1/* LibTomMath, multiple-precision integer library -- Tom St Denis
2 *
3 * LibTomMath is a library that provides multiple-precision
4 * integer arithmetic as well as number theoretic functionality.
5 *
6 * The library was designed directly after the MPI library by
7 * Michael Fromberger but has been written from scratch with
8 * additional optimizations in place.
9 *
10 * The library is free for all purposes without any express
11 * guarantee it works.
12 *
13 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
14 */
15#ifndef BN_H_
16#define BN_H_
17
18#include <stdio.h>
19#include <string.h>
20#include <stdlib.h>
21#include <ctype.h>
22#include <limits.h>
23
24#include <tommath_class.h>
25
26#ifndef MIN
27   #define MIN(x,y) ((x)<(y)?(x):(y))
28#endif
29
30#ifndef MAX
31   #define MAX(x,y) ((x)>(y)?(x):(y))
32#endif
33
34#ifdef __cplusplus
35extern "C" {
36
37/* C++ compilers don't like assigning void * to mp_digit * */
38#define  OPT_CAST(x)  (x *)
39
40#else
41
42/* C on the other hand doesn't care */
43#define  OPT_CAST(x)
44
45#endif
46
47
48/* detect 64-bit mode if possible */
49#if defined(__x86_64__)
50   #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
51      #define MP_64BIT
52   #endif
53#endif
54
55/* some default configurations.
56 *
57 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
58 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
59 *
60 * At the very least a mp_digit must be able to hold 7 bits
61 * [any size beyond that is ok provided it doesn't overflow the data type]
62 */
63#ifdef MP_8BIT
64   typedef unsigned char      mp_digit;
65   typedef unsigned short     mp_word;
66#elif defined(MP_16BIT)
67   typedef unsigned short     mp_digit;
68   typedef unsigned long      mp_word;
69#elif defined(MP_64BIT)
70   /* for GCC only on supported platforms */
71#ifndef CRYPT
72   typedef unsigned long long ulong64;
73   typedef signed long long   long64;
74#endif
75
76   typedef unsigned long      mp_digit;
77   typedef unsigned long      mp_word __attribute__ ((mode(TI)));
78
79   #define DIGIT_BIT          60
80#else
81   /* this is the default case, 28-bit digits */
82
83   /* this is to make porting into LibTomCrypt easier :-) */
84#ifndef CRYPT
85   #if defined(_MSC_VER) || defined(__BORLANDC__)
86      typedef unsigned __int64   ulong64;
87      typedef signed __int64     long64;
88   #else
89      typedef unsigned long long ulong64;
90      typedef signed long long   long64;
91   #endif
92#endif
93
94   typedef unsigned long      mp_digit;
95   typedef ulong64            mp_word;
96
97#ifdef MP_31BIT
98   /* this is an extension that uses 31-bit digits */
99   #define DIGIT_BIT          31
100#else
101   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
102   #define DIGIT_BIT          28
103   #define MP_28BIT
104#endif
105#endif
106
107/* define heap macros */
108#ifndef CRYPT
109   /* default to libc stuff */
110   #ifndef XMALLOC
111       #define XMALLOC  malloc
112       #define XFREE    free
113       #define XREALLOC realloc
114       #define XCALLOC  calloc
115   #else
116      /* prototypes for our heap functions */
117      extern void *XMALLOC(size_t n);
118      extern void *XREALLOC(void *p, size_t n);
119      extern void *XCALLOC(size_t n, size_t s);
120      extern void XFREE(void *p);
121   #endif
122#endif
123
124
125/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
126#ifndef DIGIT_BIT
127   #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
128#endif
129
130#define MP_DIGIT_BIT     DIGIT_BIT
131#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
132#define MP_DIGIT_MAX     MP_MASK
133
134/* equalities */
135#define MP_LT        -1   /* less than */
136#define MP_EQ         0   /* equal to */
137#define MP_GT         1   /* greater than */
138
139#define MP_ZPOS       0   /* positive integer */
140#define MP_NEG        1   /* negative */
141
142#define MP_OKAY       0   /* ok result */
143#define MP_MEM        -2  /* out of mem */
144#define MP_VAL        -3  /* invalid input */
145#define MP_RANGE      MP_VAL
146
147#define MP_YES        1   /* yes response */
148#define MP_NO         0   /* no response */
149
150/* Primality generation flags */
151#define LTM_PRIME_BBS      0x0001 /* BBS style prime */
152#define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
153#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
154
155typedef int           mp_err;
156
157/* you'll have to tune these... */
158extern int KARATSUBA_MUL_CUTOFF,
159           KARATSUBA_SQR_CUTOFF,
160           TOOM_MUL_CUTOFF,
161           TOOM_SQR_CUTOFF;
162
163/* define this to use lower memory usage routines (exptmods mostly) */
164/* #define MP_LOW_MEM */
165
166/* default precision */
167#ifndef MP_PREC
168   #ifndef MP_LOW_MEM
169      #define MP_PREC                 32     /* default digits of precision */
170   #else
171      #define MP_PREC                 8      /* default digits of precision */
172   #endif
173#endif
174
175/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
176#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
177
178/* the infamous mp_int structure */
179typedef struct  {
180    int used, alloc, sign;
181    mp_digit *dp;
182} mp_int;
183
184/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
185typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
186
187
188#define USED(m)    ((m)->used)
189#define DIGIT(m,k) ((m)->dp[(k)])
190#define SIGN(m)    ((m)->sign)
191
192/* error code to char* string */
193const char *mp_error_to_string(int code);
194
195/* ---> init and deinit bignum functions <--- */
196/* init a bignum */
197int mp_init(mp_int *a);
198
199/* free a bignum */
200void mp_clear(mp_int *a);
201
202/* init a null terminated series of arguments */
203int mp_init_multi(mp_int *mp, ...);
204
205/* clear a null terminated series of arguments */
206void mp_clear_multi(mp_int *mp, ...);
207
208/* exchange two ints */
209void mp_exch(mp_int *a, mp_int *b);
210
211/* shrink ram required for a bignum */
212int mp_shrink(mp_int *a);
213
214/* grow an int to a given size */
215int mp_grow(mp_int *a, int size);
216
217/* init to a given number of digits */
218int mp_init_size(mp_int *a, int size);
219
220/* ---> Basic Manipulations <--- */
221#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
222#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
223#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
224
225/* set to zero */
226void mp_zero(mp_int *a);
227
228/* set to a digit */
229void mp_set(mp_int *a, mp_digit b);
230
231/* set a 32-bit const */
232int mp_set_int(mp_int *a, unsigned long b);
233
234/* get a 32-bit value */
235unsigned long mp_get_int(mp_int * a);
236
237/* initialize and set a digit */
238int mp_init_set (mp_int * a, mp_digit b);
239
240/* initialize and set 32-bit value */
241int mp_init_set_int (mp_int * a, unsigned long b);
242
243/* copy, b = a */
244int mp_copy(mp_int *a, mp_int *b);
245
246/* inits and copies, a = b */
247int mp_init_copy(mp_int *a, mp_int *b);
248
249/* trim unused digits */
250void mp_clamp(mp_int *a);
251
252/* ---> digit manipulation <--- */
253
254/* right shift by "b" digits */
255void mp_rshd(mp_int *a, int b);
256
257/* left shift by "b" digits */
258int mp_lshd(mp_int *a, int b);
259
260/* c = a / 2**b */
261int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
262
263/* b = a/2 */
264int mp_div_2(mp_int *a, mp_int *b);
265
266/* c = a * 2**b */
267int mp_mul_2d(mp_int *a, int b, mp_int *c);
268
269/* b = a*2 */
270int mp_mul_2(mp_int *a, mp_int *b);
271
272/* c = a mod 2**d */
273int mp_mod_2d(mp_int *a, int b, mp_int *c);
274
275/* computes a = 2**b */
276int mp_2expt(mp_int *a, int b);
277
278/* Counts the number of lsbs which are zero before the first zero bit */
279int mp_cnt_lsb(mp_int *a);
280
281/* I Love Earth! */
282
283/* makes a pseudo-random int of a given size */
284int mp_rand(mp_int *a, int digits);
285
286/* ---> binary operations <--- */
287/* c = a XOR b  */
288int mp_xor(mp_int *a, mp_int *b, mp_int *c);
289
290/* c = a OR b */
291int mp_or(mp_int *a, mp_int *b, mp_int *c);
292
293/* c = a AND b */
294int mp_and(mp_int *a, mp_int *b, mp_int *c);
295
296/* ---> Basic arithmetic <--- */
297
298/* b = -a */
299int mp_neg(mp_int *a, mp_int *b);
300
301/* b = |a| */
302int mp_abs(mp_int *a, mp_int *b);
303
304/* compare a to b */
305int mp_cmp(mp_int *a, mp_int *b);
306
307/* compare |a| to |b| */
308int mp_cmp_mag(mp_int *a, mp_int *b);
309
310/* c = a + b */
311int mp_add(mp_int *a, mp_int *b, mp_int *c);
312
313/* c = a - b */
314int mp_sub(mp_int *a, mp_int *b, mp_int *c);
315
316/* c = a * b */
317int mp_mul(mp_int *a, mp_int *b, mp_int *c);
318
319/* b = a*a  */
320int mp_sqr(mp_int *a, mp_int *b);
321
322/* a/b => cb + d == a */
323int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
324
325/* c = a mod b, 0 <= c < b  */
326int mp_mod(mp_int *a, mp_int *b, mp_int *c);
327
328/* ---> single digit functions <--- */
329
330/* compare against a single digit */
331int mp_cmp_d(mp_int *a, mp_digit b);
332
333/* c = a + b */
334int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
335
336/* c = a - b */
337int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
338
339/* c = a * b */
340int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
341
342/* a/b => cb + d == a */
343int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
344
345/* a/3 => 3c + d == a */
346int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
347
348/* c = a**b */
349int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
350
351/* c = a mod b, 0 <= c < b  */
352int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
353
354/* ---> number theory <--- */
355
356/* d = a + b (mod c) */
357int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
358
359/* d = a - b (mod c) */
360int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
361
362/* d = a * b (mod c) */
363int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
364
365/* c = a * a (mod b) */
366int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
367
368/* c = 1/a (mod b) */
369int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
370
371/* c = (a, b) */
372int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
373
374/* produces value such that U1*a + U2*b = U3 */
375int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
376
377/* c = [a, b] or (a*b)/(a, b) */
378int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
379
380/* finds one of the b'th root of a, such that |c|**b <= |a|
381 *
382 * returns error if a < 0 and b is even
383 */
384int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
385
386/* special sqrt algo */
387int mp_sqrt(mp_int *arg, mp_int *ret);
388
389/* is number a square? */
390int mp_is_square(mp_int *arg, int *ret);
391
392/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
393int mp_jacobi(mp_int *a, mp_int *n, int *c);
394
395/* used to setup the Barrett reduction for a given modulus b */
396int mp_reduce_setup(mp_int *a, mp_int *b);
397
398/* Barrett Reduction, computes a (mod b) with a precomputed value c
399 *
400 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
401 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
402 */
403int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
404
405/* setups the montgomery reduction */
406int mp_montgomery_setup(mp_int *a, mp_digit *mp);
407
408/* computes a = B**n mod b without division or multiplication useful for
409 * normalizing numbers in a Montgomery system.
410 */
411int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
412
413/* computes x/R == x (mod N) via Montgomery Reduction */
414int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
415
416/* returns 1 if a is a valid DR modulus */
417int mp_dr_is_modulus(mp_int *a);
418
419/* sets the value of "d" required for mp_dr_reduce */
420void mp_dr_setup(mp_int *a, mp_digit *d);
421
422/* reduces a modulo b using the Diminished Radix method */
423int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
424
425/* returns true if a can be reduced with mp_reduce_2k */
426int mp_reduce_is_2k(mp_int *a);
427
428/* determines k value for 2k reduction */
429int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
430
431/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
432int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
433
434/* returns true if a can be reduced with mp_reduce_2k_l */
435int mp_reduce_is_2k_l(mp_int *a);
436
437/* determines k value for 2k reduction */
438int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
439
440/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
441int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
442
443/* d = a**b (mod c) */
444int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
445
446/* ---> Primes <--- */
447
448/* number of primes */
449#ifdef MP_8BIT
450   #define PRIME_SIZE      31
451#else
452   #define PRIME_SIZE      256
453#endif
454
455/* table of first PRIME_SIZE primes */
456extern const mp_digit ltm_prime_tab[];
457
458/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
459int mp_prime_is_divisible(mp_int *a, int *result);
460
461/* performs one Fermat test of "a" using base "b".
462 * Sets result to 0 if composite or 1 if probable prime
463 */
464int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
465
466/* performs one Miller-Rabin test of "a" using base "b".
467 * Sets result to 0 if composite or 1 if probable prime
468 */
469int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
470
471/* This gives [for a given bit size] the number of trials required
472 * such that Miller-Rabin gives a prob of failure lower than 2^-96
473 */
474int mp_prime_rabin_miller_trials(int size);
475
476/* performs t rounds of Miller-Rabin on "a" using the first
477 * t prime bases.  Also performs an initial sieve of trial
478 * division.  Determines if "a" is prime with probability
479 * of error no more than (1/4)**t.
480 *
481 * Sets result to 1 if probably prime, 0 otherwise
482 */
483int mp_prime_is_prime(mp_int *a, int t, int *result);
484
485/* finds the next prime after the number "a" using "t" trials
486 * of Miller-Rabin.
487 *
488 * bbs_style = 1 means the prime must be congruent to 3 mod 4
489 */
490int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
491
492/* makes a truly random prime of a given size (bytes),
493 * call with bbs = 1 if you want it to be congruent to 3 mod 4
494 *
495 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
496 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
497 * so it can be NULL
498 *
499 * The prime generated will be larger than 2^(8*size).
500 */
501#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
502
503/* makes a truly random prime of a given size (bits),
504 *
505 * Flags are as follows:
506 *
507 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
508 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
509 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
510 *
511 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
512 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
513 * so it can be NULL
514 *
515 */
516int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
517
518/* ---> radix conversion <--- */
519int mp_count_bits(mp_int *a);
520
521int mp_unsigned_bin_size(mp_int *a);
522int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
523int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
524int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
525
526int mp_signed_bin_size(mp_int *a);
527int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
528int mp_to_signed_bin(mp_int *a,  unsigned char *b);
529int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
530
531int mp_read_radix(mp_int *a, const char *str, int radix);
532int mp_toradix(mp_int *a, char *str, int radix);
533int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
534int mp_radix_size(mp_int *a, int radix, int *size);
535
536int mp_fread(mp_int *a, int radix, FILE *stream);
537int mp_fwrite(mp_int *a, int radix, FILE *stream);
538
539#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
540#define mp_raw_size(mp)           mp_signed_bin_size(mp)
541#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
542#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
543#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
544#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))
545
546#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
547#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
548#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
549#define mp_tohex(M, S)     mp_toradix((M), (S), 16)
550
551/* lowlevel functions, do not call! */
552int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
553int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
554#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
555int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
556int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
557int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
558int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
559int fast_s_mp_sqr(mp_int *a, mp_int *b);
560int s_mp_sqr(mp_int *a, mp_int *b);
561int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
562int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
563int mp_karatsuba_sqr(mp_int *a, mp_int *b);
564int mp_toom_sqr(mp_int *a, mp_int *b);
565int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
566int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
567int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
568int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
569int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
570void bn_reverse(unsigned char *s, int len);
571
572extern const char *mp_s_rmap;
573
574#ifdef __cplusplus
575   }
576#endif
577
578#endif
579
580
581/* $Source$ */
582/* $Revision$ */
583/* $Date$ */
584