1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1991 Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department and William Jolitz of UUNET Technologies Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Derived from hp300 version by Mike Hibler, this version by William
35 * Jolitz uses a recursive map [a pde points to the page directory] to
36 * map the page tables using the pagetables themselves. This is done to
37 * reduce the impact on kernel virtual memory for lots of sparse address
38 * space, and to reduce the cost of memory to each process.
39 *
40 *	from: hp300: @(#)pmap.h	7.2 (Berkeley) 12/16/90
41 *	from: @(#)pmap.h	7.4 (Berkeley) 5/12/91
42 * $FreeBSD$
43 */
44
45#ifndef _MACHINE_PMAP_H_
46#define	_MACHINE_PMAP_H_
47
48/*
49 * Page-directory and page-table entries follow this format, with a few
50 * of the fields not present here and there, depending on a lot of things.
51 */
52				/* ---- Intel Nomenclature ---- */
53#define	X86_PG_V	0x001	/* P	Valid			*/
54#define	X86_PG_RW	0x002	/* R/W	Read/Write		*/
55#define	X86_PG_U	0x004	/* U/S  User/Supervisor		*/
56#define	X86_PG_NC_PWT	0x008	/* PWT	Write through		*/
57#define	X86_PG_NC_PCD	0x010	/* PCD	Cache disable		*/
58#define	X86_PG_A	0x020	/* A	Accessed		*/
59#define	X86_PG_M	0x040	/* D	Dirty			*/
60#define	X86_PG_PS	0x080	/* PS	Page size (0=4k,1=2M)	*/
61#define	X86_PG_PTE_PAT	0x080	/* PAT	PAT index		*/
62#define	X86_PG_G	0x100	/* G	Global			*/
63#define	X86_PG_AVAIL1	0x200	/*    /	Available for system	*/
64#define	X86_PG_AVAIL2	0x400	/*   <	programmers use		*/
65#define	X86_PG_AVAIL3	0x800	/*    \				*/
66#define	X86_PG_PDE_PAT	0x1000	/* PAT	PAT index		*/
67#define	X86_PG_NX	(1ul<<63) /* No-execute */
68#define	X86_PG_AVAIL(x)	(1ul << (x))
69
70/* Page level cache control fields used to determine the PAT type */
71#define	X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
72#define	X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
73
74/*
75 * Intel extended page table (EPT) bit definitions.
76 */
77#define	EPT_PG_READ		0x001	/* R	Read		*/
78#define	EPT_PG_WRITE		0x002	/* W	Write		*/
79#define	EPT_PG_EXECUTE		0x004	/* X	Execute		*/
80#define	EPT_PG_IGNORE_PAT	0x040	/* IPAT	Ignore PAT	*/
81#define	EPT_PG_PS		0x080	/* PS	Page size	*/
82#define	EPT_PG_A		0x100	/* A	Accessed	*/
83#define	EPT_PG_M		0x200	/* D	Dirty		*/
84#define	EPT_PG_MEMORY_TYPE(x)	((x) << 3) /* MT Memory Type	*/
85
86/*
87 * Define the PG_xx macros in terms of the bits on x86 PTEs.
88 */
89#define	PG_V		X86_PG_V
90#define	PG_RW		X86_PG_RW
91#define	PG_U		X86_PG_U
92#define	PG_NC_PWT	X86_PG_NC_PWT
93#define	PG_NC_PCD	X86_PG_NC_PCD
94#define	PG_A		X86_PG_A
95#define	PG_M		X86_PG_M
96#define	PG_PS		X86_PG_PS
97#define	PG_PTE_PAT	X86_PG_PTE_PAT
98#define	PG_G		X86_PG_G
99#define	PG_AVAIL1	X86_PG_AVAIL1
100#define	PG_AVAIL2	X86_PG_AVAIL2
101#define	PG_AVAIL3	X86_PG_AVAIL3
102#define	PG_PDE_PAT	X86_PG_PDE_PAT
103#define	PG_NX		X86_PG_NX
104#define	PG_PDE_CACHE	X86_PG_PDE_CACHE
105#define	PG_PTE_CACHE	X86_PG_PTE_CACHE
106
107/* Our various interpretations of the above */
108#define	PG_W		X86_PG_AVAIL3	/* "Wired" pseudoflag */
109#define	PG_MANAGED	X86_PG_AVAIL2
110#define	EPT_PG_EMUL_V	X86_PG_AVAIL(52)
111#define	EPT_PG_EMUL_RW	X86_PG_AVAIL(53)
112#define	PG_FRAME	(0x000ffffffffff000ul)
113#define	PG_PS_FRAME	(0x000fffffffe00000ul)
114
115/*
116 * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
117 * (PTE) page mappings have identical settings for the following fields:
118 */
119#define	PG_PTE_PROMOTE	(PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
120	    PG_M | PG_A | PG_U | PG_RW | PG_V)
121
122/*
123 * Page Protection Exception bits
124 */
125
126#define PGEX_P		0x01	/* Protection violation vs. not present */
127#define PGEX_W		0x02	/* during a Write cycle */
128#define PGEX_U		0x04	/* access from User mode (UPL) */
129#define PGEX_RSV	0x08	/* reserved PTE field is non-zero */
130#define PGEX_I		0x10	/* during an instruction fetch */
131
132/*
133 * undef the PG_xx macros that define bits in the regular x86 PTEs that
134 * have a different position in nested PTEs. This is done when compiling
135 * code that needs to be aware of the differences between regular x86 and
136 * nested PTEs.
137 *
138 * The appropriate bitmask will be calculated at runtime based on the pmap
139 * type.
140 */
141#ifdef AMD64_NPT_AWARE
142#undef PG_AVAIL1		/* X86_PG_AVAIL1 aliases with EPT_PG_M */
143#undef PG_G
144#undef PG_A
145#undef PG_M
146#undef PG_PDE_PAT
147#undef PG_PDE_CACHE
148#undef PG_PTE_PAT
149#undef PG_PTE_CACHE
150#undef PG_RW
151#undef PG_V
152#endif
153
154/*
155 * Pte related macros.  This is complicated by having to deal with
156 * the sign extension of the 48th bit.
157 */
158#define KVADDR(l4, l3, l2, l1) ( \
159	((unsigned long)-1 << 47) | \
160	((unsigned long)(l4) << PML4SHIFT) | \
161	((unsigned long)(l3) << PDPSHIFT) | \
162	((unsigned long)(l2) << PDRSHIFT) | \
163	((unsigned long)(l1) << PAGE_SHIFT))
164
165#define UVADDR(l4, l3, l2, l1) ( \
166	((unsigned long)(l4) << PML4SHIFT) | \
167	((unsigned long)(l3) << PDPSHIFT) | \
168	((unsigned long)(l2) << PDRSHIFT) | \
169	((unsigned long)(l1) << PAGE_SHIFT))
170
171/*
172 * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
173 * but setting it larger than NDMPML4E makes no sense.
174 *
175 * Each slot provides .5 TB of kernel virtual space.
176 */
177#define NKPML4E		4
178
179#define	NUPML4E		(NPML4EPG/2)	/* number of userland PML4 pages */
180#define	NUPDPE		(NUPML4E*NPDPEPG)/* number of userland PDP pages */
181#define	NUPDE		(NUPDPE*NPDEPG)	/* number of userland PD entries */
182
183/*
184 * NDMPML4E is the maximum number of PML4 entries that will be
185 * used to implement the direct map.  It must be a power of two,
186 * and should generally exceed NKPML4E.  The maximum possible
187 * value is 64; using 128 will make the direct map intrude into
188 * the recursive page table map.
189 */
190#define	NDMPML4E	8
191
192/*
193 * These values control the layout of virtual memory.  The starting address
194 * of the direct map, which is controlled by DMPML4I, must be a multiple of
195 * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
196 *
197 * Note: KPML4I is the index of the (single) level 4 page that maps
198 * the KVA that holds KERNBASE, while KPML4BASE is the index of the
199 * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
200 * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
201 * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
202 * KERNBASE.
203 *
204 * (KPML4I combines with KPDPI to choose where KERNBASE starts.
205 * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
206 * and KPDPI provides bits 30..38.)
207 */
208#define	PML4PML4I	(NPML4EPG/2)	/* Index of recursive pml4 mapping */
209
210#define	KPML4BASE	(NPML4EPG-NKPML4E) /* KVM at highest addresses */
211#define	DMPML4I		rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
212
213#define	KPML4I		(NPML4EPG-1)
214#define	KPDPI		(NPDPEPG-2)	/* kernbase at -2GB */
215
216/*
217 * XXX doesn't really belong here I guess...
218 */
219#define ISA_HOLE_START    0xa0000
220#define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
221
222#define	PMAP_PCID_NONE		0xffffffff
223#define	PMAP_PCID_KERN		0
224#define	PMAP_PCID_OVERMAX	0x1000
225
226#ifndef LOCORE
227
228#include <sys/queue.h>
229#include <sys/_cpuset.h>
230#include <sys/_lock.h>
231#include <sys/_mutex.h>
232
233#include <vm/_vm_radix.h>
234
235typedef u_int64_t pd_entry_t;
236typedef u_int64_t pt_entry_t;
237typedef u_int64_t pdp_entry_t;
238typedef u_int64_t pml4_entry_t;
239
240/*
241 * Address of current address space page table maps and directories.
242 */
243#ifdef _KERNEL
244#define	addr_PTmap	(KVADDR(PML4PML4I, 0, 0, 0))
245#define	addr_PDmap	(KVADDR(PML4PML4I, PML4PML4I, 0, 0))
246#define	addr_PDPmap	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
247#define	addr_PML4map	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
248#define	addr_PML4pml4e	(addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
249#define	PTmap		((pt_entry_t *)(addr_PTmap))
250#define	PDmap		((pd_entry_t *)(addr_PDmap))
251#define	PDPmap		((pd_entry_t *)(addr_PDPmap))
252#define	PML4map		((pd_entry_t *)(addr_PML4map))
253#define	PML4pml4e	((pd_entry_t *)(addr_PML4pml4e))
254
255extern int nkpt;		/* Initial number of kernel page tables */
256extern u_int64_t KPDPphys;	/* physical address of kernel level 3 */
257extern u_int64_t KPML4phys;	/* physical address of kernel level 4 */
258
259/*
260 * virtual address to page table entry and
261 * to physical address.
262 * Note: these work recursively, thus vtopte of a pte will give
263 * the corresponding pde that in turn maps it.
264 */
265pt_entry_t *vtopte(vm_offset_t);
266#define	vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
267
268#define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
269#define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
270#define	pte_store(ptep, pte) do { \
271	*(u_long *)(ptep) = (u_long)(pte); \
272} while (0)
273#define	pte_clear(ptep)			pte_store(ptep, 0)
274
275#define	pde_store(pdep, pde)		pte_store(pdep, pde)
276
277extern pt_entry_t pg_nx;
278
279#endif /* _KERNEL */
280
281/*
282 * Pmap stuff
283 */
284struct	pv_entry;
285struct	pv_chunk;
286
287/*
288 * Locks
289 * (p) PV list lock
290 */
291struct md_page {
292	TAILQ_HEAD(, pv_entry)	pv_list;  /* (p) */
293	int			pv_gen;   /* (p) */
294	int			pat_mode;
295};
296
297enum pmap_type {
298	PT_X86,			/* regular x86 page tables */
299	PT_EPT,			/* Intel's nested page tables */
300	PT_RVI,			/* AMD's nested page tables */
301};
302
303struct pmap_pcids {
304	uint32_t	pm_pcid;
305	uint32_t	pm_gen;
306};
307
308/*
309 * The kernel virtual address (KVA) of the level 4 page table page is always
310 * within the direct map (DMAP) region.
311 */
312struct pmap {
313	struct mtx		pm_mtx;
314	pml4_entry_t		*pm_pml4;	/* KVA of level 4 page table */
315	uint64_t		pm_cr3;
316	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
317	cpuset_t		pm_active;	/* active on cpus */
318	enum pmap_type		pm_type;	/* regular or nested tables */
319	struct pmap_statistics	pm_stats;	/* pmap statistics */
320	struct vm_radix		pm_root;	/* spare page table pages */
321	long			pm_eptgen;	/* EPT pmap generation id */
322	int			pm_flags;
323	struct pmap_pcids	pm_pcids[MAXCPU];
324};
325
326/* flags */
327#define	PMAP_NESTED_IPIMASK	0xff
328#define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
329#define	PMAP_EMULATE_AD_BITS	(1 << 9)	/* needs A/D bits emulation */
330#define	PMAP_SUPPORTS_EXEC_ONLY	(1 << 10)	/* execute only mappings ok */
331
332typedef struct pmap	*pmap_t;
333
334#ifdef _KERNEL
335extern struct pmap	kernel_pmap_store;
336#define kernel_pmap	(&kernel_pmap_store)
337
338#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
339#define	PMAP_LOCK_ASSERT(pmap, type) \
340				mtx_assert(&(pmap)->pm_mtx, (type))
341#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
342#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
343				    NULL, MTX_DEF | MTX_DUPOK)
344#define	PMAP_LOCKED(pmap)	mtx_owned(&(pmap)->pm_mtx)
345#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
346#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
347#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
348
349int	pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
350int	pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
351#endif
352
353/*
354 * For each vm_page_t, there is a list of all currently valid virtual
355 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
356 */
357typedef struct pv_entry {
358	vm_offset_t	pv_va;		/* virtual address for mapping */
359	TAILQ_ENTRY(pv_entry)	pv_next;
360} *pv_entry_t;
361
362/*
363 * pv_entries are allocated in chunks per-process.  This avoids the
364 * need to track per-pmap assignments.
365 */
366#define	_NPCM	3
367#define	_NPCPV	168
368struct pv_chunk {
369	pmap_t			pc_pmap;
370	TAILQ_ENTRY(pv_chunk)	pc_list;
371	uint64_t		pc_map[_NPCM];	/* bitmap; 1 = free */
372	TAILQ_ENTRY(pv_chunk)	pc_lru;
373	struct pv_entry		pc_pventry[_NPCPV];
374};
375
376#ifdef	_KERNEL
377
378extern caddr_t	CADDR1;
379extern pt_entry_t *CMAP1;
380extern vm_paddr_t phys_avail[];
381extern vm_paddr_t dump_avail[];
382extern vm_offset_t virtual_avail;
383extern vm_offset_t virtual_end;
384extern vm_paddr_t dmaplimit;
385
386#define	pmap_page_get_memattr(m)	((vm_memattr_t)(m)->md.pat_mode)
387#define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
388#define	pmap_unmapbios(va, sz)	pmap_unmapdev((va), (sz))
389
390struct thread;
391
392void	pmap_activate_sw(struct thread *);
393void	pmap_bootstrap(vm_paddr_t *);
394int	pmap_change_attr(vm_offset_t, vm_size_t, int);
395void	pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
396void	pmap_init_pat(void);
397void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
398void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
399vm_paddr_t pmap_kextract(vm_offset_t);
400void	pmap_kremove(vm_offset_t);
401void	*pmap_mapbios(vm_paddr_t, vm_size_t);
402void	*pmap_mapdev(vm_paddr_t, vm_size_t);
403void	*pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
404boolean_t pmap_page_is_mapped(vm_page_t m);
405void	pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
406void	pmap_unmapdev(vm_offset_t, vm_size_t);
407void	pmap_invalidate_page(pmap_t, vm_offset_t);
408void	pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
409void	pmap_invalidate_all(pmap_t);
410void	pmap_invalidate_cache(void);
411void	pmap_invalidate_cache_pages(vm_page_t *pages, int count);
412void	pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva,
413	    boolean_t force);
414void	pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
415boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
416void	pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
417#endif /* _KERNEL */
418
419#endif /* !LOCORE */
420
421#endif /* !_MACHINE_PMAP_H_ */
422