnode.h>
62#include <sys/mount.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/vmmeter.h>
66#include <sys/limits.h>
67#include <sys/conf.h>
68#include <sys/rwlock.h>
69#include <sys/sf_buf.h>
70
71#include <machine/atomic.h>
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <vm/vm_object.h>
76#include <vm/vm_page.h>
77#include <vm/vm_pager.h>
78#include <vm/vm_map.h>
79#include <vm/vnode_pager.h>
80#include <vm/vm_extern.h>
81
82static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83    daddr_t *rtaddress, int *run);
84static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86static void vnode_pager_dealloc(vm_object_t);
87static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
88static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
89    int *, vop_getpages_iodone_t, void *);
90static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
91static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
92static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
93    vm_ooffset_t, struct ucred *cred);
94static int vnode_pager_generic_getpages_done(struct buf *);
95static void vnode_pager_generic_getpages_done_async(struct buf *);
96
97struct pagerops vnodepagerops = {
98	.pgo_alloc =	vnode_pager_alloc,
99	.pgo_dealloc =	vnode_pager_dealloc,
100	.pgo_getpages =	vnode_pager_getpages,
101	.pgo_getpages_async = vnode_pager_getpages_async,
102	.pgo_putpages =	vnode_pager_putpages,
103	.pgo_haspage =	vnode_pager_haspage,
104};
105
106int vnode_pbuf_freecnt;
107int vnode_async_pbuf_freecnt;
108
109/* Create the VM system backing object for this vnode */
110int
111vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
112{
113	vm_object_t object;
114	vm_ooffset_t size = isize;
115	struct vattr va;
116
117	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
118		return (0);
119
120	while ((object = vp->v_object) != NULL) {
121		VM_OBJECT_WLOCK(object);
122		if (!(object->flags & OBJ_DEAD)) {
123			VM_OBJECT_WUNLOCK(object);
124			return (0);
125		}
126		VOP_UNLOCK(vp, 0);
127		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
128		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
129		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
130	}
131
132	if (size == 0) {
133		if (vn_isdisk(vp, NULL)) {
134			size = IDX_TO_OFF(INT_MAX);
135		} else {
136			if (VOP_GETATTR(vp, &va, td->td_ucred))
137				return (0);
138			size = va.va_size;
139		}
140	}
141
142	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
143	/*
144	 * Dereference the reference we just created.  This assumes
145	 * that the object is associated with the vp.
146	 */
147	VM_OBJECT_WLOCK(object);
148	object->ref_count--;
149	VM_OBJECT_WUNLOCK(object);
150	vrele(vp);
151
152	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
153
154	return (0);
155}
156
157void
158vnode_destroy_vobject(struct vnode *vp)
159{
160	struct vm_object *obj;
161
162	obj = vp->v_object;
163	if (obj == NULL)
164		return;
165	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
166	VM_OBJECT_WLOCK(obj);
167	umtx_shm_object_terminated(obj);
168	if (obj->ref_count == 0) {
169		/*
170		 * don't double-terminate the object
171		 */
172		if ((obj->flags & OBJ_DEAD) == 0) {
173			vm_object_terminate(obj);
174		} else {
175			/*
176			 * Waiters were already handled during object
177			 * termination.  The exclusive vnode lock hopefully
178			 * prevented new waiters from referencing the dying
179			 * object.
180			 */
181			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
182			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
183			    obj, obj->flags));
184			vp->v_object = NULL;
185			VM_OBJECT_WUNLOCK(obj);
186		}
187	} else {
188		/*
189		 * Woe to the process that tries to page now :-).
190		 */
191		vm_pager_deallocate(obj);
192		VM_OBJECT_WUNLOCK(obj);
193	}
194	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
195}
196
197
198/*
199 * Allocate (or lookup) pager for a vnode.
200 * Handle is a vnode pointer.
201 *
202 * MPSAFE
203 */
204vm_object_t
205vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
206    vm_ooffset_t offset, struct ucred *cred)
207{
208	vm_object_t object;
209	struct vnode *vp;
210
211	/*
212	 * Pageout to vnode, no can do yet.
213	 */
214	if (handle == NULL)
215		return (NULL);
216
217	vp = (struct vnode *) handle;
218
219	/*
220	 * If the object is being terminated, wait for it to
221	 * go away.
222	 */
223retry:
224	while ((object = vp->v_object) != NULL) {
225		VM_OBJECT_WLOCK(object);
226		if ((object->flags & OBJ_DEAD) == 0)
227			break;
228		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
229		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
230	}
231
232	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
233
234	if (object == NULL) {
235		/*
236		 * Add an object of the appropriate size
237		 */
238		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
239
240		object->un_pager.vnp.vnp_size = size;
241		object->un_pager.vnp.writemappings = 0;
242
243		object->handle = handle;
244		VI_LOCK(vp);
245		if (vp->v_object != NULL) {
246			/*
247			 * Object has been created while we were sleeping
248			 */
249			VI_UNLOCK(vp);
250			VM_OBJECT_WLOCK(object);
251			KASSERT(object->ref_count == 1,
252			    ("leaked ref %p %d", object, object->ref_count));
253			object->type = OBJT_DEAD;
254			object->ref_count = 0;
255			VM_OBJECT_WUNLOCK(object);
256			vm_object_destroy(object);
257			goto retry;
258		}
259		vp->v_object = object;
260		VI_UNLOCK(vp);
261	} else {
262		object->ref_count++;
263#if VM_NRESERVLEVEL > 0
264		vm_object_color(object, 0);
265#endif
266		VM_OBJECT_WUNLOCK(object);
267	}
268	vref(vp);
269	return (object);
270}
271
272/*
273 *	The object must be locked.
274 */
275static void
276vnode_pager_dealloc(vm_object_t object)
277{
278	struct vnode *vp;
279	int refs;
280
281	vp = object->handle;
282	if (vp == NULL)
283		panic("vnode_pager_dealloc: pager already dealloced");
284
285	VM_OBJECT_ASSERT_WLOCKED(object);
286	vm_object_pip_wait(object, "vnpdea");
287	refs = object->ref_count;
288
289	object->handle = NULL;
290	object->type = OBJT_DEAD;
291	if (object->flags & OBJ_DISCONNECTWNT) {
292		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
293		wakeup(object);
294	}
295	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
296	if (object->un_pager.vnp.writemappings > 0) {
297		object->un_pager.vnp.writemappings = 0;
298		VOP_ADD_WRITECOUNT(vp, -1);
299		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
300		    __func__, vp, vp->v_writecount);
301	}
302	vp->v_object = NULL;
303	VOP_UNSET_TEXT(vp);
304	VM_OBJECT_WUNLOCK(object);
305	while (refs-- > 0)
306		vunref(vp);
307	VM_OBJECT_WLOCK(object);
308}
309
310static boolean_t
311vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
312    int *after)
313{
314	struct vnode *vp = object->handle;
315	daddr_t bn;
316	int err;
317	daddr_t reqblock;
318	int poff;
319	int bsize;
320	int pagesperblock, blocksperpage;
321
322	VM_OBJECT_ASSERT_WLOCKED(object);
323	/*
324	 * If no vp or vp is doomed or marked transparent to VM, we do not
325	 * have the page.
326	 */
327	if (vp == NULL || vp->v_iflag & VI_DOOMED)
328		return FALSE;
329	/*
330	 * If the offset is beyond end of file we do
331	 * not have the page.
332	 */
333	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
334		return FALSE;
335
336	bsize = vp->v_mount->mnt_stat.f_iosize;
337	pagesperblock = bsize / PAGE_SIZE;
338	blocksperpage = 0;
339	if (pagesperblock > 0) {
340		reqblock = pindex / pagesperblock;
341	} else {
342		blocksperpage = (PAGE_SIZE / bsize);
343		reqblock = pindex * blocksperpage;
344	}
345	VM_OBJECT_WUNLOCK(object);
346	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
347	VM_OBJECT_WLOCK(object);
348	if (err)
349		return TRUE;
350	if (bn == -1)
351		return FALSE;
352	if (pagesperblock > 0) {
353		poff = pindex - (reqblock * pagesperblock);
354		if (before) {
355			*before *= pagesperblock;
356			*before += poff;
357		}
358		if (after) {
359			/*
360			 * The BMAP vop can report a partial block in the
361			 * 'after', but must not report blocks after EOF.
362			 * Assert the latter, and truncate 'after' in case
363			 * of the former.
364			 */
365			KASSERT((reqblock + *after) * pagesperblock <
366			    roundup2(object->size, pagesperblock),
367			    ("%s: reqblock %jd after %d size %ju", __func__,
368			    (intmax_t )reqblock, *after,
369			    (uintmax_t )object->size));
370			*after *= pagesperblock;
371			*after += pagesperblock - (poff + 1);
372			if (pindex + *after >= object->size)
373				*after = object->size - 1 - pindex;
374		}
375	} else {
376		if (before) {
377			*before /= blocksperpage;
378		}
379
380		if (after) {
381			*after /= blocksperpage;
382		}
383	}
384	return TRUE;
385}
386
387/*
388 * Lets the VM system know about a change in size for a file.
389 * We adjust our own internal size and flush any cached pages in
390 * the associated object that are affected by the size change.
391 *
392 * Note: this routine may be invoked as a result of a pager put
393 * operation (possibly at object termination time), so we must be careful.
394 */
395void
396vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
397{
398	vm_object_t object;
399	vm_page_t m;
400	vm_pindex_t nobjsize;
401
402	if ((object = vp->v_object) == NULL)
403		return;
404/* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
405	VM_OBJECT_WLOCK(object);
406	if (object->type == OBJT_DEAD) {
407		VM_OBJECT_WUNLOCK(object);
408		return;
409	}
410	KASSERT(object->type == OBJT_VNODE,
411	    ("not vnode-backed object %p", object));
412	if (nsize == object->un_pager.vnp.vnp_size) {
413		/*
414		 * Hasn't changed size
415		 */
416		VM_OBJECT_WUNLOCK(object);
417		return;
418	}
419	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
420	if (nsize < object->un_pager.vnp.vnp_size) {
421		/*
422		 * File has shrunk. Toss any cached pages beyond the new EOF.
423		 */
424		if (nobjsize < object->size)
425			vm_object_page_remove(object, nobjsize, object->size,
426			    0);
427		/*
428		 * this gets rid of garbage at the end of a page that is now
429		 * only partially backed by the vnode.
430		 *
431		 * XXX for some reason (I don't know yet), if we take a
432		 * completely invalid page and mark it partially valid
433		 * it can screw up NFS reads, so we don't allow the case.
434		 */
435		if ((nsize & PAGE_MASK) &&
436		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
437		    m->valid != 0) {
438			int base = (int)nsize & PAGE_MASK;
439			int size = PAGE_SIZE - base;
440
441			/*
442			 * Clear out partial-page garbage in case
443			 * the page has been mapped.
444			 */
445			pmap_zero_page_area(m, base, size);
446
447			/*
448			 * Update the valid bits to reflect the blocks that
449			 * have been zeroed.  Some of these valid bits may
450			 * have already been set.
451			 */
452			vm_page_set_valid_range(m, base, size);
453
454			/*
455			 * Round "base" to the next block boundary so that the
456			 * dirty bit for a partially zeroed block is not
457			 * cleared.
458			 */
459			base = roundup2(base, DEV_BSIZE);
460
461			/*
462			 * Clear out partial-page dirty bits.
463			 *
464			 * note that we do not clear out the valid
465			 * bits.  This would prevent bogus_page
466			 * replacement from working properly.
467			 */
468			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
469		} else if ((nsize & PAGE_MASK) &&
470		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
471			vm_page_cache_free(object, OFF_TO_IDX(nsize),
472			    nobjsize);
473		}
474	}
475	object->un_pager.vnp.vnp_size = nsize;
476	object->size = nobjsize;
477	VM_OBJECT_WUNLOCK(object);
478}
479
480/*
481 * calculate the linear (byte) disk address of specified virtual
482 * file address
483 */
484static int
485vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
486    int *run)
487{
488	int bsize;
489	int err;
490	daddr_t vblock;
491	daddr_t voffset;
492
493	if (address < 0)
494		return -1;
495
496	if (vp->v_iflag & VI_DOOMED)
497		return -1;
498
499	bsize = vp->v_mount->mnt_stat.f_iosize;
500	vblock = address / bsize;
501	voffset = address % bsize;
502
503	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
504	if (err == 0) {
505		if (*rtaddress != -1)
506			*rtaddress += voffset / DEV_BSIZE;
507		if (run) {
508			*run += 1;
509			*run *= bsize/PAGE_SIZE;
510			*run -= voffset/PAGE_SIZE;
511		}
512	}
513
514	return (err);
515}
516
517/*
518 * small block filesystem vnode pager input
519 */
520static int
521vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
522{
523	struct vnode *vp;
524	struct bufobj *bo;
525	struct buf *bp;
526	struct sf_buf *sf;
527	daddr_t fileaddr;
528	vm_offset_t bsize;
529	vm_page_bits_t bits;
530	int error, i;
531
532	error = 0;
533	vp = object->handle;
534	if (vp->v_iflag & VI_DOOMED)
535		return VM_PAGER_BAD;
536
537	bsize = vp->v_mount->mnt_stat.f_iosize;
538
539	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
540
541	sf = sf_buf_alloc(m, 0);
542
543	for (i = 0; i < PAGE_SIZE / bsize; i++) {
544		vm_ooffset_t address;
545
546		bits = vm_page_bits(i * bsize, bsize);
547		if (m->valid & bits)
548			continue;
549
550		address = IDX_TO_OFF(m->pindex) + i * bsize;
551		if (address >= object->un_pager.vnp.vnp_size) {
552			fileaddr = -1;
553		} else {
554			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
555			if (error)
556				break;
557		}
558		if (fileaddr != -1) {
559			bp = getpbuf(&vnode_pbuf_freecnt);
560
561			/* build a minimal buffer header */
562			bp->b_iocmd = BIO_READ;
563			bp->b_iodone = bdone;
564			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
565			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
566			bp->b_rcred = crhold(curthread->td_ucred);
567			bp->b_wcred = crhold(curthread->td_ucred);
568			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
569			bp->b_blkno = fileaddr;
570			pbgetbo(bo, bp);
571			bp->b_vp = vp;
572			bp->b_bcount = bsize;
573			bp->b_bufsize = bsize;
574			bp->b_runningbufspace = bp->b_bufsize;
575			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
576
577			/* do the input */
578			bp->b_iooffset = dbtob(bp->b_blkno);
579			bstrategy(bp);
580
581			bwait(bp, PVM, "vnsrd");
582
583			if ((bp->b_ioflags & BIO_ERROR) != 0)
584				error = EIO;
585
586			/*
587			 * free the buffer header back to the swap buffer pool
588			 */
589			bp->b_vp = NULL;
590			pbrelbo(bp);
591			relpbuf(bp, &vnode_pbuf_freecnt);
592			if (error)
593				break;
594		} else
595			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
596		KASSERT((m->dirty & bits) == 0,
597		    ("vnode_pager_input_smlfs: page %p is dirty", m));
598		VM_OBJECT_WLOCK(object);
599		m->valid |= bits;
600		VM_OBJECT_WUNLOCK(object);
601	}
602	sf_buf_free(sf);
603	if (error) {
604		return VM_PAGER_ERROR;
605	}
606	return VM_PAGER_OK;
607}
608
609/*
610 * old style vnode pager input routine
611 */
612static int
613vnode_pager_input_old(vm_object_t object, vm_page_t m)
614{
615	struct uio auio;
616	struct iovec aiov;
617	int error;
618	int size;
619	struct sf_buf *sf;
620	struct vnode *vp;
621
622	VM_OBJECT_ASSERT_WLOCKED(object);
623	error = 0;
624
625	/*
626	 * Return failure if beyond current EOF
627	 */
628	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
629		return VM_PAGER_BAD;
630	} else {
631		size = PAGE_SIZE;
632		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
633			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
634		vp = object->handle;
635		VM_OBJECT_WUNLOCK(object);
636
637		/*
638		 * Allocate a kernel virtual address and initialize so that
639		 * we can use VOP_READ/WRITE routines.
640		 */
641		sf = sf_buf_alloc(m, 0);
642
643		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
644		aiov.iov_len = size;
645		auio.uio_iov = &aiov;
646		auio.uio_iovcnt = 1;
647		auio.uio_offset = IDX_TO_OFF(m->pindex);
648		auio.uio_segflg = UIO_SYSSPACE;
649		auio.uio_rw = UIO_READ;
650		auio.uio_resid = size;
651		auio.uio_td = curthread;
652
653		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
654		if (!error) {
655			int count = size - auio.uio_resid;
656
657			if (count == 0)
658				error = EINVAL;
659			else if (count != PAGE_SIZE)
660				bzero((caddr_t)sf_buf_kva(sf) + count,
661				    PAGE_SIZE - count);
662		}
663		sf_buf_free(sf);
664
665		VM_OBJECT_WLOCK(object);
666	}
667	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
668	if (!error)
669		m->valid = VM_PAGE_BITS_ALL;
670	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
671}
672
673/*
674 * generic vnode pager input routine
675 */
676
677/*
678 * Local media VFS's that do not implement their own VOP_GETPAGES
679 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
680 * to implement the previous behaviour.
681 *
682 * All other FS's should use the bypass to get to the local media
683 * backing vp's VOP_GETPAGES.
684 */
685static int
686vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
687    int *rahead)
688{
689	struct vnode *vp;
690	int rtval;
691
692	vp = object->handle;
693	VM_OBJECT_WUNLOCK(object);
694	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
695	KASSERT(rtval != EOPNOTSUPP,
696	    ("vnode_pager: FS getpages not implemented\n"));
697	VM_OBJECT_WLOCK(object);
698	return rtval;
699}
700
701static int
702vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
703    int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
704{
705	struct vnode *vp;
706	int rtval;
707
708	vp = object->handle;
709	VM_OBJECT_WUNLOCK(object);
710	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
711	KASSERT(rtval != EOPNOTSUPP,
712	    ("vnode_pager: FS getpages_async not implemented\n"));
713	VM_OBJECT_WLOCK(object);
714	return (rtval);
715}
716
717/*
718 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
719 * local filesystems, where partially valid pages can only occur at
720 * the end of file.
721 */
722int
723vnode_pager_local_getpages(struct vop_getpages_args *ap)
724{
725
726	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
727	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
728}
729
730int
731vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
732{
733
734	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
735	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
736}
737
738/*
739 * This is now called from local media FS's to operate against their
740 * own vnodes if they fail to implement VOP_GETPAGES.
741 */
742int
743vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
744    int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
745{
746	vm_object_t object;
747	struct bufobj *bo;
748	struct buf *bp;
749	off_t foff;
750	int bsize, pagesperblock, *freecnt;
751	int error, before, after, rbehind, rahead, poff, i;
752	int bytecount, secmask;
753
754	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
755	    ("%s does not support devices", __func__));
756
757	if (vp->v_iflag & VI_DOOMED)
758		return (VM_PAGER_BAD);
759
760	object = vp->v_object;
761	foff = IDX_TO_OFF(m[0]->pindex);
762	bsize = vp->v_mount->mnt_stat.f_iosize;
763	pagesperblock = bsize / PAGE_SIZE;
764
765	KASSERT(foff < object->un_pager.vnp.vnp_size,
766	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
767	KASSERT(count <= sizeof(bp->b_pages),
768	    ("%s: requested %d pages", __func__, count));
769
770	/*
771	 * The last page has valid blocks.  Invalid part can only
772	 * exist at the end of file, and the page is made fully valid
773	 * by zeroing in vm_pager_get_pages().
774	 */
775	if (m[count - 1]->valid != 0 && --count == 0) {
776		if (iodone != NULL)
777			iodone(arg, m, 1, 0);
778		return (VM_PAGER_OK);
779	}
780
781	/*
782	 * Synchronous and asynchronous paging operations use different
783	 * free pbuf counters.  This is done to avoid asynchronous requests
784	 * to consume all pbufs.
785	 * Allocate the pbuf at the very beginning of the function, so that
786	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
787	 * but sleep.
788	 */
789	freecnt = iodone != NULL ?
790	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
791	bp = getpbuf(freecnt);
792
793	/*
794	 * Get the underlying device blocks for the file with VOP_BMAP().
795	 * If the file system doesn't support VOP_BMAP, use old way of
796	 * getting pages via VOP_READ.
797	 */
798	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
799	if (error == EOPNOTSUPP) {
800		relpbuf(bp, freecnt);
801		VM_OBJECT_WLOCK(object);
802		for (i = 0; i < count; i++) {
803			PCPU_INC(cnt.v_vnodein);
804			PCPU_INC(cnt.v_vnodepgsin);
805			error = vnode_pager_input_old(object, m[i]);
806			if (error)
807				break;
808		}
809		VM_OBJECT_WUNLOCK(object);
810		return (error);
811	} else if (error != 0) {
812		relpbuf(bp, freecnt);
813		return (VM_PAGER_ERROR);
814	}
815
816	/*
817	 * If the file system supports BMAP, but blocksize is smaller
818	 * than a page size, then use special small filesystem code.
819	 */
820	if (pagesperblock == 0) {
821		relpbuf(bp, freecnt);
822		for (i = 0; i < count; i++) {
823			PCPU_INC(cnt.v_vnodein);
824			PCPU_INC(cnt.v_vnodepgsin);
825			error = vnode_pager_input_smlfs(object, m[i]);
826			if (error)
827				break;
828		}
829		return (error);
830	}
831
832	/*
833	 * A sparse file can be encountered only for a single page request,
834	 * which may not be preceded by call to vm_pager_haspage().
835	 */
836	if (bp->b_blkno == -1) {
837		KASSERT(count == 1,
838		    ("%s: array[%d] request to a sparse file %p", __func__,
839		    count, vp));
840		relpbuf(bp, freecnt);
841		pmap_zero_page(m[0]);
842		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
843		    __func__, m[0]));
844		VM_OBJECT_WLOCK(object);
845		m[0]->valid = VM_PAGE_BITS_ALL;
846		VM_OBJECT_WUNLOCK(object);
847		return (VM_PAGER_OK);
848	}
849
850	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
851
852	/* Recalculate blocks available after/before to pages. */
853	poff = (foff % bsize) / PAGE_SIZE;
854	before *= pagesperblock;
855	before += poff;
856	after *= pagesperblock;
857	after += pagesperblock - (poff + 1);
858	if (m[0]->pindex + after >= object->size)
859		after = object->size - 1 - m[0]->pindex;
860	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
861	    __func__, count, after + 1));
862	after -= count - 1;
863
864	/* Trim requested rbehind/rahead to possible values. */
865	rbehind = a_rbehind ? *a_rbehind : 0;
866	rahead = a_rahead ? *a_rahead : 0;
867	rbehind = min(rbehind, before);
868	rbehind = min(rbehind, m[0]->pindex);
869	rahead = min(rahead, after);
870	rahead = min(rahead, object->size - m[count - 1]->pindex);
871	KASSERT(rbehind + rahead + count <= sizeof(bp->b_pages),
872	    ("%s: behind %d ahead %d count %d", __func__,
873	    rbehind, rahead, count));
874
875	/*
876	 * Fill in the bp->b_pages[] array with requested and optional
877	 * read behind or read ahead pages.  Read behind pages are looked
878	 * up in a backward direction, down to a first cached page.  Same
879	 * for read ahead pages, but there is no need to shift the array
880	 * in case of encountering a cached page.
881	 */
882	i = bp->b_npages = 0;
883	if (rbehind) {
884		vm_pindex_t startpindex, tpindex;
885		vm_page_t p;
886
887		VM_OBJECT_WLOCK(object);
888		startpindex = m[0]->pindex - rbehind;
889		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
890		    p->pindex >= startpindex)
891			startpindex = p->pindex + 1;
892
893		/* tpindex is unsigned; beware of numeric underflow. */
894		for (tpindex = m[0]->pindex - 1;
895		    tpindex >= startpindex && tpindex < m[0]->pindex;
896		    tpindex--, i++) {
897			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
898			    VM_ALLOC_IFNOTCACHED);
899			if (p == NULL) {
900				/* Shift the array. */
901				for (int j = 0; j < i; j++)
902					bp->b_pages[j] = bp->b_pages[j +
903					    tpindex + 1 - startpindex];
904				break;
905			}
906			bp->b_pages[tpindex - startpindex] = p;
907		}
908
909		bp->b_pgbefore = i;
910		bp->b_npages += i;
911		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
912	} else
913		bp->b_pgbefore = 0;
914
915	/* Requested pages. */
916	for (int j = 0; j < count; j++, i++)
917		bp->b_pages[i] = m[j];
918	bp->b_npages += count;
919
920	if (rahead) {
921		vm_pindex_t endpindex, tpindex;
922		vm_page_t p;
923
924		if (!VM_OBJECT_WOWNED(object))
925			VM_OBJECT_WLOCK(object);
926		endpindex = m[count - 1]->pindex + rahead + 1;
927		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
928		    p->pindex < endpindex)
929			endpindex = p->pindex;
930		if (endpindex > object->size)
931			endpindex = object->size;
932
933		for (tpindex = m[count - 1]->pindex + 1;
934		    tpindex < endpindex; i++, tpindex++) {
935			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
936			    VM_ALLOC_IFNOTCACHED);
937			if (p == NULL)
938				break;
939			bp->b_pages[i] = p;
940		}
941
942		bp->b_pgafter = i - bp->b_npages;
943		bp->b_npages = i;
944	} else
945		bp->b_pgafter = 0;
946
947	if (VM_OBJECT_WOWNED(object))
948		VM_OBJECT_WUNLOCK(object);
949
950	/* Report back actual behind/ahead read. */
951	if (a_rbehind)
952		*a_rbehind = bp->b_pgbefore;
953	if (a_rahead)
954		*a_rahead = bp->b_pgafter;
955
956	KASSERT(bp->b_npages <= sizeof(bp->b_pages),
957	    ("%s: buf %p overflowed", __func__, bp));
958
959	/*
960	 * Recalculate first offset and bytecount with regards to read behind.
961	 * Truncate bytecount to vnode real size and round up physical size
962	 * for real devices.
963	 */
964	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
965	bytecount = bp->b_npages << PAGE_SHIFT;
966	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
967		bytecount = object->un_pager.vnp.vnp_size - foff;
968	secmask = bo->bo_bsize - 1;
969	KASSERT(secmask < PAGE_SIZE && secmask > 0,
970	    ("%s: sector size %d too large", __func__, secmask + 1));
971	bytecount = (bytecount + secmask) & ~secmask;
972
973	/*
974	 * And map the pages to be read into the kva, if the filesystem
975	 * requires mapped buffers.
976	 */
977	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
978	    unmapped_buf_allowed) {
979		bp->b_data = unmapped_buf;
980		bp->b_offset = 0;
981	} else {
982		bp->b_data = bp->b_kvabase;
983		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
984	}
985
986	/* Build a minimal buffer header. */
987	bp->b_iocmd = BIO_READ;
988	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
989	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
990	bp->b_rcred = crhold(curthread->td_ucred);
991	bp->b_wcred = crhold(curthread->td_ucred);
992	pbgetbo(bo, bp);
993	bp->b_vp = vp;
994	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
995	bp->b_iooffset = dbtob(bp->b_blkno);
996
997	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
998	PCPU_INC(cnt.v_vnodein);
999	PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages);
1000
1001	if (iodone != NULL) { /* async */
1002		bp->b_pgiodone = iodone;
1003		bp->b_caller1 = arg;
1004		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1005		bp->b_flags |= B_ASYNC;
1006		BUF_KERNPROC(bp);
1007		bstrategy(bp);
1008		return (VM_PAGER_OK);
1009	} else {
1010		bp->b_iodone = bdone;
1011		bstrategy(bp);
1012		bwait(bp, PVM, "vnread");
1013		error = vnode_pager_generic_getpages_done(bp);
1014		for (i = 0; i < bp->b_npages; i++)
1015			bp->b_pages[i] = NULL;
1016		bp->b_vp = NULL;
1017		pbrelbo(bp);
1018		relpbuf(bp, &vnode_pbuf_freecnt);
1019		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1020	}
1021}
1022
1023static void
1024vnode_pager_generic_getpages_done_async(struct buf *bp)
1025{
1026	int error;
1027
1028	error = vnode_pager_generic_getpages_done(bp);
1029	/* Run the iodone upon the requested range. */
1030	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1031	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1032	for (int i = 0; i < bp->b_npages; i++)
1033		bp->b_pages[i] = NULL;
1034	bp->b_vp = NULL;
1035	pbrelbo(bp);
1036	relpbuf(bp, &vnode_async_pbuf_freecnt);
1037}
1038
1039static int
1040vnode_pager_generic_getpages_done(struct buf *bp)
1041{
1042	vm_object_t object;
1043	off_t tfoff, nextoff;
1044	int i, error;
1045
1046	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1047	object = bp->b_vp->v_object;
1048
1049	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1050		if (!buf_mapped(bp)) {
1051			bp->b_data = bp->b_kvabase;
1052			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1053			    bp->b_npages);
1054		}
1055		bzero(bp->b_data + bp->b_bcount,
1056		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1057	}
1058	if (buf_mapped(bp)) {
1059		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1060		bp->b_data = unmapped_buf;
1061	}
1062
1063	VM_OBJECT_WLOCK(object);
1064	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1065	    i < bp->b_npages; i++, tfoff = nextoff) {
1066		vm_page_t mt;
1067
1068		nextoff = tfoff + PAGE_SIZE;
1069		mt = bp->b_pages[i];
1070
1071		if (nextoff <= object->un_pager.vnp.vnp_size) {
1072			/*
1073			 * Read filled up entire page.
1074			 */
1075			mt->valid = VM_PAGE_BITS_ALL;
1076			KASSERT(mt->dirty == 0,
1077			    ("%s: page %p is dirty", __func__, mt));
1078			KASSERT(!pmap_page_is_mapped(mt),
1079			    ("%s: page %p is mapped", __func__, mt));
1080		} else {
1081			/*
1082			 * Read did not fill up entire page.
1083			 *
1084			 * Currently we do not set the entire page valid,
1085			 * we just try to clear the piece that we couldn't
1086			 * read.
1087			 */
1088			vm_page_set_valid_range(mt, 0,
1089			    object->un_pager.vnp.vnp_size - tfoff);
1090			KASSERT((mt->dirty & vm_page_bits(0,
1091			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1092			    ("%s: page %p is dirty", __func__, mt));
1093		}
1094
1095		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1096			vm_page_readahead_finish(mt);
1097	}
1098	VM_OBJECT_WUNLOCK(object);
1099	if (error != 0)
1100		printf("%s: I/O read error %d\n", __func__, error);
1101
1102	return (error);
1103}
1104
1105/*
1106 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1107 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1108 * vnode_pager_generic_putpages() to implement the previous behaviour.
1109 *
1110 * All other FS's should use the bypass to get to the local media
1111 * backing vp's VOP_PUTPAGES.
1112 */
1113static void
1114vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1115    int flags, int *rtvals)
1116{
1117	int rtval;
1118	struct vnode *vp;
1119	int bytes = count * PAGE_SIZE;
1120
1121	/*
1122	 * Force synchronous operation if we are extremely low on memory
1123	 * to prevent a low-memory deadlock.  VOP operations often need to
1124	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1125	 * operation ).  The swapper handles the case by limiting the amount
1126	 * of asynchronous I/O, but that sort of solution doesn't scale well
1127	 * for the vnode pager without a lot of work.
1128	 *
1129	 * Also, the backing vnode's iodone routine may not wake the pageout
1130	 * daemon up.  This should be probably be addressed XXX.
1131	 */
1132
1133	if (vm_cnt.v_free_count + vm_cnt.v_cache_count <
1134	    vm_cnt.v_pageout_free_min)
1135		flags |= VM_PAGER_PUT_SYNC;
1136
1137	/*
1138	 * Call device-specific putpages function
1139	 */
1140	vp = object->handle;
1141	VM_OBJECT_WUNLOCK(object);
1142	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1143	KASSERT(rtval != EOPNOTSUPP,
1144	    ("vnode_pager: stale FS putpages\n"));
1145	VM_OBJECT_WLOCK(object);
1146}
1147
1148
1149/*
1150 * This is now called from local media FS's to operate against their
1151 * own vnodes if they fail to implement VOP_PUTPAGES.
1152 *
1153 * This is typically called indirectly via the pageout daemon and
1154 * clustering has already typically occurred, so in general we ask the
1155 * underlying filesystem to write the data out asynchronously rather
1156 * then delayed.
1157 */
1158int
1159vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1160    int flags, int *rtvals)
1161{
1162	int i;
1163	vm_object_t object;
1164	vm_page_t m;
1165	int count;
1166
1167	int maxsize, ncount;
1168	vm_ooffset_t poffset;
1169	struct uio auio;
1170	struct iovec aiov;
1171	int error;
1172	int ioflags;
1173	int ppscheck = 0;
1174	static struct timeval lastfail;
1175	static int curfail;
1176
1177	object = vp->v_object;
1178	count = bytecount / PAGE_SIZE;
1179
1180	for (i = 0; i < count; i++)
1181		rtvals[i] = VM_PAGER_ERROR;
1182
1183	if ((int64_t)ma[0]->pindex < 0) {
1184		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1185		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1186		rtvals[0] = VM_PAGER_BAD;
1187		return VM_PAGER_BAD;
1188	}
1189
1190	maxsize = count * PAGE_SIZE;
1191	ncount = count;
1192
1193	poffset = IDX_TO_OFF(ma[0]->pindex);
1194
1195	/*
1196	 * If the page-aligned write is larger then the actual file we
1197	 * have to invalidate pages occurring beyond the file EOF.  However,
1198	 * there is an edge case where a file may not be page-aligned where
1199	 * the last page is partially invalid.  In this case the filesystem
1200	 * may not properly clear the dirty bits for the entire page (which
1201	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1202	 * With the page locked we are free to fix-up the dirty bits here.
1203	 *
1204	 * We do not under any circumstances truncate the valid bits, as
1205	 * this will screw up bogus page replacement.
1206	 */
1207	VM_OBJECT_WLOCK(object);
1208	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1209		if (object->un_pager.vnp.vnp_size > poffset) {
1210			int pgoff;
1211
1212			maxsize = object->un_pager.vnp.vnp_size - poffset;
1213			ncount = btoc(maxsize);
1214			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1215				/*
1216				 * If the object is locked and the following
1217				 * conditions hold, then the page's dirty
1218				 * field cannot be concurrently changed by a
1219				 * pmap operation.
1220				 */
1221				m = ma[ncount - 1];
1222				vm_page_assert_sbusied(m);
1223				KASSERT(!pmap_page_is_write_mapped(m),
1224		("vnode_pager_generic_putpages: page %p is not read-only", m));
1225				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1226				    pgoff);
1227			}
1228		} else {
1229			maxsize = 0;
1230			ncount = 0;
1231		}
1232		if (ncount < count) {
1233			for (i = ncount; i < count; i++) {
1234				rtvals[i] = VM_PAGER_BAD;
1235			}
1236		}
1237	}
1238	VM_OBJECT_WUNLOCK(object);
1239
1240	/*
1241	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1242	 * rather then a bdwrite() to prevent paging I/O from saturating
1243	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1244	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1245	 * the system decides how to cluster.
1246	 */
1247	ioflags = IO_VMIO;
1248	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1249		ioflags |= IO_SYNC;
1250	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1251		ioflags |= IO_ASYNC;
1252	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1253	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1254
1255	aiov.iov_base = (caddr_t) 0;
1256	aiov.iov_len = maxsize;
1257	auio.uio_iov = &aiov;
1258	auio.uio_iovcnt = 1;
1259	auio.uio_offset = poffset;
1260	auio.uio_segflg = UIO_NOCOPY;
1261	auio.uio_rw = UIO_WRITE;
1262	auio.uio_resid = maxsize;
1263	auio.uio_td = (struct thread *) 0;
1264	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1265	PCPU_INC(cnt.v_vnodeout);
1266	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1267
1268	if (error) {
1269		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1270			printf("vnode_pager_putpages: I/O error %d\n", error);
1271	}
1272	if (auio.uio_resid) {
1273		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1274			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1275			    auio.uio_resid, (u_long)ma[0]->pindex);
1276	}
1277	for (i = 0; i < ncount; i++) {
1278		rtvals[i] = VM_PAGER_OK;
1279	}
1280	return rtvals[0];
1281}
1282
1283void
1284vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1285{
1286	vm_object_t obj;
1287	int i, pos;
1288
1289	if (written == 0)
1290		return;
1291	obj = ma[0]->object;
1292	VM_OBJECT_WLOCK(obj);
1293	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1294		if (pos < trunc_page(written)) {
1295			rtvals[i] = VM_PAGER_OK;
1296			vm_page_undirty(ma[i]);
1297		} else {
1298			/* Partially written page. */
1299			rtvals[i] = VM_PAGER_AGAIN;
1300			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1301		}
1302	}
1303	VM_OBJECT_WUNLOCK(obj);
1304}
1305
1306void
1307vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1308    vm_offset_t end)
1309{
1310	struct vnode *vp;
1311	vm_ooffset_t old_wm;
1312
1313	VM_OBJECT_WLOCK(object);
1314	if (object->type != OBJT_VNODE) {
1315		VM_OBJECT_WUNLOCK(object);
1316		return;
1317	}
1318	old_wm = object->un_pager.vnp.writemappings;
1319	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1320	vp = object->handle;
1321	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1322		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1323		VOP_ADD_WRITECOUNT(vp, 1);
1324		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1325		    __func__, vp, vp->v_writecount);
1326	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1327		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1328		VOP_ADD_WRITECOUNT(vp, -1);
1329		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1330		    __func__, vp, vp->v_writecount);
1331	}
1332	VM_OBJECT_WUNLOCK(object);
1333}
1334
1335void
1336vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1337    vm_offset_t end)
1338{
1339	struct vnode *vp;
1340	struct mount *mp;
1341	vm_offset_t inc;
1342
1343	VM_OBJECT_WLOCK(object);
1344
1345	/*
1346	 * First, recheck the object type to account for the race when
1347	 * the vnode is reclaimed.
1348	 */
1349	if (object->type != OBJT_VNODE) {
1350		VM_OBJECT_WUNLOCK(object);
1351		return;
1352	}
1353
1354	/*
1355	 * Optimize for the case when writemappings is not going to
1356	 * zero.
1357	 */
1358	inc = end - start;
1359	if (object->un_pager.vnp.writemappings != inc) {
1360		object->un_pager.vnp.writemappings -= inc;
1361		VM_OBJECT_WUNLOCK(object);
1362		return;
1363	}
1364
1365	vp = object->handle;
1366	vhold(vp);
1367	VM_OBJECT_WUNLOCK(object);
1368	mp = NULL;
1369	vn_start_write(vp, &mp, V_WAIT);
1370	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1371
1372	/*
1373	 * Decrement the object's writemappings, by swapping the start
1374	 * and end arguments for vnode_pager_update_writecount().  If
1375	 * there was not a race with vnode reclaimation, then the
1376	 * vnode's v_writecount is decremented.
1377	 */
1378	vnode_pager_update_writecount(object, end, start);
1379	VOP_UNLOCK(vp, 0);
1380	vdrop(vp);
1381	if (mp != NULL)
1382		vn_finished_write(mp);
1383}
1384