1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD$");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/mman.h>
85#include <sys/proc.h>
86#include <sys/racct.h>
87#include <sys/resourcevar.h>
88#include <sys/rwlock.h>
89#include <sys/sysctl.h>
90#include <sys/vmmeter.h>
91#include <sys/vnode.h>
92#ifdef KTRACE
93#include <sys/ktrace.h>
94#endif
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/pmap.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_page.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_kern.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/vm_reserv.h>
107
108#define PFBAK 4
109#define PFFOR 4
110
111#define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113
114#define	VM_FAULT_DONTNEED_MIN	1048576
115
116struct faultstate {
117	vm_page_t m;
118	vm_object_t object;
119	vm_pindex_t pindex;
120	vm_page_t first_m;
121	vm_object_t	first_object;
122	vm_pindex_t first_pindex;
123	vm_map_t map;
124	vm_map_entry_t entry;
125	int lookup_still_valid;
126	struct vnode *vp;
127};
128
129static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
130	    int ahead);
131static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132	    int backward, int forward);
133
134static inline void
135release_page(struct faultstate *fs)
136{
137
138	vm_page_xunbusy(fs->m);
139	vm_page_lock(fs->m);
140	vm_page_deactivate(fs->m);
141	vm_page_unlock(fs->m);
142	fs->m = NULL;
143}
144
145static inline void
146unlock_map(struct faultstate *fs)
147{
148
149	if (fs->lookup_still_valid) {
150		vm_map_lookup_done(fs->map, fs->entry);
151		fs->lookup_still_valid = FALSE;
152	}
153}
154
155static void
156unlock_and_deallocate(struct faultstate *fs)
157{
158
159	vm_object_pip_wakeup(fs->object);
160	VM_OBJECT_WUNLOCK(fs->object);
161	if (fs->object != fs->first_object) {
162		VM_OBJECT_WLOCK(fs->first_object);
163		vm_page_lock(fs->first_m);
164		vm_page_free(fs->first_m);
165		vm_page_unlock(fs->first_m);
166		vm_object_pip_wakeup(fs->first_object);
167		VM_OBJECT_WUNLOCK(fs->first_object);
168		fs->first_m = NULL;
169	}
170	vm_object_deallocate(fs->first_object);
171	unlock_map(fs);
172	if (fs->vp != NULL) {
173		vput(fs->vp);
174		fs->vp = NULL;
175	}
176}
177
178static void
179vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180    vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181{
182	boolean_t need_dirty;
183
184	if (((prot & VM_PROT_WRITE) == 0 &&
185	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
186	    (m->oflags & VPO_UNMANAGED) != 0)
187		return;
188
189	VM_OBJECT_ASSERT_LOCKED(m->object);
190
191	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192	    (fault_flags & VM_FAULT_WIRE) == 0) ||
193	    (fault_flags & VM_FAULT_DIRTY) != 0;
194
195	if (set_wd)
196		vm_object_set_writeable_dirty(m->object);
197	else
198		/*
199		 * If two callers of vm_fault_dirty() with set_wd ==
200		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201		 * flag set, other with flag clear, race, it is
202		 * possible for the no-NOSYNC thread to see m->dirty
203		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204		 * around manipulation of VPO_NOSYNC and
205		 * vm_page_dirty() call, to avoid the race and keep
206		 * m->oflags consistent.
207		 */
208		vm_page_lock(m);
209
210	/*
211	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212	 * if the page is already dirty to prevent data written with
213	 * the expectation of being synced from not being synced.
214	 * Likewise if this entry does not request NOSYNC then make
215	 * sure the page isn't marked NOSYNC.  Applications sharing
216	 * data should use the same flags to avoid ping ponging.
217	 */
218	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219		if (m->dirty == 0) {
220			m->oflags |= VPO_NOSYNC;
221		}
222	} else {
223		m->oflags &= ~VPO_NOSYNC;
224	}
225
226	/*
227	 * If the fault is a write, we know that this page is being
228	 * written NOW so dirty it explicitly to save on
229	 * pmap_is_modified() calls later.
230	 *
231	 * Also tell the backing pager, if any, that it should remove
232	 * any swap backing since the page is now dirty.
233	 */
234	if (need_dirty)
235		vm_page_dirty(m);
236	if (!set_wd)
237		vm_page_unlock(m);
238	if (need_dirty)
239		vm_pager_page_unswapped(m);
240}
241
242/*
243 *	vm_fault:
244 *
245 *	Handle a page fault occurring at the given address,
246 *	requiring the given permissions, in the map specified.
247 *	If successful, the page is inserted into the
248 *	associated physical map.
249 *
250 *	NOTE: the given address should be truncated to the
251 *	proper page address.
252 *
253 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
254 *	a standard error specifying why the fault is fatal is returned.
255 *
256 *	The map in question must be referenced, and remains so.
257 *	Caller may hold no locks.
258 */
259int
260vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261    int fault_flags)
262{
263	struct thread *td;
264	int result;
265
266	td = curthread;
267	if ((td->td_pflags & TDP_NOFAULTING) != 0)
268		return (KERN_PROTECTION_FAILURE);
269#ifdef KTRACE
270	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271		ktrfault(vaddr, fault_type);
272#endif
273	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274	    NULL);
275#ifdef KTRACE
276	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277		ktrfaultend(result);
278#endif
279	return (result);
280}
281
282int
283vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284    int fault_flags, vm_page_t *m_hold)
285{
286	vm_prot_t prot;
287	int alloc_req, era, faultcount, nera, result;
288	boolean_t dead, growstack, is_first_object_locked, wired;
289	int map_generation;
290	vm_object_t next_object;
291	int hardfault;
292	struct faultstate fs;
293	struct vnode *vp;
294	vm_offset_t e_end, e_start;
295	vm_page_t m;
296	int ahead, behind, cluster_offset, error, locked, rv;
297	u_char behavior;
298
299	hardfault = 0;
300	growstack = TRUE;
301	PCPU_INC(cnt.v_vm_faults);
302	fs.vp = NULL;
303	faultcount = 0;
304	nera = -1;
305
306RetryFault:;
307
308	/*
309	 * Find the backing store object and offset into it to begin the
310	 * search.
311	 */
312	fs.map = map;
313	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
314	    &fs.first_object, &fs.first_pindex, &prot, &wired);
315	if (result != KERN_SUCCESS) {
316		if (growstack && result == KERN_INVALID_ADDRESS &&
317		    map != kernel_map) {
318			result = vm_map_growstack(curproc, vaddr);
319			if (result != KERN_SUCCESS)
320				return (KERN_FAILURE);
321			growstack = FALSE;
322			goto RetryFault;
323		}
324		return (result);
325	}
326
327	map_generation = fs.map->timestamp;
328
329	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
330		panic("vm_fault: fault on nofault entry, addr: %lx",
331		    (u_long)vaddr);
332	}
333
334	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
335	    fs.entry->wiring_thread != curthread) {
336		vm_map_unlock_read(fs.map);
337		vm_map_lock(fs.map);
338		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
339		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
340			if (fs.vp != NULL) {
341				vput(fs.vp);
342				fs.vp = NULL;
343			}
344			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
345			vm_map_unlock_and_wait(fs.map, 0);
346		} else
347			vm_map_unlock(fs.map);
348		goto RetryFault;
349	}
350
351	if (wired)
352		fault_type = prot | (fault_type & VM_PROT_COPY);
353	else
354		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
355		    ("!wired && VM_FAULT_WIRE"));
356
357	/*
358	 * Try to avoid lock contention on the top-level object through
359	 * special-case handling of some types of page faults, specifically,
360	 * those that are both (1) mapping an existing page from the top-
361	 * level object and (2) not having to mark that object as containing
362	 * dirty pages.  Under these conditions, a read lock on the top-level
363	 * object suffices, allowing multiple page faults of a similar type to
364	 * run in parallel on the same top-level object.
365	 */
366	if (fs.vp == NULL /* avoid locked vnode leak */ &&
367	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
368	    /* avoid calling vm_object_set_writeable_dirty() */
369	    ((prot & VM_PROT_WRITE) == 0 ||
370	    (fs.first_object->type != OBJT_VNODE &&
371	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
372	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
373		VM_OBJECT_RLOCK(fs.first_object);
374		if ((prot & VM_PROT_WRITE) != 0 &&
375		    (fs.first_object->type == OBJT_VNODE ||
376		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
377		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
378			goto fast_failed;
379		m = vm_page_lookup(fs.first_object, fs.first_pindex);
380		/* A busy page can be mapped for read|execute access. */
381		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
382		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
383			goto fast_failed;
384		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
385		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
386		   0), 0);
387		if (result != KERN_SUCCESS)
388			goto fast_failed;
389		if (m_hold != NULL) {
390			*m_hold = m;
391			vm_page_lock(m);
392			vm_page_hold(m);
393			vm_page_unlock(m);
394		}
395		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
396		    FALSE);
397		VM_OBJECT_RUNLOCK(fs.first_object);
398		if (!wired)
399			vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR);
400		vm_map_lookup_done(fs.map, fs.entry);
401		curthread->td_ru.ru_minflt++;
402		return (KERN_SUCCESS);
403fast_failed:
404		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
405			VM_OBJECT_RUNLOCK(fs.first_object);
406			VM_OBJECT_WLOCK(fs.first_object);
407		}
408	} else {
409		VM_OBJECT_WLOCK(fs.first_object);
410	}
411
412	/*
413	 * Make a reference to this object to prevent its disposal while we
414	 * are messing with it.  Once we have the reference, the map is free
415	 * to be diddled.  Since objects reference their shadows (and copies),
416	 * they will stay around as well.
417	 *
418	 * Bump the paging-in-progress count to prevent size changes (e.g.
419	 * truncation operations) during I/O.  This must be done after
420	 * obtaining the vnode lock in order to avoid possible deadlocks.
421	 */
422	vm_object_reference_locked(fs.first_object);
423	vm_object_pip_add(fs.first_object, 1);
424
425	fs.lookup_still_valid = TRUE;
426
427	fs.first_m = NULL;
428
429	/*
430	 * Search for the page at object/offset.
431	 */
432	fs.object = fs.first_object;
433	fs.pindex = fs.first_pindex;
434	while (TRUE) {
435		/*
436		 * If the object is marked for imminent termination,
437		 * we retry here, since the collapse pass has raced
438		 * with us.  Otherwise, if we see terminally dead
439		 * object, return fail.
440		 */
441		if ((fs.object->flags & OBJ_DEAD) != 0) {
442			dead = fs.object->type == OBJT_DEAD;
443			unlock_and_deallocate(&fs);
444			if (dead)
445				return (KERN_PROTECTION_FAILURE);
446			pause("vmf_de", 1);
447			goto RetryFault;
448		}
449
450		/*
451		 * See if page is resident
452		 */
453		fs.m = vm_page_lookup(fs.object, fs.pindex);
454		if (fs.m != NULL) {
455			/*
456			 * Wait/Retry if the page is busy.  We have to do this
457			 * if the page is either exclusive or shared busy
458			 * because the vm_pager may be using read busy for
459			 * pageouts (and even pageins if it is the vnode
460			 * pager), and we could end up trying to pagein and
461			 * pageout the same page simultaneously.
462			 *
463			 * We can theoretically allow the busy case on a read
464			 * fault if the page is marked valid, but since such
465			 * pages are typically already pmap'd, putting that
466			 * special case in might be more effort then it is
467			 * worth.  We cannot under any circumstances mess
468			 * around with a shared busied page except, perhaps,
469			 * to pmap it.
470			 */
471			if (vm_page_busied(fs.m)) {
472				/*
473				 * Reference the page before unlocking and
474				 * sleeping so that the page daemon is less
475				 * likely to reclaim it.
476				 */
477				vm_page_aflag_set(fs.m, PGA_REFERENCED);
478				if (fs.object != fs.first_object) {
479					if (!VM_OBJECT_TRYWLOCK(
480					    fs.first_object)) {
481						VM_OBJECT_WUNLOCK(fs.object);
482						VM_OBJECT_WLOCK(fs.first_object);
483						VM_OBJECT_WLOCK(fs.object);
484					}
485					vm_page_lock(fs.first_m);
486					vm_page_free(fs.first_m);
487					vm_page_unlock(fs.first_m);
488					vm_object_pip_wakeup(fs.first_object);
489					VM_OBJECT_WUNLOCK(fs.first_object);
490					fs.first_m = NULL;
491				}
492				unlock_map(&fs);
493				if (fs.m == vm_page_lookup(fs.object,
494				    fs.pindex)) {
495					vm_page_sleep_if_busy(fs.m, "vmpfw");
496				}
497				vm_object_pip_wakeup(fs.object);
498				VM_OBJECT_WUNLOCK(fs.object);
499				PCPU_INC(cnt.v_intrans);
500				vm_object_deallocate(fs.first_object);
501				goto RetryFault;
502			}
503			vm_page_lock(fs.m);
504			vm_page_remque(fs.m);
505			vm_page_unlock(fs.m);
506
507			/*
508			 * Mark page busy for other processes, and the
509			 * pagedaemon.  If it still isn't completely valid
510			 * (readable), jump to readrest, else break-out ( we
511			 * found the page ).
512			 */
513			vm_page_xbusy(fs.m);
514			if (fs.m->valid != VM_PAGE_BITS_ALL)
515				goto readrest;
516			break;
517		}
518		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
519
520		/*
521		 * Page is not resident.  If the pager might contain the page
522		 * or this is the beginning of the search, allocate a new
523		 * page.  (Default objects are zero-fill, so there is no real
524		 * pager for them.)
525		 */
526		if (fs.object->type != OBJT_DEFAULT ||
527		    fs.object == fs.first_object) {
528			if (fs.pindex >= fs.object->size) {
529				unlock_and_deallocate(&fs);
530				return (KERN_PROTECTION_FAILURE);
531			}
532
533			/*
534			 * Allocate a new page for this object/offset pair.
535			 *
536			 * Unlocked read of the p_flag is harmless. At
537			 * worst, the P_KILLED might be not observed
538			 * there, and allocation can fail, causing
539			 * restart and new reading of the p_flag.
540			 */
541			if (!vm_page_count_severe() || P_KILLED(curproc)) {
542#if VM_NRESERVLEVEL > 0
543				vm_object_color(fs.object, atop(vaddr) -
544				    fs.pindex);
545#endif
546				alloc_req = P_KILLED(curproc) ?
547				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
548				if (fs.object->type != OBJT_VNODE &&
549				    fs.object->backing_object == NULL)
550					alloc_req |= VM_ALLOC_ZERO;
551				fs.m = vm_page_alloc(fs.object, fs.pindex,
552				    alloc_req);
553			}
554			if (fs.m == NULL) {
555				unlock_and_deallocate(&fs);
556				VM_WAITPFAULT;
557				goto RetryFault;
558			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
559				break;
560		}
561
562readrest:
563		/*
564		 * If the pager for the current object might have the page,
565		 * then determine the number of additional pages to read and
566		 * potentially reprioritize previously read pages for earlier
567		 * reclamation.  These operations should only be performed
568		 * once per page fault.  Even if the current pager doesn't
569		 * have the page, the number of additional pages to read will
570		 * apply to subsequent objects in the shadow chain.
571		 */
572		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
573		    !P_KILLED(curproc)) {
574			KASSERT(fs.lookup_still_valid, ("map unlocked"));
575			era = fs.entry->read_ahead;
576			behavior = vm_map_entry_behavior(fs.entry);
577			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
578				nera = 0;
579			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
580				nera = VM_FAULT_READ_AHEAD_MAX;
581				if (vaddr == fs.entry->next_read)
582					vm_fault_dontneed(&fs, vaddr, nera);
583			} else if (vaddr == fs.entry->next_read) {
584				/*
585				 * This is a sequential fault.  Arithmetically
586				 * increase the requested number of pages in
587				 * the read-ahead window.  The requested
588				 * number of pages is "# of sequential faults
589				 * x (read ahead min + 1) + read ahead min"
590				 */
591				nera = VM_FAULT_READ_AHEAD_MIN;
592				if (era > 0) {
593					nera += era + 1;
594					if (nera > VM_FAULT_READ_AHEAD_MAX)
595						nera = VM_FAULT_READ_AHEAD_MAX;
596				}
597				if (era == VM_FAULT_READ_AHEAD_MAX)
598					vm_fault_dontneed(&fs, vaddr, nera);
599			} else {
600				/*
601				 * This is a non-sequential fault.
602				 */
603				nera = 0;
604			}
605			if (era != nera) {
606				/*
607				 * A read lock on the map suffices to update
608				 * the read ahead count safely.
609				 */
610				fs.entry->read_ahead = nera;
611			}
612
613			/*
614			 * Prepare for unlocking the map.  Save the map
615			 * entry's start and end addresses, which are used to
616			 * optimize the size of the pager operation below.
617			 * Even if the map entry's addresses change after
618			 * unlocking the map, using the saved addresses is
619			 * safe.
620			 */
621			e_start = fs.entry->start;
622			e_end = fs.entry->end;
623		}
624
625		/*
626		 * Call the pager to retrieve the page if there is a chance
627		 * that the pager has it, and potentially retrieve additional
628		 * pages at the same time.
629		 */
630		if (fs.object->type != OBJT_DEFAULT) {
631			/*
632			 * We have either allocated a new page or found an
633			 * existing page that is only partially valid.  We
634			 * hold a reference on fs.object and the page is
635			 * exclusive busied.
636			 */
637			unlock_map(&fs);
638
639			if (fs.object->type == OBJT_VNODE) {
640				vp = fs.object->handle;
641				if (vp == fs.vp)
642					goto vnode_locked;
643				else if (fs.vp != NULL) {
644					vput(fs.vp);
645					fs.vp = NULL;
646				}
647				locked = VOP_ISLOCKED(vp);
648
649				if (locked != LK_EXCLUSIVE)
650					locked = LK_SHARED;
651				/* Do not sleep for vnode lock while fs.m is busy */
652				error = vget(vp, locked | LK_CANRECURSE |
653				    LK_NOWAIT, curthread);
654				if (error != 0) {
655					vhold(vp);
656					release_page(&fs);
657					unlock_and_deallocate(&fs);
658					error = vget(vp, locked | LK_RETRY |
659					    LK_CANRECURSE, curthread);
660					vdrop(vp);
661					fs.vp = vp;
662					KASSERT(error == 0,
663					    ("vm_fault: vget failed"));
664					goto RetryFault;
665				}
666				fs.vp = vp;
667			}
668vnode_locked:
669			KASSERT(fs.vp == NULL || !fs.map->system_map,
670			    ("vm_fault: vnode-backed object mapped by system map"));
671
672			/*
673			 * Page in the requested page and hint the pager,
674			 * that it may bring up surrounding pages.
675			 */
676			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
677			    P_KILLED(curproc)) {
678				behind = 0;
679				ahead = 0;
680			} else {
681				/* Is this a sequential fault? */
682				if (nera > 0) {
683					behind = 0;
684					ahead = nera;
685				} else {
686					/*
687					 * Request a cluster of pages that is
688					 * aligned to a VM_FAULT_READ_DEFAULT
689					 * page offset boundary within the
690					 * object.  Alignment to a page offset
691					 * boundary is more likely to coincide
692					 * with the underlying file system
693					 * block than alignment to a virtual
694					 * address boundary.
695					 */
696					cluster_offset = fs.pindex %
697					    VM_FAULT_READ_DEFAULT;
698					behind = ulmin(cluster_offset,
699					    atop(vaddr - e_start));
700					ahead = VM_FAULT_READ_DEFAULT - 1 -
701					    cluster_offset;
702				}
703				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
704			}
705			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
706			    &behind, &ahead);
707			if (rv == VM_PAGER_OK) {
708				faultcount = behind + 1 + ahead;
709				hardfault++;
710				break; /* break to PAGE HAS BEEN FOUND */
711			}
712			if (rv == VM_PAGER_ERROR)
713				printf("vm_fault: pager read error, pid %d (%s)\n",
714				    curproc->p_pid, curproc->p_comm);
715
716			/*
717			 * If an I/O error occurred or the requested page was
718			 * outside the range of the pager, clean up and return
719			 * an error.
720			 */
721			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
722				vm_page_lock(fs.m);
723				vm_page_free(fs.m);
724				vm_page_unlock(fs.m);
725				fs.m = NULL;
726				unlock_and_deallocate(&fs);
727				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
728				    KERN_PROTECTION_FAILURE);
729			}
730
731			/*
732			 * The requested page does not exist at this object/
733			 * offset.  Remove the invalid page from the object,
734			 * waking up anyone waiting for it, and continue on to
735			 * the next object.  However, if this is the top-level
736			 * object, we must leave the busy page in place to
737			 * prevent another process from rushing past us, and
738			 * inserting the page in that object at the same time
739			 * that we are.
740			 */
741			if (fs.object != fs.first_object) {
742				vm_page_lock(fs.m);
743				vm_page_free(fs.m);
744				vm_page_unlock(fs.m);
745				fs.m = NULL;
746			}
747		}
748
749		/*
750		 * We get here if the object has default pager (or unwiring)
751		 * or the pager doesn't have the page.
752		 */
753		if (fs.object == fs.first_object)
754			fs.first_m = fs.m;
755
756		/*
757		 * Move on to the next object.  Lock the next object before
758		 * unlocking the current one.
759		 */
760		next_object = fs.object->backing_object;
761		if (next_object == NULL) {
762			/*
763			 * If there's no object left, fill the page in the top
764			 * object with zeros.
765			 */
766			if (fs.object != fs.first_object) {
767				vm_object_pip_wakeup(fs.object);
768				VM_OBJECT_WUNLOCK(fs.object);
769
770				fs.object = fs.first_object;
771				fs.pindex = fs.first_pindex;
772				fs.m = fs.first_m;
773				VM_OBJECT_WLOCK(fs.object);
774			}
775			fs.first_m = NULL;
776
777			/*
778			 * Zero the page if necessary and mark it valid.
779			 */
780			if ((fs.m->flags & PG_ZERO) == 0) {
781				pmap_zero_page(fs.m);
782			} else {
783				PCPU_INC(cnt.v_ozfod);
784			}
785			PCPU_INC(cnt.v_zfod);
786			fs.m->valid = VM_PAGE_BITS_ALL;
787			/* Don't try to prefault neighboring pages. */
788			faultcount = 1;
789			break;	/* break to PAGE HAS BEEN FOUND */
790		} else {
791			KASSERT(fs.object != next_object,
792			    ("object loop %p", next_object));
793			VM_OBJECT_WLOCK(next_object);
794			vm_object_pip_add(next_object, 1);
795			if (fs.object != fs.first_object)
796				vm_object_pip_wakeup(fs.object);
797			fs.pindex +=
798			    OFF_TO_IDX(fs.object->backing_object_offset);
799			VM_OBJECT_WUNLOCK(fs.object);
800			fs.object = next_object;
801		}
802	}
803
804	vm_page_assert_xbusied(fs.m);
805
806	/*
807	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
808	 * is held.]
809	 */
810
811	/*
812	 * If the page is being written, but isn't already owned by the
813	 * top-level object, we have to copy it into a new page owned by the
814	 * top-level object.
815	 */
816	if (fs.object != fs.first_object) {
817		/*
818		 * We only really need to copy if we want to write it.
819		 */
820		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
821			/*
822			 * This allows pages to be virtually copied from a
823			 * backing_object into the first_object, where the
824			 * backing object has no other refs to it, and cannot
825			 * gain any more refs.  Instead of a bcopy, we just
826			 * move the page from the backing object to the
827			 * first object.  Note that we must mark the page
828			 * dirty in the first object so that it will go out
829			 * to swap when needed.
830			 */
831			is_first_object_locked = FALSE;
832			if (
833				/*
834				 * Only one shadow object
835				 */
836				(fs.object->shadow_count == 1) &&
837				/*
838				 * No COW refs, except us
839				 */
840				(fs.object->ref_count == 1) &&
841				/*
842				 * No one else can look this object up
843				 */
844				(fs.object->handle == NULL) &&
845				/*
846				 * No other ways to look the object up
847				 */
848				((fs.object->type == OBJT_DEFAULT) ||
849				 (fs.object->type == OBJT_SWAP)) &&
850			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
851				/*
852				 * We don't chase down the shadow chain
853				 */
854			    fs.object == fs.first_object->backing_object) {
855				vm_page_lock(fs.m);
856				vm_page_remove(fs.m);
857				vm_page_unlock(fs.m);
858				vm_page_lock(fs.first_m);
859				vm_page_replace_checked(fs.m, fs.first_object,
860				    fs.first_pindex, fs.first_m);
861				vm_page_free(fs.first_m);
862				vm_page_unlock(fs.first_m);
863				vm_page_dirty(fs.m);
864#if VM_NRESERVLEVEL > 0
865				/*
866				 * Rename the reservation.
867				 */
868				vm_reserv_rename(fs.m, fs.first_object,
869				    fs.object, OFF_TO_IDX(
870				    fs.first_object->backing_object_offset));
871#endif
872				/*
873				 * Removing the page from the backing object
874				 * unbusied it.
875				 */
876				vm_page_xbusy(fs.m);
877				fs.first_m = fs.m;
878				fs.m = NULL;
879				PCPU_INC(cnt.v_cow_optim);
880			} else {
881				/*
882				 * Oh, well, lets copy it.
883				 */
884				pmap_copy_page(fs.m, fs.first_m);
885				fs.first_m->valid = VM_PAGE_BITS_ALL;
886				if (wired && (fault_flags &
887				    VM_FAULT_WIRE) == 0) {
888					vm_page_lock(fs.first_m);
889					vm_page_wire(fs.first_m);
890					vm_page_unlock(fs.first_m);
891
892					vm_page_lock(fs.m);
893					vm_page_unwire(fs.m, PQ_INACTIVE);
894					vm_page_unlock(fs.m);
895				}
896				/*
897				 * We no longer need the old page or object.
898				 */
899				release_page(&fs);
900			}
901			/*
902			 * fs.object != fs.first_object due to above
903			 * conditional
904			 */
905			vm_object_pip_wakeup(fs.object);
906			VM_OBJECT_WUNLOCK(fs.object);
907			/*
908			 * Only use the new page below...
909			 */
910			fs.object = fs.first_object;
911			fs.pindex = fs.first_pindex;
912			fs.m = fs.first_m;
913			if (!is_first_object_locked)
914				VM_OBJECT_WLOCK(fs.object);
915			PCPU_INC(cnt.v_cow_faults);
916			curthread->td_cow++;
917		} else {
918			prot &= ~VM_PROT_WRITE;
919		}
920	}
921
922	/*
923	 * We must verify that the maps have not changed since our last
924	 * lookup.
925	 */
926	if (!fs.lookup_still_valid) {
927		vm_object_t retry_object;
928		vm_pindex_t retry_pindex;
929		vm_prot_t retry_prot;
930
931		if (!vm_map_trylock_read(fs.map)) {
932			release_page(&fs);
933			unlock_and_deallocate(&fs);
934			goto RetryFault;
935		}
936		fs.lookup_still_valid = TRUE;
937		if (fs.map->timestamp != map_generation) {
938			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
939			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
940
941			/*
942			 * If we don't need the page any longer, put it on the inactive
943			 * list (the easiest thing to do here).  If no one needs it,
944			 * pageout will grab it eventually.
945			 */
946			if (result != KERN_SUCCESS) {
947				release_page(&fs);
948				unlock_and_deallocate(&fs);
949
950				/*
951				 * If retry of map lookup would have blocked then
952				 * retry fault from start.
953				 */
954				if (result == KERN_FAILURE)
955					goto RetryFault;
956				return (result);
957			}
958			if ((retry_object != fs.first_object) ||
959			    (retry_pindex != fs.first_pindex)) {
960				release_page(&fs);
961				unlock_and_deallocate(&fs);
962				goto RetryFault;
963			}
964
965			/*
966			 * Check whether the protection has changed or the object has
967			 * been copied while we left the map unlocked. Changing from
968			 * read to write permission is OK - we leave the page
969			 * write-protected, and catch the write fault. Changing from
970			 * write to read permission means that we can't mark the page
971			 * write-enabled after all.
972			 */
973			prot &= retry_prot;
974		}
975	}
976
977	/*
978	 * If the page was filled by a pager, save the virtual address that
979	 * should be faulted on next under a sequential access pattern to the
980	 * map entry.  A read lock on the map suffices to update this address
981	 * safely.
982	 */
983	if (hardfault)
984		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
985
986	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
987	vm_page_assert_xbusied(fs.m);
988
989	/*
990	 * Page must be completely valid or it is not fit to
991	 * map into user space.  vm_pager_get_pages() ensures this.
992	 */
993	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
994	    ("vm_fault: page %p partially invalid", fs.m));
995	VM_OBJECT_WUNLOCK(fs.object);
996
997	/*
998	 * Put this page into the physical map.  We had to do the unlock above
999	 * because pmap_enter() may sleep.  We don't put the page
1000	 * back on the active queue until later so that the pageout daemon
1001	 * won't find it (yet).
1002	 */
1003	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1004	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1005	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1006	    wired == 0)
1007		vm_fault_prefault(&fs, vaddr,
1008		    faultcount > 0 ? behind : PFBAK,
1009		    faultcount > 0 ? ahead : PFFOR);
1010	VM_OBJECT_WLOCK(fs.object);
1011	vm_page_lock(fs.m);
1012
1013	/*
1014	 * If the page is not wired down, then put it where the pageout daemon
1015	 * can find it.
1016	 */
1017	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1018		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1019		vm_page_wire(fs.m);
1020	} else
1021		vm_page_activate(fs.m);
1022	if (m_hold != NULL) {
1023		*m_hold = fs.m;
1024		vm_page_hold(fs.m);
1025	}
1026	vm_page_unlock(fs.m);
1027	vm_page_xunbusy(fs.m);
1028
1029	/*
1030	 * Unlock everything, and return
1031	 */
1032	unlock_and_deallocate(&fs);
1033	if (hardfault) {
1034		PCPU_INC(cnt.v_io_faults);
1035		curthread->td_ru.ru_majflt++;
1036#ifdef RACCT
1037		if (racct_enable && fs.object->type == OBJT_VNODE) {
1038			PROC_LOCK(curproc);
1039			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1040				racct_add_force(curproc, RACCT_WRITEBPS,
1041				    PAGE_SIZE + behind * PAGE_SIZE);
1042				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1043			} else {
1044				racct_add_force(curproc, RACCT_READBPS,
1045				    PAGE_SIZE + ahead * PAGE_SIZE);
1046				racct_add_force(curproc, RACCT_READIOPS, 1);
1047			}
1048			PROC_UNLOCK(curproc);
1049		}
1050#endif
1051	} else
1052		curthread->td_ru.ru_minflt++;
1053
1054	return (KERN_SUCCESS);
1055}
1056
1057/*
1058 * Speed up the reclamation of pages that precede the faulting pindex within
1059 * the first object of the shadow chain.  Essentially, perform the equivalent
1060 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1061 * the faulting pindex by the cluster size when the pages read by vm_fault()
1062 * cross a cluster-size boundary.  The cluster size is the greater of the
1063 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1064 *
1065 * When "fs->first_object" is a shadow object, the pages in the backing object
1066 * that precede the faulting pindex are deactivated by vm_fault().  So, this
1067 * function must only be concerned with pages in the first object.
1068 */
1069static void
1070vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1071{
1072	vm_map_entry_t entry;
1073	vm_object_t first_object, object;
1074	vm_offset_t end, start;
1075	vm_page_t m, m_next;
1076	vm_pindex_t pend, pstart;
1077	vm_size_t size;
1078
1079	object = fs->object;
1080	VM_OBJECT_ASSERT_WLOCKED(object);
1081	first_object = fs->first_object;
1082	if (first_object != object) {
1083		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1084			VM_OBJECT_WUNLOCK(object);
1085			VM_OBJECT_WLOCK(first_object);
1086			VM_OBJECT_WLOCK(object);
1087		}
1088	}
1089	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1090	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1091		size = VM_FAULT_DONTNEED_MIN;
1092		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1093			size = pagesizes[1];
1094		end = rounddown2(vaddr, size);
1095		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1096		    (entry = fs->entry)->start < end) {
1097			if (end - entry->start < size)
1098				start = entry->start;
1099			else
1100				start = end - size;
1101			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1102			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1103			    entry->start);
1104			m_next = vm_page_find_least(first_object, pstart);
1105			pend = OFF_TO_IDX(entry->offset) + atop(end -
1106			    entry->start);
1107			while ((m = m_next) != NULL && m->pindex < pend) {
1108				m_next = TAILQ_NEXT(m, listq);
1109				if (m->valid != VM_PAGE_BITS_ALL ||
1110				    vm_page_busied(m))
1111					continue;
1112
1113				/*
1114				 * Don't clear PGA_REFERENCED, since it would
1115				 * likely represent a reference by a different
1116				 * process.
1117				 *
1118				 * Typically, at this point, prefetched pages
1119				 * are still in the inactive queue.  Only
1120				 * pages that triggered page faults are in the
1121				 * active queue.
1122				 */
1123				vm_page_lock(m);
1124				vm_page_deactivate(m);
1125				vm_page_unlock(m);
1126			}
1127		}
1128	}
1129	if (first_object != object)
1130		VM_OBJECT_WUNLOCK(first_object);
1131}
1132
1133/*
1134 * vm_fault_prefault provides a quick way of clustering
1135 * pagefaults into a processes address space.  It is a "cousin"
1136 * of vm_map_pmap_enter, except it runs at page fault time instead
1137 * of mmap time.
1138 */
1139static void
1140vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1141    int backward, int forward)
1142{
1143	pmap_t pmap;
1144	vm_map_entry_t entry;
1145	vm_object_t backing_object, lobject;
1146	vm_offset_t addr, starta;
1147	vm_pindex_t pindex;
1148	vm_page_t m;
1149	int i;
1150
1151	pmap = fs->map->pmap;
1152	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1153		return;
1154
1155	entry = fs->entry;
1156
1157	starta = addra - backward * PAGE_SIZE;
1158	if (starta < entry->start) {
1159		starta = entry->start;
1160	} else if (starta > addra) {
1161		starta = 0;
1162	}
1163
1164	/*
1165	 * Generate the sequence of virtual addresses that are candidates for
1166	 * prefaulting in an outward spiral from the faulting virtual address,
1167	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1168	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1169	 * If the candidate address doesn't have a backing physical page, then
1170	 * the loop immediately terminates.
1171	 */
1172	for (i = 0; i < 2 * imax(backward, forward); i++) {
1173		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1174		    PAGE_SIZE);
1175		if (addr > addra + forward * PAGE_SIZE)
1176			addr = 0;
1177
1178		if (addr < starta || addr >= entry->end)
1179			continue;
1180
1181		if (!pmap_is_prefaultable(pmap, addr))
1182			continue;
1183
1184		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1185		lobject = entry->object.vm_object;
1186		VM_OBJECT_RLOCK(lobject);
1187		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1188		    lobject->type == OBJT_DEFAULT &&
1189		    (backing_object = lobject->backing_object) != NULL) {
1190			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1191			    0, ("vm_fault_prefault: unaligned object offset"));
1192			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1193			VM_OBJECT_RLOCK(backing_object);
1194			VM_OBJECT_RUNLOCK(lobject);
1195			lobject = backing_object;
1196		}
1197		if (m == NULL) {
1198			VM_OBJECT_RUNLOCK(lobject);
1199			break;
1200		}
1201		if (m->valid == VM_PAGE_BITS_ALL &&
1202		    (m->flags & PG_FICTITIOUS) == 0)
1203			pmap_enter_quick(pmap, addr, m, entry->protection);
1204		VM_OBJECT_RUNLOCK(lobject);
1205	}
1206}
1207
1208/*
1209 * Hold each of the physical pages that are mapped by the specified range of
1210 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1211 * and allow the specified types of access, "prot".  If all of the implied
1212 * pages are successfully held, then the number of held pages is returned
1213 * together with pointers to those pages in the array "ma".  However, if any
1214 * of the pages cannot be held, -1 is returned.
1215 */
1216int
1217vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1218    vm_prot_t prot, vm_page_t *ma, int max_count)
1219{
1220	vm_offset_t end, va;
1221	vm_page_t *mp;
1222	int count;
1223	boolean_t pmap_failed;
1224
1225	if (len == 0)
1226		return (0);
1227	end = round_page(addr + len);
1228	addr = trunc_page(addr);
1229
1230	/*
1231	 * Check for illegal addresses.
1232	 */
1233	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1234		return (-1);
1235
1236	if (atop(end - addr) > max_count)
1237		panic("vm_fault_quick_hold_pages: count > max_count");
1238	count = atop(end - addr);
1239
1240	/*
1241	 * Most likely, the physical pages are resident in the pmap, so it is
1242	 * faster to try pmap_extract_and_hold() first.
1243	 */
1244	pmap_failed = FALSE;
1245	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1246		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1247		if (*mp == NULL)
1248			pmap_failed = TRUE;
1249		else if ((prot & VM_PROT_WRITE) != 0 &&
1250		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1251			/*
1252			 * Explicitly dirty the physical page.  Otherwise, the
1253			 * caller's changes may go unnoticed because they are
1254			 * performed through an unmanaged mapping or by a DMA
1255			 * operation.
1256			 *
1257			 * The object lock is not held here.
1258			 * See vm_page_clear_dirty_mask().
1259			 */
1260			vm_page_dirty(*mp);
1261		}
1262	}
1263	if (pmap_failed) {
1264		/*
1265		 * One or more pages could not be held by the pmap.  Either no
1266		 * page was mapped at the specified virtual address or that
1267		 * mapping had insufficient permissions.  Attempt to fault in
1268		 * and hold these pages.
1269		 */
1270		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1271			if (*mp == NULL && vm_fault_hold(map, va, prot,
1272			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1273				goto error;
1274	}
1275	return (count);
1276error:
1277	for (mp = ma; mp < ma + count; mp++)
1278		if (*mp != NULL) {
1279			vm_page_lock(*mp);
1280			vm_page_unhold(*mp);
1281			vm_page_unlock(*mp);
1282		}
1283	return (-1);
1284}
1285
1286/*
1287 *	Routine:
1288 *		vm_fault_copy_entry
1289 *	Function:
1290 *		Create new shadow object backing dst_entry with private copy of
1291 *		all underlying pages. When src_entry is equal to dst_entry,
1292 *		function implements COW for wired-down map entry. Otherwise,
1293 *		it forks wired entry into dst_map.
1294 *
1295 *	In/out conditions:
1296 *		The source and destination maps must be locked for write.
1297 *		The source map entry must be wired down (or be a sharing map
1298 *		entry corresponding to a main map entry that is wired down).
1299 */
1300void
1301vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1302    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1303    vm_ooffset_t *fork_charge)
1304{
1305	vm_object_t backing_object, dst_object, object, src_object;
1306	vm_pindex_t dst_pindex, pindex, src_pindex;
1307	vm_prot_t access, prot;
1308	vm_offset_t vaddr;
1309	vm_page_t dst_m;
1310	vm_page_t src_m;
1311	boolean_t upgrade;
1312
1313#ifdef	lint
1314	src_map++;
1315#endif	/* lint */
1316
1317	upgrade = src_entry == dst_entry;
1318	access = prot = dst_entry->protection;
1319
1320	src_object = src_entry->object.vm_object;
1321	src_pindex = OFF_TO_IDX(src_entry->offset);
1322
1323	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1324		dst_object = src_object;
1325		vm_object_reference(dst_object);
1326	} else {
1327		/*
1328		 * Create the top-level object for the destination entry. (Doesn't
1329		 * actually shadow anything - we copy the pages directly.)
1330		 */
1331		dst_object = vm_object_allocate(OBJT_DEFAULT,
1332		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1333#if VM_NRESERVLEVEL > 0
1334		dst_object->flags |= OBJ_COLORED;
1335		dst_object->pg_color = atop(dst_entry->start);
1336#endif
1337	}
1338
1339	VM_OBJECT_WLOCK(dst_object);
1340	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1341	    ("vm_fault_copy_entry: vm_object not NULL"));
1342	if (src_object != dst_object) {
1343		dst_entry->object.vm_object = dst_object;
1344		dst_entry->offset = 0;
1345		dst_object->charge = dst_entry->end - dst_entry->start;
1346	}
1347	if (fork_charge != NULL) {
1348		KASSERT(dst_entry->cred == NULL,
1349		    ("vm_fault_copy_entry: leaked swp charge"));
1350		dst_object->cred = curthread->td_ucred;
1351		crhold(dst_object->cred);
1352		*fork_charge += dst_object->charge;
1353	} else if (dst_object->cred == NULL) {
1354		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1355		    dst_entry));
1356		dst_object->cred = dst_entry->cred;
1357		dst_entry->cred = NULL;
1358	}
1359
1360	/*
1361	 * If not an upgrade, then enter the mappings in the pmap as
1362	 * read and/or execute accesses.  Otherwise, enter them as
1363	 * write accesses.
1364	 *
1365	 * A writeable large page mapping is only created if all of
1366	 * the constituent small page mappings are modified. Marking
1367	 * PTEs as modified on inception allows promotion to happen
1368	 * without taking potentially large number of soft faults.
1369	 */
1370	if (!upgrade)
1371		access &= ~VM_PROT_WRITE;
1372
1373	/*
1374	 * Loop through all of the virtual pages within the entry's
1375	 * range, copying each page from the source object to the
1376	 * destination object.  Since the source is wired, those pages
1377	 * must exist.  In contrast, the destination is pageable.
1378	 * Since the destination object does share any backing storage
1379	 * with the source object, all of its pages must be dirtied,
1380	 * regardless of whether they can be written.
1381	 */
1382	for (vaddr = dst_entry->start, dst_pindex = 0;
1383	    vaddr < dst_entry->end;
1384	    vaddr += PAGE_SIZE, dst_pindex++) {
1385again:
1386		/*
1387		 * Find the page in the source object, and copy it in.
1388		 * Because the source is wired down, the page will be
1389		 * in memory.
1390		 */
1391		if (src_object != dst_object)
1392			VM_OBJECT_RLOCK(src_object);
1393		object = src_object;
1394		pindex = src_pindex + dst_pindex;
1395		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1396		    (backing_object = object->backing_object) != NULL) {
1397			/*
1398			 * Unless the source mapping is read-only or
1399			 * it is presently being upgraded from
1400			 * read-only, the first object in the shadow
1401			 * chain should provide all of the pages.  In
1402			 * other words, this loop body should never be
1403			 * executed when the source mapping is already
1404			 * read/write.
1405			 */
1406			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1407			    upgrade,
1408			    ("vm_fault_copy_entry: main object missing page"));
1409
1410			VM_OBJECT_RLOCK(backing_object);
1411			pindex += OFF_TO_IDX(object->backing_object_offset);
1412			if (object != dst_object)
1413				VM_OBJECT_RUNLOCK(object);
1414			object = backing_object;
1415		}
1416		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1417
1418		if (object != dst_object) {
1419			/*
1420			 * Allocate a page in the destination object.
1421			 */
1422			dst_m = vm_page_alloc(dst_object, (src_object ==
1423			    dst_object ? src_pindex : 0) + dst_pindex,
1424			    VM_ALLOC_NORMAL);
1425			if (dst_m == NULL) {
1426				VM_OBJECT_WUNLOCK(dst_object);
1427				VM_OBJECT_RUNLOCK(object);
1428				VM_WAIT;
1429				VM_OBJECT_WLOCK(dst_object);
1430				goto again;
1431			}
1432			pmap_copy_page(src_m, dst_m);
1433			VM_OBJECT_RUNLOCK(object);
1434			dst_m->valid = VM_PAGE_BITS_ALL;
1435			dst_m->dirty = VM_PAGE_BITS_ALL;
1436		} else {
1437			dst_m = src_m;
1438			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1439				goto again;
1440			vm_page_xbusy(dst_m);
1441			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1442			    ("invalid dst page %p", dst_m));
1443		}
1444		VM_OBJECT_WUNLOCK(dst_object);
1445
1446		/*
1447		 * Enter it in the pmap. If a wired, copy-on-write
1448		 * mapping is being replaced by a write-enabled
1449		 * mapping, then wire that new mapping.
1450		 */
1451		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1452		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1453
1454		/*
1455		 * Mark it no longer busy, and put it on the active list.
1456		 */
1457		VM_OBJECT_WLOCK(dst_object);
1458
1459		if (upgrade) {
1460			if (src_m != dst_m) {
1461				vm_page_lock(src_m);
1462				vm_page_unwire(src_m, PQ_INACTIVE);
1463				vm_page_unlock(src_m);
1464				vm_page_lock(dst_m);
1465				vm_page_wire(dst_m);
1466				vm_page_unlock(dst_m);
1467			} else {
1468				KASSERT(dst_m->wire_count > 0,
1469				    ("dst_m %p is not wired", dst_m));
1470			}
1471		} else {
1472			vm_page_lock(dst_m);
1473			vm_page_activate(dst_m);
1474			vm_page_unlock(dst_m);
1475		}
1476		vm_page_xunbusy(dst_m);
1477	}
1478	VM_OBJECT_WUNLOCK(dst_object);
1479	if (upgrade) {
1480		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1481		vm_object_deallocate(src_object);
1482	}
1483}
1484
1485/*
1486 * Block entry into the machine-independent layer's page fault handler by
1487 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1488 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1489 * spurious page faults.
1490 */
1491int
1492vm_fault_disable_pagefaults(void)
1493{
1494
1495	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1496}
1497
1498void
1499vm_fault_enable_pagefaults(int save)
1500{
1501
1502	curthread_pflags_restore(save);
1503}
1504