1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Physical memory system implementation
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include "opt_ddb.h"
43#include "opt_vm.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/lock.h>
48#include <sys/kernel.h>
49#include <sys/malloc.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/queue.h>
53#include <sys/rwlock.h>
54#include <sys/sbuf.h>
55#include <sys/sysctl.h>
56#include <sys/tree.h>
57#include <sys/vmmeter.h>
58#include <sys/seq.h>
59
60#include <ddb/ddb.h>
61
62#include <vm/vm.h>
63#include <vm/vm_param.h>
64#include <vm/vm_kern.h>
65#include <vm/vm_object.h>
66#include <vm/vm_page.h>
67#include <vm/vm_phys.h>
68
69#include <vm/vm_domain.h>
70
71_Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72    "Too many physsegs.");
73
74#ifdef VM_NUMA_ALLOC
75struct mem_affinity *mem_affinity;
76int *mem_locality;
77#endif
78
79int vm_ndomains = 1;
80
81struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82int vm_phys_nsegs;
83
84struct vm_phys_fictitious_seg;
85static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86    struct vm_phys_fictitious_seg *);
87
88RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89    RB_INITIALIZER(_vm_phys_fictitious_tree);
90
91struct vm_phys_fictitious_seg {
92	RB_ENTRY(vm_phys_fictitious_seg) node;
93	/* Memory region data */
94	vm_paddr_t	start;
95	vm_paddr_t	end;
96	vm_page_t	first_page;
97};
98
99RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100    vm_phys_fictitious_cmp);
101
102static struct rwlock vm_phys_fictitious_reg_lock;
103MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104
105static struct vm_freelist
106    vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107
108static int vm_nfreelists;
109
110/*
111 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112 */
113static int vm_freelist_to_flind[VM_NFREELIST];
114
115CTASSERT(VM_FREELIST_DEFAULT == 0);
116
117#ifdef VM_FREELIST_ISADMA
118#define	VM_ISADMA_BOUNDARY	16777216
119#endif
120#ifdef VM_FREELIST_DMA32
121#define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
122#endif
123
124/*
125 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126 * the ordering of the free list boundaries.
127 */
128#if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130#endif
131#if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133#endif
134
135static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
136SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
137    NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
138
139static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
140SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
141    NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
142
143#ifdef VM_NUMA_ALLOC
144static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
145SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
146    NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
147#endif
148
149SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
150    &vm_ndomains, 0, "Number of physical memory domains available.");
151
152/*
153 * Default to first-touch + round-robin.
154 */
155static struct mtx vm_default_policy_mtx;
156MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
157    MTX_DEF);
158#ifdef VM_NUMA_ALLOC
159static struct vm_domain_policy vm_default_policy =
160    VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
161#else
162/* Use round-robin so the domain policy code will only try once per allocation */
163static struct vm_domain_policy vm_default_policy =
164    VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
165#endif
166
167static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
168    int order);
169static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
170    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
171    vm_paddr_t boundary);
172static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
173static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
174static int vm_phys_paddr_to_segind(vm_paddr_t pa);
175static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
176    int order);
177
178static int
179sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
180{
181	char policy_name[32];
182	int error;
183
184	mtx_lock(&vm_default_policy_mtx);
185
186	/* Map policy to output string */
187	switch (vm_default_policy.p.policy) {
188	case VM_POLICY_FIRST_TOUCH:
189		strcpy(policy_name, "first-touch");
190		break;
191	case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
192		strcpy(policy_name, "first-touch-rr");
193		break;
194	case VM_POLICY_ROUND_ROBIN:
195	default:
196		strcpy(policy_name, "rr");
197		break;
198	}
199	mtx_unlock(&vm_default_policy_mtx);
200
201	error = sysctl_handle_string(oidp, &policy_name[0],
202	    sizeof(policy_name), req);
203	if (error != 0 || req->newptr == NULL)
204		return (error);
205
206	mtx_lock(&vm_default_policy_mtx);
207	/* Set: match on the subset of policies that make sense as a default */
208	if (strcmp("first-touch-rr", policy_name) == 0) {
209		vm_domain_policy_set(&vm_default_policy,
210		    VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
211	} else if (strcmp("first-touch", policy_name) == 0) {
212		vm_domain_policy_set(&vm_default_policy,
213		    VM_POLICY_FIRST_TOUCH, 0);
214	} else if (strcmp("rr", policy_name) == 0) {
215		vm_domain_policy_set(&vm_default_policy,
216		    VM_POLICY_ROUND_ROBIN, 0);
217	} else {
218		error = EINVAL;
219		goto finish;
220	}
221
222	error = 0;
223finish:
224	mtx_unlock(&vm_default_policy_mtx);
225	return (error);
226}
227
228SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
229    0, 0, sysctl_vm_default_policy, "A",
230    "Default policy (rr, first-touch, first-touch-rr");
231
232/*
233 * Red-black tree helpers for vm fictitious range management.
234 */
235static inline int
236vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
237    struct vm_phys_fictitious_seg *range)
238{
239
240	KASSERT(range->start != 0 && range->end != 0,
241	    ("Invalid range passed on search for vm_fictitious page"));
242	if (p->start >= range->end)
243		return (1);
244	if (p->start < range->start)
245		return (-1);
246
247	return (0);
248}
249
250static int
251vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
252    struct vm_phys_fictitious_seg *p2)
253{
254
255	/* Check if this is a search for a page */
256	if (p1->end == 0)
257		return (vm_phys_fictitious_in_range(p1, p2));
258
259	KASSERT(p2->end != 0,
260    ("Invalid range passed as second parameter to vm fictitious comparison"));
261
262	/* Searching to add a new range */
263	if (p1->end <= p2->start)
264		return (-1);
265	if (p1->start >= p2->end)
266		return (1);
267
268	panic("Trying to add overlapping vm fictitious ranges:\n"
269	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
270	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
271}
272
273static __inline int
274vm_rr_selectdomain(void)
275{
276#ifdef VM_NUMA_ALLOC
277	struct thread *td;
278
279	td = curthread;
280
281	td->td_dom_rr_idx++;
282	td->td_dom_rr_idx %= vm_ndomains;
283	return (td->td_dom_rr_idx);
284#else
285	return (0);
286#endif
287}
288
289/*
290 * Initialise a VM domain iterator.
291 *
292 * Check the thread policy, then the proc policy,
293 * then default to the system policy.
294 *
295 * Later on the various layers will have this logic
296 * plumbed into them and the phys code will be explicitly
297 * handed a VM domain policy to use.
298 */
299static void
300vm_policy_iterator_init(struct vm_domain_iterator *vi)
301{
302#ifdef VM_NUMA_ALLOC
303	struct vm_domain_policy lcl;
304#endif
305
306	vm_domain_iterator_init(vi);
307
308#ifdef VM_NUMA_ALLOC
309	/* Copy out the thread policy */
310	vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
311	if (lcl.p.policy != VM_POLICY_NONE) {
312		/* Thread policy is present; use it */
313		vm_domain_iterator_set_policy(vi, &lcl);
314		return;
315	}
316
317	vm_domain_policy_localcopy(&lcl,
318	    &curthread->td_proc->p_vm_dom_policy);
319	if (lcl.p.policy != VM_POLICY_NONE) {
320		/* Process policy is present; use it */
321		vm_domain_iterator_set_policy(vi, &lcl);
322		return;
323	}
324#endif
325	/* Use system default policy */
326	vm_domain_iterator_set_policy(vi, &vm_default_policy);
327}
328
329static void
330vm_policy_iterator_finish(struct vm_domain_iterator *vi)
331{
332
333	vm_domain_iterator_cleanup(vi);
334}
335
336boolean_t
337vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
338{
339	struct vm_phys_seg *s;
340	int idx;
341
342	while ((idx = ffsl(mask)) != 0) {
343		idx--;	/* ffsl counts from 1 */
344		mask &= ~(1UL << idx);
345		s = &vm_phys_segs[idx];
346		if (low < s->end && high > s->start)
347			return (TRUE);
348	}
349	return (FALSE);
350}
351
352/*
353 * Outputs the state of the physical memory allocator, specifically,
354 * the amount of physical memory in each free list.
355 */
356static int
357sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
358{
359	struct sbuf sbuf;
360	struct vm_freelist *fl;
361	int dom, error, flind, oind, pind;
362
363	error = sysctl_wire_old_buffer(req, 0);
364	if (error != 0)
365		return (error);
366	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
367	for (dom = 0; dom < vm_ndomains; dom++) {
368		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
369		for (flind = 0; flind < vm_nfreelists; flind++) {
370			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
371			    "\n  ORDER (SIZE)  |  NUMBER"
372			    "\n              ", flind);
373			for (pind = 0; pind < VM_NFREEPOOL; pind++)
374				sbuf_printf(&sbuf, "  |  POOL %d", pind);
375			sbuf_printf(&sbuf, "\n--            ");
376			for (pind = 0; pind < VM_NFREEPOOL; pind++)
377				sbuf_printf(&sbuf, "-- --      ");
378			sbuf_printf(&sbuf, "--\n");
379			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
380				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
381				    1 << (PAGE_SHIFT - 10 + oind));
382				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
383				fl = vm_phys_free_queues[dom][flind][pind];
384					sbuf_printf(&sbuf, "  |  %6d",
385					    fl[oind].lcnt);
386				}
387				sbuf_printf(&sbuf, "\n");
388			}
389		}
390	}
391	error = sbuf_finish(&sbuf);
392	sbuf_delete(&sbuf);
393	return (error);
394}
395
396/*
397 * Outputs the set of physical memory segments.
398 */
399static int
400sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
401{
402	struct sbuf sbuf;
403	struct vm_phys_seg *seg;
404	int error, segind;
405
406	error = sysctl_wire_old_buffer(req, 0);
407	if (error != 0)
408		return (error);
409	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
410	for (segind = 0; segind < vm_phys_nsegs; segind++) {
411		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
412		seg = &vm_phys_segs[segind];
413		sbuf_printf(&sbuf, "start:     %#jx\n",
414		    (uintmax_t)seg->start);
415		sbuf_printf(&sbuf, "end:       %#jx\n",
416		    (uintmax_t)seg->end);
417		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
418		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
419	}
420	error = sbuf_finish(&sbuf);
421	sbuf_delete(&sbuf);
422	return (error);
423}
424
425/*
426 * Return affinity, or -1 if there's no affinity information.
427 */
428int
429vm_phys_mem_affinity(int f, int t)
430{
431
432#ifdef VM_NUMA_ALLOC
433	if (mem_locality == NULL)
434		return (-1);
435	if (f >= vm_ndomains || t >= vm_ndomains)
436		return (-1);
437	return (mem_locality[f * vm_ndomains + t]);
438#else
439	return (-1);
440#endif
441}
442
443#ifdef VM_NUMA_ALLOC
444/*
445 * Outputs the VM locality table.
446 */
447static int
448sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
449{
450	struct sbuf sbuf;
451	int error, i, j;
452
453	error = sysctl_wire_old_buffer(req, 0);
454	if (error != 0)
455		return (error);
456	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
457
458	sbuf_printf(&sbuf, "\n");
459
460	for (i = 0; i < vm_ndomains; i++) {
461		sbuf_printf(&sbuf, "%d: ", i);
462		for (j = 0; j < vm_ndomains; j++) {
463			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
464		}
465		sbuf_printf(&sbuf, "\n");
466	}
467	error = sbuf_finish(&sbuf);
468	sbuf_delete(&sbuf);
469	return (error);
470}
471#endif
472
473static void
474vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
475{
476
477	m->order = order;
478	if (tail)
479		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
480	else
481		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
482	fl[order].lcnt++;
483}
484
485static void
486vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
487{
488
489	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
490	fl[order].lcnt--;
491	m->order = VM_NFREEORDER;
492}
493
494/*
495 * Create a physical memory segment.
496 */
497static void
498_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
499{
500	struct vm_phys_seg *seg;
501
502	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
503	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
504	KASSERT(domain < vm_ndomains,
505	    ("vm_phys_create_seg: invalid domain provided"));
506	seg = &vm_phys_segs[vm_phys_nsegs++];
507	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
508		*seg = *(seg - 1);
509		seg--;
510	}
511	seg->start = start;
512	seg->end = end;
513	seg->domain = domain;
514}
515
516static void
517vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
518{
519#ifdef VM_NUMA_ALLOC
520	int i;
521
522	if (mem_affinity == NULL) {
523		_vm_phys_create_seg(start, end, 0);
524		return;
525	}
526
527	for (i = 0;; i++) {
528		if (mem_affinity[i].end == 0)
529			panic("Reached end of affinity info");
530		if (mem_affinity[i].end <= start)
531			continue;
532		if (mem_affinity[i].start > start)
533			panic("No affinity info for start %jx",
534			    (uintmax_t)start);
535		if (mem_affinity[i].end >= end) {
536			_vm_phys_create_seg(start, end,
537			    mem_affinity[i].domain);
538			break;
539		}
540		_vm_phys_create_seg(start, mem_affinity[i].end,
541		    mem_affinity[i].domain);
542		start = mem_affinity[i].end;
543	}
544#else
545	_vm_phys_create_seg(start, end, 0);
546#endif
547}
548
549/*
550 * Add a physical memory segment.
551 */
552void
553vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
554{
555	vm_paddr_t paddr;
556
557	KASSERT((start & PAGE_MASK) == 0,
558	    ("vm_phys_define_seg: start is not page aligned"));
559	KASSERT((end & PAGE_MASK) == 0,
560	    ("vm_phys_define_seg: end is not page aligned"));
561
562	/*
563	 * Split the physical memory segment if it spans two or more free
564	 * list boundaries.
565	 */
566	paddr = start;
567#ifdef	VM_FREELIST_ISADMA
568	if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
569		vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
570		paddr = VM_ISADMA_BOUNDARY;
571	}
572#endif
573#ifdef	VM_FREELIST_LOWMEM
574	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
575		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
576		paddr = VM_LOWMEM_BOUNDARY;
577	}
578#endif
579#ifdef	VM_FREELIST_DMA32
580	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
581		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
582		paddr = VM_DMA32_BOUNDARY;
583	}
584#endif
585	vm_phys_create_seg(paddr, end);
586}
587
588/*
589 * Initialize the physical memory allocator.
590 *
591 * Requires that vm_page_array is initialized!
592 */
593void
594vm_phys_init(void)
595{
596	struct vm_freelist *fl;
597	struct vm_phys_seg *seg;
598	u_long npages;
599	int dom, flind, freelist, oind, pind, segind;
600
601	/*
602	 * Compute the number of free lists, and generate the mapping from the
603	 * manifest constants VM_FREELIST_* to the free list indices.
604	 *
605	 * Initially, the entries of vm_freelist_to_flind[] are set to either
606	 * 0 or 1 to indicate which free lists should be created.
607	 */
608	npages = 0;
609	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
610		seg = &vm_phys_segs[segind];
611#ifdef	VM_FREELIST_ISADMA
612		if (seg->end <= VM_ISADMA_BOUNDARY)
613			vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
614		else
615#endif
616#ifdef	VM_FREELIST_LOWMEM
617		if (seg->end <= VM_LOWMEM_BOUNDARY)
618			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
619		else
620#endif
621#ifdef	VM_FREELIST_DMA32
622		if (
623#ifdef	VM_DMA32_NPAGES_THRESHOLD
624		    /*
625		     * Create the DMA32 free list only if the amount of
626		     * physical memory above physical address 4G exceeds the
627		     * given threshold.
628		     */
629		    npages > VM_DMA32_NPAGES_THRESHOLD &&
630#endif
631		    seg->end <= VM_DMA32_BOUNDARY)
632			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
633		else
634#endif
635		{
636			npages += atop(seg->end - seg->start);
637			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
638		}
639	}
640	/* Change each entry into a running total of the free lists. */
641	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
642		vm_freelist_to_flind[freelist] +=
643		    vm_freelist_to_flind[freelist - 1];
644	}
645	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
646	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
647	/* Change each entry into a free list index. */
648	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
649		vm_freelist_to_flind[freelist]--;
650
651	/*
652	 * Initialize the first_page and free_queues fields of each physical
653	 * memory segment.
654	 */
655#ifdef VM_PHYSSEG_SPARSE
656	npages = 0;
657#endif
658	for (segind = 0; segind < vm_phys_nsegs; segind++) {
659		seg = &vm_phys_segs[segind];
660#ifdef VM_PHYSSEG_SPARSE
661		seg->first_page = &vm_page_array[npages];
662		npages += atop(seg->end - seg->start);
663#else
664		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
665#endif
666#ifdef	VM_FREELIST_ISADMA
667		if (seg->end <= VM_ISADMA_BOUNDARY) {
668			flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
669			KASSERT(flind >= 0,
670			    ("vm_phys_init: ISADMA flind < 0"));
671		} else
672#endif
673#ifdef	VM_FREELIST_LOWMEM
674		if (seg->end <= VM_LOWMEM_BOUNDARY) {
675			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
676			KASSERT(flind >= 0,
677			    ("vm_phys_init: LOWMEM flind < 0"));
678		} else
679#endif
680#ifdef	VM_FREELIST_DMA32
681		if (seg->end <= VM_DMA32_BOUNDARY) {
682			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
683			KASSERT(flind >= 0,
684			    ("vm_phys_init: DMA32 flind < 0"));
685		} else
686#endif
687		{
688			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
689			KASSERT(flind >= 0,
690			    ("vm_phys_init: DEFAULT flind < 0"));
691		}
692		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
693	}
694
695	/*
696	 * Initialize the free queues.
697	 */
698	for (dom = 0; dom < vm_ndomains; dom++) {
699		for (flind = 0; flind < vm_nfreelists; flind++) {
700			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
701				fl = vm_phys_free_queues[dom][flind][pind];
702				for (oind = 0; oind < VM_NFREEORDER; oind++)
703					TAILQ_INIT(&fl[oind].pl);
704			}
705		}
706	}
707
708	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
709}
710
711/*
712 * Split a contiguous, power of two-sized set of physical pages.
713 */
714static __inline void
715vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
716{
717	vm_page_t m_buddy;
718
719	while (oind > order) {
720		oind--;
721		m_buddy = &m[1 << oind];
722		KASSERT(m_buddy->order == VM_NFREEORDER,
723		    ("vm_phys_split_pages: page %p has unexpected order %d",
724		    m_buddy, m_buddy->order));
725		vm_freelist_add(fl, m_buddy, oind, 0);
726        }
727}
728
729/*
730 * Initialize a physical page and add it to the free lists.
731 */
732void
733vm_phys_add_page(vm_paddr_t pa)
734{
735	vm_page_t m;
736	struct vm_domain *vmd;
737
738	vm_cnt.v_page_count++;
739	m = vm_phys_paddr_to_vm_page(pa);
740	m->busy_lock = VPB_UNBUSIED;
741	m->phys_addr = pa;
742	m->queue = PQ_NONE;
743	m->segind = vm_phys_paddr_to_segind(pa);
744	vmd = vm_phys_domain(m);
745	vmd->vmd_page_count++;
746	vmd->vmd_segs |= 1UL << m->segind;
747	KASSERT(m->order == VM_NFREEORDER,
748	    ("vm_phys_add_page: page %p has unexpected order %d",
749	    m, m->order));
750	m->pool = VM_FREEPOOL_DEFAULT;
751	pmap_page_init(m);
752	mtx_lock(&vm_page_queue_free_mtx);
753	vm_phys_freecnt_adj(m, 1);
754	vm_phys_free_pages(m, 0);
755	mtx_unlock(&vm_page_queue_free_mtx);
756}
757
758/*
759 * Allocate a contiguous, power of two-sized set of physical pages
760 * from the free lists.
761 *
762 * The free page queues must be locked.
763 */
764vm_page_t
765vm_phys_alloc_pages(int pool, int order)
766{
767	vm_page_t m;
768	int domain, flind;
769	struct vm_domain_iterator vi;
770
771	KASSERT(pool < VM_NFREEPOOL,
772	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
773	KASSERT(order < VM_NFREEORDER,
774	    ("vm_phys_alloc_pages: order %d is out of range", order));
775
776	vm_policy_iterator_init(&vi);
777
778	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
779		for (flind = 0; flind < vm_nfreelists; flind++) {
780			m = vm_phys_alloc_domain_pages(domain, flind, pool,
781			    order);
782			if (m != NULL)
783				return (m);
784		}
785	}
786
787	vm_policy_iterator_finish(&vi);
788	return (NULL);
789}
790
791/*
792 * Allocate a contiguous, power of two-sized set of physical pages from the
793 * specified free list.  The free list must be specified using one of the
794 * manifest constants VM_FREELIST_*.
795 *
796 * The free page queues must be locked.
797 */
798vm_page_t
799vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
800{
801	vm_page_t m;
802	struct vm_domain_iterator vi;
803	int domain;
804
805	KASSERT(freelist < VM_NFREELIST,
806	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
807	    freelist));
808	KASSERT(pool < VM_NFREEPOOL,
809	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
810	KASSERT(order < VM_NFREEORDER,
811	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
812
813	vm_policy_iterator_init(&vi);
814
815	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
816		m = vm_phys_alloc_domain_pages(domain,
817		    vm_freelist_to_flind[freelist], pool, order);
818		if (m != NULL)
819			return (m);
820	}
821
822	vm_policy_iterator_finish(&vi);
823	return (NULL);
824}
825
826static vm_page_t
827vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
828{
829	struct vm_freelist *fl;
830	struct vm_freelist *alt;
831	int oind, pind;
832	vm_page_t m;
833
834	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
835	fl = &vm_phys_free_queues[domain][flind][pool][0];
836	for (oind = order; oind < VM_NFREEORDER; oind++) {
837		m = TAILQ_FIRST(&fl[oind].pl);
838		if (m != NULL) {
839			vm_freelist_rem(fl, m, oind);
840			vm_phys_split_pages(m, oind, fl, order);
841			return (m);
842		}
843	}
844
845	/*
846	 * The given pool was empty.  Find the largest
847	 * contiguous, power-of-two-sized set of pages in any
848	 * pool.  Transfer these pages to the given pool, and
849	 * use them to satisfy the allocation.
850	 */
851	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
852		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
853			alt = &vm_phys_free_queues[domain][flind][pind][0];
854			m = TAILQ_FIRST(&alt[oind].pl);
855			if (m != NULL) {
856				vm_freelist_rem(alt, m, oind);
857				vm_phys_set_pool(pool, m, oind);
858				vm_phys_split_pages(m, oind, fl, order);
859				return (m);
860			}
861		}
862	}
863	return (NULL);
864}
865
866/*
867 * Find the vm_page corresponding to the given physical address.
868 */
869vm_page_t
870vm_phys_paddr_to_vm_page(vm_paddr_t pa)
871{
872	struct vm_phys_seg *seg;
873	int segind;
874
875	for (segind = 0; segind < vm_phys_nsegs; segind++) {
876		seg = &vm_phys_segs[segind];
877		if (pa >= seg->start && pa < seg->end)
878			return (&seg->first_page[atop(pa - seg->start)]);
879	}
880	return (NULL);
881}
882
883vm_page_t
884vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
885{
886	struct vm_phys_fictitious_seg tmp, *seg;
887	vm_page_t m;
888
889	m = NULL;
890	tmp.start = pa;
891	tmp.end = 0;
892
893	rw_rlock(&vm_phys_fictitious_reg_lock);
894	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
895	rw_runlock(&vm_phys_fictitious_reg_lock);
896	if (seg == NULL)
897		return (NULL);
898
899	m = &seg->first_page[atop(pa - seg->start)];
900	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
901
902	return (m);
903}
904
905static inline void
906vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
907    long page_count, vm_memattr_t memattr)
908{
909	long i;
910
911	for (i = 0; i < page_count; i++) {
912		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
913		range[i].oflags &= ~VPO_UNMANAGED;
914		range[i].busy_lock = VPB_UNBUSIED;
915	}
916}
917
918int
919vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
920    vm_memattr_t memattr)
921{
922	struct vm_phys_fictitious_seg *seg;
923	vm_page_t fp;
924	long page_count;
925#ifdef VM_PHYSSEG_DENSE
926	long pi, pe;
927	long dpage_count;
928#endif
929
930	KASSERT(start < end,
931	    ("Start of segment isn't less than end (start: %jx end: %jx)",
932	    (uintmax_t)start, (uintmax_t)end));
933
934	page_count = (end - start) / PAGE_SIZE;
935
936#ifdef VM_PHYSSEG_DENSE
937	pi = atop(start);
938	pe = atop(end);
939	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
940		fp = &vm_page_array[pi - first_page];
941		if ((pe - first_page) > vm_page_array_size) {
942			/*
943			 * We have a segment that starts inside
944			 * of vm_page_array, but ends outside of it.
945			 *
946			 * Use vm_page_array pages for those that are
947			 * inside of the vm_page_array range, and
948			 * allocate the remaining ones.
949			 */
950			dpage_count = vm_page_array_size - (pi - first_page);
951			vm_phys_fictitious_init_range(fp, start, dpage_count,
952			    memattr);
953			page_count -= dpage_count;
954			start += ptoa(dpage_count);
955			goto alloc;
956		}
957		/*
958		 * We can allocate the full range from vm_page_array,
959		 * so there's no need to register the range in the tree.
960		 */
961		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
962		return (0);
963	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
964		/*
965		 * We have a segment that ends inside of vm_page_array,
966		 * but starts outside of it.
967		 */
968		fp = &vm_page_array[0];
969		dpage_count = pe - first_page;
970		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
971		    memattr);
972		end -= ptoa(dpage_count);
973		page_count -= dpage_count;
974		goto alloc;
975	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
976		/*
977		 * Trying to register a fictitious range that expands before
978		 * and after vm_page_array.
979		 */
980		return (EINVAL);
981	} else {
982alloc:
983#endif
984		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
985		    M_WAITOK | M_ZERO);
986#ifdef VM_PHYSSEG_DENSE
987	}
988#endif
989	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
990
991	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
992	seg->start = start;
993	seg->end = end;
994	seg->first_page = fp;
995
996	rw_wlock(&vm_phys_fictitious_reg_lock);
997	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
998	rw_wunlock(&vm_phys_fictitious_reg_lock);
999
1000	return (0);
1001}
1002
1003void
1004vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1005{
1006	struct vm_phys_fictitious_seg *seg, tmp;
1007#ifdef VM_PHYSSEG_DENSE
1008	long pi, pe;
1009#endif
1010
1011	KASSERT(start < end,
1012	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1013	    (uintmax_t)start, (uintmax_t)end));
1014
1015#ifdef VM_PHYSSEG_DENSE
1016	pi = atop(start);
1017	pe = atop(end);
1018	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1019		if ((pe - first_page) <= vm_page_array_size) {
1020			/*
1021			 * This segment was allocated using vm_page_array
1022			 * only, there's nothing to do since those pages
1023			 * were never added to the tree.
1024			 */
1025			return;
1026		}
1027		/*
1028		 * We have a segment that starts inside
1029		 * of vm_page_array, but ends outside of it.
1030		 *
1031		 * Calculate how many pages were added to the
1032		 * tree and free them.
1033		 */
1034		start = ptoa(first_page + vm_page_array_size);
1035	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1036		/*
1037		 * We have a segment that ends inside of vm_page_array,
1038		 * but starts outside of it.
1039		 */
1040		end = ptoa(first_page);
1041	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1042		/* Since it's not possible to register such a range, panic. */
1043		panic(
1044		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1045		    (uintmax_t)start, (uintmax_t)end);
1046	}
1047#endif
1048	tmp.start = start;
1049	tmp.end = 0;
1050
1051	rw_wlock(&vm_phys_fictitious_reg_lock);
1052	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1053	if (seg->start != start || seg->end != end) {
1054		rw_wunlock(&vm_phys_fictitious_reg_lock);
1055		panic(
1056		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1057		    (uintmax_t)start, (uintmax_t)end);
1058	}
1059	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1060	rw_wunlock(&vm_phys_fictitious_reg_lock);
1061	free(seg->first_page, M_FICT_PAGES);
1062	free(seg, M_FICT_PAGES);
1063}
1064
1065/*
1066 * Find the segment containing the given physical address.
1067 */
1068static int
1069vm_phys_paddr_to_segind(vm_paddr_t pa)
1070{
1071	struct vm_phys_seg *seg;
1072	int segind;
1073
1074	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1075		seg = &vm_phys_segs[segind];
1076		if (pa >= seg->start && pa < seg->end)
1077			return (segind);
1078	}
1079	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
1080	    (uintmax_t)pa);
1081}
1082
1083/*
1084 * Free a contiguous, power of two-sized set of physical pages.
1085 *
1086 * The free page queues must be locked.
1087 */
1088void
1089vm_phys_free_pages(vm_page_t m, int order)
1090{
1091	struct vm_freelist *fl;
1092	struct vm_phys_seg *seg;
1093	vm_paddr_t pa;
1094	vm_page_t m_buddy;
1095
1096	KASSERT(m->order == VM_NFREEORDER,
1097	    ("vm_phys_free_pages: page %p has unexpected order %d",
1098	    m, m->order));
1099	KASSERT(m->pool < VM_NFREEPOOL,
1100	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1101	    m, m->pool));
1102	KASSERT(order < VM_NFREEORDER,
1103	    ("vm_phys_free_pages: order %d is out of range", order));
1104	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1105	seg = &vm_phys_segs[m->segind];
1106	if (order < VM_NFREEORDER - 1) {
1107		pa = VM_PAGE_TO_PHYS(m);
1108		do {
1109			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1110			if (pa < seg->start || pa >= seg->end)
1111				break;
1112			m_buddy = &seg->first_page[atop(pa - seg->start)];
1113			if (m_buddy->order != order)
1114				break;
1115			fl = (*seg->free_queues)[m_buddy->pool];
1116			vm_freelist_rem(fl, m_buddy, order);
1117			if (m_buddy->pool != m->pool)
1118				vm_phys_set_pool(m->pool, m_buddy, order);
1119			order++;
1120			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1121			m = &seg->first_page[atop(pa - seg->start)];
1122		} while (order < VM_NFREEORDER - 1);
1123	}
1124	fl = (*seg->free_queues)[m->pool];
1125	vm_freelist_add(fl, m, order, 1);
1126}
1127
1128/*
1129 * Free a contiguous, arbitrarily sized set of physical pages.
1130 *
1131 * The free page queues must be locked.
1132 */
1133void
1134vm_phys_free_contig(vm_page_t m, u_long npages)
1135{
1136	u_int n;
1137	int order;
1138
1139	/*
1140	 * Avoid unnecessary coalescing by freeing the pages in the largest
1141	 * possible power-of-two-sized subsets.
1142	 */
1143	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1144	for (;; npages -= n) {
1145		/*
1146		 * Unsigned "min" is used here so that "order" is assigned
1147		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1148		 * or the low-order bits of its physical address are zero
1149		 * because the size of a physical address exceeds the size of
1150		 * a long.
1151		 */
1152		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1153		    VM_NFREEORDER - 1);
1154		n = 1 << order;
1155		if (npages < n)
1156			break;
1157		vm_phys_free_pages(m, order);
1158		m += n;
1159	}
1160	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1161	for (; npages > 0; npages -= n) {
1162		order = flsl(npages) - 1;
1163		n = 1 << order;
1164		vm_phys_free_pages(m, order);
1165		m += n;
1166	}
1167}
1168
1169/*
1170 * Scan physical memory between the specified addresses "low" and "high" for a
1171 * run of contiguous physical pages that satisfy the specified conditions, and
1172 * return the lowest page in the run.  The specified "alignment" determines
1173 * the alignment of the lowest physical page in the run.  If the specified
1174 * "boundary" is non-zero, then the run of physical pages cannot span a
1175 * physical address that is a multiple of "boundary".
1176 *
1177 * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1178 * be a power of two.
1179 */
1180vm_page_t
1181vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1182    u_long alignment, vm_paddr_t boundary, int options)
1183{
1184	vm_paddr_t pa_end;
1185	vm_page_t m_end, m_run, m_start;
1186	struct vm_phys_seg *seg;
1187	int segind;
1188
1189	KASSERT(npages > 0, ("npages is 0"));
1190	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1191	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1192	if (low >= high)
1193		return (NULL);
1194	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1195		seg = &vm_phys_segs[segind];
1196		if (seg->start >= high)
1197			break;
1198		if (low >= seg->end)
1199			continue;
1200		if (low <= seg->start)
1201			m_start = seg->first_page;
1202		else
1203			m_start = &seg->first_page[atop(low - seg->start)];
1204		if (high < seg->end)
1205			pa_end = high;
1206		else
1207			pa_end = seg->end;
1208		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1209			continue;
1210		m_end = &seg->first_page[atop(pa_end - seg->start)];
1211		m_run = vm_page_scan_contig(npages, m_start, m_end,
1212		    alignment, boundary, options);
1213		if (m_run != NULL)
1214			return (m_run);
1215	}
1216	return (NULL);
1217}
1218
1219/*
1220 * Set the pool for a contiguous, power of two-sized set of physical pages.
1221 */
1222void
1223vm_phys_set_pool(int pool, vm_page_t m, int order)
1224{
1225	vm_page_t m_tmp;
1226
1227	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1228		m_tmp->pool = pool;
1229}
1230
1231/*
1232 * Search for the given physical page "m" in the free lists.  If the search
1233 * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1234 * FALSE, indicating that "m" is not in the free lists.
1235 *
1236 * The free page queues must be locked.
1237 */
1238boolean_t
1239vm_phys_unfree_page(vm_page_t m)
1240{
1241	struct vm_freelist *fl;
1242	struct vm_phys_seg *seg;
1243	vm_paddr_t pa, pa_half;
1244	vm_page_t m_set, m_tmp;
1245	int order;
1246
1247	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1248
1249	/*
1250	 * First, find the contiguous, power of two-sized set of free
1251	 * physical pages containing the given physical page "m" and
1252	 * assign it to "m_set".
1253	 */
1254	seg = &vm_phys_segs[m->segind];
1255	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1256	    order < VM_NFREEORDER - 1; ) {
1257		order++;
1258		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1259		if (pa >= seg->start)
1260			m_set = &seg->first_page[atop(pa - seg->start)];
1261		else
1262			return (FALSE);
1263	}
1264	if (m_set->order < order)
1265		return (FALSE);
1266	if (m_set->order == VM_NFREEORDER)
1267		return (FALSE);
1268	KASSERT(m_set->order < VM_NFREEORDER,
1269	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1270	    m_set, m_set->order));
1271
1272	/*
1273	 * Next, remove "m_set" from the free lists.  Finally, extract
1274	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1275	 * is larger than a page, shrink "m_set" by returning the half
1276	 * of "m_set" that does not contain "m" to the free lists.
1277	 */
1278	fl = (*seg->free_queues)[m_set->pool];
1279	order = m_set->order;
1280	vm_freelist_rem(fl, m_set, order);
1281	while (order > 0) {
1282		order--;
1283		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1284		if (m->phys_addr < pa_half)
1285			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1286		else {
1287			m_tmp = m_set;
1288			m_set = &seg->first_page[atop(pa_half - seg->start)];
1289		}
1290		vm_freelist_add(fl, m_tmp, order, 0);
1291	}
1292	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1293	return (TRUE);
1294}
1295
1296/*
1297 * Allocate a contiguous set of physical pages of the given size
1298 * "npages" from the free lists.  All of the physical pages must be at
1299 * or above the given physical address "low" and below the given
1300 * physical address "high".  The given value "alignment" determines the
1301 * alignment of the first physical page in the set.  If the given value
1302 * "boundary" is non-zero, then the set of physical pages cannot cross
1303 * any physical address boundary that is a multiple of that value.  Both
1304 * "alignment" and "boundary" must be a power of two.
1305 */
1306vm_page_t
1307vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1308    u_long alignment, vm_paddr_t boundary)
1309{
1310	vm_paddr_t pa_end, pa_start;
1311	vm_page_t m_run;
1312	struct vm_domain_iterator vi;
1313	struct vm_phys_seg *seg;
1314	int domain, segind;
1315
1316	KASSERT(npages > 0, ("npages is 0"));
1317	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1318	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1319	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1320	if (low >= high)
1321		return (NULL);
1322	vm_policy_iterator_init(&vi);
1323restartdom:
1324	if (vm_domain_iterator_run(&vi, &domain) != 0) {
1325		vm_policy_iterator_finish(&vi);
1326		return (NULL);
1327	}
1328	m_run = NULL;
1329	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1330		seg = &vm_phys_segs[segind];
1331		if (seg->start >= high || seg->domain != domain)
1332			continue;
1333		if (low >= seg->end)
1334			break;
1335		if (low <= seg->start)
1336			pa_start = seg->start;
1337		else
1338			pa_start = low;
1339		if (high < seg->end)
1340			pa_end = high;
1341		else
1342			pa_end = seg->end;
1343		if (pa_end - pa_start < ptoa(npages))
1344			continue;
1345		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1346		    alignment, boundary);
1347		if (m_run != NULL)
1348			break;
1349	}
1350	if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
1351		goto restartdom;
1352	vm_policy_iterator_finish(&vi);
1353	return (m_run);
1354}
1355
1356/*
1357 * Allocate a run of contiguous physical pages from the free list for the
1358 * specified segment.
1359 */
1360static vm_page_t
1361vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1362    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1363{
1364	struct vm_freelist *fl;
1365	vm_paddr_t pa, pa_end, size;
1366	vm_page_t m, m_ret;
1367	u_long npages_end;
1368	int oind, order, pind;
1369
1370	KASSERT(npages > 0, ("npages is 0"));
1371	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1372	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1373	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1374	/* Compute the queue that is the best fit for npages. */
1375	for (order = 0; (1 << order) < npages; order++);
1376	/* Search for a run satisfying the specified conditions. */
1377	size = npages << PAGE_SHIFT;
1378	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1379	    oind++) {
1380		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1381			fl = (*seg->free_queues)[pind];
1382			TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1383				/*
1384				 * Is the size of this allocation request
1385				 * larger than the largest block size?
1386				 */
1387				if (order >= VM_NFREEORDER) {
1388					/*
1389					 * Determine if a sufficient number of
1390					 * subsequent blocks to satisfy the
1391					 * allocation request are free.
1392					 */
1393					pa = VM_PAGE_TO_PHYS(m_ret);
1394					pa_end = pa + size;
1395					for (;;) {
1396						pa += 1 << (PAGE_SHIFT +
1397						    VM_NFREEORDER - 1);
1398						if (pa >= pa_end ||
1399						    pa < seg->start ||
1400						    pa >= seg->end)
1401							break;
1402						m = &seg->first_page[atop(pa -
1403						    seg->start)];
1404						if (m->order != VM_NFREEORDER -
1405						    1)
1406							break;
1407					}
1408					/* If not, go to the next block. */
1409					if (pa < pa_end)
1410						continue;
1411				}
1412
1413				/*
1414				 * Determine if the blocks are within the
1415				 * given range, satisfy the given alignment,
1416				 * and do not cross the given boundary.
1417				 */
1418				pa = VM_PAGE_TO_PHYS(m_ret);
1419				pa_end = pa + size;
1420				if (pa >= low && pa_end <= high &&
1421				    (pa & (alignment - 1)) == 0 &&
1422				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1423					goto done;
1424			}
1425		}
1426	}
1427	return (NULL);
1428done:
1429	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1430		fl = (*seg->free_queues)[m->pool];
1431		vm_freelist_rem(fl, m, m->order);
1432	}
1433	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1434		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1435	fl = (*seg->free_queues)[m_ret->pool];
1436	vm_phys_split_pages(m_ret, oind, fl, order);
1437	/* Return excess pages to the free lists. */
1438	npages_end = roundup2(npages, 1 << imin(oind, order));
1439	if (npages < npages_end)
1440		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1441	return (m_ret);
1442}
1443
1444#ifdef DDB
1445/*
1446 * Show the number of physical pages in each of the free lists.
1447 */
1448DB_SHOW_COMMAND(freepages, db_show_freepages)
1449{
1450	struct vm_freelist *fl;
1451	int flind, oind, pind, dom;
1452
1453	for (dom = 0; dom < vm_ndomains; dom++) {
1454		db_printf("DOMAIN: %d\n", dom);
1455		for (flind = 0; flind < vm_nfreelists; flind++) {
1456			db_printf("FREE LIST %d:\n"
1457			    "\n  ORDER (SIZE)  |  NUMBER"
1458			    "\n              ", flind);
1459			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1460				db_printf("  |  POOL %d", pind);
1461			db_printf("\n--            ");
1462			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1463				db_printf("-- --      ");
1464			db_printf("--\n");
1465			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1466				db_printf("  %2.2d (%6.6dK)", oind,
1467				    1 << (PAGE_SHIFT - 10 + oind));
1468				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1469				fl = vm_phys_free_queues[dom][flind][pind];
1470					db_printf("  |  %6.6d", fl[oind].lcnt);
1471				}
1472				db_printf("\n");
1473			}
1474			db_printf("\n");
1475		}
1476		db_printf("\n");
1477	}
1478}
1479#endif
1480