1//===------------------ mach-o/compact_unwind_encoding.h ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//
9// Darwin's alternative to dwarf based unwind encodings.
10//
11//===----------------------------------------------------------------------===//
12
13
14#ifndef __COMPACT_UNWIND_ENCODING__
15#define __COMPACT_UNWIND_ENCODING__
16
17#include <stdint.h>
18
19//
20// Compilers can emit standard Dwarf FDEs in the __TEXT,__eh_frame section
21// of object files. Or compilers can emit compact unwind information in
22// the __LD,__compact_unwind section.
23//
24// When the linker creates a final linked image, it will create a
25// __TEXT,__unwind_info section.  This section is a small and fast way for the
26// runtime to access unwind info for any given function.  If the compiler
27// emitted compact unwind info for the function, that compact unwind info will
28// be encoded in the __TEXT,__unwind_info section. If the compiler emitted
29// dwarf unwind info, the __TEXT,__unwind_info section will contain the offset
30// of the FDE in the __TEXT,__eh_frame section in the final linked image.
31//
32// Note: Previously, the linker would transform some dwarf unwind infos into
33//       compact unwind info.  But that is fragile and no longer done.
34
35
36//
37// The compact unwind endoding is a 32-bit value which encoded in an
38// architecture specific way, which registers to restore from where, and how
39// to unwind out of the function.
40//
41typedef uint32_t compact_unwind_encoding_t;
42
43
44// architecture independent bits
45enum {
46    UNWIND_IS_NOT_FUNCTION_START           = 0x80000000,
47    UNWIND_HAS_LSDA                        = 0x40000000,
48    UNWIND_PERSONALITY_MASK                = 0x30000000,
49};
50
51
52
53
54//
55// x86
56//
57// 1-bit: start
58// 1-bit: has lsda
59// 2-bit: personality index
60//
61// 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=dwarf
62//  ebp based:
63//        15-bits (5*3-bits per reg) register permutation
64//        8-bits for stack offset
65//  frameless:
66//        8-bits stack size
67//        3-bits stack adjust
68//        3-bits register count
69//        10-bits register permutation
70//
71enum {
72    UNWIND_X86_MODE_MASK                         = 0x0F000000,
73    UNWIND_X86_MODE_EBP_FRAME                    = 0x01000000,
74    UNWIND_X86_MODE_STACK_IMMD                   = 0x02000000,
75    UNWIND_X86_MODE_STACK_IND                    = 0x03000000,
76    UNWIND_X86_MODE_DWARF                        = 0x04000000,
77
78    UNWIND_X86_EBP_FRAME_REGISTERS               = 0x00007FFF,
79    UNWIND_X86_EBP_FRAME_OFFSET                  = 0x00FF0000,
80
81    UNWIND_X86_FRAMELESS_STACK_SIZE              = 0x00FF0000,
82    UNWIND_X86_FRAMELESS_STACK_ADJUST            = 0x0000E000,
83    UNWIND_X86_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
84    UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
85
86    UNWIND_X86_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
87};
88
89enum {
90    UNWIND_X86_REG_NONE     = 0,
91    UNWIND_X86_REG_EBX      = 1,
92    UNWIND_X86_REG_ECX      = 2,
93    UNWIND_X86_REG_EDX      = 3,
94    UNWIND_X86_REG_EDI      = 4,
95    UNWIND_X86_REG_ESI      = 5,
96    UNWIND_X86_REG_EBP      = 6,
97};
98
99//
100// For x86 there are four modes for the compact unwind encoding:
101// UNWIND_X86_MODE_EBP_FRAME:
102//    EBP based frame where EBP is push on stack immediately after return address,
103//    then ESP is moved to EBP. Thus, to unwind ESP is restored with the current
104//    EPB value, then EBP is restored by popping off the stack, and the return
105//    is done by popping the stack once more into the pc.
106//    All non-volatile registers that need to be restored must have been saved
107//    in a small range in the stack that starts EBP-4 to EBP-1020.  The offset/4
108//    is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits.  The registers saved
109//    are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries.
110//    Each entry contains which register to restore.
111// UNWIND_X86_MODE_STACK_IMMD:
112//    A "frameless" (EBP not used as frame pointer) function with a small
113//    constant stack size.  To return, a constant (encoded in the compact
114//    unwind encoding) is added to the ESP. Then the return is done by
115//    popping the stack into the pc.
116//    All non-volatile registers that need to be restored must have been saved
117//    on the stack immediately after the return address.  The stack_size/4 is
118//    encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024).
119//    The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT.
120//    UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
121//    saved and their order.
122// UNWIND_X86_MODE_STACK_IND:
123//    A "frameless" (EBP not used as frame pointer) function large constant
124//    stack size.  This case is like the previous, except the stack size is too
125//    large to encode in the compact unwind encoding.  Instead it requires that
126//    the function contains "subl $nnnnnnnn,ESP" in its prolog.  The compact
127//    encoding contains the offset to the nnnnnnnn value in the function in
128//    UNWIND_X86_FRAMELESS_STACK_SIZE.
129// UNWIND_X86_MODE_DWARF:
130//    No compact unwind encoding is available.  Instead the low 24-bits of the
131//    compact encoding is the offset of the dwarf FDE in the __eh_frame section.
132//    This mode is never used in object files.  It is only generated by the
133//    linker in final linked images which have only dwarf unwind info for a
134//    function.
135//
136// The following is the algorithm used to create the permutation encoding used
137// with frameless stacks.  It is passed the number of registers to be saved and
138// an array of the register numbers saved.
139//
140//uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6])
141//{
142//    uint32_t renumregs[6];
143//    for (int i=6-registerCount; i < 6; ++i) {
144//        int countless = 0;
145//        for (int j=6-registerCount; j < i; ++j) {
146//            if ( registers[j] < registers[i] )
147//                ++countless;
148//        }
149//        renumregs[i] = registers[i] - countless -1;
150//    }
151//    uint32_t permutationEncoding = 0;
152//    switch ( registerCount ) {
153//        case 6:
154//            permutationEncoding |= (120*renumregs[0] + 24*renumregs[1]
155//                                    + 6*renumregs[2] + 2*renumregs[3]
156//                                      + renumregs[4]);
157//            break;
158//        case 5:
159//            permutationEncoding |= (120*renumregs[1] + 24*renumregs[2]
160//                                    + 6*renumregs[3] + 2*renumregs[4]
161//                                      + renumregs[5]);
162//            break;
163//        case 4:
164//            permutationEncoding |= (60*renumregs[2] + 12*renumregs[3]
165//                                   + 3*renumregs[4] + renumregs[5]);
166//            break;
167//        case 3:
168//            permutationEncoding |= (20*renumregs[3] + 4*renumregs[4]
169//                                     + renumregs[5]);
170//            break;
171//        case 2:
172//            permutationEncoding |= (5*renumregs[4] + renumregs[5]);
173//            break;
174//        case 1:
175//            permutationEncoding |= (renumregs[5]);
176//            break;
177//    }
178//    return permutationEncoding;
179//}
180//
181
182
183
184
185//
186// x86_64
187//
188// 1-bit: start
189// 1-bit: has lsda
190// 2-bit: personality index
191//
192// 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=dwarf
193//  rbp based:
194//        15-bits (5*3-bits per reg) register permutation
195//        8-bits for stack offset
196//  frameless:
197//        8-bits stack size
198//        3-bits stack adjust
199//        3-bits register count
200//        10-bits register permutation
201//
202enum {
203    UNWIND_X86_64_MODE_MASK                         = 0x0F000000,
204    UNWIND_X86_64_MODE_RBP_FRAME                    = 0x01000000,
205    UNWIND_X86_64_MODE_STACK_IMMD                   = 0x02000000,
206    UNWIND_X86_64_MODE_STACK_IND                    = 0x03000000,
207    UNWIND_X86_64_MODE_DWARF                        = 0x04000000,
208
209    UNWIND_X86_64_RBP_FRAME_REGISTERS               = 0x00007FFF,
210    UNWIND_X86_64_RBP_FRAME_OFFSET                  = 0x00FF0000,
211
212    UNWIND_X86_64_FRAMELESS_STACK_SIZE              = 0x00FF0000,
213    UNWIND_X86_64_FRAMELESS_STACK_ADJUST            = 0x0000E000,
214    UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
215    UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
216
217    UNWIND_X86_64_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
218};
219
220enum {
221    UNWIND_X86_64_REG_NONE       = 0,
222    UNWIND_X86_64_REG_RBX        = 1,
223    UNWIND_X86_64_REG_R12        = 2,
224    UNWIND_X86_64_REG_R13        = 3,
225    UNWIND_X86_64_REG_R14        = 4,
226    UNWIND_X86_64_REG_R15        = 5,
227    UNWIND_X86_64_REG_RBP        = 6,
228};
229//
230// For x86_64 there are four modes for the compact unwind encoding:
231// UNWIND_X86_64_MODE_RBP_FRAME:
232//    RBP based frame where RBP is push on stack immediately after return address,
233//    then RSP is moved to RBP. Thus, to unwind RSP is restored with the current
234//    EPB value, then RBP is restored by popping off the stack, and the return
235//    is done by popping the stack once more into the pc.
236//    All non-volatile registers that need to be restored must have been saved
237//    in a small range in the stack that starts RBP-8 to RBP-1020.  The offset/4
238//    is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits.  The registers saved
239//    are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries.
240//    Each entry contains which register to restore.
241// UNWIND_X86_64_MODE_STACK_IMMD:
242//    A "frameless" (RBP not used as frame pointer) function with a small
243//    constant stack size.  To return, a constant (encoded in the compact
244//    unwind encoding) is added to the RSP. Then the return is done by
245//    popping the stack into the pc.
246//    All non-volatile registers that need to be restored must have been saved
247//    on the stack immediately after the return address.  The stack_size/4 is
248//    encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 1024).
249//    The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT.
250//    UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
251//    saved and their order.
252// UNWIND_X86_64_MODE_STACK_IND:
253//    A "frameless" (RBP not used as frame pointer) function large constant
254//    stack size.  This case is like the previous, except the stack size is too
255//    large to encode in the compact unwind encoding.  Instead it requires that
256//    the function contains "subq $nnnnnnnn,RSP" in its prolog.  The compact
257//    encoding contains the offset to the nnnnnnnn value in the function in
258//    UNWIND_X86_64_FRAMELESS_STACK_SIZE.
259// UNWIND_X86_64_MODE_DWARF:
260//    No compact unwind encoding is available.  Instead the low 24-bits of the
261//    compact encoding is the offset of the dwarf FDE in the __eh_frame section.
262//    This mode is never used in object files.  It is only generated by the
263//    linker in final linked images which have only dwarf unwind info for a
264//    function.
265//
266
267
268// ARM64
269//
270// 1-bit: start
271// 1-bit: has lsda
272// 2-bit: personality index
273//
274// 4-bits: 4=frame-based, 3=dwarf, 2=frameless
275//  frameless:
276//        12-bits of stack size
277//  frame-based:
278//        4-bits D reg pairs saved
279//        5-bits X reg pairs saved
280//  dwarf:
281//        24-bits offset of dwarf FDE in __eh_frame section
282//
283enum {
284    UNWIND_ARM64_MODE_MASK                     = 0x0F000000,
285    UNWIND_ARM64_MODE_FRAMELESS                = 0x02000000,
286    UNWIND_ARM64_MODE_DWARF                    = 0x03000000,
287    UNWIND_ARM64_MODE_FRAME                    = 0x04000000,
288
289    UNWIND_ARM64_FRAME_X19_X20_PAIR            = 0x00000001,
290    UNWIND_ARM64_FRAME_X21_X22_PAIR            = 0x00000002,
291    UNWIND_ARM64_FRAME_X23_X24_PAIR            = 0x00000004,
292    UNWIND_ARM64_FRAME_X25_X26_PAIR            = 0x00000008,
293    UNWIND_ARM64_FRAME_X27_X28_PAIR            = 0x00000010,
294    UNWIND_ARM64_FRAME_D8_D9_PAIR              = 0x00000100,
295    UNWIND_ARM64_FRAME_D10_D11_PAIR            = 0x00000200,
296    UNWIND_ARM64_FRAME_D12_D13_PAIR            = 0x00000400,
297    UNWIND_ARM64_FRAME_D14_D15_PAIR            = 0x00000800,
298
299    UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK     = 0x00FFF000,
300    UNWIND_ARM64_DWARF_SECTION_OFFSET          = 0x00FFFFFF,
301};
302// For arm64 there are three modes for the compact unwind encoding:
303// UNWIND_ARM64_MODE_FRAME:
304//    This is a standard arm64 prolog where FP/LR are immediately pushed on the
305//    stack, then SP is copied to FP. If there are any non-volatile registers
306//    saved, then are copied into the stack frame in pairs in a contiguous
307//    range right below the saved FP/LR pair.  Any subset of the five X pairs
308//    and four D pairs can be saved, but the memory layout must be in register
309//    number order.
310// UNWIND_ARM64_MODE_FRAMELESS:
311//    A "frameless" leaf function, where FP/LR are not saved. The return address
312//    remains in LR throughout the function. If any non-volatile registers
313//    are saved, they must be pushed onto the stack before any stack space is
314//    allocated for local variables.  The stack sized (including any saved
315//    non-volatile registers) divided by 16 is encoded in the bits
316//    UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK.
317// UNWIND_ARM64_MODE_DWARF:
318//    No compact unwind encoding is available.  Instead the low 24-bits of the
319//    compact encoding is the offset of the dwarf FDE in the __eh_frame section.
320//    This mode is never used in object files.  It is only generated by the
321//    linker in final linked images which have only dwarf unwind info for a
322//    function.
323//
324
325
326
327
328
329////////////////////////////////////////////////////////////////////////////////
330//
331//  Relocatable Object Files: __LD,__compact_unwind
332//
333////////////////////////////////////////////////////////////////////////////////
334
335//
336// A compiler can generated compact unwind information for a function by adding
337// a "row" to the __LD,__compact_unwind section.  This section has the
338// S_ATTR_DEBUG bit set, so the section will be ignored by older linkers.
339// It is removed by the new linker, so never ends up in final executables.
340// This section is a table, initially with one row per function (that needs
341// unwind info).  The table columns and some conceptual entries are:
342//
343//     range-start               pointer to start of function/range
344//     range-length
345//     compact-unwind-encoding   32-bit encoding
346//     personality-function      or zero if no personality function
347//     lsda                      or zero if no LSDA data
348//
349// The length and encoding fields are 32-bits.  The other are all pointer sized.
350//
351// In x86_64 assembly, these entry would look like:
352//
353//     .section __LD,__compact_unwind,regular,debug
354//
355//     #compact unwind for _foo
356//     .quad    _foo
357//     .set     L1,LfooEnd-_foo
358//     .long    L1
359//     .long    0x01010001
360//     .quad    0
361//     .quad    0
362//
363//     #compact unwind for _bar
364//     .quad    _bar
365//     .set     L2,LbarEnd-_bar
366//     .long    L2
367//     .long    0x01020011
368//     .quad    __gxx_personality
369//     .quad    except_tab1
370//
371//
372// Notes: There is no need for any labels in the the __compact_unwind section.
373//        The use of the .set directive is to force the evaluation of the
374//        range-length at assembly time, instead of generating relocations.
375//
376// To support future compiler optimizations where which non-volatile registers
377// are saved changes within a function (e.g. delay saving non-volatiles until
378// necessary), there can by multiple lines in the __compact_unwind table for one
379// function, each with a different (non-overlapping) range and each with
380// different compact unwind encodings that correspond to the non-volatiles
381// saved at that range of the function.
382//
383// If a particular function is so wacky that there is no compact unwind way
384// to encode it, then the compiler can emit traditional dwarf unwind info.
385// The runtime will use which ever is available.
386//
387// Runtime support for compact unwind encodings are only available on 10.6
388// and later.  So, the compiler should not generate it when targeting pre-10.6.
389
390
391
392
393////////////////////////////////////////////////////////////////////////////////
394//
395//  Final Linked Images: __TEXT,__unwind_info
396//
397////////////////////////////////////////////////////////////////////////////////
398
399//
400// The __TEXT,__unwind_info section is laid out for an efficient two level lookup.
401// The header of the section contains a coarse index that maps function address
402// to the page (4096 byte block) containing the unwind info for that function.
403//
404
405#define UNWIND_SECTION_VERSION 1
406struct unwind_info_section_header
407{
408    uint32_t    version;            // UNWIND_SECTION_VERSION
409    uint32_t    commonEncodingsArraySectionOffset;
410    uint32_t    commonEncodingsArrayCount;
411    uint32_t    personalityArraySectionOffset;
412    uint32_t    personalityArrayCount;
413    uint32_t    indexSectionOffset;
414    uint32_t    indexCount;
415    // compact_unwind_encoding_t[]
416    // uintptr_t personalities[]
417    // unwind_info_section_header_index_entry[]
418    // unwind_info_section_header_lsda_index_entry[]
419};
420
421struct unwind_info_section_header_index_entry
422{
423    uint32_t        functionOffset;
424    uint32_t        secondLevelPagesSectionOffset;  // section offset to start of regular or compress page
425    uint32_t        lsdaIndexArraySectionOffset;    // section offset to start of lsda_index array for this range
426};
427
428struct unwind_info_section_header_lsda_index_entry
429{
430    uint32_t        functionOffset;
431    uint32_t        lsdaOffset;
432};
433
434//
435// There are two kinds of second level index pages: regular and compressed.
436// A compressed page can hold up to 1021 entries, but it cannot be used
437// if too many different encoding types are used.  The regular page holds
438// 511 entries.
439//
440
441struct unwind_info_regular_second_level_entry
442{
443    uint32_t                    functionOffset;
444    compact_unwind_encoding_t    encoding;
445};
446
447#define UNWIND_SECOND_LEVEL_REGULAR 2
448struct unwind_info_regular_second_level_page_header
449{
450    uint32_t    kind;    // UNWIND_SECOND_LEVEL_REGULAR
451    uint16_t    entryPageOffset;
452    uint16_t    entryCount;
453    // entry array
454};
455
456#define UNWIND_SECOND_LEVEL_COMPRESSED 3
457struct unwind_info_compressed_second_level_page_header
458{
459    uint32_t    kind;    // UNWIND_SECOND_LEVEL_COMPRESSED
460    uint16_t    entryPageOffset;
461    uint16_t    entryCount;
462    uint16_t    encodingsPageOffset;
463    uint16_t    encodingsCount;
464    // 32-bit entry array
465    // encodings array
466};
467
468#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry)            (entry & 0x00FFFFFF)
469#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry)        ((entry >> 24) & 0xFF)
470
471
472
473#endif
474
475