1/*
2   Unix SMB/CIFS implementation.
3   simple ASN1 routines
4   Copyright (C) Andrew Tridgell 2001
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program.  If not, see <http://www.gnu.org/licenses/>.
18*/
19
20#include "includes.h"
21#include "../lib/util/asn1.h"
22
23/* allocate an asn1 structure */
24struct asn1_data *asn1_init(TALLOC_CTX *mem_ctx)
25{
26	struct asn1_data *ret = talloc_zero(mem_ctx, struct asn1_data);
27	if (ret == NULL) {
28		DEBUG(0,("asn1_init failed! out of memory\n"));
29	}
30	return ret;
31}
32
33/* free an asn1 structure */
34void asn1_free(struct asn1_data *data)
35{
36	talloc_free(data);
37}
38
39/* write to the ASN1 buffer, advancing the buffer pointer */
40bool asn1_write(struct asn1_data *data, const void *p, int len)
41{
42	if (data->has_error) return false;
43	if (data->length < data->ofs+len) {
44		uint8_t *newp;
45		newp = talloc_realloc(data, data->data, uint8_t, data->ofs+len);
46		if (!newp) {
47			asn1_free(data);
48			data->has_error = true;
49			return false;
50		}
51		data->data = newp;
52		data->length = data->ofs+len;
53	}
54	memcpy(data->data + data->ofs, p, len);
55	data->ofs += len;
56	return true;
57}
58
59/* useful fn for writing a uint8_t */
60bool asn1_write_uint8(struct asn1_data *data, uint8_t v)
61{
62	return asn1_write(data, &v, 1);
63}
64
65/* push a tag onto the asn1 data buffer. Used for nested structures */
66bool asn1_push_tag(struct asn1_data *data, uint8_t tag)
67{
68	struct nesting *nesting;
69
70	asn1_write_uint8(data, tag);
71	nesting = talloc(data, struct nesting);
72	if (!nesting) {
73		data->has_error = true;
74		return false;
75	}
76
77	nesting->start = data->ofs;
78	nesting->next = data->nesting;
79	data->nesting = nesting;
80	return asn1_write_uint8(data, 0xff);
81}
82
83/* pop a tag */
84bool asn1_pop_tag(struct asn1_data *data)
85{
86	struct nesting *nesting;
87	size_t len;
88
89	nesting = data->nesting;
90
91	if (!nesting) {
92		data->has_error = true;
93		return false;
94	}
95	len = data->ofs - (nesting->start+1);
96	/* yes, this is ugly. We don't know in advance how many bytes the length
97	   of a tag will take, so we assumed 1 byte. If we were wrong then we
98	   need to correct our mistake */
99	if (len > 0xFFFFFF) {
100		data->data[nesting->start] = 0x84;
101		if (!asn1_write_uint8(data, 0)) return false;
102		if (!asn1_write_uint8(data, 0)) return false;
103		if (!asn1_write_uint8(data, 0)) return false;
104		if (!asn1_write_uint8(data, 0)) return false;
105		memmove(data->data+nesting->start+5, data->data+nesting->start+1, len);
106		data->data[nesting->start+1] = (len>>24) & 0xFF;
107		data->data[nesting->start+2] = (len>>16) & 0xFF;
108		data->data[nesting->start+3] = (len>>8) & 0xFF;
109		data->data[nesting->start+4] = len&0xff;
110	} else if (len > 0xFFFF) {
111		data->data[nesting->start] = 0x83;
112		if (!asn1_write_uint8(data, 0)) return false;
113		if (!asn1_write_uint8(data, 0)) return false;
114		if (!asn1_write_uint8(data, 0)) return false;
115		memmove(data->data+nesting->start+4, data->data+nesting->start+1, len);
116		data->data[nesting->start+1] = (len>>16) & 0xFF;
117		data->data[nesting->start+2] = (len>>8) & 0xFF;
118		data->data[nesting->start+3] = len&0xff;
119	} else if (len > 255) {
120		data->data[nesting->start] = 0x82;
121		if (!asn1_write_uint8(data, 0)) return false;
122		if (!asn1_write_uint8(data, 0)) return false;
123		memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
124		data->data[nesting->start+1] = len>>8;
125		data->data[nesting->start+2] = len&0xff;
126	} else if (len > 127) {
127		data->data[nesting->start] = 0x81;
128		if (!asn1_write_uint8(data, 0)) return false;
129		memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
130		data->data[nesting->start+1] = len;
131	} else {
132		data->data[nesting->start] = len;
133	}
134
135	data->nesting = nesting->next;
136	talloc_free(nesting);
137	return true;
138}
139
140/* "i" is the one's complement representation, as is the normal result of an
141 * implicit signed->unsigned conversion */
142
143static bool push_int_bigendian(struct asn1_data *data, unsigned int i, bool negative)
144{
145	uint8_t lowest = i & 0xFF;
146
147	i = i >> 8;
148	if (i != 0)
149		if (!push_int_bigendian(data, i, negative))
150			return false;
151
152	if (data->nesting->start+1 == data->ofs) {
153
154		/* We did not write anything yet, looking at the highest
155		 * valued byte */
156
157		if (negative) {
158			/* Don't write leading 0xff's */
159			if (lowest == 0xFF)
160				return true;
161
162			if ((lowest & 0x80) == 0) {
163				/* The only exception for a leading 0xff is if
164				 * the highest bit is 0, which would indicate
165				 * a positive value */
166				if (!asn1_write_uint8(data, 0xff))
167					return false;
168			}
169		} else {
170			if (lowest & 0x80) {
171				/* The highest bit of a positive integer is 1,
172				 * this would indicate a negative number. Push
173				 * a 0 to indicate a positive one */
174				if (!asn1_write_uint8(data, 0))
175					return false;
176			}
177		}
178	}
179
180	return asn1_write_uint8(data, lowest);
181}
182
183/* write an Integer without the tag framing. Needed for example for the LDAP
184 * Abandon Operation */
185
186bool asn1_write_implicit_Integer(struct asn1_data *data, int i)
187{
188	if (i == -1) {
189		/* -1 is special as it consists of all-0xff bytes. In
190                    push_int_bigendian this is the only case that is not
191                    properly handled, as all 0xff bytes would be handled as
192                    leading ones to be ignored. */
193		return asn1_write_uint8(data, 0xff);
194	} else {
195		return push_int_bigendian(data, i, i<0);
196	}
197}
198
199
200/* write an integer */
201bool asn1_write_Integer(struct asn1_data *data, int i)
202{
203	if (!asn1_push_tag(data, ASN1_INTEGER)) return false;
204	if (!asn1_write_implicit_Integer(data, i)) return false;
205	return asn1_pop_tag(data);
206}
207
208/* write a BIT STRING */
209bool asn1_write_BitString(struct asn1_data *data, const void *p, size_t length, uint8_t padding)
210{
211	if (!asn1_push_tag(data, ASN1_BIT_STRING)) return false;
212	if (!asn1_write_uint8(data, padding)) return false;
213	if (!asn1_write(data, p, length)) return false;
214	return asn1_pop_tag(data);
215}
216
217bool ber_write_OID_String(DATA_BLOB *blob, const char *OID)
218{
219	uint_t v, v2;
220	const char *p = (const char *)OID;
221	char *newp;
222	int i;
223
224	v = strtoul(p, &newp, 10);
225	if (newp[0] != '.') return false;
226	p = newp + 1;
227
228	v2 = strtoul(p, &newp, 10);
229	if (newp[0] != '.') return false;
230	p = newp + 1;
231
232	/*the ber representation can't use more space then the string one */
233	*blob = data_blob(NULL, strlen(OID));
234	if (!blob->data) return false;
235
236	blob->data[0] = 40*v + v2;
237
238	i = 1;
239	while (*p) {
240		v = strtoul(p, &newp, 10);
241		if (newp[0] == '.') {
242			p = newp + 1;
243		} else if (newp[0] == '\0') {
244			p = newp;
245		} else {
246			data_blob_free(blob);
247			return false;
248		}
249		if (v >= (1<<28)) blob->data[i++] = (0x80 | ((v>>28)&0x7f));
250		if (v >= (1<<21)) blob->data[i++] = (0x80 | ((v>>21)&0x7f));
251		if (v >= (1<<14)) blob->data[i++] = (0x80 | ((v>>14)&0x7f));
252		if (v >= (1<<7)) blob->data[i++] = (0x80 | ((v>>7)&0x7f));
253		blob->data[i++] = (v&0x7f);
254	}
255
256	blob->length = i;
257
258	return true;
259}
260
261/* write an object ID to a ASN1 buffer */
262bool asn1_write_OID(struct asn1_data *data, const char *OID)
263{
264	DATA_BLOB blob;
265
266	if (!asn1_push_tag(data, ASN1_OID)) return false;
267
268	if (!ber_write_OID_String(&blob, OID)) {
269		data->has_error = true;
270		return false;
271	}
272
273	if (!asn1_write(data, blob.data, blob.length)) {
274		data_blob_free(&blob);
275		data->has_error = true;
276		return false;
277	}
278	data_blob_free(&blob);
279	return asn1_pop_tag(data);
280}
281
282/* write an octet string */
283bool asn1_write_OctetString(struct asn1_data *data, const void *p, size_t length)
284{
285	asn1_push_tag(data, ASN1_OCTET_STRING);
286	asn1_write(data, p, length);
287	asn1_pop_tag(data);
288	return !data->has_error;
289}
290
291/* write a LDAP string */
292bool asn1_write_LDAPString(struct asn1_data *data, const char *s)
293{
294	asn1_write(data, s, strlen(s));
295	return !data->has_error;
296}
297
298/* write a LDAP string from a DATA_BLOB */
299bool asn1_write_DATA_BLOB_LDAPString(struct asn1_data *data, const DATA_BLOB *s)
300{
301	asn1_write(data, s->data, s->length);
302	return !data->has_error;
303}
304
305/* write a general string */
306bool asn1_write_GeneralString(struct asn1_data *data, const char *s)
307{
308	asn1_push_tag(data, ASN1_GENERAL_STRING);
309	asn1_write_LDAPString(data, s);
310	asn1_pop_tag(data);
311	return !data->has_error;
312}
313
314bool asn1_write_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
315{
316	asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num));
317	asn1_write(data, blob->data, blob->length);
318	asn1_pop_tag(data);
319	return !data->has_error;
320}
321
322/* write a BOOLEAN */
323bool asn1_write_BOOLEAN(struct asn1_data *data, bool v)
324{
325	asn1_push_tag(data, ASN1_BOOLEAN);
326	asn1_write_uint8(data, v ? 0xFF : 0);
327	asn1_pop_tag(data);
328	return !data->has_error;
329}
330
331bool asn1_read_BOOLEAN(struct asn1_data *data, bool *v)
332{
333	uint8_t tmp = 0;
334	asn1_start_tag(data, ASN1_BOOLEAN);
335	asn1_read_uint8(data, &tmp);
336	if (tmp == 0xFF) {
337		*v = true;
338	} else {
339		*v = false;
340	}
341	asn1_end_tag(data);
342	return !data->has_error;
343}
344
345/* write a BOOLEAN in a simple context */
346bool asn1_write_BOOLEAN_context(struct asn1_data *data, bool v, int context)
347{
348	asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(context));
349	asn1_write_uint8(data, v ? 0xFF : 0);
350	asn1_pop_tag(data);
351	return !data->has_error;
352}
353
354bool asn1_read_BOOLEAN_context(struct asn1_data *data, bool *v, int context)
355{
356	uint8_t tmp = 0;
357	asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(context));
358	asn1_read_uint8(data, &tmp);
359	if (tmp == 0xFF) {
360		*v = true;
361	} else {
362		*v = false;
363	}
364	asn1_end_tag(data);
365	return !data->has_error;
366}
367
368/* check a BOOLEAN */
369bool asn1_check_BOOLEAN(struct asn1_data *data, bool v)
370{
371	uint8_t b = 0;
372
373	asn1_read_uint8(data, &b);
374	if (b != ASN1_BOOLEAN) {
375		data->has_error = true;
376		return false;
377	}
378	asn1_read_uint8(data, &b);
379	if (b != v) {
380		data->has_error = true;
381		return false;
382	}
383	return !data->has_error;
384}
385
386
387/* load a struct asn1_data structure with a lump of data, ready to be parsed */
388bool asn1_load(struct asn1_data *data, DATA_BLOB blob)
389{
390	ZERO_STRUCTP(data);
391	data->data = (uint8_t *)talloc_memdup(data, blob.data, blob.length);
392	if (!data->data) {
393		data->has_error = true;
394		return false;
395	}
396	data->length = blob.length;
397	return true;
398}
399
400/* Peek into an ASN1 buffer, not advancing the pointer */
401bool asn1_peek(struct asn1_data *data, void *p, int len)
402{
403	if (data->has_error)
404		return false;
405
406	if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len)
407		return false;
408
409	if (data->ofs + len > data->length) {
410		/* we need to mark the buffer as consumed, so the caller knows
411		   this was an out of data error, and not a decode error */
412		data->ofs = data->length;
413		return false;
414	}
415
416	memcpy(p, data->data + data->ofs, len);
417	return true;
418}
419
420/* read from a ASN1 buffer, advancing the buffer pointer */
421bool asn1_read(struct asn1_data *data, void *p, int len)
422{
423	if (!asn1_peek(data, p, len)) {
424		data->has_error = true;
425		return false;
426	}
427
428	data->ofs += len;
429	return true;
430}
431
432/* read a uint8_t from a ASN1 buffer */
433bool asn1_read_uint8(struct asn1_data *data, uint8_t *v)
434{
435	return asn1_read(data, v, 1);
436}
437
438bool asn1_peek_uint8(struct asn1_data *data, uint8_t *v)
439{
440	return asn1_peek(data, v, 1);
441}
442
443bool asn1_peek_tag(struct asn1_data *data, uint8_t tag)
444{
445	uint8_t b;
446
447	if (asn1_tag_remaining(data) <= 0) {
448		return false;
449	}
450
451	if (!asn1_peek_uint8(data, &b))
452		return false;
453
454	return (b == tag);
455}
456
457/* start reading a nested asn1 structure */
458bool asn1_start_tag(struct asn1_data *data, uint8_t tag)
459{
460	uint8_t b;
461	struct nesting *nesting;
462
463	if (!asn1_read_uint8(data, &b))
464		return false;
465
466	if (b != tag) {
467		data->has_error = true;
468		return false;
469	}
470	nesting = talloc(data, struct nesting);
471	if (!nesting) {
472		data->has_error = true;
473		return false;
474	}
475
476	if (!asn1_read_uint8(data, &b)) {
477		return false;
478	}
479
480	if (b & 0x80) {
481		int n = b & 0x7f;
482		if (!asn1_read_uint8(data, &b))
483			return false;
484		nesting->taglen = b;
485		while (n > 1) {
486			if (!asn1_read_uint8(data, &b))
487				return false;
488			nesting->taglen = (nesting->taglen << 8) | b;
489			n--;
490		}
491	} else {
492		nesting->taglen = b;
493	}
494	nesting->start = data->ofs;
495	nesting->next = data->nesting;
496	data->nesting = nesting;
497	if (asn1_tag_remaining(data) == -1) {
498		return false;
499	}
500	return !data->has_error;
501}
502
503/* stop reading a tag */
504bool asn1_end_tag(struct asn1_data *data)
505{
506	struct nesting *nesting;
507
508	/* make sure we read it all */
509	if (asn1_tag_remaining(data) != 0) {
510		data->has_error = true;
511		return false;
512	}
513
514	nesting = data->nesting;
515
516	if (!nesting) {
517		data->has_error = true;
518		return false;
519	}
520
521	data->nesting = nesting->next;
522	talloc_free(nesting);
523	return true;
524}
525
526/* work out how many bytes are left in this nested tag */
527int asn1_tag_remaining(struct asn1_data *data)
528{
529	int remaining;
530	if (data->has_error) {
531		return -1;
532	}
533
534	if (!data->nesting) {
535		data->has_error = true;
536		return -1;
537	}
538	remaining = data->nesting->taglen - (data->ofs - data->nesting->start);
539	if (remaining > (data->length - data->ofs)) {
540		data->has_error = true;
541		return -1;
542	}
543	return remaining;
544}
545
546/* read an object ID from a data blob */
547bool ber_read_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob, const char **OID)
548{
549	int i;
550	uint8_t *b;
551	uint_t v;
552	char *tmp_oid = NULL;
553
554	if (blob.length < 2) return false;
555
556	b = blob.data;
557
558	tmp_oid = talloc_asprintf(mem_ctx, "%u",  b[0]/40);
559	if (!tmp_oid) goto nomem;
560	tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u",  b[0]%40);
561	if (!tmp_oid) goto nomem;
562
563	for(i = 1, v = 0; i < blob.length; i++) {
564		v = (v<<7) | (b[i]&0x7f);
565		if ( ! (b[i] & 0x80)) {
566			tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u",  v);
567			v = 0;
568		}
569		if (!tmp_oid) goto nomem;
570	}
571
572	if (v != 0) {
573		talloc_free(tmp_oid);
574		return false;
575	}
576
577	*OID = tmp_oid;
578	return true;
579
580nomem:
581	return false;
582}
583
584/* read an object ID from a ASN1 buffer */
585bool asn1_read_OID(struct asn1_data *data, TALLOC_CTX *mem_ctx, const char **OID)
586{
587	DATA_BLOB blob;
588	int len;
589
590	if (!asn1_start_tag(data, ASN1_OID)) return false;
591
592	len = asn1_tag_remaining(data);
593	if (len < 0) {
594		data->has_error = true;
595		return false;
596	}
597
598	blob = data_blob(NULL, len);
599	if (!blob.data) {
600		data->has_error = true;
601		return false;
602	}
603
604	asn1_read(data, blob.data, len);
605	asn1_end_tag(data);
606	if (data->has_error) {
607		data_blob_free(&blob);
608		return false;
609	}
610
611	if (!ber_read_OID_String(mem_ctx, blob, OID)) {
612		data->has_error = true;
613		data_blob_free(&blob);
614		return false;
615	}
616
617	data_blob_free(&blob);
618	return true;
619}
620
621/* check that the next object ID is correct */
622bool asn1_check_OID(struct asn1_data *data, const char *OID)
623{
624	const char *id;
625
626	if (!asn1_read_OID(data, data, &id)) return false;
627
628	if (strcmp(id, OID) != 0) {
629		talloc_free(discard_const(id));
630		data->has_error = true;
631		return false;
632	}
633	talloc_free(discard_const(id));
634	return true;
635}
636
637/* read a LDAPString from a ASN1 buffer */
638bool asn1_read_LDAPString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
639{
640	int len;
641	len = asn1_tag_remaining(data);
642	if (len < 0) {
643		data->has_error = true;
644		return false;
645	}
646	*s = talloc_array(mem_ctx, char, len+1);
647	if (! *s) {
648		data->has_error = true;
649		return false;
650	}
651	asn1_read(data, *s, len);
652	(*s)[len] = 0;
653	return !data->has_error;
654}
655
656
657/* read a GeneralString from a ASN1 buffer */
658bool asn1_read_GeneralString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
659{
660	if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return false;
661	if (!asn1_read_LDAPString(data, mem_ctx, s)) return false;
662	return asn1_end_tag(data);
663}
664
665
666/* read a octet string blob */
667bool asn1_read_OctetString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
668{
669	int len;
670	ZERO_STRUCTP(blob);
671	if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return false;
672	len = asn1_tag_remaining(data);
673	if (len < 0) {
674		data->has_error = true;
675		return false;
676	}
677	*blob = data_blob_talloc(mem_ctx, NULL, len+1);
678	if (!blob->data) {
679		data->has_error = true;
680		return false;
681	}
682	asn1_read(data, blob->data, len);
683	asn1_end_tag(data);
684	blob->length--;
685	blob->data[len] = 0;
686
687	if (data->has_error) {
688		data_blob_free(blob);
689		*blob = data_blob_null;
690		return false;
691	}
692	return true;
693}
694
695bool asn1_read_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
696{
697	int len;
698	ZERO_STRUCTP(blob);
699	if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
700	len = asn1_tag_remaining(data);
701	if (len < 0) {
702		data->has_error = true;
703		return false;
704	}
705	*blob = data_blob(NULL, len);
706	if ((len != 0) && (!blob->data)) {
707		data->has_error = true;
708		return false;
709	}
710	asn1_read(data, blob->data, len);
711	asn1_end_tag(data);
712	return !data->has_error;
713}
714
715/* read an integer without tag*/
716bool asn1_read_implicit_Integer(struct asn1_data *data, int *i)
717{
718	uint8_t b;
719	*i = 0;
720
721	while (!data->has_error && asn1_tag_remaining(data)>0) {
722		if (!asn1_read_uint8(data, &b)) return false;
723		*i = (*i << 8) + b;
724	}
725	return !data->has_error;
726
727}
728
729/* read an integer */
730bool asn1_read_Integer(struct asn1_data *data, int *i)
731{
732	*i = 0;
733
734	if (!asn1_start_tag(data, ASN1_INTEGER)) return false;
735	if (!asn1_read_implicit_Integer(data, i)) return false;
736	return asn1_end_tag(data);
737}
738
739/* read a BIT STRING */
740bool asn1_read_BitString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob, uint8_t *padding)
741{
742	int len;
743	ZERO_STRUCTP(blob);
744	if (!asn1_start_tag(data, ASN1_BIT_STRING)) return false;
745	len = asn1_tag_remaining(data);
746	if (len < 0) {
747		data->has_error = true;
748		return false;
749	}
750	if (!asn1_read_uint8(data, padding)) return false;
751
752	*blob = data_blob_talloc(mem_ctx, NULL, len);
753	if (!blob->data) {
754		data->has_error = true;
755		return false;
756	}
757	if (asn1_read(data, blob->data, len - 1)) {
758		blob->length--;
759		blob->data[len] = 0;
760		asn1_end_tag(data);
761	}
762
763	if (data->has_error) {
764		data_blob_free(blob);
765		*blob = data_blob_null;
766		*padding = 0;
767		return false;
768	}
769	return true;
770}
771
772/* read an integer */
773bool asn1_read_enumerated(struct asn1_data *data, int *v)
774{
775	*v = 0;
776
777	if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
778	while (!data->has_error && asn1_tag_remaining(data)>0) {
779		uint8_t b;
780		asn1_read_uint8(data, &b);
781		*v = (*v << 8) + b;
782	}
783	return asn1_end_tag(data);
784}
785
786/* check a enumerated value is correct */
787bool asn1_check_enumerated(struct asn1_data *data, int v)
788{
789	uint8_t b;
790	if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
791	asn1_read_uint8(data, &b);
792	asn1_end_tag(data);
793
794	if (v != b)
795		data->has_error = false;
796
797	return !data->has_error;
798}
799
800/* write an enumerated value to the stream */
801bool asn1_write_enumerated(struct asn1_data *data, uint8_t v)
802{
803	if (!asn1_push_tag(data, ASN1_ENUMERATED)) return false;
804	asn1_write_uint8(data, v);
805	asn1_pop_tag(data);
806	return !data->has_error;
807}
808
809/*
810  Get us the data just written without copying
811*/
812bool asn1_blob(const struct asn1_data *asn1, DATA_BLOB *blob)
813{
814	if (asn1->has_error) {
815		return false;
816	}
817	if (asn1->nesting != NULL) {
818		return false;
819	}
820	blob->data = asn1->data;
821	blob->length = asn1->length;
822	return true;
823}
824
825/*
826  Fill in an asn1 struct without making a copy
827*/
828void asn1_load_nocopy(struct asn1_data *data, uint8_t *buf, size_t len)
829{
830	ZERO_STRUCTP(data);
831	data->data = buf;
832	data->length = len;
833}
834
835/*
836  check if a ASN.1 blob is a full tag
837*/
838NTSTATUS asn1_full_tag(DATA_BLOB blob, uint8_t tag, size_t *packet_size)
839{
840	struct asn1_data *asn1 = asn1_init(NULL);
841	int size;
842
843	NT_STATUS_HAVE_NO_MEMORY(asn1);
844
845	asn1->data = blob.data;
846	asn1->length = blob.length;
847	asn1_start_tag(asn1, tag);
848	if (asn1->has_error) {
849		talloc_free(asn1);
850		return STATUS_MORE_ENTRIES;
851	}
852	size = asn1_tag_remaining(asn1) + asn1->ofs;
853
854	talloc_free(asn1);
855
856	if (size > blob.length) {
857		return STATUS_MORE_ENTRIES;
858	}
859
860	*packet_size = size;
861	return NT_STATUS_OK;
862}
863