1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Superpage reservation management module
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include "opt_vm.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mutex.h>
49#include <sys/queue.h>
50#include <sys/rwlock.h>
51#include <sys/sbuf.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/vm_object.h>
58#include <vm/vm_page.h>
59#include <vm/vm_phys.h>
60#include <vm/vm_radix.h>
61#include <vm/vm_reserv.h>
62
63/*
64 * The reservation system supports the speculative allocation of large physical
65 * pages ("superpages").  Speculative allocation enables the fully-automatic
66 * utilization of superpages by the virtual memory system.  In other words, no
67 * programmatic directives are required to use superpages.
68 */
69
70#if VM_NRESERVLEVEL > 0
71
72/*
73 * The number of small pages that are contained in a level 0 reservation
74 */
75#define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
76
77/*
78 * The number of bits by which a physical address is shifted to obtain the
79 * reservation number
80 */
81#define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
82
83/*
84 * The size of a level 0 reservation in bytes
85 */
86#define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
87
88/*
89 * Computes the index of the small page underlying the given (object, pindex)
90 * within the reservation's array of small pages.
91 */
92#define	VM_RESERV_INDEX(object, pindex)	\
93    (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
94
95/*
96 * The size of a population map entry
97 */
98typedef	u_long		popmap_t;
99
100/*
101 * The number of bits in a population map entry
102 */
103#define	NBPOPMAP	(NBBY * sizeof(popmap_t))
104
105/*
106 * The number of population map entries in a reservation
107 */
108#define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
109
110/*
111 * Clear a bit in the population map.
112 */
113static __inline void
114popmap_clear(popmap_t popmap[], int i)
115{
116
117	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
118}
119
120/*
121 * Set a bit in the population map.
122 */
123static __inline void
124popmap_set(popmap_t popmap[], int i)
125{
126
127	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
128}
129
130/*
131 * Is a bit in the population map clear?
132 */
133static __inline boolean_t
134popmap_is_clear(popmap_t popmap[], int i)
135{
136
137	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
138}
139
140/*
141 * Is a bit in the population map set?
142 */
143static __inline boolean_t
144popmap_is_set(popmap_t popmap[], int i)
145{
146
147	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
148}
149
150/*
151 * The reservation structure
152 *
153 * A reservation structure is constructed whenever a large physical page is
154 * speculatively allocated to an object.  The reservation provides the small
155 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
156 * within that object.  The reservation's "popcnt" tracks the number of these
157 * small physical pages that are in use at any given time.  When and if the
158 * reservation is not fully utilized, it appears in the queue of partially-
159 * populated reservations.  The reservation always appears on the containing
160 * object's list of reservations.
161 *
162 * A partially-populated reservation can be broken and reclaimed at any time.
163 */
164struct vm_reserv {
165	TAILQ_ENTRY(vm_reserv) partpopq;
166	LIST_ENTRY(vm_reserv) objq;
167	vm_object_t	object;			/* containing object */
168	vm_pindex_t	pindex;			/* offset within object */
169	vm_page_t	pages;			/* first page of a superpage */
170	int		popcnt;			/* # of pages in use */
171	char		inpartpopq;
172	popmap_t	popmap[NPOPMAP];	/* bit vector of used pages */
173};
174
175/*
176 * The reservation array
177 *
178 * This array is analoguous in function to vm_page_array.  It differs in the
179 * respect that it may contain a greater number of useful reservation
180 * structures than there are (physical) superpages.  These "invalid"
181 * reservation structures exist to trade-off space for time in the
182 * implementation of vm_reserv_from_page().  Invalid reservation structures are
183 * distinguishable from "valid" reservation structures by inspecting the
184 * reservation's "pages" field.  Invalid reservation structures have a NULL
185 * "pages" field.
186 *
187 * vm_reserv_from_page() maps a small (physical) page to an element of this
188 * array by computing a physical reservation number from the page's physical
189 * address.  The physical reservation number is used as the array index.
190 *
191 * An "active" reservation is a valid reservation structure that has a non-NULL
192 * "object" field and a non-zero "popcnt" field.  In other words, every active
193 * reservation belongs to a particular object.  Moreover, every active
194 * reservation has an entry in the containing object's list of reservations.
195 */
196static vm_reserv_t vm_reserv_array;
197
198/*
199 * The partially-populated reservation queue
200 *
201 * This queue enables the fast recovery of an unused cached or free small page
202 * from a partially-populated reservation.  The reservation at the head of
203 * this queue is the least-recently-changed, partially-populated reservation.
204 *
205 * Access to this queue is synchronized by the free page queue lock.
206 */
207static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
208			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
209
210static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
211
212static long vm_reserv_broken;
213SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
214    &vm_reserv_broken, 0, "Cumulative number of broken reservations");
215
216static long vm_reserv_freed;
217SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
218    &vm_reserv_freed, 0, "Cumulative number of freed reservations");
219
220static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
221
222SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
223    sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
224
225static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
226
227SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
228    sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
229
230static long vm_reserv_reclaimed;
231SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
232    &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
233
234static void		vm_reserv_break(vm_reserv_t rv, vm_page_t m);
235static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
236static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
237static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
238			    vm_pindex_t pindex);
239static void		vm_reserv_populate(vm_reserv_t rv, int index);
240static void		vm_reserv_reclaim(vm_reserv_t rv);
241
242/*
243 * Returns the current number of full reservations.
244 *
245 * Since the number of full reservations is computed without acquiring the
246 * free page queue lock, the returned value may be inexact.
247 */
248static int
249sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
250{
251	vm_paddr_t paddr;
252	struct vm_phys_seg *seg;
253	vm_reserv_t rv;
254	int fullpop, segind;
255
256	fullpop = 0;
257	for (segind = 0; segind < vm_phys_nsegs; segind++) {
258		seg = &vm_phys_segs[segind];
259		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
260		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
261			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
262			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
263			paddr += VM_LEVEL_0_SIZE;
264		}
265	}
266	return (sysctl_handle_int(oidp, &fullpop, 0, req));
267}
268
269/*
270 * Describes the current state of the partially-populated reservation queue.
271 */
272static int
273sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
274{
275	struct sbuf sbuf;
276	vm_reserv_t rv;
277	int counter, error, level, unused_pages;
278
279	error = sysctl_wire_old_buffer(req, 0);
280	if (error != 0)
281		return (error);
282	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
283	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
284	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
285		counter = 0;
286		unused_pages = 0;
287		mtx_lock(&vm_page_queue_free_mtx);
288		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
289			counter++;
290			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
291		}
292		mtx_unlock(&vm_page_queue_free_mtx);
293		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
294		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
295	}
296	error = sbuf_finish(&sbuf);
297	sbuf_delete(&sbuf);
298	return (error);
299}
300
301/*
302 * Reduces the given reservation's population count.  If the population count
303 * becomes zero, the reservation is destroyed.  Additionally, moves the
304 * reservation to the tail of the partially-populated reservation queue if the
305 * population count is non-zero.
306 *
307 * The free page queue lock must be held.
308 */
309static void
310vm_reserv_depopulate(vm_reserv_t rv, int index)
311{
312
313	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
314	KASSERT(rv->object != NULL,
315	    ("vm_reserv_depopulate: reserv %p is free", rv));
316	KASSERT(popmap_is_set(rv->popmap, index),
317	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
318	    index));
319	KASSERT(rv->popcnt > 0,
320	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
321	if (rv->inpartpopq) {
322		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
323		rv->inpartpopq = FALSE;
324	} else {
325		KASSERT(rv->pages->psind == 1,
326		    ("vm_reserv_depopulate: reserv %p is already demoted",
327		    rv));
328		rv->pages->psind = 0;
329	}
330	popmap_clear(rv->popmap, index);
331	rv->popcnt--;
332	if (rv->popcnt == 0) {
333		LIST_REMOVE(rv, objq);
334		rv->object = NULL;
335		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
336		vm_reserv_freed++;
337	} else {
338		rv->inpartpopq = TRUE;
339		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
340	}
341}
342
343/*
344 * Returns the reservation to which the given page might belong.
345 */
346static __inline vm_reserv_t
347vm_reserv_from_page(vm_page_t m)
348{
349
350	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
351}
352
353/*
354 * Returns TRUE if the given reservation contains the given page index and
355 * FALSE otherwise.
356 */
357static __inline boolean_t
358vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
359{
360
361	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
362}
363
364/*
365 * Increases the given reservation's population count.  Moves the reservation
366 * to the tail of the partially-populated reservation queue.
367 *
368 * The free page queue must be locked.
369 */
370static void
371vm_reserv_populate(vm_reserv_t rv, int index)
372{
373
374	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
375	KASSERT(rv->object != NULL,
376	    ("vm_reserv_populate: reserv %p is free", rv));
377	KASSERT(popmap_is_clear(rv->popmap, index),
378	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
379	    index));
380	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
381	    ("vm_reserv_populate: reserv %p is already full", rv));
382	KASSERT(rv->pages->psind == 0,
383	    ("vm_reserv_populate: reserv %p is already promoted", rv));
384	if (rv->inpartpopq) {
385		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
386		rv->inpartpopq = FALSE;
387	}
388	popmap_set(rv->popmap, index);
389	rv->popcnt++;
390	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
391		rv->inpartpopq = TRUE;
392		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
393	} else
394		rv->pages->psind = 1;
395}
396
397/*
398 * Allocates a contiguous set of physical pages of the given size "npages"
399 * from existing or newly created reservations.  All of the physical pages
400 * must be at or above the given physical address "low" and below the given
401 * physical address "high".  The given value "alignment" determines the
402 * alignment of the first physical page in the set.  If the given value
403 * "boundary" is non-zero, then the set of physical pages cannot cross any
404 * physical address boundary that is a multiple of that value.  Both
405 * "alignment" and "boundary" must be a power of two.
406 *
407 * The object and free page queue must be locked.
408 */
409vm_page_t
410vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
411    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
412{
413	vm_paddr_t pa, size;
414	vm_page_t m, m_ret, mpred, msucc;
415	vm_pindex_t first, leftcap, rightcap;
416	vm_reserv_t rv;
417	u_long allocpages, maxpages, minpages;
418	int i, index, n;
419
420	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
421	VM_OBJECT_ASSERT_WLOCKED(object);
422	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
423
424	/*
425	 * Is a reservation fundamentally impossible?
426	 */
427	if (pindex < VM_RESERV_INDEX(object, pindex) ||
428	    pindex + npages > object->size)
429		return (NULL);
430
431	/*
432	 * All reservations of a particular size have the same alignment.
433	 * Assuming that the first page is allocated from a reservation, the
434	 * least significant bits of its physical address can be determined
435	 * from its offset from the beginning of the reservation and the size
436	 * of the reservation.
437	 *
438	 * Could the specified index within a reservation of the smallest
439	 * possible size satisfy the alignment and boundary requirements?
440	 */
441	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
442	if ((pa & (alignment - 1)) != 0)
443		return (NULL);
444	size = npages << PAGE_SHIFT;
445	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
446		return (NULL);
447
448	/*
449	 * Look for an existing reservation.
450	 */
451	mpred = vm_radix_lookup_le(&object->rtree, pindex);
452	if (mpred != NULL) {
453		KASSERT(mpred->pindex < pindex,
454		    ("vm_reserv_alloc_contig: pindex already allocated"));
455		rv = vm_reserv_from_page(mpred);
456		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
457			goto found;
458		msucc = TAILQ_NEXT(mpred, listq);
459	} else
460		msucc = TAILQ_FIRST(&object->memq);
461	if (msucc != NULL) {
462		KASSERT(msucc->pindex > pindex,
463		    ("vm_reserv_alloc_contig: pindex already allocated"));
464		rv = vm_reserv_from_page(msucc);
465		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
466			goto found;
467	}
468
469	/*
470	 * Could at least one reservation fit between the first index to the
471	 * left that can be used ("leftcap") and the first index to the right
472	 * that cannot be used ("rightcap")?
473	 */
474	first = pindex - VM_RESERV_INDEX(object, pindex);
475	if (mpred != NULL) {
476		if ((rv = vm_reserv_from_page(mpred))->object != object)
477			leftcap = mpred->pindex + 1;
478		else
479			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
480		if (leftcap > first)
481			return (NULL);
482	}
483	minpages = VM_RESERV_INDEX(object, pindex) + npages;
484	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
485	allocpages = maxpages;
486	if (msucc != NULL) {
487		if ((rv = vm_reserv_from_page(msucc))->object != object)
488			rightcap = msucc->pindex;
489		else
490			rightcap = rv->pindex;
491		if (first + maxpages > rightcap) {
492			if (maxpages == VM_LEVEL_0_NPAGES)
493				return (NULL);
494
495			/*
496			 * At least one reservation will fit between "leftcap"
497			 * and "rightcap".  However, a reservation for the
498			 * last of the requested pages will not fit.  Reduce
499			 * the size of the upcoming allocation accordingly.
500			 */
501			allocpages = minpages;
502		}
503	}
504
505	/*
506	 * Would the last new reservation extend past the end of the object?
507	 */
508	if (first + maxpages > object->size) {
509		/*
510		 * Don't allocate the last new reservation if the object is a
511		 * vnode or backed by another object that is a vnode.
512		 */
513		if (object->type == OBJT_VNODE ||
514		    (object->backing_object != NULL &&
515		    object->backing_object->type == OBJT_VNODE)) {
516			if (maxpages == VM_LEVEL_0_NPAGES)
517				return (NULL);
518			allocpages = minpages;
519		}
520		/* Speculate that the object may grow. */
521	}
522
523	/*
524	 * Allocate the physical pages.  The alignment and boundary specified
525	 * for this allocation may be different from the alignment and
526	 * boundary specified for the requested pages.  For instance, the
527	 * specified index may not be the first page within the first new
528	 * reservation.
529	 */
530	m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
531	    VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
532	if (m == NULL)
533		return (NULL);
534
535	/*
536	 * The allocated physical pages always begin at a reservation
537	 * boundary, but they do not always end at a reservation boundary.
538	 * Initialize every reservation that is completely covered by the
539	 * allocated physical pages.
540	 */
541	m_ret = NULL;
542	index = VM_RESERV_INDEX(object, pindex);
543	do {
544		rv = vm_reserv_from_page(m);
545		KASSERT(rv->pages == m,
546		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
547		    rv));
548		KASSERT(rv->object == NULL,
549		    ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
550		LIST_INSERT_HEAD(&object->rvq, rv, objq);
551		rv->object = object;
552		rv->pindex = first;
553		KASSERT(rv->popcnt == 0,
554		    ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
555		    rv));
556		KASSERT(!rv->inpartpopq,
557		    ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
558		    rv));
559		for (i = 0; i < NPOPMAP; i++)
560			KASSERT(rv->popmap[i] == 0,
561		    ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted",
562			    rv));
563		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
564		for (i = 0; i < n; i++)
565			vm_reserv_populate(rv, index + i);
566		npages -= n;
567		if (m_ret == NULL) {
568			m_ret = &rv->pages[index];
569			index = 0;
570		}
571		m += VM_LEVEL_0_NPAGES;
572		first += VM_LEVEL_0_NPAGES;
573		allocpages -= VM_LEVEL_0_NPAGES;
574	} while (allocpages >= VM_LEVEL_0_NPAGES);
575	return (m_ret);
576
577	/*
578	 * Found a matching reservation.
579	 */
580found:
581	index = VM_RESERV_INDEX(object, pindex);
582	/* Does the allocation fit within the reservation? */
583	if (index + npages > VM_LEVEL_0_NPAGES)
584		return (NULL);
585	m = &rv->pages[index];
586	pa = VM_PAGE_TO_PHYS(m);
587	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
588	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
589		return (NULL);
590	/* Handle vm_page_rename(m, new_object, ...). */
591	for (i = 0; i < npages; i++)
592		if (popmap_is_set(rv->popmap, index + i))
593			return (NULL);
594	for (i = 0; i < npages; i++)
595		vm_reserv_populate(rv, index + i);
596	return (m);
597}
598
599/*
600 * Allocates a page from an existing or newly-created reservation.
601 *
602 * The page "mpred" must immediately precede the offset "pindex" within the
603 * specified object.
604 *
605 * The object and free page queue must be locked.
606 */
607vm_page_t
608vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
609{
610	vm_page_t m, msucc;
611	vm_pindex_t first, leftcap, rightcap;
612	vm_reserv_t rv;
613	int i, index;
614
615	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
616	VM_OBJECT_ASSERT_WLOCKED(object);
617
618	/*
619	 * Is a reservation fundamentally impossible?
620	 */
621	if (pindex < VM_RESERV_INDEX(object, pindex) ||
622	    pindex >= object->size)
623		return (NULL);
624
625	/*
626	 * Look for an existing reservation.
627	 */
628	if (mpred != NULL) {
629		KASSERT(mpred->object == object,
630		    ("vm_reserv_alloc_page: object doesn't contain mpred"));
631		KASSERT(mpred->pindex < pindex,
632		    ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
633		rv = vm_reserv_from_page(mpred);
634		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
635			goto found;
636		msucc = TAILQ_NEXT(mpred, listq);
637	} else
638		msucc = TAILQ_FIRST(&object->memq);
639	if (msucc != NULL) {
640		KASSERT(msucc->pindex > pindex,
641		    ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
642		rv = vm_reserv_from_page(msucc);
643		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
644			goto found;
645	}
646
647	/*
648	 * Could a reservation fit between the first index to the left that
649	 * can be used and the first index to the right that cannot be used?
650	 */
651	first = pindex - VM_RESERV_INDEX(object, pindex);
652	if (mpred != NULL) {
653		if ((rv = vm_reserv_from_page(mpred))->object != object)
654			leftcap = mpred->pindex + 1;
655		else
656			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
657		if (leftcap > first)
658			return (NULL);
659	}
660	if (msucc != NULL) {
661		if ((rv = vm_reserv_from_page(msucc))->object != object)
662			rightcap = msucc->pindex;
663		else
664			rightcap = rv->pindex;
665		if (first + VM_LEVEL_0_NPAGES > rightcap)
666			return (NULL);
667	}
668
669	/*
670	 * Would a new reservation extend past the end of the object?
671	 */
672	if (first + VM_LEVEL_0_NPAGES > object->size) {
673		/*
674		 * Don't allocate a new reservation if the object is a vnode or
675		 * backed by another object that is a vnode.
676		 */
677		if (object->type == OBJT_VNODE ||
678		    (object->backing_object != NULL &&
679		    object->backing_object->type == OBJT_VNODE))
680			return (NULL);
681		/* Speculate that the object may grow. */
682	}
683
684	/*
685	 * Allocate and populate the new reservation.
686	 */
687	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
688	if (m == NULL)
689		return (NULL);
690	rv = vm_reserv_from_page(m);
691	KASSERT(rv->pages == m,
692	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
693	KASSERT(rv->object == NULL,
694	    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
695	LIST_INSERT_HEAD(&object->rvq, rv, objq);
696	rv->object = object;
697	rv->pindex = first;
698	KASSERT(rv->popcnt == 0,
699	    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
700	KASSERT(!rv->inpartpopq,
701	    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
702	for (i = 0; i < NPOPMAP; i++)
703		KASSERT(rv->popmap[i] == 0,
704		    ("vm_reserv_alloc_page: reserv %p's popmap is corrupted",
705		    rv));
706	index = VM_RESERV_INDEX(object, pindex);
707	vm_reserv_populate(rv, index);
708	return (&rv->pages[index]);
709
710	/*
711	 * Found a matching reservation.
712	 */
713found:
714	index = VM_RESERV_INDEX(object, pindex);
715	m = &rv->pages[index];
716	/* Handle vm_page_rename(m, new_object, ...). */
717	if (popmap_is_set(rv->popmap, index))
718		return (NULL);
719	vm_reserv_populate(rv, index);
720	return (m);
721}
722
723/*
724 * Breaks the given reservation.  Except for the specified cached or free
725 * page, all cached and free pages in the reservation are returned to the
726 * physical memory allocator.  The reservation's population count and map are
727 * reset to their initial state.
728 *
729 * The given reservation must not be in the partially-populated reservation
730 * queue.  The free page queue lock must be held.
731 */
732static void
733vm_reserv_break(vm_reserv_t rv, vm_page_t m)
734{
735	int begin_zeroes, hi, i, lo;
736
737	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
738	KASSERT(rv->object != NULL,
739	    ("vm_reserv_break: reserv %p is free", rv));
740	KASSERT(!rv->inpartpopq,
741	    ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv));
742	LIST_REMOVE(rv, objq);
743	rv->object = NULL;
744	if (m != NULL) {
745		/*
746		 * Since the reservation is being broken, there is no harm in
747		 * abusing the population map to stop "m" from being returned
748		 * to the physical memory allocator.
749		 */
750		i = m - rv->pages;
751		KASSERT(popmap_is_clear(rv->popmap, i),
752		    ("vm_reserv_break: reserv %p's popmap is corrupted", rv));
753		popmap_set(rv->popmap, i);
754		rv->popcnt++;
755	}
756	i = hi = 0;
757	do {
758		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
759		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
760		if (lo == 0) {
761			/* Redundantly clears bits < "hi". */
762			rv->popmap[i] = 0;
763			rv->popcnt -= NBPOPMAP - hi;
764			while (++i < NPOPMAP) {
765				lo = ffsl(~rv->popmap[i]);
766				if (lo == 0) {
767					rv->popmap[i] = 0;
768					rv->popcnt -= NBPOPMAP;
769				} else
770					break;
771			}
772			if (i == NPOPMAP)
773				break;
774			hi = 0;
775		}
776		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
777		/* Convert from ffsl() to ordinary bit numbering. */
778		lo--;
779		if (lo > 0) {
780			/* Redundantly clears bits < "hi". */
781			rv->popmap[i] &= ~((1UL << lo) - 1);
782			rv->popcnt -= lo - hi;
783		}
784		begin_zeroes = NBPOPMAP * i + lo;
785		/* Find the next 1 bit. */
786		do
787			hi = ffsl(rv->popmap[i]);
788		while (hi == 0 && ++i < NPOPMAP);
789		if (i != NPOPMAP)
790			/* Convert from ffsl() to ordinary bit numbering. */
791			hi--;
792		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
793		    hi - begin_zeroes);
794	} while (i < NPOPMAP);
795	KASSERT(rv->popcnt == 0,
796	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
797	vm_reserv_broken++;
798}
799
800/*
801 * Breaks all reservations belonging to the given object.
802 */
803void
804vm_reserv_break_all(vm_object_t object)
805{
806	vm_reserv_t rv;
807
808	mtx_lock(&vm_page_queue_free_mtx);
809	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
810		KASSERT(rv->object == object,
811		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
812		if (rv->inpartpopq) {
813			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
814			rv->inpartpopq = FALSE;
815		}
816		vm_reserv_break(rv, NULL);
817	}
818	mtx_unlock(&vm_page_queue_free_mtx);
819}
820
821/*
822 * Frees the given page if it belongs to a reservation.  Returns TRUE if the
823 * page is freed and FALSE otherwise.
824 *
825 * The free page queue lock must be held.
826 */
827boolean_t
828vm_reserv_free_page(vm_page_t m)
829{
830	vm_reserv_t rv;
831
832	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
833	rv = vm_reserv_from_page(m);
834	if (rv->object == NULL)
835		return (FALSE);
836	vm_reserv_depopulate(rv, m - rv->pages);
837	return (TRUE);
838}
839
840/*
841 * Initializes the reservation management system.  Specifically, initializes
842 * the reservation array.
843 *
844 * Requires that vm_page_array and first_page are initialized!
845 */
846void
847vm_reserv_init(void)
848{
849	vm_paddr_t paddr;
850	struct vm_phys_seg *seg;
851	int segind;
852
853	/*
854	 * Initialize the reservation array.  Specifically, initialize the
855	 * "pages" field for every element that has an underlying superpage.
856	 */
857	for (segind = 0; segind < vm_phys_nsegs; segind++) {
858		seg = &vm_phys_segs[segind];
859		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
860		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
861			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
862			    PHYS_TO_VM_PAGE(paddr);
863			paddr += VM_LEVEL_0_SIZE;
864		}
865	}
866}
867
868/*
869 * Returns true if the given page belongs to a reservation and that page is
870 * free.  Otherwise, returns false.
871 */
872bool
873vm_reserv_is_page_free(vm_page_t m)
874{
875	vm_reserv_t rv;
876
877	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
878	rv = vm_reserv_from_page(m);
879	if (rv->object == NULL)
880		return (false);
881	return (popmap_is_clear(rv->popmap, m - rv->pages));
882}
883
884/*
885 * If the given page belongs to a reservation, returns the level of that
886 * reservation.  Otherwise, returns -1.
887 */
888int
889vm_reserv_level(vm_page_t m)
890{
891	vm_reserv_t rv;
892
893	rv = vm_reserv_from_page(m);
894	return (rv->object != NULL ? 0 : -1);
895}
896
897/*
898 * Returns a reservation level if the given page belongs to a fully-populated
899 * reservation and -1 otherwise.
900 */
901int
902vm_reserv_level_iffullpop(vm_page_t m)
903{
904	vm_reserv_t rv;
905
906	rv = vm_reserv_from_page(m);
907	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
908}
909
910/*
911 * Prepare for the reactivation of a cached page.
912 *
913 * First, suppose that the given page "m" was allocated individually, i.e., not
914 * as part of a reservation, and cached.  Then, suppose a reservation
915 * containing "m" is allocated by the same object.  Although "m" and the
916 * reservation belong to the same object, "m"'s pindex may not match the
917 * reservation's.
918 *
919 * The free page queue must be locked.
920 */
921boolean_t
922vm_reserv_reactivate_page(vm_page_t m)
923{
924	vm_reserv_t rv;
925	int index;
926
927	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
928	rv = vm_reserv_from_page(m);
929	if (rv->object == NULL)
930		return (FALSE);
931	KASSERT((m->flags & PG_CACHED) != 0,
932	    ("vm_reserv_reactivate_page: page %p is not cached", m));
933	if (m->object == rv->object &&
934	    m->pindex - rv->pindex == (index = VM_RESERV_INDEX(m->object,
935	    m->pindex)))
936		vm_reserv_populate(rv, index);
937	else {
938		KASSERT(rv->inpartpopq,
939	    ("vm_reserv_reactivate_page: reserv %p's inpartpopq is FALSE",
940		    rv));
941		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
942		rv->inpartpopq = FALSE;
943		/* Don't release "m" to the physical memory allocator. */
944		vm_reserv_break(rv, m);
945	}
946	return (TRUE);
947}
948
949/*
950 * Breaks the given partially-populated reservation, releasing its cached and
951 * free pages to the physical memory allocator.
952 *
953 * The free page queue lock must be held.
954 */
955static void
956vm_reserv_reclaim(vm_reserv_t rv)
957{
958
959	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
960	KASSERT(rv->inpartpopq,
961	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
962	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
963	rv->inpartpopq = FALSE;
964	vm_reserv_break(rv, NULL);
965	vm_reserv_reclaimed++;
966}
967
968/*
969 * Breaks the reservation at the head of the partially-populated reservation
970 * queue, releasing its cached and free pages to the physical memory
971 * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
972 *
973 * The free page queue lock must be held.
974 */
975boolean_t
976vm_reserv_reclaim_inactive(void)
977{
978	vm_reserv_t rv;
979
980	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
981	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
982		vm_reserv_reclaim(rv);
983		return (TRUE);
984	}
985	return (FALSE);
986}
987
988/*
989 * Searches the partially-populated reservation queue for the least recently
990 * active reservation with unused pages, i.e., cached or free, that satisfy the
991 * given request for contiguous physical memory.  If a satisfactory reservation
992 * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
993 * otherwise.
994 *
995 * The free page queue lock must be held.
996 */
997boolean_t
998vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
999    u_long alignment, vm_paddr_t boundary)
1000{
1001	vm_paddr_t pa, size;
1002	vm_reserv_t rv;
1003	int hi, i, lo, low_index, next_free;
1004
1005	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1006	if (npages > VM_LEVEL_0_NPAGES - 1)
1007		return (FALSE);
1008	size = npages << PAGE_SHIFT;
1009	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
1010		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1011		if (pa + PAGE_SIZE - size < low) {
1012			/* This entire reservation is too low; go to next. */
1013			continue;
1014		}
1015		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1016		if (pa + size > high) {
1017			/* This entire reservation is too high; go to next. */
1018			continue;
1019		}
1020		if (pa < low) {
1021			/* Start the search for free pages at "low". */
1022			low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1023			i = low_index / NBPOPMAP;
1024			hi = low_index % NBPOPMAP;
1025		} else
1026			i = hi = 0;
1027		do {
1028			/* Find the next free page. */
1029			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1030			while (lo == 0 && ++i < NPOPMAP)
1031				lo = ffsl(~rv->popmap[i]);
1032			if (i == NPOPMAP)
1033				break;
1034			/* Convert from ffsl() to ordinary bit numbering. */
1035			lo--;
1036			next_free = NBPOPMAP * i + lo;
1037			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1038			KASSERT(pa >= low,
1039			    ("vm_reserv_reclaim_contig: pa is too low"));
1040			if (pa + size > high) {
1041				/* The rest of this reservation is too high. */
1042				break;
1043			} else if ((pa & (alignment - 1)) != 0 ||
1044			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1045				/*
1046				 * The current page doesn't meet the alignment
1047				 * and/or boundary requirements.  Continue
1048				 * searching this reservation until the rest
1049				 * of its free pages are either excluded or
1050				 * exhausted.
1051				 */
1052				hi = lo + 1;
1053				if (hi >= NBPOPMAP) {
1054					hi = 0;
1055					i++;
1056				}
1057				continue;
1058			}
1059			/* Find the next used page. */
1060			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1061			while (hi == 0 && ++i < NPOPMAP) {
1062				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1063				    size) {
1064					vm_reserv_reclaim(rv);
1065					return (TRUE);
1066				}
1067				hi = ffsl(rv->popmap[i]);
1068			}
1069			/* Convert from ffsl() to ordinary bit numbering. */
1070			if (i != NPOPMAP)
1071				hi--;
1072			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1073			    size) {
1074				vm_reserv_reclaim(rv);
1075				return (TRUE);
1076			}
1077		} while (i < NPOPMAP);
1078	}
1079	return (FALSE);
1080}
1081
1082/*
1083 * Transfers the reservation underlying the given page to a new object.
1084 *
1085 * The object must be locked.
1086 */
1087void
1088vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1089    vm_pindex_t old_object_offset)
1090{
1091	vm_reserv_t rv;
1092
1093	VM_OBJECT_ASSERT_WLOCKED(new_object);
1094	rv = vm_reserv_from_page(m);
1095	if (rv->object == old_object) {
1096		mtx_lock(&vm_page_queue_free_mtx);
1097		if (rv->object == old_object) {
1098			LIST_REMOVE(rv, objq);
1099			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1100			rv->object = new_object;
1101			rv->pindex -= old_object_offset;
1102		}
1103		mtx_unlock(&vm_page_queue_free_mtx);
1104	}
1105}
1106
1107/*
1108 * Returns the size (in bytes) of a reservation of the specified level.
1109 */
1110int
1111vm_reserv_size(int level)
1112{
1113
1114	switch (level) {
1115	case 0:
1116		return (VM_LEVEL_0_SIZE);
1117	case -1:
1118		return (PAGE_SIZE);
1119	default:
1120		return (0);
1121	}
1122}
1123
1124/*
1125 * Allocates the virtual and physical memory required by the reservation
1126 * management system's data structures, in particular, the reservation array.
1127 */
1128vm_paddr_t
1129vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1130{
1131	vm_paddr_t new_end;
1132	size_t size;
1133
1134	/*
1135	 * Calculate the size (in bytes) of the reservation array.  Round up
1136	 * from "high_water" because every small page is mapped to an element
1137	 * in the reservation array based on its physical address.  Thus, the
1138	 * number of elements in the reservation array can be greater than the
1139	 * number of superpages.
1140	 */
1141	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1142
1143	/*
1144	 * Allocate and map the physical memory for the reservation array.  The
1145	 * next available virtual address is returned by reference.
1146	 */
1147	new_end = end - round_page(size);
1148	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1149	    VM_PROT_READ | VM_PROT_WRITE);
1150	bzero(vm_reserv_array, size);
1151
1152	/*
1153	 * Return the next available physical address.
1154	 */
1155	return (new_end);
1156}
1157
1158#endif	/* VM_NRESERVLEVEL > 0 */
1159