1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD$");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/smp.h>
103#include <sys/sysctl.h>
104#include <sys/vmmeter.h>
105#include <sys/vnode.h>
106
107#include <vm/vm.h>
108#include <vm/pmap.h>
109#include <vm/vm_param.h>
110#include <vm/vm_kern.h>
111#include <vm/vm_object.h>
112#include <vm/vm_page.h>
113#include <vm/vm_pageout.h>
114#include <vm/vm_pager.h>
115#include <vm/vm_phys.h>
116#include <vm/vm_radix.h>
117#include <vm/vm_reserv.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122#include <machine/md_var.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128
129struct vm_domain vm_dom[MAXMEMDOM];
130struct mtx_padalign vm_page_queue_free_mtx;
131
132struct mtx_padalign pa_lock[PA_LOCK_COUNT];
133
134vm_page_t vm_page_array;
135long vm_page_array_size;
136long first_page;
137
138static int boot_pages = UMA_BOOT_PAGES;
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140    &boot_pages, 0,
141    "number of pages allocated for bootstrapping the VM system");
142
143static int pa_tryrelock_restart;
144SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146
147static TAILQ_HEAD(, vm_page) blacklist_head;
148static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151
152/* Is the page daemon waiting for free pages? */
153static int vm_pageout_pages_needed;
154
155static uma_zone_t fakepg_zone;
156
157static struct vnode *vm_page_alloc_init(vm_page_t m);
158static void vm_page_cache_turn_free(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161static void vm_page_free_wakeup(void);
162static void vm_page_init_fakepg(void *dummy);
163static int vm_page_insert_after(vm_page_t m, vm_object_t object,
164    vm_pindex_t pindex, vm_page_t mpred);
165static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
166    vm_page_t mpred);
167static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
168    vm_paddr_t high);
169
170SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
171
172static void
173vm_page_init_fakepg(void *dummy)
174{
175
176	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
177	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
178}
179
180/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
181#if PAGE_SIZE == 32768
182#ifdef CTASSERT
183CTASSERT(sizeof(u_long) >= 8);
184#endif
185#endif
186
187/*
188 * Try to acquire a physical address lock while a pmap is locked.  If we
189 * fail to trylock we unlock and lock the pmap directly and cache the
190 * locked pa in *locked.  The caller should then restart their loop in case
191 * the virtual to physical mapping has changed.
192 */
193int
194vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
195{
196	vm_paddr_t lockpa;
197
198	lockpa = *locked;
199	*locked = pa;
200	if (lockpa) {
201		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203			return (0);
204		PA_UNLOCK(lockpa);
205	}
206	if (PA_TRYLOCK(pa))
207		return (0);
208	PMAP_UNLOCK(pmap);
209	atomic_add_int(&pa_tryrelock_restart, 1);
210	PA_LOCK(pa);
211	PMAP_LOCK(pmap);
212	return (EAGAIN);
213}
214
215/*
216 *	vm_set_page_size:
217 *
218 *	Sets the page size, perhaps based upon the memory
219 *	size.  Must be called before any use of page-size
220 *	dependent functions.
221 */
222void
223vm_set_page_size(void)
224{
225	if (vm_cnt.v_page_size == 0)
226		vm_cnt.v_page_size = PAGE_SIZE;
227	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
228		panic("vm_set_page_size: page size not a power of two");
229}
230
231/*
232 *	vm_page_blacklist_next:
233 *
234 *	Find the next entry in the provided string of blacklist
235 *	addresses.  Entries are separated by space, comma, or newline.
236 *	If an invalid integer is encountered then the rest of the
237 *	string is skipped.  Updates the list pointer to the next
238 *	character, or NULL if the string is exhausted or invalid.
239 */
240static vm_paddr_t
241vm_page_blacklist_next(char **list, char *end)
242{
243	vm_paddr_t bad;
244	char *cp, *pos;
245
246	if (list == NULL || *list == NULL)
247		return (0);
248	if (**list =='\0') {
249		*list = NULL;
250		return (0);
251	}
252
253	/*
254	 * If there's no end pointer then the buffer is coming from
255	 * the kenv and we know it's null-terminated.
256	 */
257	if (end == NULL)
258		end = *list + strlen(*list);
259
260	/* Ensure that strtoq() won't walk off the end */
261	if (*end != '\0') {
262		if (*end == '\n' || *end == ' ' || *end  == ',')
263			*end = '\0';
264		else {
265			printf("Blacklist not terminated, skipping\n");
266			*list = NULL;
267			return (0);
268		}
269	}
270
271	for (pos = *list; *pos != '\0'; pos = cp) {
272		bad = strtoq(pos, &cp, 0);
273		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
274			if (bad == 0) {
275				if (++cp < end)
276					continue;
277				else
278					break;
279			}
280		} else
281			break;
282		if (*cp == '\0' || ++cp >= end)
283			*list = NULL;
284		else
285			*list = cp;
286		return (trunc_page(bad));
287	}
288	printf("Garbage in RAM blacklist, skipping\n");
289	*list = NULL;
290	return (0);
291}
292
293/*
294 *	vm_page_blacklist_check:
295 *
296 *	Iterate through the provided string of blacklist addresses, pulling
297 *	each entry out of the physical allocator free list and putting it
298 *	onto a list for reporting via the vm.page_blacklist sysctl.
299 */
300static void
301vm_page_blacklist_check(char *list, char *end)
302{
303	vm_paddr_t pa;
304	vm_page_t m;
305	char *next;
306	int ret;
307
308	next = list;
309	while (next != NULL) {
310		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
311			continue;
312		m = vm_phys_paddr_to_vm_page(pa);
313		if (m == NULL)
314			continue;
315		mtx_lock(&vm_page_queue_free_mtx);
316		ret = vm_phys_unfree_page(m);
317		mtx_unlock(&vm_page_queue_free_mtx);
318		if (ret == TRUE) {
319			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
320			if (bootverbose)
321				printf("Skipping page with pa 0x%jx\n",
322				    (uintmax_t)pa);
323		}
324	}
325}
326
327/*
328 *	vm_page_blacklist_load:
329 *
330 *	Search for a special module named "ram_blacklist".  It'll be a
331 *	plain text file provided by the user via the loader directive
332 *	of the same name.
333 */
334static void
335vm_page_blacklist_load(char **list, char **end)
336{
337	void *mod;
338	u_char *ptr;
339	u_int len;
340
341	mod = NULL;
342	ptr = NULL;
343
344	mod = preload_search_by_type("ram_blacklist");
345	if (mod != NULL) {
346		ptr = preload_fetch_addr(mod);
347		len = preload_fetch_size(mod);
348        }
349	*list = ptr;
350	if (ptr != NULL)
351		*end = ptr + len;
352	else
353		*end = NULL;
354	return;
355}
356
357static int
358sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
359{
360	vm_page_t m;
361	struct sbuf sbuf;
362	int error, first;
363
364	first = 1;
365	error = sysctl_wire_old_buffer(req, 0);
366	if (error != 0)
367		return (error);
368	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
369	TAILQ_FOREACH(m, &blacklist_head, listq) {
370		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
371		    (uintmax_t)m->phys_addr);
372		first = 0;
373	}
374	error = sbuf_finish(&sbuf);
375	sbuf_delete(&sbuf);
376	return (error);
377}
378
379static void
380vm_page_domain_init(struct vm_domain *vmd)
381{
382	struct vm_pagequeue *pq;
383	int i;
384
385	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
386	    "vm inactive pagequeue";
387	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
388	    &vm_cnt.v_inactive_count;
389	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
390	    "vm active pagequeue";
391	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
392	    &vm_cnt.v_active_count;
393	vmd->vmd_page_count = 0;
394	vmd->vmd_free_count = 0;
395	vmd->vmd_segs = 0;
396	vmd->vmd_oom = FALSE;
397	vmd->vmd_pass = 0;
398	for (i = 0; i < PQ_COUNT; i++) {
399		pq = &vmd->vmd_pagequeues[i];
400		TAILQ_INIT(&pq->pq_pl);
401		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
402		    MTX_DEF | MTX_DUPOK);
403	}
404}
405
406/*
407 *	vm_page_startup:
408 *
409 *	Initializes the resident memory module.
410 *
411 *	Allocates memory for the page cells, and
412 *	for the object/offset-to-page hash table headers.
413 *	Each page cell is initialized and placed on the free list.
414 */
415vm_offset_t
416vm_page_startup(vm_offset_t vaddr)
417{
418	vm_offset_t mapped;
419	vm_paddr_t page_range;
420	vm_paddr_t new_end;
421	int i;
422	vm_paddr_t pa;
423	vm_paddr_t last_pa;
424	char *list, *listend;
425	vm_paddr_t end;
426	vm_paddr_t biggestsize;
427	vm_paddr_t low_water, high_water;
428	int biggestone;
429	int pages_per_zone;
430
431	biggestsize = 0;
432	biggestone = 0;
433	vaddr = round_page(vaddr);
434
435	for (i = 0; phys_avail[i + 1]; i += 2) {
436		phys_avail[i] = round_page(phys_avail[i]);
437		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
438	}
439
440	low_water = phys_avail[0];
441	high_water = phys_avail[1];
442
443	for (i = 0; i < vm_phys_nsegs; i++) {
444		if (vm_phys_segs[i].start < low_water)
445			low_water = vm_phys_segs[i].start;
446		if (vm_phys_segs[i].end > high_water)
447			high_water = vm_phys_segs[i].end;
448	}
449	for (i = 0; phys_avail[i + 1]; i += 2) {
450		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
451
452		if (size > biggestsize) {
453			biggestone = i;
454			biggestsize = size;
455		}
456		if (phys_avail[i] < low_water)
457			low_water = phys_avail[i];
458		if (phys_avail[i + 1] > high_water)
459			high_water = phys_avail[i + 1];
460	}
461
462	end = phys_avail[biggestone+1];
463
464	/*
465	 * Initialize the page and queue locks.
466	 */
467	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
468	for (i = 0; i < PA_LOCK_COUNT; i++)
469		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
470	for (i = 0; i < vm_ndomains; i++)
471		vm_page_domain_init(&vm_dom[i]);
472
473	/*
474	 * Almost all of the pages needed for boot strapping UMA are used
475	 * for zone structures, so if the number of CPUs results in those
476	 * structures taking more than one page each, we set aside more pages
477	 * in proportion to the zone structure size.
478	 */
479	pages_per_zone = howmany(sizeof(struct uma_zone) +
480	    sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE);
481	if (pages_per_zone > 1) {
482		/* Reserve more pages so that we don't run out. */
483		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
484	}
485
486	/*
487	 * Allocate memory for use when boot strapping the kernel memory
488	 * allocator.
489	 *
490	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
491	 * manually fetch the value.
492	 */
493	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
494	new_end = end - (boot_pages * UMA_SLAB_SIZE);
495	new_end = trunc_page(new_end);
496	mapped = pmap_map(&vaddr, new_end, end,
497	    VM_PROT_READ | VM_PROT_WRITE);
498	bzero((void *)mapped, end - new_end);
499	uma_startup((void *)mapped, boot_pages);
500
501#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
502    defined(__i386__) || defined(__mips__)
503	/*
504	 * Allocate a bitmap to indicate that a random physical page
505	 * needs to be included in a minidump.
506	 *
507	 * The amd64 port needs this to indicate which direct map pages
508	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
509	 *
510	 * However, i386 still needs this workspace internally within the
511	 * minidump code.  In theory, they are not needed on i386, but are
512	 * included should the sf_buf code decide to use them.
513	 */
514	last_pa = 0;
515	for (i = 0; dump_avail[i + 1] != 0; i += 2)
516		if (dump_avail[i + 1] > last_pa)
517			last_pa = dump_avail[i + 1];
518	page_range = last_pa / PAGE_SIZE;
519	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
520	new_end -= vm_page_dump_size;
521	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
522	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
523	bzero((void *)vm_page_dump, vm_page_dump_size);
524#endif
525#ifdef __amd64__
526	/*
527	 * Request that the physical pages underlying the message buffer be
528	 * included in a crash dump.  Since the message buffer is accessed
529	 * through the direct map, they are not automatically included.
530	 */
531	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
532	last_pa = pa + round_page(msgbufsize);
533	while (pa < last_pa) {
534		dump_add_page(pa);
535		pa += PAGE_SIZE;
536	}
537#endif
538	/*
539	 * Compute the number of pages of memory that will be available for
540	 * use (taking into account the overhead of a page structure per
541	 * page).
542	 */
543	first_page = low_water / PAGE_SIZE;
544#ifdef VM_PHYSSEG_SPARSE
545	page_range = 0;
546	for (i = 0; i < vm_phys_nsegs; i++) {
547		page_range += atop(vm_phys_segs[i].end -
548		    vm_phys_segs[i].start);
549	}
550	for (i = 0; phys_avail[i + 1] != 0; i += 2)
551		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
552#elif defined(VM_PHYSSEG_DENSE)
553	page_range = high_water / PAGE_SIZE - first_page;
554#else
555#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
556#endif
557	end = new_end;
558
559	/*
560	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
561	 */
562	vaddr += PAGE_SIZE;
563
564	/*
565	 * Initialize the mem entry structures now, and put them in the free
566	 * queue.
567	 */
568	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
569	mapped = pmap_map(&vaddr, new_end, end,
570	    VM_PROT_READ | VM_PROT_WRITE);
571	vm_page_array = (vm_page_t) mapped;
572#if VM_NRESERVLEVEL > 0
573	/*
574	 * Allocate memory for the reservation management system's data
575	 * structures.
576	 */
577	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
578#endif
579#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
580	/*
581	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
582	 * not kvm like i386, so the pages must be tracked for a crashdump to
583	 * include this data.  This includes the vm_page_array and the early
584	 * UMA bootstrap pages.
585	 */
586	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
587		dump_add_page(pa);
588#endif
589	phys_avail[biggestone + 1] = new_end;
590
591	/*
592	 * Add physical memory segments corresponding to the available
593	 * physical pages.
594	 */
595	for (i = 0; phys_avail[i + 1] != 0; i += 2)
596		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
597
598	/*
599	 * Clear all of the page structures
600	 */
601	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
602	for (i = 0; i < page_range; i++)
603		vm_page_array[i].order = VM_NFREEORDER;
604	vm_page_array_size = page_range;
605
606	/*
607	 * Initialize the physical memory allocator.
608	 */
609	vm_phys_init();
610
611	/*
612	 * Add every available physical page that is not blacklisted to
613	 * the free lists.
614	 */
615	vm_cnt.v_page_count = 0;
616	vm_cnt.v_free_count = 0;
617	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
618		pa = phys_avail[i];
619		last_pa = phys_avail[i + 1];
620		while (pa < last_pa) {
621			vm_phys_add_page(pa);
622			pa += PAGE_SIZE;
623		}
624	}
625
626	TAILQ_INIT(&blacklist_head);
627	vm_page_blacklist_load(&list, &listend);
628	vm_page_blacklist_check(list, listend);
629
630	list = kern_getenv("vm.blacklist");
631	vm_page_blacklist_check(list, NULL);
632
633	freeenv(list);
634#if VM_NRESERVLEVEL > 0
635	/*
636	 * Initialize the reservation management system.
637	 */
638	vm_reserv_init();
639#endif
640	return (vaddr);
641}
642
643void
644vm_page_reference(vm_page_t m)
645{
646
647	vm_page_aflag_set(m, PGA_REFERENCED);
648}
649
650/*
651 *	vm_page_busy_downgrade:
652 *
653 *	Downgrade an exclusive busy page into a single shared busy page.
654 */
655void
656vm_page_busy_downgrade(vm_page_t m)
657{
658	u_int x;
659
660	vm_page_assert_xbusied(m);
661
662	for (;;) {
663		x = m->busy_lock;
664		x &= VPB_BIT_WAITERS;
665		if (atomic_cmpset_rel_int(&m->busy_lock,
666		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
667			break;
668	}
669}
670
671/*
672 *	vm_page_sbusied:
673 *
674 *	Return a positive value if the page is shared busied, 0 otherwise.
675 */
676int
677vm_page_sbusied(vm_page_t m)
678{
679	u_int x;
680
681	x = m->busy_lock;
682	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
683}
684
685/*
686 *	vm_page_sunbusy:
687 *
688 *	Shared unbusy a page.
689 */
690void
691vm_page_sunbusy(vm_page_t m)
692{
693	u_int x;
694
695	vm_page_assert_sbusied(m);
696
697	for (;;) {
698		x = m->busy_lock;
699		if (VPB_SHARERS(x) > 1) {
700			if (atomic_cmpset_int(&m->busy_lock, x,
701			    x - VPB_ONE_SHARER))
702				break;
703			continue;
704		}
705		if ((x & VPB_BIT_WAITERS) == 0) {
706			KASSERT(x == VPB_SHARERS_WORD(1),
707			    ("vm_page_sunbusy: invalid lock state"));
708			if (atomic_cmpset_int(&m->busy_lock,
709			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
710				break;
711			continue;
712		}
713		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
714		    ("vm_page_sunbusy: invalid lock state for waiters"));
715
716		vm_page_lock(m);
717		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
718			vm_page_unlock(m);
719			continue;
720		}
721		wakeup(m);
722		vm_page_unlock(m);
723		break;
724	}
725}
726
727/*
728 *	vm_page_busy_sleep:
729 *
730 *	Sleep and release the page lock, using the page pointer as wchan.
731 *	This is used to implement the hard-path of busying mechanism.
732 *
733 *	The given page must be locked.
734 */
735void
736vm_page_busy_sleep(vm_page_t m, const char *wmesg)
737{
738	u_int x;
739
740	vm_page_lock_assert(m, MA_OWNED);
741
742	x = m->busy_lock;
743	if (x == VPB_UNBUSIED) {
744		vm_page_unlock(m);
745		return;
746	}
747	if ((x & VPB_BIT_WAITERS) == 0 &&
748	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
749		vm_page_unlock(m);
750		return;
751	}
752	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
753}
754
755/*
756 *	vm_page_trysbusy:
757 *
758 *	Try to shared busy a page.
759 *	If the operation succeeds 1 is returned otherwise 0.
760 *	The operation never sleeps.
761 */
762int
763vm_page_trysbusy(vm_page_t m)
764{
765	u_int x;
766
767	for (;;) {
768		x = m->busy_lock;
769		if ((x & VPB_BIT_SHARED) == 0)
770			return (0);
771		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
772			return (1);
773	}
774}
775
776static void
777vm_page_xunbusy_locked(vm_page_t m)
778{
779
780	vm_page_assert_xbusied(m);
781	vm_page_assert_locked(m);
782
783	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
784	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
785	wakeup(m);
786}
787
788static void
789vm_page_xunbusy_maybelocked(vm_page_t m)
790{
791	bool lockacq;
792
793	vm_page_assert_xbusied(m);
794
795	/*
796	 * Fast path for unbusy.  If it succeeds, we know that there
797	 * are no waiters, so we do not need a wakeup.
798	 */
799	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
800	    VPB_UNBUSIED))
801		return;
802
803	lockacq = !mtx_owned(vm_page_lockptr(m));
804	if (lockacq)
805		vm_page_lock(m);
806	vm_page_xunbusy_locked(m);
807	if (lockacq)
808		vm_page_unlock(m);
809}
810
811/*
812 *	vm_page_xunbusy_hard:
813 *
814 *	Called after the first try the exclusive unbusy of a page failed.
815 *	It is assumed that the waiters bit is on.
816 */
817void
818vm_page_xunbusy_hard(vm_page_t m)
819{
820
821	vm_page_assert_xbusied(m);
822
823	vm_page_lock(m);
824	vm_page_xunbusy_locked(m);
825	vm_page_unlock(m);
826}
827
828/*
829 *	vm_page_flash:
830 *
831 *	Wakeup anyone waiting for the page.
832 *	The ownership bits do not change.
833 *
834 *	The given page must be locked.
835 */
836void
837vm_page_flash(vm_page_t m)
838{
839	u_int x;
840
841	vm_page_lock_assert(m, MA_OWNED);
842
843	for (;;) {
844		x = m->busy_lock;
845		if ((x & VPB_BIT_WAITERS) == 0)
846			return;
847		if (atomic_cmpset_int(&m->busy_lock, x,
848		    x & (~VPB_BIT_WAITERS)))
849			break;
850	}
851	wakeup(m);
852}
853
854/*
855 * Keep page from being freed by the page daemon
856 * much of the same effect as wiring, except much lower
857 * overhead and should be used only for *very* temporary
858 * holding ("wiring").
859 */
860void
861vm_page_hold(vm_page_t mem)
862{
863
864	vm_page_lock_assert(mem, MA_OWNED);
865        mem->hold_count++;
866}
867
868void
869vm_page_unhold(vm_page_t mem)
870{
871
872	vm_page_lock_assert(mem, MA_OWNED);
873	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
874	--mem->hold_count;
875	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
876		vm_page_free_toq(mem);
877}
878
879/*
880 *	vm_page_unhold_pages:
881 *
882 *	Unhold each of the pages that is referenced by the given array.
883 */
884void
885vm_page_unhold_pages(vm_page_t *ma, int count)
886{
887	struct mtx *mtx, *new_mtx;
888
889	mtx = NULL;
890	for (; count != 0; count--) {
891		/*
892		 * Avoid releasing and reacquiring the same page lock.
893		 */
894		new_mtx = vm_page_lockptr(*ma);
895		if (mtx != new_mtx) {
896			if (mtx != NULL)
897				mtx_unlock(mtx);
898			mtx = new_mtx;
899			mtx_lock(mtx);
900		}
901		vm_page_unhold(*ma);
902		ma++;
903	}
904	if (mtx != NULL)
905		mtx_unlock(mtx);
906}
907
908vm_page_t
909PHYS_TO_VM_PAGE(vm_paddr_t pa)
910{
911	vm_page_t m;
912
913#ifdef VM_PHYSSEG_SPARSE
914	m = vm_phys_paddr_to_vm_page(pa);
915	if (m == NULL)
916		m = vm_phys_fictitious_to_vm_page(pa);
917	return (m);
918#elif defined(VM_PHYSSEG_DENSE)
919	long pi;
920
921	pi = atop(pa);
922	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
923		m = &vm_page_array[pi - first_page];
924		return (m);
925	}
926	return (vm_phys_fictitious_to_vm_page(pa));
927#else
928#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
929#endif
930}
931
932/*
933 *	vm_page_getfake:
934 *
935 *	Create a fictitious page with the specified physical address and
936 *	memory attribute.  The memory attribute is the only the machine-
937 *	dependent aspect of a fictitious page that must be initialized.
938 */
939vm_page_t
940vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
941{
942	vm_page_t m;
943
944	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
945	vm_page_initfake(m, paddr, memattr);
946	return (m);
947}
948
949void
950vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
951{
952
953	if ((m->flags & PG_FICTITIOUS) != 0) {
954		/*
955		 * The page's memattr might have changed since the
956		 * previous initialization.  Update the pmap to the
957		 * new memattr.
958		 */
959		goto memattr;
960	}
961	m->phys_addr = paddr;
962	m->queue = PQ_NONE;
963	/* Fictitious pages don't use "segind". */
964	m->flags = PG_FICTITIOUS;
965	/* Fictitious pages don't use "order" or "pool". */
966	m->oflags = VPO_UNMANAGED;
967	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
968	m->wire_count = 1;
969	pmap_page_init(m);
970memattr:
971	pmap_page_set_memattr(m, memattr);
972}
973
974/*
975 *	vm_page_putfake:
976 *
977 *	Release a fictitious page.
978 */
979void
980vm_page_putfake(vm_page_t m)
981{
982
983	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
984	KASSERT((m->flags & PG_FICTITIOUS) != 0,
985	    ("vm_page_putfake: bad page %p", m));
986	uma_zfree(fakepg_zone, m);
987}
988
989/*
990 *	vm_page_updatefake:
991 *
992 *	Update the given fictitious page to the specified physical address and
993 *	memory attribute.
994 */
995void
996vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
997{
998
999	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1000	    ("vm_page_updatefake: bad page %p", m));
1001	m->phys_addr = paddr;
1002	pmap_page_set_memattr(m, memattr);
1003}
1004
1005/*
1006 *	vm_page_free:
1007 *
1008 *	Free a page.
1009 */
1010void
1011vm_page_free(vm_page_t m)
1012{
1013
1014	m->flags &= ~PG_ZERO;
1015	vm_page_free_toq(m);
1016}
1017
1018/*
1019 *	vm_page_free_zero:
1020 *
1021 *	Free a page to the zerod-pages queue
1022 */
1023void
1024vm_page_free_zero(vm_page_t m)
1025{
1026
1027	m->flags |= PG_ZERO;
1028	vm_page_free_toq(m);
1029}
1030
1031/*
1032 * Unbusy and handle the page queueing for a page from a getpages request that
1033 * was optionally read ahead or behind.
1034 */
1035void
1036vm_page_readahead_finish(vm_page_t m)
1037{
1038
1039	/* We shouldn't put invalid pages on queues. */
1040	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1041
1042	/*
1043	 * Since the page is not the actually needed one, whether it should
1044	 * be activated or deactivated is not obvious.  Empirical results
1045	 * have shown that deactivating the page is usually the best choice,
1046	 * unless the page is wanted by another thread.
1047	 */
1048	vm_page_lock(m);
1049	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1050		vm_page_activate(m);
1051	else
1052		vm_page_deactivate(m);
1053	vm_page_unlock(m);
1054	vm_page_xunbusy(m);
1055}
1056
1057/*
1058 *	vm_page_sleep_if_busy:
1059 *
1060 *	Sleep and release the page queues lock if the page is busied.
1061 *	Returns TRUE if the thread slept.
1062 *
1063 *	The given page must be unlocked and object containing it must
1064 *	be locked.
1065 */
1066int
1067vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1068{
1069	vm_object_t obj;
1070
1071	vm_page_lock_assert(m, MA_NOTOWNED);
1072	VM_OBJECT_ASSERT_WLOCKED(m->object);
1073
1074	if (vm_page_busied(m)) {
1075		/*
1076		 * The page-specific object must be cached because page
1077		 * identity can change during the sleep, causing the
1078		 * re-lock of a different object.
1079		 * It is assumed that a reference to the object is already
1080		 * held by the callers.
1081		 */
1082		obj = m->object;
1083		vm_page_lock(m);
1084		VM_OBJECT_WUNLOCK(obj);
1085		vm_page_busy_sleep(m, msg);
1086		VM_OBJECT_WLOCK(obj);
1087		return (TRUE);
1088	}
1089	return (FALSE);
1090}
1091
1092/*
1093 *	vm_page_dirty_KBI:		[ internal use only ]
1094 *
1095 *	Set all bits in the page's dirty field.
1096 *
1097 *	The object containing the specified page must be locked if the
1098 *	call is made from the machine-independent layer.
1099 *
1100 *	See vm_page_clear_dirty_mask().
1101 *
1102 *	This function should only be called by vm_page_dirty().
1103 */
1104void
1105vm_page_dirty_KBI(vm_page_t m)
1106{
1107
1108	/* These assertions refer to this operation by its public name. */
1109	KASSERT((m->flags & PG_CACHED) == 0,
1110	    ("vm_page_dirty: page in cache!"));
1111	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1112	    ("vm_page_dirty: page is invalid!"));
1113	m->dirty = VM_PAGE_BITS_ALL;
1114}
1115
1116/*
1117 *	vm_page_insert:		[ internal use only ]
1118 *
1119 *	Inserts the given mem entry into the object and object list.
1120 *
1121 *	The object must be locked.
1122 */
1123int
1124vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1125{
1126	vm_page_t mpred;
1127
1128	VM_OBJECT_ASSERT_WLOCKED(object);
1129	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1130	return (vm_page_insert_after(m, object, pindex, mpred));
1131}
1132
1133/*
1134 *	vm_page_insert_after:
1135 *
1136 *	Inserts the page "m" into the specified object at offset "pindex".
1137 *
1138 *	The page "mpred" must immediately precede the offset "pindex" within
1139 *	the specified object.
1140 *
1141 *	The object must be locked.
1142 */
1143static int
1144vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1145    vm_page_t mpred)
1146{
1147	vm_page_t msucc;
1148
1149	VM_OBJECT_ASSERT_WLOCKED(object);
1150	KASSERT(m->object == NULL,
1151	    ("vm_page_insert_after: page already inserted"));
1152	if (mpred != NULL) {
1153		KASSERT(mpred->object == object,
1154		    ("vm_page_insert_after: object doesn't contain mpred"));
1155		KASSERT(mpred->pindex < pindex,
1156		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1157		msucc = TAILQ_NEXT(mpred, listq);
1158	} else
1159		msucc = TAILQ_FIRST(&object->memq);
1160	if (msucc != NULL)
1161		KASSERT(msucc->pindex > pindex,
1162		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1163
1164	/*
1165	 * Record the object/offset pair in this page
1166	 */
1167	m->object = object;
1168	m->pindex = pindex;
1169
1170	/*
1171	 * Now link into the object's ordered list of backed pages.
1172	 */
1173	if (vm_radix_insert(&object->rtree, m)) {
1174		m->object = NULL;
1175		m->pindex = 0;
1176		return (1);
1177	}
1178	vm_page_insert_radixdone(m, object, mpred);
1179	return (0);
1180}
1181
1182/*
1183 *	vm_page_insert_radixdone:
1184 *
1185 *	Complete page "m" insertion into the specified object after the
1186 *	radix trie hooking.
1187 *
1188 *	The page "mpred" must precede the offset "m->pindex" within the
1189 *	specified object.
1190 *
1191 *	The object must be locked.
1192 */
1193static void
1194vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1195{
1196
1197	VM_OBJECT_ASSERT_WLOCKED(object);
1198	KASSERT(object != NULL && m->object == object,
1199	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1200	if (mpred != NULL) {
1201		KASSERT(mpred->object == object,
1202		    ("vm_page_insert_after: object doesn't contain mpred"));
1203		KASSERT(mpred->pindex < m->pindex,
1204		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1205	}
1206
1207	if (mpred != NULL)
1208		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1209	else
1210		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1211
1212	/*
1213	 * Show that the object has one more resident page.
1214	 */
1215	object->resident_page_count++;
1216
1217	/*
1218	 * Hold the vnode until the last page is released.
1219	 */
1220	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1221		vhold(object->handle);
1222
1223	/*
1224	 * Since we are inserting a new and possibly dirty page,
1225	 * update the object's OBJ_MIGHTBEDIRTY flag.
1226	 */
1227	if (pmap_page_is_write_mapped(m))
1228		vm_object_set_writeable_dirty(object);
1229}
1230
1231/*
1232 *	vm_page_remove:
1233 *
1234 *	Removes the given mem entry from the object/offset-page
1235 *	table and the object page list, but do not invalidate/terminate
1236 *	the backing store.
1237 *
1238 *	The object must be locked.  The page must be locked if it is managed.
1239 */
1240void
1241vm_page_remove(vm_page_t m)
1242{
1243	vm_object_t object;
1244
1245	if ((m->oflags & VPO_UNMANAGED) == 0)
1246		vm_page_assert_locked(m);
1247	if ((object = m->object) == NULL)
1248		return;
1249	VM_OBJECT_ASSERT_WLOCKED(object);
1250	if (vm_page_xbusied(m))
1251		vm_page_xunbusy_maybelocked(m);
1252
1253	/*
1254	 * Now remove from the object's list of backed pages.
1255	 */
1256	vm_radix_remove(&object->rtree, m->pindex);
1257	TAILQ_REMOVE(&object->memq, m, listq);
1258
1259	/*
1260	 * And show that the object has one fewer resident page.
1261	 */
1262	object->resident_page_count--;
1263
1264	/*
1265	 * The vnode may now be recycled.
1266	 */
1267	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1268		vdrop(object->handle);
1269
1270	m->object = NULL;
1271}
1272
1273/*
1274 *	vm_page_lookup:
1275 *
1276 *	Returns the page associated with the object/offset
1277 *	pair specified; if none is found, NULL is returned.
1278 *
1279 *	The object must be locked.
1280 */
1281vm_page_t
1282vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1283{
1284
1285	VM_OBJECT_ASSERT_LOCKED(object);
1286	return (vm_radix_lookup(&object->rtree, pindex));
1287}
1288
1289/*
1290 *	vm_page_find_least:
1291 *
1292 *	Returns the page associated with the object with least pindex
1293 *	greater than or equal to the parameter pindex, or NULL.
1294 *
1295 *	The object must be locked.
1296 */
1297vm_page_t
1298vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1299{
1300	vm_page_t m;
1301
1302	VM_OBJECT_ASSERT_LOCKED(object);
1303	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1304		m = vm_radix_lookup_ge(&object->rtree, pindex);
1305	return (m);
1306}
1307
1308/*
1309 * Returns the given page's successor (by pindex) within the object if it is
1310 * resident; if none is found, NULL is returned.
1311 *
1312 * The object must be locked.
1313 */
1314vm_page_t
1315vm_page_next(vm_page_t m)
1316{
1317	vm_page_t next;
1318
1319	VM_OBJECT_ASSERT_LOCKED(m->object);
1320	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1321	    next->pindex != m->pindex + 1)
1322		next = NULL;
1323	return (next);
1324}
1325
1326/*
1327 * Returns the given page's predecessor (by pindex) within the object if it is
1328 * resident; if none is found, NULL is returned.
1329 *
1330 * The object must be locked.
1331 */
1332vm_page_t
1333vm_page_prev(vm_page_t m)
1334{
1335	vm_page_t prev;
1336
1337	VM_OBJECT_ASSERT_LOCKED(m->object);
1338	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1339	    prev->pindex != m->pindex - 1)
1340		prev = NULL;
1341	return (prev);
1342}
1343
1344/*
1345 * Uses the page mnew as a replacement for an existing page at index
1346 * pindex which must be already present in the object.
1347 *
1348 * The existing page must not be on a paging queue.
1349 */
1350vm_page_t
1351vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1352{
1353	vm_page_t mold;
1354
1355	VM_OBJECT_ASSERT_WLOCKED(object);
1356	KASSERT(mnew->object == NULL,
1357	    ("vm_page_replace: page already in object"));
1358
1359	/*
1360	 * This function mostly follows vm_page_insert() and
1361	 * vm_page_remove() without the radix, object count and vnode
1362	 * dance.  Double check such functions for more comments.
1363	 */
1364
1365	mnew->object = object;
1366	mnew->pindex = pindex;
1367	mold = vm_radix_replace(&object->rtree, mnew);
1368	KASSERT(mold->queue == PQ_NONE,
1369	    ("vm_page_replace: mold is on a paging queue"));
1370
1371	/* Keep the resident page list in sorted order. */
1372	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1373	TAILQ_REMOVE(&object->memq, mold, listq);
1374
1375	mold->object = NULL;
1376	vm_page_xunbusy_maybelocked(mold);
1377
1378	/*
1379	 * The object's resident_page_count does not change because we have
1380	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1381	 */
1382	if (pmap_page_is_write_mapped(mnew))
1383		vm_object_set_writeable_dirty(object);
1384	return (mold);
1385}
1386
1387/*
1388 *	vm_page_rename:
1389 *
1390 *	Move the given memory entry from its
1391 *	current object to the specified target object/offset.
1392 *
1393 *	Note: swap associated with the page must be invalidated by the move.  We
1394 *	      have to do this for several reasons:  (1) we aren't freeing the
1395 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1396 *	      moving the page from object A to B, and will then later move
1397 *	      the backing store from A to B and we can't have a conflict.
1398 *
1399 *	Note: we *always* dirty the page.  It is necessary both for the
1400 *	      fact that we moved it, and because we may be invalidating
1401 *	      swap.  If the page is on the cache, we have to deactivate it
1402 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1403 *	      on the cache.
1404 *
1405 *	The objects must be locked.
1406 */
1407int
1408vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1409{
1410	vm_page_t mpred;
1411	vm_pindex_t opidx;
1412
1413	VM_OBJECT_ASSERT_WLOCKED(new_object);
1414
1415	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1416	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1417	    ("vm_page_rename: pindex already renamed"));
1418
1419	/*
1420	 * Create a custom version of vm_page_insert() which does not depend
1421	 * by m_prev and can cheat on the implementation aspects of the
1422	 * function.
1423	 */
1424	opidx = m->pindex;
1425	m->pindex = new_pindex;
1426	if (vm_radix_insert(&new_object->rtree, m)) {
1427		m->pindex = opidx;
1428		return (1);
1429	}
1430
1431	/*
1432	 * The operation cannot fail anymore.  The removal must happen before
1433	 * the listq iterator is tainted.
1434	 */
1435	m->pindex = opidx;
1436	vm_page_lock(m);
1437	vm_page_remove(m);
1438
1439	/* Return back to the new pindex to complete vm_page_insert(). */
1440	m->pindex = new_pindex;
1441	m->object = new_object;
1442	vm_page_unlock(m);
1443	vm_page_insert_radixdone(m, new_object, mpred);
1444	vm_page_dirty(m);
1445	return (0);
1446}
1447
1448/*
1449 *	Convert all of the given object's cached pages that have a
1450 *	pindex within the given range into free pages.  If the value
1451 *	zero is given for "end", then the range's upper bound is
1452 *	infinity.  If the given object is backed by a vnode and it
1453 *	transitions from having one or more cached pages to none, the
1454 *	vnode's hold count is reduced.
1455 */
1456void
1457vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1458{
1459	vm_page_t m;
1460	boolean_t empty;
1461
1462	mtx_lock(&vm_page_queue_free_mtx);
1463	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1464		mtx_unlock(&vm_page_queue_free_mtx);
1465		return;
1466	}
1467	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1468		if (end != 0 && m->pindex >= end)
1469			break;
1470		vm_radix_remove(&object->cache, m->pindex);
1471		vm_page_cache_turn_free(m);
1472	}
1473	empty = vm_radix_is_empty(&object->cache);
1474	mtx_unlock(&vm_page_queue_free_mtx);
1475	if (object->type == OBJT_VNODE && empty)
1476		vdrop(object->handle);
1477}
1478
1479/*
1480 *	Returns the cached page that is associated with the given
1481 *	object and offset.  If, however, none exists, returns NULL.
1482 *
1483 *	The free page queue must be locked.
1484 */
1485static inline vm_page_t
1486vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1487{
1488
1489	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1490	return (vm_radix_lookup(&object->cache, pindex));
1491}
1492
1493/*
1494 *	Remove the given cached page from its containing object's
1495 *	collection of cached pages.
1496 *
1497 *	The free page queue must be locked.
1498 */
1499static void
1500vm_page_cache_remove(vm_page_t m)
1501{
1502
1503	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1504	KASSERT((m->flags & PG_CACHED) != 0,
1505	    ("vm_page_cache_remove: page %p is not cached", m));
1506	vm_radix_remove(&m->object->cache, m->pindex);
1507	m->object = NULL;
1508	vm_cnt.v_cache_count--;
1509}
1510
1511/*
1512 *	Transfer all of the cached pages with offset greater than or
1513 *	equal to 'offidxstart' from the original object's cache to the
1514 *	new object's cache.  However, any cached pages with offset
1515 *	greater than or equal to the new object's size are kept in the
1516 *	original object.  Initially, the new object's cache must be
1517 *	empty.  Offset 'offidxstart' in the original object must
1518 *	correspond to offset zero in the new object.
1519 *
1520 *	The new object must be locked.
1521 */
1522void
1523vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1524    vm_object_t new_object)
1525{
1526	vm_page_t m;
1527
1528	/*
1529	 * Insertion into an object's collection of cached pages
1530	 * requires the object to be locked.  In contrast, removal does
1531	 * not.
1532	 */
1533	VM_OBJECT_ASSERT_WLOCKED(new_object);
1534	KASSERT(vm_radix_is_empty(&new_object->cache),
1535	    ("vm_page_cache_transfer: object %p has cached pages",
1536	    new_object));
1537	mtx_lock(&vm_page_queue_free_mtx);
1538	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1539	    offidxstart)) != NULL) {
1540		/*
1541		 * Transfer all of the pages with offset greater than or
1542		 * equal to 'offidxstart' from the original object's
1543		 * cache to the new object's cache.
1544		 */
1545		if ((m->pindex - offidxstart) >= new_object->size)
1546			break;
1547		vm_radix_remove(&orig_object->cache, m->pindex);
1548		/* Update the page's object and offset. */
1549		m->object = new_object;
1550		m->pindex -= offidxstart;
1551		if (vm_radix_insert(&new_object->cache, m))
1552			vm_page_cache_turn_free(m);
1553	}
1554	mtx_unlock(&vm_page_queue_free_mtx);
1555}
1556
1557/*
1558 *	Returns TRUE if a cached page is associated with the given object and
1559 *	offset, and FALSE otherwise.
1560 *
1561 *	The object must be locked.
1562 */
1563boolean_t
1564vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1565{
1566	vm_page_t m;
1567
1568	/*
1569	 * Insertion into an object's collection of cached pages requires the
1570	 * object to be locked.  Therefore, if the object is locked and the
1571	 * object's collection is empty, there is no need to acquire the free
1572	 * page queues lock in order to prove that the specified page doesn't
1573	 * exist.
1574	 */
1575	VM_OBJECT_ASSERT_WLOCKED(object);
1576	if (__predict_true(vm_object_cache_is_empty(object)))
1577		return (FALSE);
1578	mtx_lock(&vm_page_queue_free_mtx);
1579	m = vm_page_cache_lookup(object, pindex);
1580	mtx_unlock(&vm_page_queue_free_mtx);
1581	return (m != NULL);
1582}
1583
1584/*
1585 *	vm_page_alloc:
1586 *
1587 *	Allocate and return a page that is associated with the specified
1588 *	object and offset pair.  By default, this page is exclusive busied.
1589 *
1590 *	The caller must always specify an allocation class.
1591 *
1592 *	allocation classes:
1593 *	VM_ALLOC_NORMAL		normal process request
1594 *	VM_ALLOC_SYSTEM		system *really* needs a page
1595 *	VM_ALLOC_INTERRUPT	interrupt time request
1596 *
1597 *	optional allocation flags:
1598 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1599 *				intends to allocate
1600 *	VM_ALLOC_IFCACHED	return page only if it is cached
1601 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1602 *				is cached
1603 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1604 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1605 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1606 *				should not be exclusive busy
1607 *	VM_ALLOC_SBUSY		shared busy the allocated page
1608 *	VM_ALLOC_WIRED		wire the allocated page
1609 *	VM_ALLOC_ZERO		prefer a zeroed page
1610 *
1611 *	This routine may not sleep.
1612 */
1613vm_page_t
1614vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1615{
1616	struct vnode *vp = NULL;
1617	vm_object_t m_object;
1618	vm_page_t m, mpred;
1619	int flags, req_class;
1620
1621	mpred = 0;	/* XXX: pacify gcc */
1622	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1623	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1624	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1625	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1626	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1627	    req));
1628	if (object != NULL)
1629		VM_OBJECT_ASSERT_WLOCKED(object);
1630
1631	req_class = req & VM_ALLOC_CLASS_MASK;
1632
1633	/*
1634	 * The page daemon is allowed to dig deeper into the free page list.
1635	 */
1636	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1637		req_class = VM_ALLOC_SYSTEM;
1638
1639	if (object != NULL) {
1640		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1641		KASSERT(mpred == NULL || mpred->pindex != pindex,
1642		   ("vm_page_alloc: pindex already allocated"));
1643	}
1644
1645	/*
1646	 * The page allocation request can came from consumers which already
1647	 * hold the free page queue mutex, like vm_page_insert() in
1648	 * vm_page_cache().
1649	 */
1650	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1651	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1652	    (req_class == VM_ALLOC_SYSTEM &&
1653	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1654	    (req_class == VM_ALLOC_INTERRUPT &&
1655	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1656		/*
1657		 * Allocate from the free queue if the number of free pages
1658		 * exceeds the minimum for the request class.
1659		 */
1660		if (object != NULL &&
1661		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1662			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1663				mtx_unlock(&vm_page_queue_free_mtx);
1664				return (NULL);
1665			}
1666			if (vm_phys_unfree_page(m))
1667				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1668#if VM_NRESERVLEVEL > 0
1669			else if (!vm_reserv_reactivate_page(m))
1670#else
1671			else
1672#endif
1673				panic("vm_page_alloc: cache page %p is missing"
1674				    " from the free queue", m);
1675		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1676			mtx_unlock(&vm_page_queue_free_mtx);
1677			return (NULL);
1678#if VM_NRESERVLEVEL > 0
1679		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1680		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1681		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1682#else
1683		} else {
1684#endif
1685			m = vm_phys_alloc_pages(object != NULL ?
1686			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1687#if VM_NRESERVLEVEL > 0
1688			if (m == NULL && vm_reserv_reclaim_inactive()) {
1689				m = vm_phys_alloc_pages(object != NULL ?
1690				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1691				    0);
1692			}
1693#endif
1694		}
1695	} else {
1696		/*
1697		 * Not allocatable, give up.
1698		 */
1699		mtx_unlock(&vm_page_queue_free_mtx);
1700		atomic_add_int(&vm_pageout_deficit,
1701		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1702		pagedaemon_wakeup();
1703		return (NULL);
1704	}
1705
1706	/*
1707	 *  At this point we had better have found a good page.
1708	 */
1709	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1710	KASSERT(m->queue == PQ_NONE,
1711	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1712	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1713	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1714	KASSERT(!vm_page_busied(m), ("vm_page_alloc: page %p is busy", m));
1715	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1716	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1717	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1718	    pmap_page_get_memattr(m)));
1719	if ((m->flags & PG_CACHED) != 0) {
1720		KASSERT((m->flags & PG_ZERO) == 0,
1721		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1722		KASSERT(m->valid != 0,
1723		    ("vm_page_alloc: cached page %p is invalid", m));
1724		if (m->object == object && m->pindex == pindex)
1725			vm_cnt.v_reactivated++;
1726		else
1727			m->valid = 0;
1728		m_object = m->object;
1729		vm_page_cache_remove(m);
1730		if (m_object->type == OBJT_VNODE &&
1731		    vm_object_cache_is_empty(m_object))
1732			vp = m_object->handle;
1733	} else {
1734		KASSERT(m->valid == 0,
1735		    ("vm_page_alloc: free page %p is valid", m));
1736		vm_phys_freecnt_adj(m, -1);
1737	}
1738	mtx_unlock(&vm_page_queue_free_mtx);
1739
1740	/*
1741	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1742	 */
1743	flags = 0;
1744	if ((req & VM_ALLOC_ZERO) != 0)
1745		flags = PG_ZERO;
1746	flags &= m->flags;
1747	if ((req & VM_ALLOC_NODUMP) != 0)
1748		flags |= PG_NODUMP;
1749	m->flags = flags;
1750	m->aflags = 0;
1751	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1752	    VPO_UNMANAGED : 0;
1753	m->busy_lock = VPB_UNBUSIED;
1754	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1755		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1756	if ((req & VM_ALLOC_SBUSY) != 0)
1757		m->busy_lock = VPB_SHARERS_WORD(1);
1758	if (req & VM_ALLOC_WIRED) {
1759		/*
1760		 * The page lock is not required for wiring a page until that
1761		 * page is inserted into the object.
1762		 */
1763		atomic_add_int(&vm_cnt.v_wire_count, 1);
1764		m->wire_count = 1;
1765	}
1766	m->act_count = 0;
1767
1768	if (object != NULL) {
1769		if (vm_page_insert_after(m, object, pindex, mpred)) {
1770			/* See the comment below about hold count. */
1771			if (vp != NULL)
1772				vdrop(vp);
1773			pagedaemon_wakeup();
1774			if (req & VM_ALLOC_WIRED) {
1775				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1776				m->wire_count = 0;
1777			}
1778			m->object = NULL;
1779			m->oflags = VPO_UNMANAGED;
1780			m->busy_lock = VPB_UNBUSIED;
1781			vm_page_free(m);
1782			return (NULL);
1783		}
1784
1785		/* Ignore device objects; the pager sets "memattr" for them. */
1786		if (object->memattr != VM_MEMATTR_DEFAULT &&
1787		    (object->flags & OBJ_FICTITIOUS) == 0)
1788			pmap_page_set_memattr(m, object->memattr);
1789	} else
1790		m->pindex = pindex;
1791
1792	/*
1793	 * The following call to vdrop() must come after the above call
1794	 * to vm_page_insert() in case both affect the same object and
1795	 * vnode.  Otherwise, the affected vnode's hold count could
1796	 * temporarily become zero.
1797	 */
1798	if (vp != NULL)
1799		vdrop(vp);
1800
1801	/*
1802	 * Don't wakeup too often - wakeup the pageout daemon when
1803	 * we would be nearly out of memory.
1804	 */
1805	if (vm_paging_needed())
1806		pagedaemon_wakeup();
1807
1808	return (m);
1809}
1810
1811static void
1812vm_page_alloc_contig_vdrop(struct spglist *lst)
1813{
1814
1815	while (!SLIST_EMPTY(lst)) {
1816		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1817		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1818	}
1819}
1820
1821/*
1822 *	vm_page_alloc_contig:
1823 *
1824 *	Allocate a contiguous set of physical pages of the given size "npages"
1825 *	from the free lists.  All of the physical pages must be at or above
1826 *	the given physical address "low" and below the given physical address
1827 *	"high".  The given value "alignment" determines the alignment of the
1828 *	first physical page in the set.  If the given value "boundary" is
1829 *	non-zero, then the set of physical pages cannot cross any physical
1830 *	address boundary that is a multiple of that value.  Both "alignment"
1831 *	and "boundary" must be a power of two.
1832 *
1833 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1834 *	then the memory attribute setting for the physical pages is configured
1835 *	to the object's memory attribute setting.  Otherwise, the memory
1836 *	attribute setting for the physical pages is configured to "memattr",
1837 *	overriding the object's memory attribute setting.  However, if the
1838 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1839 *	memory attribute setting for the physical pages cannot be configured
1840 *	to VM_MEMATTR_DEFAULT.
1841 *
1842 *	The caller must always specify an allocation class.
1843 *
1844 *	allocation classes:
1845 *	VM_ALLOC_NORMAL		normal process request
1846 *	VM_ALLOC_SYSTEM		system *really* needs a page
1847 *	VM_ALLOC_INTERRUPT	interrupt time request
1848 *
1849 *	optional allocation flags:
1850 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1851 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1852 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1853 *				should not be exclusive busy
1854 *	VM_ALLOC_SBUSY		shared busy the allocated page
1855 *	VM_ALLOC_WIRED		wire the allocated page
1856 *	VM_ALLOC_ZERO		prefer a zeroed page
1857 *
1858 *	This routine may not sleep.
1859 */
1860vm_page_t
1861vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1862    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1863    vm_paddr_t boundary, vm_memattr_t memattr)
1864{
1865	struct vnode *drop;
1866	struct spglist deferred_vdrop_list;
1867	vm_page_t m, m_tmp, m_ret;
1868	u_int flags;
1869	int req_class;
1870
1871	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1872	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1873	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1874	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1875	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1876	    req));
1877	if (object != NULL) {
1878		VM_OBJECT_ASSERT_WLOCKED(object);
1879		KASSERT(object->type == OBJT_PHYS,
1880		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1881		    object));
1882	}
1883	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1884	req_class = req & VM_ALLOC_CLASS_MASK;
1885
1886	/*
1887	 * The page daemon is allowed to dig deeper into the free page list.
1888	 */
1889	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1890		req_class = VM_ALLOC_SYSTEM;
1891
1892	SLIST_INIT(&deferred_vdrop_list);
1893	mtx_lock(&vm_page_queue_free_mtx);
1894	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1895	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1896	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1897	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1898	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1899#if VM_NRESERVLEVEL > 0
1900retry:
1901		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1902		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1903		    low, high, alignment, boundary)) == NULL)
1904#endif
1905			m_ret = vm_phys_alloc_contig(npages, low, high,
1906			    alignment, boundary);
1907	} else {
1908		mtx_unlock(&vm_page_queue_free_mtx);
1909		atomic_add_int(&vm_pageout_deficit, npages);
1910		pagedaemon_wakeup();
1911		return (NULL);
1912	}
1913	if (m_ret != NULL)
1914		for (m = m_ret; m < &m_ret[npages]; m++) {
1915			drop = vm_page_alloc_init(m);
1916			if (drop != NULL) {
1917				/*
1918				 * Enqueue the vnode for deferred vdrop().
1919				 */
1920				m->plinks.s.pv = drop;
1921				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1922				    plinks.s.ss);
1923			}
1924		}
1925	else {
1926#if VM_NRESERVLEVEL > 0
1927		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1928		    boundary))
1929			goto retry;
1930#endif
1931	}
1932	mtx_unlock(&vm_page_queue_free_mtx);
1933	if (m_ret == NULL)
1934		return (NULL);
1935
1936	/*
1937	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1938	 */
1939	flags = 0;
1940	if ((req & VM_ALLOC_ZERO) != 0)
1941		flags = PG_ZERO;
1942	if ((req & VM_ALLOC_NODUMP) != 0)
1943		flags |= PG_NODUMP;
1944	if ((req & VM_ALLOC_WIRED) != 0)
1945		atomic_add_int(&vm_cnt.v_wire_count, npages);
1946	if (object != NULL) {
1947		if (object->memattr != VM_MEMATTR_DEFAULT &&
1948		    memattr == VM_MEMATTR_DEFAULT)
1949			memattr = object->memattr;
1950	}
1951	for (m = m_ret; m < &m_ret[npages]; m++) {
1952		m->aflags = 0;
1953		m->flags = (m->flags | PG_NODUMP) & flags;
1954		m->busy_lock = VPB_UNBUSIED;
1955		if (object != NULL) {
1956			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1957				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1958			if ((req & VM_ALLOC_SBUSY) != 0)
1959				m->busy_lock = VPB_SHARERS_WORD(1);
1960		}
1961		if ((req & VM_ALLOC_WIRED) != 0)
1962			m->wire_count = 1;
1963		/* Unmanaged pages don't use "act_count". */
1964		m->oflags = VPO_UNMANAGED;
1965		if (object != NULL) {
1966			if (vm_page_insert(m, object, pindex)) {
1967				vm_page_alloc_contig_vdrop(
1968				    &deferred_vdrop_list);
1969				if (vm_paging_needed())
1970					pagedaemon_wakeup();
1971				if ((req & VM_ALLOC_WIRED) != 0)
1972					atomic_subtract_int(&vm_cnt.v_wire_count,
1973					    npages);
1974				for (m_tmp = m, m = m_ret;
1975				    m < &m_ret[npages]; m++) {
1976					if ((req & VM_ALLOC_WIRED) != 0)
1977						m->wire_count = 0;
1978					if (m >= m_tmp) {
1979						m->object = NULL;
1980						m->oflags |= VPO_UNMANAGED;
1981					}
1982					m->busy_lock = VPB_UNBUSIED;
1983					vm_page_free(m);
1984				}
1985				return (NULL);
1986			}
1987		} else
1988			m->pindex = pindex;
1989		if (memattr != VM_MEMATTR_DEFAULT)
1990			pmap_page_set_memattr(m, memattr);
1991		pindex++;
1992	}
1993	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1994	if (vm_paging_needed())
1995		pagedaemon_wakeup();
1996	return (m_ret);
1997}
1998
1999/*
2000 * Initialize a page that has been freshly dequeued from a freelist.
2001 * The caller has to drop the vnode returned, if it is not NULL.
2002 *
2003 * This function may only be used to initialize unmanaged pages.
2004 *
2005 * To be called with vm_page_queue_free_mtx held.
2006 */
2007static struct vnode *
2008vm_page_alloc_init(vm_page_t m)
2009{
2010	struct vnode *drop;
2011	vm_object_t m_object;
2012
2013	KASSERT(m->queue == PQ_NONE,
2014	    ("vm_page_alloc_init: page %p has unexpected queue %d",
2015	    m, m->queue));
2016	KASSERT(m->wire_count == 0,
2017	    ("vm_page_alloc_init: page %p is wired", m));
2018	KASSERT(m->hold_count == 0,
2019	    ("vm_page_alloc_init: page %p is held", m));
2020	KASSERT(!vm_page_busied(m),
2021	    ("vm_page_alloc_init: page %p is busy", m));
2022	KASSERT(m->dirty == 0,
2023	    ("vm_page_alloc_init: page %p is dirty", m));
2024	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2025	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
2026	    m, pmap_page_get_memattr(m)));
2027	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2028	drop = NULL;
2029	if ((m->flags & PG_CACHED) != 0) {
2030		KASSERT((m->flags & PG_ZERO) == 0,
2031		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2032		m->valid = 0;
2033		m_object = m->object;
2034		vm_page_cache_remove(m);
2035		if (m_object->type == OBJT_VNODE &&
2036		    vm_object_cache_is_empty(m_object))
2037			drop = m_object->handle;
2038	} else {
2039		KASSERT(m->valid == 0,
2040		    ("vm_page_alloc_init: free page %p is valid", m));
2041		vm_phys_freecnt_adj(m, -1);
2042	}
2043	return (drop);
2044}
2045
2046/*
2047 * 	vm_page_alloc_freelist:
2048 *
2049 *	Allocate a physical page from the specified free page list.
2050 *
2051 *	The caller must always specify an allocation class.
2052 *
2053 *	allocation classes:
2054 *	VM_ALLOC_NORMAL		normal process request
2055 *	VM_ALLOC_SYSTEM		system *really* needs a page
2056 *	VM_ALLOC_INTERRUPT	interrupt time request
2057 *
2058 *	optional allocation flags:
2059 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2060 *				intends to allocate
2061 *	VM_ALLOC_WIRED		wire the allocated page
2062 *	VM_ALLOC_ZERO		prefer a zeroed page
2063 *
2064 *	This routine may not sleep.
2065 */
2066vm_page_t
2067vm_page_alloc_freelist(int flind, int req)
2068{
2069	struct vnode *drop;
2070	vm_page_t m;
2071	u_int flags;
2072	int req_class;
2073
2074	req_class = req & VM_ALLOC_CLASS_MASK;
2075
2076	/*
2077	 * The page daemon is allowed to dig deeper into the free page list.
2078	 */
2079	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2080		req_class = VM_ALLOC_SYSTEM;
2081
2082	/*
2083	 * Do not allocate reserved pages unless the req has asked for it.
2084	 */
2085	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2086	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2087	    (req_class == VM_ALLOC_SYSTEM &&
2088	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2089	    (req_class == VM_ALLOC_INTERRUPT &&
2090	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2091		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2092	else {
2093		mtx_unlock(&vm_page_queue_free_mtx);
2094		atomic_add_int(&vm_pageout_deficit,
2095		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2096		pagedaemon_wakeup();
2097		return (NULL);
2098	}
2099	if (m == NULL) {
2100		mtx_unlock(&vm_page_queue_free_mtx);
2101		return (NULL);
2102	}
2103	drop = vm_page_alloc_init(m);
2104	mtx_unlock(&vm_page_queue_free_mtx);
2105
2106	/*
2107	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2108	 */
2109	m->aflags = 0;
2110	flags = 0;
2111	if ((req & VM_ALLOC_ZERO) != 0)
2112		flags = PG_ZERO;
2113	m->flags &= flags;
2114	if ((req & VM_ALLOC_WIRED) != 0) {
2115		/*
2116		 * The page lock is not required for wiring a page that does
2117		 * not belong to an object.
2118		 */
2119		atomic_add_int(&vm_cnt.v_wire_count, 1);
2120		m->wire_count = 1;
2121	}
2122	/* Unmanaged pages don't use "act_count". */
2123	m->oflags = VPO_UNMANAGED;
2124	if (drop != NULL)
2125		vdrop(drop);
2126	if (vm_paging_needed())
2127		pagedaemon_wakeup();
2128	return (m);
2129}
2130
2131#define	VPSC_ANY	0	/* No restrictions. */
2132#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2133#define	VPSC_NOSUPER	2	/* Skip superpages. */
2134
2135/*
2136 *	vm_page_scan_contig:
2137 *
2138 *	Scan vm_page_array[] between the specified entries "m_start" and
2139 *	"m_end" for a run of contiguous physical pages that satisfy the
2140 *	specified conditions, and return the lowest page in the run.  The
2141 *	specified "alignment" determines the alignment of the lowest physical
2142 *	page in the run.  If the specified "boundary" is non-zero, then the
2143 *	run of physical pages cannot span a physical address that is a
2144 *	multiple of "boundary".
2145 *
2146 *	"m_end" is never dereferenced, so it need not point to a vm_page
2147 *	structure within vm_page_array[].
2148 *
2149 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2150 *	span a hole (or discontiguity) in the physical address space.  Both
2151 *	"alignment" and "boundary" must be a power of two.
2152 */
2153vm_page_t
2154vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2155    u_long alignment, vm_paddr_t boundary, int options)
2156{
2157	struct mtx *m_mtx, *new_mtx;
2158	vm_object_t object;
2159	vm_paddr_t pa;
2160	vm_page_t m, m_run;
2161#if VM_NRESERVLEVEL > 0
2162	int level;
2163#endif
2164	int m_inc, order, run_ext, run_len;
2165
2166	KASSERT(npages > 0, ("npages is 0"));
2167	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2168	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2169	m_run = NULL;
2170	run_len = 0;
2171	m_mtx = NULL;
2172	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2173		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2174		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2175
2176		/*
2177		 * If the current page would be the start of a run, check its
2178		 * physical address against the end, alignment, and boundary
2179		 * conditions.  If it doesn't satisfy these conditions, either
2180		 * terminate the scan or advance to the next page that
2181		 * satisfies the failed condition.
2182		 */
2183		if (run_len == 0) {
2184			KASSERT(m_run == NULL, ("m_run != NULL"));
2185			if (m + npages > m_end)
2186				break;
2187			pa = VM_PAGE_TO_PHYS(m);
2188			if ((pa & (alignment - 1)) != 0) {
2189				m_inc = atop(roundup2(pa, alignment) - pa);
2190				continue;
2191			}
2192			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2193			    boundary) != 0) {
2194				m_inc = atop(roundup2(pa, boundary) - pa);
2195				continue;
2196			}
2197		} else
2198			KASSERT(m_run != NULL, ("m_run == NULL"));
2199
2200		/*
2201		 * Avoid releasing and reacquiring the same page lock.
2202		 */
2203		new_mtx = vm_page_lockptr(m);
2204		if (m_mtx != new_mtx) {
2205			if (m_mtx != NULL)
2206				mtx_unlock(m_mtx);
2207			m_mtx = new_mtx;
2208			mtx_lock(m_mtx);
2209		}
2210		m_inc = 1;
2211retry:
2212		if (m->wire_count != 0 || m->hold_count != 0)
2213			run_ext = 0;
2214#if VM_NRESERVLEVEL > 0
2215		else if ((level = vm_reserv_level(m)) >= 0 &&
2216		    (options & VPSC_NORESERV) != 0) {
2217			run_ext = 0;
2218			/* Advance to the end of the reservation. */
2219			pa = VM_PAGE_TO_PHYS(m);
2220			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2221			    pa);
2222		}
2223#endif
2224		else if ((object = m->object) != NULL) {
2225			/*
2226			 * The page is considered eligible for relocation if
2227			 * and only if it could be laundered or reclaimed by
2228			 * the page daemon.
2229			 */
2230			if (!VM_OBJECT_TRYRLOCK(object)) {
2231				mtx_unlock(m_mtx);
2232				VM_OBJECT_RLOCK(object);
2233				mtx_lock(m_mtx);
2234				if (m->object != object) {
2235					/*
2236					 * The page may have been freed.
2237					 */
2238					VM_OBJECT_RUNLOCK(object);
2239					goto retry;
2240				} else if (m->wire_count != 0 ||
2241				    m->hold_count != 0) {
2242					run_ext = 0;
2243					goto unlock;
2244				}
2245			}
2246			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2247			    ("page %p is PG_UNHOLDFREE", m));
2248			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2249			if (object->type != OBJT_DEFAULT &&
2250			    object->type != OBJT_SWAP &&
2251			    object->type != OBJT_VNODE)
2252				run_ext = 0;
2253			else if ((m->flags & PG_CACHED) != 0 ||
2254			    m != vm_page_lookup(object, m->pindex)) {
2255				/*
2256				 * The page is cached or recently converted
2257				 * from cached to free.
2258				 */
2259#if VM_NRESERVLEVEL > 0
2260				if (level >= 0) {
2261					/*
2262					 * The page is reserved.  Extend the
2263					 * current run by one page.
2264					 */
2265					run_ext = 1;
2266				} else
2267#endif
2268				if ((order = m->order) < VM_NFREEORDER) {
2269					/*
2270					 * The page is enqueued in the
2271					 * physical memory allocator's cache/
2272					 * free page queues.  Moreover, it is
2273					 * the first page in a power-of-two-
2274					 * sized run of contiguous cache/free
2275					 * pages.  Add these pages to the end
2276					 * of the current run, and jump
2277					 * ahead.
2278					 */
2279					run_ext = 1 << order;
2280					m_inc = 1 << order;
2281				} else
2282					run_ext = 0;
2283#if VM_NRESERVLEVEL > 0
2284			} else if ((options & VPSC_NOSUPER) != 0 &&
2285			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2286				run_ext = 0;
2287				/* Advance to the end of the superpage. */
2288				pa = VM_PAGE_TO_PHYS(m);
2289				m_inc = atop(roundup2(pa + 1,
2290				    vm_reserv_size(level)) - pa);
2291#endif
2292			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2293			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2294				/*
2295				 * The page is allocated but eligible for
2296				 * relocation.  Extend the current run by one
2297				 * page.
2298				 */
2299				KASSERT(pmap_page_get_memattr(m) ==
2300				    VM_MEMATTR_DEFAULT,
2301				    ("page %p has an unexpected memattr", m));
2302				KASSERT((m->oflags & (VPO_SWAPINPROG |
2303				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2304				    ("page %p has unexpected oflags", m));
2305				/* Don't care: VPO_NOSYNC. */
2306				run_ext = 1;
2307			} else
2308				run_ext = 0;
2309unlock:
2310			VM_OBJECT_RUNLOCK(object);
2311#if VM_NRESERVLEVEL > 0
2312		} else if (level >= 0) {
2313			/*
2314			 * The page is reserved but not yet allocated.  In
2315			 * other words, it is still cached or free.  Extend
2316			 * the current run by one page.
2317			 */
2318			run_ext = 1;
2319#endif
2320		} else if ((order = m->order) < VM_NFREEORDER) {
2321			/*
2322			 * The page is enqueued in the physical memory
2323			 * allocator's cache/free page queues.  Moreover, it
2324			 * is the first page in a power-of-two-sized run of
2325			 * contiguous cache/free pages.  Add these pages to
2326			 * the end of the current run, and jump ahead.
2327			 */
2328			run_ext = 1 << order;
2329			m_inc = 1 << order;
2330		} else {
2331			/*
2332			 * Skip the page for one of the following reasons: (1)
2333			 * It is enqueued in the physical memory allocator's
2334			 * cache/free page queues.  However, it is not the
2335			 * first page in a run of contiguous cache/free pages.
2336			 * (This case rarely occurs because the scan is
2337			 * performed in ascending order.) (2) It is not
2338			 * reserved, and it is transitioning from free to
2339			 * allocated.  (Conversely, the transition from
2340			 * allocated to free for managed pages is blocked by
2341			 * the page lock.) (3) It is allocated but not
2342			 * contained by an object and not wired, e.g.,
2343			 * allocated by Xen's balloon driver.
2344			 */
2345			run_ext = 0;
2346		}
2347
2348		/*
2349		 * Extend or reset the current run of pages.
2350		 */
2351		if (run_ext > 0) {
2352			if (run_len == 0)
2353				m_run = m;
2354			run_len += run_ext;
2355		} else {
2356			if (run_len > 0) {
2357				m_run = NULL;
2358				run_len = 0;
2359			}
2360		}
2361	}
2362	if (m_mtx != NULL)
2363		mtx_unlock(m_mtx);
2364	if (run_len >= npages)
2365		return (m_run);
2366	return (NULL);
2367}
2368
2369/*
2370 *	vm_page_reclaim_run:
2371 *
2372 *	Try to relocate each of the allocated virtual pages within the
2373 *	specified run of physical pages to a new physical address.  Free the
2374 *	physical pages underlying the relocated virtual pages.  A virtual page
2375 *	is relocatable if and only if it could be laundered or reclaimed by
2376 *	the page daemon.  Whenever possible, a virtual page is relocated to a
2377 *	physical address above "high".
2378 *
2379 *	Returns 0 if every physical page within the run was already free or
2380 *	just freed by a successful relocation.  Otherwise, returns a non-zero
2381 *	value indicating why the last attempt to relocate a virtual page was
2382 *	unsuccessful.
2383 *
2384 *	"req_class" must be an allocation class.
2385 */
2386static int
2387vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2388    vm_paddr_t high)
2389{
2390	struct mtx *m_mtx, *new_mtx;
2391	struct spglist free;
2392	vm_object_t object;
2393	vm_paddr_t pa;
2394	vm_page_t m, m_end, m_new;
2395	int error, order, req;
2396
2397	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2398	    ("req_class is not an allocation class"));
2399	SLIST_INIT(&free);
2400	error = 0;
2401	m = m_run;
2402	m_end = m_run + npages;
2403	m_mtx = NULL;
2404	for (; error == 0 && m < m_end; m++) {
2405		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2406		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2407
2408		/*
2409		 * Avoid releasing and reacquiring the same page lock.
2410		 */
2411		new_mtx = vm_page_lockptr(m);
2412		if (m_mtx != new_mtx) {
2413			if (m_mtx != NULL)
2414				mtx_unlock(m_mtx);
2415			m_mtx = new_mtx;
2416			mtx_lock(m_mtx);
2417		}
2418retry:
2419		if (m->wire_count != 0 || m->hold_count != 0)
2420			error = EBUSY;
2421		else if ((object = m->object) != NULL) {
2422			/*
2423			 * The page is relocated if and only if it could be
2424			 * laundered or reclaimed by the page daemon.
2425			 */
2426			if (!VM_OBJECT_TRYWLOCK(object)) {
2427				mtx_unlock(m_mtx);
2428				VM_OBJECT_WLOCK(object);
2429				mtx_lock(m_mtx);
2430				if (m->object != object) {
2431					/*
2432					 * The page may have been freed.
2433					 */
2434					VM_OBJECT_WUNLOCK(object);
2435					goto retry;
2436				} else if (m->wire_count != 0 ||
2437				    m->hold_count != 0) {
2438					error = EBUSY;
2439					goto unlock;
2440				}
2441			}
2442			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2443			    ("page %p is PG_UNHOLDFREE", m));
2444			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2445			if (object->type != OBJT_DEFAULT &&
2446			    object->type != OBJT_SWAP &&
2447			    object->type != OBJT_VNODE)
2448				error = EINVAL;
2449			else if ((m->flags & PG_CACHED) != 0 ||
2450			    m != vm_page_lookup(object, m->pindex)) {
2451				/*
2452				 * The page is cached or recently converted
2453				 * from cached to free.
2454				 */
2455				VM_OBJECT_WUNLOCK(object);
2456				goto cached;
2457			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2458				error = EINVAL;
2459			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2460				KASSERT(pmap_page_get_memattr(m) ==
2461				    VM_MEMATTR_DEFAULT,
2462				    ("page %p has an unexpected memattr", m));
2463				KASSERT((m->oflags & (VPO_SWAPINPROG |
2464				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2465				    ("page %p has unexpected oflags", m));
2466				/* Don't care: VPO_NOSYNC. */
2467				if (m->valid != 0) {
2468					/*
2469					 * First, try to allocate a new page
2470					 * that is above "high".  Failing
2471					 * that, try to allocate a new page
2472					 * that is below "m_run".  Allocate
2473					 * the new page between the end of
2474					 * "m_run" and "high" only as a last
2475					 * resort.
2476					 */
2477					req = req_class | VM_ALLOC_NOOBJ;
2478					if ((m->flags & PG_NODUMP) != 0)
2479						req |= VM_ALLOC_NODUMP;
2480					if (trunc_page(high) !=
2481					    ~(vm_paddr_t)PAGE_MASK) {
2482						m_new = vm_page_alloc_contig(
2483						    NULL, 0, req, 1,
2484						    round_page(high),
2485						    ~(vm_paddr_t)0,
2486						    PAGE_SIZE, 0,
2487						    VM_MEMATTR_DEFAULT);
2488					} else
2489						m_new = NULL;
2490					if (m_new == NULL) {
2491						pa = VM_PAGE_TO_PHYS(m_run);
2492						m_new = vm_page_alloc_contig(
2493						    NULL, 0, req, 1,
2494						    0, pa - 1, PAGE_SIZE, 0,
2495						    VM_MEMATTR_DEFAULT);
2496					}
2497					if (m_new == NULL) {
2498						pa += ptoa(npages);
2499						m_new = vm_page_alloc_contig(
2500						    NULL, 0, req, 1,
2501						    pa, high, PAGE_SIZE, 0,
2502						    VM_MEMATTR_DEFAULT);
2503					}
2504					if (m_new == NULL) {
2505						error = ENOMEM;
2506						goto unlock;
2507					}
2508					KASSERT(m_new->wire_count == 0,
2509					    ("page %p is wired", m));
2510
2511					/*
2512					 * Replace "m" with the new page.  For
2513					 * vm_page_replace(), "m" must be busy
2514					 * and dequeued.  Finally, change "m"
2515					 * as if vm_page_free() was called.
2516					 */
2517					if (object->ref_count != 0)
2518						pmap_remove_all(m);
2519					m_new->aflags = m->aflags;
2520					KASSERT(m_new->oflags == VPO_UNMANAGED,
2521					    ("page %p is managed", m));
2522					m_new->oflags = m->oflags & VPO_NOSYNC;
2523					pmap_copy_page(m, m_new);
2524					m_new->valid = m->valid;
2525					m_new->dirty = m->dirty;
2526					m->flags &= ~PG_ZERO;
2527					vm_page_xbusy(m);
2528					vm_page_remque(m);
2529					vm_page_replace_checked(m_new, object,
2530					    m->pindex, m);
2531					m->valid = 0;
2532					vm_page_undirty(m);
2533
2534					/*
2535					 * The new page must be deactivated
2536					 * before the object is unlocked.
2537					 */
2538					new_mtx = vm_page_lockptr(m_new);
2539					if (m_mtx != new_mtx) {
2540						mtx_unlock(m_mtx);
2541						m_mtx = new_mtx;
2542						mtx_lock(m_mtx);
2543					}
2544					vm_page_deactivate(m_new);
2545				} else {
2546					m->flags &= ~PG_ZERO;
2547					vm_page_remque(m);
2548					vm_page_remove(m);
2549					KASSERT(m->dirty == 0,
2550					    ("page %p is dirty", m));
2551				}
2552				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2553			} else
2554				error = EBUSY;
2555unlock:
2556			VM_OBJECT_WUNLOCK(object);
2557		} else {
2558cached:
2559			mtx_lock(&vm_page_queue_free_mtx);
2560			order = m->order;
2561			if (order < VM_NFREEORDER) {
2562				/*
2563				 * The page is enqueued in the physical memory
2564				 * allocator's cache/free page queues.
2565				 * Moreover, it is the first page in a power-
2566				 * of-two-sized run of contiguous cache/free
2567				 * pages.  Jump ahead to the last page within
2568				 * that run, and continue from there.
2569				 */
2570				m += (1 << order) - 1;
2571			}
2572#if VM_NRESERVLEVEL > 0
2573			else if (vm_reserv_is_page_free(m))
2574				order = 0;
2575#endif
2576			mtx_unlock(&vm_page_queue_free_mtx);
2577			if (order == VM_NFREEORDER)
2578				error = EINVAL;
2579		}
2580	}
2581	if (m_mtx != NULL)
2582		mtx_unlock(m_mtx);
2583	if ((m = SLIST_FIRST(&free)) != NULL) {
2584		mtx_lock(&vm_page_queue_free_mtx);
2585		do {
2586			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2587			vm_phys_freecnt_adj(m, 1);
2588#if VM_NRESERVLEVEL > 0
2589			if (!vm_reserv_free_page(m))
2590#else
2591			if (true)
2592#endif
2593				vm_phys_free_pages(m, 0);
2594		} while ((m = SLIST_FIRST(&free)) != NULL);
2595		vm_page_free_wakeup();
2596		mtx_unlock(&vm_page_queue_free_mtx);
2597	}
2598	return (error);
2599}
2600
2601#define	NRUNS	16
2602
2603CTASSERT(powerof2(NRUNS));
2604
2605#define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2606
2607#define	MIN_RECLAIM	8
2608
2609/*
2610 *	vm_page_reclaim_contig:
2611 *
2612 *	Reclaim allocated, contiguous physical memory satisfying the specified
2613 *	conditions by relocating the virtual pages using that physical memory.
2614 *	Returns true if reclamation is successful and false otherwise.  Since
2615 *	relocation requires the allocation of physical pages, reclamation may
2616 *	fail due to a shortage of cache/free pages.  When reclamation fails,
2617 *	callers are expected to perform VM_WAIT before retrying a failed
2618 *	allocation operation, e.g., vm_page_alloc_contig().
2619 *
2620 *	The caller must always specify an allocation class through "req".
2621 *
2622 *	allocation classes:
2623 *	VM_ALLOC_NORMAL		normal process request
2624 *	VM_ALLOC_SYSTEM		system *really* needs a page
2625 *	VM_ALLOC_INTERRUPT	interrupt time request
2626 *
2627 *	The optional allocation flags are ignored.
2628 *
2629 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2630 *	must be a power of two.
2631 */
2632bool
2633vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2634    u_long alignment, vm_paddr_t boundary)
2635{
2636	vm_paddr_t curr_low;
2637	vm_page_t m_run, m_runs[NRUNS];
2638	u_long count, reclaimed;
2639	int error, i, options, req_class;
2640
2641	KASSERT(npages > 0, ("npages is 0"));
2642	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2643	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2644	req_class = req & VM_ALLOC_CLASS_MASK;
2645
2646	/*
2647	 * The page daemon is allowed to dig deeper into the free page list.
2648	 */
2649	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2650		req_class = VM_ALLOC_SYSTEM;
2651
2652	/*
2653	 * Return if the number of cached and free pages cannot satisfy the
2654	 * requested allocation.
2655	 */
2656	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2657	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2658	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2659	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2660		return (false);
2661
2662	/*
2663	 * Scan up to three times, relaxing the restrictions ("options") on
2664	 * the reclamation of reservations and superpages each time.
2665	 */
2666	for (options = VPSC_NORESERV;;) {
2667		/*
2668		 * Find the highest runs that satisfy the given constraints
2669		 * and restrictions, and record them in "m_runs".
2670		 */
2671		curr_low = low;
2672		count = 0;
2673		for (;;) {
2674			m_run = vm_phys_scan_contig(npages, curr_low, high,
2675			    alignment, boundary, options);
2676			if (m_run == NULL)
2677				break;
2678			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2679			m_runs[RUN_INDEX(count)] = m_run;
2680			count++;
2681		}
2682
2683		/*
2684		 * Reclaim the highest runs in LIFO (descending) order until
2685		 * the number of reclaimed pages, "reclaimed", is at least
2686		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2687		 * reclamation is idempotent, and runs will (likely) recur
2688		 * from one scan to the next as restrictions are relaxed.
2689		 */
2690		reclaimed = 0;
2691		for (i = 0; count > 0 && i < NRUNS; i++) {
2692			count--;
2693			m_run = m_runs[RUN_INDEX(count)];
2694			error = vm_page_reclaim_run(req_class, npages, m_run,
2695			    high);
2696			if (error == 0) {
2697				reclaimed += npages;
2698				if (reclaimed >= MIN_RECLAIM)
2699					return (true);
2700			}
2701		}
2702
2703		/*
2704		 * Either relax the restrictions on the next scan or return if
2705		 * the last scan had no restrictions.
2706		 */
2707		if (options == VPSC_NORESERV)
2708			options = VPSC_NOSUPER;
2709		else if (options == VPSC_NOSUPER)
2710			options = VPSC_ANY;
2711		else if (options == VPSC_ANY)
2712			return (reclaimed != 0);
2713	}
2714}
2715
2716/*
2717 *	vm_wait:	(also see VM_WAIT macro)
2718 *
2719 *	Sleep until free pages are available for allocation.
2720 *	- Called in various places before memory allocations.
2721 */
2722void
2723vm_wait(void)
2724{
2725
2726	mtx_lock(&vm_page_queue_free_mtx);
2727	if (curproc == pageproc) {
2728		vm_pageout_pages_needed = 1;
2729		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2730		    PDROP | PSWP, "VMWait", 0);
2731	} else {
2732		if (!vm_pageout_wanted) {
2733			vm_pageout_wanted = true;
2734			wakeup(&vm_pageout_wanted);
2735		}
2736		vm_pages_needed = true;
2737		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2738		    "vmwait", 0);
2739	}
2740}
2741
2742/*
2743 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2744 *
2745 *	Sleep until free pages are available for allocation.
2746 *	- Called only in vm_fault so that processes page faulting
2747 *	  can be easily tracked.
2748 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2749 *	  processes will be able to grab memory first.  Do not change
2750 *	  this balance without careful testing first.
2751 */
2752void
2753vm_waitpfault(void)
2754{
2755
2756	mtx_lock(&vm_page_queue_free_mtx);
2757	if (!vm_pageout_wanted) {
2758		vm_pageout_wanted = true;
2759		wakeup(&vm_pageout_wanted);
2760	}
2761	vm_pages_needed = true;
2762	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2763	    "pfault", 0);
2764}
2765
2766struct vm_pagequeue *
2767vm_page_pagequeue(vm_page_t m)
2768{
2769
2770	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2771}
2772
2773/*
2774 *	vm_page_dequeue:
2775 *
2776 *	Remove the given page from its current page queue.
2777 *
2778 *	The page must be locked.
2779 */
2780void
2781vm_page_dequeue(vm_page_t m)
2782{
2783	struct vm_pagequeue *pq;
2784
2785	vm_page_assert_locked(m);
2786	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2787	    m));
2788	pq = vm_page_pagequeue(m);
2789	vm_pagequeue_lock(pq);
2790	m->queue = PQ_NONE;
2791	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2792	vm_pagequeue_cnt_dec(pq);
2793	vm_pagequeue_unlock(pq);
2794}
2795
2796/*
2797 *	vm_page_dequeue_locked:
2798 *
2799 *	Remove the given page from its current page queue.
2800 *
2801 *	The page and page queue must be locked.
2802 */
2803void
2804vm_page_dequeue_locked(vm_page_t m)
2805{
2806	struct vm_pagequeue *pq;
2807
2808	vm_page_lock_assert(m, MA_OWNED);
2809	pq = vm_page_pagequeue(m);
2810	vm_pagequeue_assert_locked(pq);
2811	m->queue = PQ_NONE;
2812	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2813	vm_pagequeue_cnt_dec(pq);
2814}
2815
2816/*
2817 *	vm_page_enqueue:
2818 *
2819 *	Add the given page to the specified page queue.
2820 *
2821 *	The page must be locked.
2822 */
2823static void
2824vm_page_enqueue(uint8_t queue, vm_page_t m)
2825{
2826	struct vm_pagequeue *pq;
2827
2828	vm_page_lock_assert(m, MA_OWNED);
2829	KASSERT(queue < PQ_COUNT,
2830	    ("vm_page_enqueue: invalid queue %u request for page %p",
2831	    queue, m));
2832	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2833	vm_pagequeue_lock(pq);
2834	m->queue = queue;
2835	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2836	vm_pagequeue_cnt_inc(pq);
2837	vm_pagequeue_unlock(pq);
2838}
2839
2840/*
2841 *	vm_page_requeue:
2842 *
2843 *	Move the given page to the tail of its current page queue.
2844 *
2845 *	The page must be locked.
2846 */
2847void
2848vm_page_requeue(vm_page_t m)
2849{
2850	struct vm_pagequeue *pq;
2851
2852	vm_page_lock_assert(m, MA_OWNED);
2853	KASSERT(m->queue != PQ_NONE,
2854	    ("vm_page_requeue: page %p is not queued", m));
2855	pq = vm_page_pagequeue(m);
2856	vm_pagequeue_lock(pq);
2857	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2858	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2859	vm_pagequeue_unlock(pq);
2860}
2861
2862/*
2863 *	vm_page_requeue_locked:
2864 *
2865 *	Move the given page to the tail of its current page queue.
2866 *
2867 *	The page queue must be locked.
2868 */
2869void
2870vm_page_requeue_locked(vm_page_t m)
2871{
2872	struct vm_pagequeue *pq;
2873
2874	KASSERT(m->queue != PQ_NONE,
2875	    ("vm_page_requeue_locked: page %p is not queued", m));
2876	pq = vm_page_pagequeue(m);
2877	vm_pagequeue_assert_locked(pq);
2878	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2879	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2880}
2881
2882/*
2883 *	vm_page_activate:
2884 *
2885 *	Put the specified page on the active list (if appropriate).
2886 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2887 *	mess with it.
2888 *
2889 *	The page must be locked.
2890 */
2891void
2892vm_page_activate(vm_page_t m)
2893{
2894	int queue;
2895
2896	vm_page_lock_assert(m, MA_OWNED);
2897	if ((queue = m->queue) != PQ_ACTIVE) {
2898		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2899			if (m->act_count < ACT_INIT)
2900				m->act_count = ACT_INIT;
2901			if (queue != PQ_NONE)
2902				vm_page_dequeue(m);
2903			vm_page_enqueue(PQ_ACTIVE, m);
2904		} else
2905			KASSERT(queue == PQ_NONE,
2906			    ("vm_page_activate: wired page %p is queued", m));
2907	} else {
2908		if (m->act_count < ACT_INIT)
2909			m->act_count = ACT_INIT;
2910	}
2911}
2912
2913/*
2914 *	vm_page_free_wakeup:
2915 *
2916 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2917 *	routine is called when a page has been added to the cache or free
2918 *	queues.
2919 *
2920 *	The page queues must be locked.
2921 */
2922static inline void
2923vm_page_free_wakeup(void)
2924{
2925
2926	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2927	/*
2928	 * if pageout daemon needs pages, then tell it that there are
2929	 * some free.
2930	 */
2931	if (vm_pageout_pages_needed &&
2932	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2933		wakeup(&vm_pageout_pages_needed);
2934		vm_pageout_pages_needed = 0;
2935	}
2936	/*
2937	 * wakeup processes that are waiting on memory if we hit a
2938	 * high water mark. And wakeup scheduler process if we have
2939	 * lots of memory. this process will swapin processes.
2940	 */
2941	if (vm_pages_needed && !vm_page_count_min()) {
2942		vm_pages_needed = false;
2943		wakeup(&vm_cnt.v_free_count);
2944	}
2945}
2946
2947/*
2948 *	Turn a cached page into a free page, by changing its attributes.
2949 *	Keep the statistics up-to-date.
2950 *
2951 *	The free page queue must be locked.
2952 */
2953static void
2954vm_page_cache_turn_free(vm_page_t m)
2955{
2956
2957	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2958
2959	m->object = NULL;
2960	m->valid = 0;
2961	KASSERT((m->flags & PG_CACHED) != 0,
2962	    ("vm_page_cache_turn_free: page %p is not cached", m));
2963	m->flags &= ~PG_CACHED;
2964	vm_cnt.v_cache_count--;
2965	vm_phys_freecnt_adj(m, 1);
2966}
2967
2968/*
2969 *	vm_page_free_toq:
2970 *
2971 *	Returns the given page to the free list,
2972 *	disassociating it with any VM object.
2973 *
2974 *	The object must be locked.  The page must be locked if it is managed.
2975 */
2976void
2977vm_page_free_toq(vm_page_t m)
2978{
2979
2980	if ((m->oflags & VPO_UNMANAGED) == 0) {
2981		vm_page_lock_assert(m, MA_OWNED);
2982		KASSERT(!pmap_page_is_mapped(m),
2983		    ("vm_page_free_toq: freeing mapped page %p", m));
2984	} else
2985		KASSERT(m->queue == PQ_NONE,
2986		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2987	PCPU_INC(cnt.v_tfree);
2988
2989	if (vm_page_sbusied(m))
2990		panic("vm_page_free: freeing busy page %p", m);
2991
2992	/*
2993	 * Unqueue, then remove page.  Note that we cannot destroy
2994	 * the page here because we do not want to call the pager's
2995	 * callback routine until after we've put the page on the
2996	 * appropriate free queue.
2997	 */
2998	vm_page_remque(m);
2999	vm_page_remove(m);
3000
3001	/*
3002	 * If fictitious remove object association and
3003	 * return, otherwise delay object association removal.
3004	 */
3005	if ((m->flags & PG_FICTITIOUS) != 0) {
3006		return;
3007	}
3008
3009	m->valid = 0;
3010	vm_page_undirty(m);
3011
3012	if (m->wire_count != 0)
3013		panic("vm_page_free: freeing wired page %p", m);
3014	if (m->hold_count != 0) {
3015		m->flags &= ~PG_ZERO;
3016		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3017		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
3018		m->flags |= PG_UNHOLDFREE;
3019	} else {
3020		/*
3021		 * Restore the default memory attribute to the page.
3022		 */
3023		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3024			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3025
3026		/*
3027		 * Insert the page into the physical memory allocator's
3028		 * cache/free page queues.
3029		 */
3030		mtx_lock(&vm_page_queue_free_mtx);
3031		vm_phys_freecnt_adj(m, 1);
3032#if VM_NRESERVLEVEL > 0
3033		if (!vm_reserv_free_page(m))
3034#else
3035		if (TRUE)
3036#endif
3037			vm_phys_free_pages(m, 0);
3038		vm_page_free_wakeup();
3039		mtx_unlock(&vm_page_queue_free_mtx);
3040	}
3041}
3042
3043/*
3044 *	vm_page_wire:
3045 *
3046 *	Mark this page as wired down by yet
3047 *	another map, removing it from paging queues
3048 *	as necessary.
3049 *
3050 *	If the page is fictitious, then its wire count must remain one.
3051 *
3052 *	The page must be locked.
3053 */
3054void
3055vm_page_wire(vm_page_t m)
3056{
3057
3058	/*
3059	 * Only bump the wire statistics if the page is not already wired,
3060	 * and only unqueue the page if it is on some queue (if it is unmanaged
3061	 * it is already off the queues).
3062	 */
3063	vm_page_lock_assert(m, MA_OWNED);
3064	if ((m->flags & PG_FICTITIOUS) != 0) {
3065		KASSERT(m->wire_count == 1,
3066		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3067		    m));
3068		return;
3069	}
3070	if (m->wire_count == 0) {
3071		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3072		    m->queue == PQ_NONE,
3073		    ("vm_page_wire: unmanaged page %p is queued", m));
3074		vm_page_remque(m);
3075		atomic_add_int(&vm_cnt.v_wire_count, 1);
3076	}
3077	m->wire_count++;
3078	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3079}
3080
3081/*
3082 * vm_page_unwire:
3083 *
3084 * Release one wiring of the specified page, potentially allowing it to be
3085 * paged out.  Returns TRUE if the number of wirings transitions to zero and
3086 * FALSE otherwise.
3087 *
3088 * Only managed pages belonging to an object can be paged out.  If the number
3089 * of wirings transitions to zero and the page is eligible for page out, then
3090 * the page is added to the specified paging queue (unless PQ_NONE is
3091 * specified).
3092 *
3093 * If a page is fictitious, then its wire count must always be one.
3094 *
3095 * A managed page must be locked.
3096 */
3097boolean_t
3098vm_page_unwire(vm_page_t m, uint8_t queue)
3099{
3100
3101	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3102	    ("vm_page_unwire: invalid queue %u request for page %p",
3103	    queue, m));
3104	if ((m->oflags & VPO_UNMANAGED) == 0)
3105		vm_page_assert_locked(m);
3106	if ((m->flags & PG_FICTITIOUS) != 0) {
3107		KASSERT(m->wire_count == 1,
3108	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3109		return (FALSE);
3110	}
3111	if (m->wire_count > 0) {
3112		m->wire_count--;
3113		if (m->wire_count == 0) {
3114			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3115			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3116			    m->object != NULL && queue != PQ_NONE) {
3117				if (queue == PQ_INACTIVE)
3118					m->flags &= ~PG_WINATCFLS;
3119				vm_page_enqueue(queue, m);
3120			}
3121			return (TRUE);
3122		} else
3123			return (FALSE);
3124	} else
3125		panic("vm_page_unwire: page %p's wire count is zero", m);
3126}
3127
3128/*
3129 * Move the specified page to the inactive queue.
3130 *
3131 * Many pages placed on the inactive queue should actually go
3132 * into the cache, but it is difficult to figure out which.  What
3133 * we do instead, if the inactive target is well met, is to put
3134 * clean pages at the head of the inactive queue instead of the tail.
3135 * This will cause them to be moved to the cache more quickly and
3136 * if not actively re-referenced, reclaimed more quickly.  If we just
3137 * stick these pages at the end of the inactive queue, heavy filesystem
3138 * meta-data accesses can cause an unnecessary paging load on memory bound
3139 * processes.  This optimization causes one-time-use metadata to be
3140 * reused more quickly.
3141 *
3142 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3143 * to TRUE if we want this page to be 'as if it were placed in the cache',
3144 * except without unmapping it from the process address space.  In
3145 * practice this is implemented by inserting the page at the head of the
3146 * queue, using a marker page to guide FIFO insertion ordering.
3147 *
3148 * The page must be locked.
3149 */
3150static inline void
3151_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3152{
3153	struct vm_pagequeue *pq;
3154	int queue;
3155
3156	vm_page_assert_locked(m);
3157
3158	/*
3159	 * Ignore if the page is already inactive, unless it is unlikely to be
3160	 * reactivated.
3161	 */
3162	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3163		return;
3164	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3165		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3166		/* Avoid multiple acquisitions of the inactive queue lock. */
3167		if (queue == PQ_INACTIVE) {
3168			vm_pagequeue_lock(pq);
3169			vm_page_dequeue_locked(m);
3170		} else {
3171			if (queue != PQ_NONE)
3172				vm_page_dequeue(m);
3173			m->flags &= ~PG_WINATCFLS;
3174			vm_pagequeue_lock(pq);
3175		}
3176		m->queue = PQ_INACTIVE;
3177		if (noreuse)
3178			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3179			    m, plinks.q);
3180		else
3181			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3182		vm_pagequeue_cnt_inc(pq);
3183		vm_pagequeue_unlock(pq);
3184	}
3185}
3186
3187/*
3188 * Move the specified page to the inactive queue.
3189 *
3190 * The page must be locked.
3191 */
3192void
3193vm_page_deactivate(vm_page_t m)
3194{
3195
3196	_vm_page_deactivate(m, FALSE);
3197}
3198
3199/*
3200 * Move the specified page to the inactive queue with the expectation
3201 * that it is unlikely to be reused.
3202 *
3203 * The page must be locked.
3204 */
3205void
3206vm_page_deactivate_noreuse(vm_page_t m)
3207{
3208
3209	_vm_page_deactivate(m, TRUE);
3210}
3211
3212/*
3213 * vm_page_try_to_cache:
3214 *
3215 * Returns 0 on failure, 1 on success
3216 */
3217int
3218vm_page_try_to_cache(vm_page_t m)
3219{
3220
3221	vm_page_lock_assert(m, MA_OWNED);
3222	VM_OBJECT_ASSERT_WLOCKED(m->object);
3223	if (m->dirty || m->hold_count || m->wire_count ||
3224	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3225		return (0);
3226	pmap_remove_all(m);
3227	if (m->dirty)
3228		return (0);
3229	vm_page_cache(m);
3230	return (1);
3231}
3232
3233/*
3234 * vm_page_try_to_free()
3235 *
3236 *	Attempt to free the page.  If we cannot free it, we do nothing.
3237 *	1 is returned on success, 0 on failure.
3238 */
3239int
3240vm_page_try_to_free(vm_page_t m)
3241{
3242
3243	vm_page_lock_assert(m, MA_OWNED);
3244	if (m->object != NULL)
3245		VM_OBJECT_ASSERT_WLOCKED(m->object);
3246	if (m->dirty || m->hold_count || m->wire_count ||
3247	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3248		return (0);
3249	pmap_remove_all(m);
3250	if (m->dirty)
3251		return (0);
3252	vm_page_free(m);
3253	return (1);
3254}
3255
3256/*
3257 * vm_page_cache
3258 *
3259 * Put the specified page onto the page cache queue (if appropriate).
3260 *
3261 * The object and page must be locked.
3262 */
3263void
3264vm_page_cache(vm_page_t m)
3265{
3266	vm_object_t object;
3267	boolean_t cache_was_empty;
3268
3269	vm_page_lock_assert(m, MA_OWNED);
3270	object = m->object;
3271	VM_OBJECT_ASSERT_WLOCKED(object);
3272	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
3273	    m->hold_count || m->wire_count)
3274		panic("vm_page_cache: attempting to cache busy page");
3275	KASSERT(!pmap_page_is_mapped(m),
3276	    ("vm_page_cache: page %p is mapped", m));
3277	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
3278	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
3279	    (object->type == OBJT_SWAP &&
3280	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
3281		/*
3282		 * Hypothesis: A cache-eligible page belonging to a
3283		 * default object or swap object but without a backing
3284		 * store must be zero filled.
3285		 */
3286		vm_page_free(m);
3287		return;
3288	}
3289	KASSERT((m->flags & PG_CACHED) == 0,
3290	    ("vm_page_cache: page %p is already cached", m));
3291
3292	/*
3293	 * Remove the page from the paging queues.
3294	 */
3295	vm_page_remque(m);
3296
3297	/*
3298	 * Remove the page from the object's collection of resident
3299	 * pages.
3300	 */
3301	vm_radix_remove(&object->rtree, m->pindex);
3302	TAILQ_REMOVE(&object->memq, m, listq);
3303	object->resident_page_count--;
3304
3305	/*
3306	 * Restore the default memory attribute to the page.
3307	 */
3308	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3309		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3310
3311	/*
3312	 * Insert the page into the object's collection of cached pages
3313	 * and the physical memory allocator's cache/free page queues.
3314	 */
3315	m->flags &= ~PG_ZERO;
3316	mtx_lock(&vm_page_queue_free_mtx);
3317	cache_was_empty = vm_radix_is_empty(&object->cache);
3318	if (vm_radix_insert(&object->cache, m)) {
3319		mtx_unlock(&vm_page_queue_free_mtx);
3320		if (object->type == OBJT_VNODE &&
3321		    object->resident_page_count == 0)
3322			vdrop(object->handle);
3323		m->object = NULL;
3324		vm_page_free(m);
3325		return;
3326	}
3327
3328	/*
3329	 * The above call to vm_radix_insert() could reclaim the one pre-
3330	 * existing cached page from this object, resulting in a call to
3331	 * vdrop().
3332	 */
3333	if (!cache_was_empty)
3334		cache_was_empty = vm_radix_is_singleton(&object->cache);
3335
3336	m->flags |= PG_CACHED;
3337	vm_cnt.v_cache_count++;
3338	PCPU_INC(cnt.v_tcached);
3339#if VM_NRESERVLEVEL > 0
3340	if (!vm_reserv_free_page(m)) {
3341#else
3342	if (TRUE) {
3343#endif
3344		vm_phys_free_pages(m, 0);
3345	}
3346	vm_page_free_wakeup();
3347	mtx_unlock(&vm_page_queue_free_mtx);
3348
3349	/*
3350	 * Increment the vnode's hold count if this is the object's only
3351	 * cached page.  Decrement the vnode's hold count if this was
3352	 * the object's only resident page.
3353	 */
3354	if (object->type == OBJT_VNODE) {
3355		if (cache_was_empty && object->resident_page_count != 0)
3356			vhold(object->handle);
3357		else if (!cache_was_empty && object->resident_page_count == 0)
3358			vdrop(object->handle);
3359	}
3360}
3361
3362/*
3363 * vm_page_advise
3364 *
3365 * 	Deactivate or do nothing, as appropriate.
3366 *
3367 *	The object and page must be locked.
3368 */
3369void
3370vm_page_advise(vm_page_t m, int advice)
3371{
3372
3373	vm_page_assert_locked(m);
3374	VM_OBJECT_ASSERT_WLOCKED(m->object);
3375	if (advice == MADV_FREE)
3376		/*
3377		 * Mark the page clean.  This will allow the page to be freed
3378		 * up by the system.  However, such pages are often reused
3379		 * quickly by malloc() so we do not do anything that would
3380		 * cause a page fault if we can help it.
3381		 *
3382		 * Specifically, we do not try to actually free the page now
3383		 * nor do we try to put it in the cache (which would cause a
3384		 * page fault on reuse).
3385		 *
3386		 * But we do make the page as freeable as we can without
3387		 * actually taking the step of unmapping it.
3388		 */
3389		vm_page_undirty(m);
3390	else if (advice != MADV_DONTNEED)
3391		return;
3392
3393	/*
3394	 * Clear any references to the page.  Otherwise, the page daemon will
3395	 * immediately reactivate the page.
3396	 */
3397	vm_page_aflag_clear(m, PGA_REFERENCED);
3398
3399	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3400		vm_page_dirty(m);
3401
3402	/*
3403	 * Place clean pages near the head of the inactive queue rather than
3404	 * the tail, thus defeating the queue's LRU operation and ensuring that
3405	 * the page will be reused quickly.  Dirty pages are given a chance to
3406	 * cycle once through the inactive queue before becoming eligible for
3407	 * laundering.
3408	 */
3409	_vm_page_deactivate(m, m->dirty == 0);
3410}
3411
3412/*
3413 * Grab a page, waiting until we are waken up due to the page
3414 * changing state.  We keep on waiting, if the page continues
3415 * to be in the object.  If the page doesn't exist, first allocate it
3416 * and then conditionally zero it.
3417 *
3418 * This routine may sleep.
3419 *
3420 * The object must be locked on entry.  The lock will, however, be released
3421 * and reacquired if the routine sleeps.
3422 */
3423vm_page_t
3424vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3425{
3426	vm_page_t m;
3427	int sleep;
3428
3429	VM_OBJECT_ASSERT_WLOCKED(object);
3430	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3431	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3432	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3433retrylookup:
3434	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3435		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3436		    vm_page_xbusied(m) : vm_page_busied(m);
3437		if (sleep) {
3438			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3439				return (NULL);
3440			/*
3441			 * Reference the page before unlocking and
3442			 * sleeping so that the page daemon is less
3443			 * likely to reclaim it.
3444			 */
3445			vm_page_aflag_set(m, PGA_REFERENCED);
3446			vm_page_lock(m);
3447			VM_OBJECT_WUNLOCK(object);
3448			vm_page_busy_sleep(m, "pgrbwt");
3449			VM_OBJECT_WLOCK(object);
3450			goto retrylookup;
3451		} else {
3452			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3453				vm_page_lock(m);
3454				vm_page_wire(m);
3455				vm_page_unlock(m);
3456			}
3457			if ((allocflags &
3458			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3459				vm_page_xbusy(m);
3460			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3461				vm_page_sbusy(m);
3462			return (m);
3463		}
3464	}
3465	m = vm_page_alloc(object, pindex, allocflags);
3466	if (m == NULL) {
3467		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3468			return (NULL);
3469		VM_OBJECT_WUNLOCK(object);
3470		VM_WAIT;
3471		VM_OBJECT_WLOCK(object);
3472		goto retrylookup;
3473	} else if (m->valid != 0)
3474		return (m);
3475	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3476		pmap_zero_page(m);
3477	return (m);
3478}
3479
3480/*
3481 * Mapping function for valid or dirty bits in a page.
3482 *
3483 * Inputs are required to range within a page.
3484 */
3485vm_page_bits_t
3486vm_page_bits(int base, int size)
3487{
3488	int first_bit;
3489	int last_bit;
3490
3491	KASSERT(
3492	    base + size <= PAGE_SIZE,
3493	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3494	);
3495
3496	if (size == 0)		/* handle degenerate case */
3497		return (0);
3498
3499	first_bit = base >> DEV_BSHIFT;
3500	last_bit = (base + size - 1) >> DEV_BSHIFT;
3501
3502	return (((vm_page_bits_t)2 << last_bit) -
3503	    ((vm_page_bits_t)1 << first_bit));
3504}
3505
3506/*
3507 *	vm_page_set_valid_range:
3508 *
3509 *	Sets portions of a page valid.  The arguments are expected
3510 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3511 *	of any partial chunks touched by the range.  The invalid portion of
3512 *	such chunks will be zeroed.
3513 *
3514 *	(base + size) must be less then or equal to PAGE_SIZE.
3515 */
3516void
3517vm_page_set_valid_range(vm_page_t m, int base, int size)
3518{
3519	int endoff, frag;
3520
3521	VM_OBJECT_ASSERT_WLOCKED(m->object);
3522	if (size == 0)	/* handle degenerate case */
3523		return;
3524
3525	/*
3526	 * If the base is not DEV_BSIZE aligned and the valid
3527	 * bit is clear, we have to zero out a portion of the
3528	 * first block.
3529	 */
3530	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3531	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3532		pmap_zero_page_area(m, frag, base - frag);
3533
3534	/*
3535	 * If the ending offset is not DEV_BSIZE aligned and the
3536	 * valid bit is clear, we have to zero out a portion of
3537	 * the last block.
3538	 */
3539	endoff = base + size;
3540	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3541	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3542		pmap_zero_page_area(m, endoff,
3543		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3544
3545	/*
3546	 * Assert that no previously invalid block that is now being validated
3547	 * is already dirty.
3548	 */
3549	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3550	    ("vm_page_set_valid_range: page %p is dirty", m));
3551
3552	/*
3553	 * Set valid bits inclusive of any overlap.
3554	 */
3555	m->valid |= vm_page_bits(base, size);
3556}
3557
3558/*
3559 * Clear the given bits from the specified page's dirty field.
3560 */
3561static __inline void
3562vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3563{
3564	uintptr_t addr;
3565#if PAGE_SIZE < 16384
3566	int shift;
3567#endif
3568
3569	/*
3570	 * If the object is locked and the page is neither exclusive busy nor
3571	 * write mapped, then the page's dirty field cannot possibly be
3572	 * set by a concurrent pmap operation.
3573	 */
3574	VM_OBJECT_ASSERT_WLOCKED(m->object);
3575	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3576		m->dirty &= ~pagebits;
3577	else {
3578		/*
3579		 * The pmap layer can call vm_page_dirty() without
3580		 * holding a distinguished lock.  The combination of
3581		 * the object's lock and an atomic operation suffice
3582		 * to guarantee consistency of the page dirty field.
3583		 *
3584		 * For PAGE_SIZE == 32768 case, compiler already
3585		 * properly aligns the dirty field, so no forcible
3586		 * alignment is needed. Only require existence of
3587		 * atomic_clear_64 when page size is 32768.
3588		 */
3589		addr = (uintptr_t)&m->dirty;
3590#if PAGE_SIZE == 32768
3591		atomic_clear_64((uint64_t *)addr, pagebits);
3592#elif PAGE_SIZE == 16384
3593		atomic_clear_32((uint32_t *)addr, pagebits);
3594#else		/* PAGE_SIZE <= 8192 */
3595		/*
3596		 * Use a trick to perform a 32-bit atomic on the
3597		 * containing aligned word, to not depend on the existence
3598		 * of atomic_clear_{8, 16}.
3599		 */
3600		shift = addr & (sizeof(uint32_t) - 1);
3601#if BYTE_ORDER == BIG_ENDIAN
3602		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3603#else
3604		shift *= NBBY;
3605#endif
3606		addr &= ~(sizeof(uint32_t) - 1);
3607		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3608#endif		/* PAGE_SIZE */
3609	}
3610}
3611
3612/*
3613 *	vm_page_set_validclean:
3614 *
3615 *	Sets portions of a page valid and clean.  The arguments are expected
3616 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3617 *	of any partial chunks touched by the range.  The invalid portion of
3618 *	such chunks will be zero'd.
3619 *
3620 *	(base + size) must be less then or equal to PAGE_SIZE.
3621 */
3622void
3623vm_page_set_validclean(vm_page_t m, int base, int size)
3624{
3625	vm_page_bits_t oldvalid, pagebits;
3626	int endoff, frag;
3627
3628	VM_OBJECT_ASSERT_WLOCKED(m->object);
3629	if (size == 0)	/* handle degenerate case */
3630		return;
3631
3632	/*
3633	 * If the base is not DEV_BSIZE aligned and the valid
3634	 * bit is clear, we have to zero out a portion of the
3635	 * first block.
3636	 */
3637	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3638	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3639		pmap_zero_page_area(m, frag, base - frag);
3640
3641	/*
3642	 * If the ending offset is not DEV_BSIZE aligned and the
3643	 * valid bit is clear, we have to zero out a portion of
3644	 * the last block.
3645	 */
3646	endoff = base + size;
3647	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3648	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3649		pmap_zero_page_area(m, endoff,
3650		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3651
3652	/*
3653	 * Set valid, clear dirty bits.  If validating the entire
3654	 * page we can safely clear the pmap modify bit.  We also
3655	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3656	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3657	 * be set again.
3658	 *
3659	 * We set valid bits inclusive of any overlap, but we can only
3660	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3661	 * the range.
3662	 */
3663	oldvalid = m->valid;
3664	pagebits = vm_page_bits(base, size);
3665	m->valid |= pagebits;
3666#if 0	/* NOT YET */
3667	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3668		frag = DEV_BSIZE - frag;
3669		base += frag;
3670		size -= frag;
3671		if (size < 0)
3672			size = 0;
3673	}
3674	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3675#endif
3676	if (base == 0 && size == PAGE_SIZE) {
3677		/*
3678		 * The page can only be modified within the pmap if it is
3679		 * mapped, and it can only be mapped if it was previously
3680		 * fully valid.
3681		 */
3682		if (oldvalid == VM_PAGE_BITS_ALL)
3683			/*
3684			 * Perform the pmap_clear_modify() first.  Otherwise,
3685			 * a concurrent pmap operation, such as
3686			 * pmap_protect(), could clear a modification in the
3687			 * pmap and set the dirty field on the page before
3688			 * pmap_clear_modify() had begun and after the dirty
3689			 * field was cleared here.
3690			 */
3691			pmap_clear_modify(m);
3692		m->dirty = 0;
3693		m->oflags &= ~VPO_NOSYNC;
3694	} else if (oldvalid != VM_PAGE_BITS_ALL)
3695		m->dirty &= ~pagebits;
3696	else
3697		vm_page_clear_dirty_mask(m, pagebits);
3698}
3699
3700void
3701vm_page_clear_dirty(vm_page_t m, int base, int size)
3702{
3703
3704	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3705}
3706
3707/*
3708 *	vm_page_set_invalid:
3709 *
3710 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3711 *	valid and dirty bits for the effected areas are cleared.
3712 */
3713void
3714vm_page_set_invalid(vm_page_t m, int base, int size)
3715{
3716	vm_page_bits_t bits;
3717	vm_object_t object;
3718
3719	object = m->object;
3720	VM_OBJECT_ASSERT_WLOCKED(object);
3721	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3722	    size >= object->un_pager.vnp.vnp_size)
3723		bits = VM_PAGE_BITS_ALL;
3724	else
3725		bits = vm_page_bits(base, size);
3726	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3727	    bits != 0)
3728		pmap_remove_all(m);
3729	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3730	    !pmap_page_is_mapped(m),
3731	    ("vm_page_set_invalid: page %p is mapped", m));
3732	m->valid &= ~bits;
3733	m->dirty &= ~bits;
3734}
3735
3736/*
3737 * vm_page_zero_invalid()
3738 *
3739 *	The kernel assumes that the invalid portions of a page contain
3740 *	garbage, but such pages can be mapped into memory by user code.
3741 *	When this occurs, we must zero out the non-valid portions of the
3742 *	page so user code sees what it expects.
3743 *
3744 *	Pages are most often semi-valid when the end of a file is mapped
3745 *	into memory and the file's size is not page aligned.
3746 */
3747void
3748vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3749{
3750	int b;
3751	int i;
3752
3753	VM_OBJECT_ASSERT_WLOCKED(m->object);
3754	/*
3755	 * Scan the valid bits looking for invalid sections that
3756	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3757	 * valid bit may be set ) have already been zeroed by
3758	 * vm_page_set_validclean().
3759	 */
3760	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3761		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3762		    (m->valid & ((vm_page_bits_t)1 << i))) {
3763			if (i > b) {
3764				pmap_zero_page_area(m,
3765				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3766			}
3767			b = i + 1;
3768		}
3769	}
3770
3771	/*
3772	 * setvalid is TRUE when we can safely set the zero'd areas
3773	 * as being valid.  We can do this if there are no cache consistancy
3774	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3775	 */
3776	if (setvalid)
3777		m->valid = VM_PAGE_BITS_ALL;
3778}
3779
3780/*
3781 *	vm_page_is_valid:
3782 *
3783 *	Is (partial) page valid?  Note that the case where size == 0
3784 *	will return FALSE in the degenerate case where the page is
3785 *	entirely invalid, and TRUE otherwise.
3786 */
3787int
3788vm_page_is_valid(vm_page_t m, int base, int size)
3789{
3790	vm_page_bits_t bits;
3791
3792	VM_OBJECT_ASSERT_LOCKED(m->object);
3793	bits = vm_page_bits(base, size);
3794	return (m->valid != 0 && (m->valid & bits) == bits);
3795}
3796
3797/*
3798 *	vm_page_ps_is_valid:
3799 *
3800 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3801 */
3802boolean_t
3803vm_page_ps_is_valid(vm_page_t m)
3804{
3805	int i, npages;
3806
3807	VM_OBJECT_ASSERT_LOCKED(m->object);
3808	npages = atop(pagesizes[m->psind]);
3809
3810	/*
3811	 * The physically contiguous pages that make up a superpage, i.e., a
3812	 * page with a page size index ("psind") greater than zero, will
3813	 * occupy adjacent entries in vm_page_array[].
3814	 */
3815	for (i = 0; i < npages; i++) {
3816		if (m[i].valid != VM_PAGE_BITS_ALL)
3817			return (FALSE);
3818	}
3819	return (TRUE);
3820}
3821
3822/*
3823 * Set the page's dirty bits if the page is modified.
3824 */
3825void
3826vm_page_test_dirty(vm_page_t m)
3827{
3828
3829	VM_OBJECT_ASSERT_WLOCKED(m->object);
3830	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3831		vm_page_dirty(m);
3832}
3833
3834void
3835vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3836{
3837
3838	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3839}
3840
3841void
3842vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3843{
3844
3845	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3846}
3847
3848int
3849vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3850{
3851
3852	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3853}
3854
3855#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3856void
3857vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3858{
3859
3860	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3861}
3862
3863void
3864vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3865{
3866
3867	mtx_assert_(vm_page_lockptr(m), a, file, line);
3868}
3869#endif
3870
3871#ifdef INVARIANTS
3872void
3873vm_page_object_lock_assert(vm_page_t m)
3874{
3875
3876	/*
3877	 * Certain of the page's fields may only be modified by the
3878	 * holder of the containing object's lock or the exclusive busy.
3879	 * holder.  Unfortunately, the holder of the write busy is
3880	 * not recorded, and thus cannot be checked here.
3881	 */
3882	if (m->object != NULL && !vm_page_xbusied(m))
3883		VM_OBJECT_ASSERT_WLOCKED(m->object);
3884}
3885
3886void
3887vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3888{
3889
3890	if ((bits & PGA_WRITEABLE) == 0)
3891		return;
3892
3893	/*
3894	 * The PGA_WRITEABLE flag can only be set if the page is
3895	 * managed, is exclusively busied or the object is locked.
3896	 * Currently, this flag is only set by pmap_enter().
3897	 */
3898	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3899	    ("PGA_WRITEABLE on unmanaged page"));
3900	if (!vm_page_xbusied(m))
3901		VM_OBJECT_ASSERT_LOCKED(m->object);
3902}
3903#endif
3904
3905#include "opt_ddb.h"
3906#ifdef DDB
3907#include <sys/kernel.h>
3908
3909#include <ddb/ddb.h>
3910
3911DB_SHOW_COMMAND(page, vm_page_print_page_info)
3912{
3913	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3914	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3915	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3916	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3917	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3918	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3919	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3920	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3921	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3922}
3923
3924DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3925{
3926	int dom;
3927
3928	db_printf("pq_free %d pq_cache %d\n",
3929	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3930	for (dom = 0; dom < vm_ndomains; dom++) {
3931		db_printf(
3932	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3933		    dom,
3934		    vm_dom[dom].vmd_page_count,
3935		    vm_dom[dom].vmd_free_count,
3936		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3937		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3938		    vm_dom[dom].vmd_pass);
3939	}
3940}
3941
3942DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3943{
3944	vm_page_t m;
3945	boolean_t phys;
3946
3947	if (!have_addr) {
3948		db_printf("show pginfo addr\n");
3949		return;
3950	}
3951
3952	phys = strchr(modif, 'p') != NULL;
3953	if (phys)
3954		m = PHYS_TO_VM_PAGE(addr);
3955	else
3956		m = (vm_page_t)addr;
3957	db_printf(
3958    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3959    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3960	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3961	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3962	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3963}
3964#endif /* DDB */
3965