1/*
2 * WMA compatible codec
3 * Copyright (c) 2002-2007 The FFmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "avcodec.h"
23#include "wma.h"
24#include "wmadata.h"
25
26#undef NDEBUG
27#include <assert.h>
28
29/* XXX: use same run/length optimization as mpeg decoders */
30//FIXME maybe split decode / encode or pass flag
31static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
32                          float **plevel_table, uint16_t **pint_table,
33                          const CoefVLCTable *vlc_table)
34{
35    int n = vlc_table->n;
36    const uint8_t  *table_bits   = vlc_table->huffbits;
37    const uint32_t *table_codes  = vlc_table->huffcodes;
38    const uint16_t *levels_table = vlc_table->levels;
39    uint16_t *run_table, *level_table, *int_table;
40    float *flevel_table;
41    int i, l, j, k, level;
42
43    init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
44
45    run_table   = av_malloc(n * sizeof(uint16_t));
46    level_table = av_malloc(n * sizeof(uint16_t));
47    flevel_table= av_malloc(n * sizeof(*flevel_table));
48    int_table   = av_malloc(n * sizeof(uint16_t));
49    i = 2;
50    level = 1;
51    k = 0;
52    while (i < n) {
53        int_table[k] = i;
54        l = levels_table[k++];
55        for (j = 0; j < l; j++) {
56            run_table[i]   = j;
57            level_table[i] = level;
58            flevel_table[i]= level;
59            i++;
60        }
61        level++;
62    }
63    *prun_table   = run_table;
64    *plevel_table = flevel_table;
65    *pint_table   = int_table;
66    av_free(level_table);
67}
68
69/**
70 *@brief Get the samples per frame for this stream.
71 *@param sample_rate output sample_rate
72 *@param version wma version
73 *@param decode_flags codec compression features
74 *@return log2 of the number of output samples per frame
75 */
76int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
77                                      unsigned int decode_flags)
78{
79
80    int frame_len_bits;
81
82    if (sample_rate <= 16000) {
83        frame_len_bits = 9;
84    } else if (sample_rate <= 22050 ||
85             (sample_rate <= 32000 && version == 1)) {
86        frame_len_bits = 10;
87    } else if (sample_rate <= 48000) {
88        frame_len_bits = 11;
89    } else if (sample_rate <= 96000) {
90        frame_len_bits = 12;
91    } else {
92        frame_len_bits = 13;
93    }
94
95    if (version == 3) {
96        int tmp = decode_flags & 0x6;
97        if (tmp == 0x2) {
98            ++frame_len_bits;
99        } else if (tmp == 0x4) {
100            --frame_len_bits;
101        } else if (tmp == 0x6) {
102            frame_len_bits -= 2;
103        }
104    }
105
106    return frame_len_bits;
107}
108
109int ff_wma_init(AVCodecContext *avctx, int flags2)
110{
111    WMACodecContext *s = avctx->priv_data;
112    int i;
113    float bps1, high_freq;
114    volatile float bps;
115    int sample_rate1;
116    int coef_vlc_table;
117
118    if (   avctx->sample_rate <= 0 || avctx->sample_rate > 50000
119        || avctx->channels    <= 0 || avctx->channels    > 8
120        || avctx->bit_rate    <= 0)
121        return -1;
122
123    s->sample_rate = avctx->sample_rate;
124    s->nb_channels = avctx->channels;
125    s->bit_rate    = avctx->bit_rate;
126    s->block_align = avctx->block_align;
127
128    dsputil_init(&s->dsp, avctx);
129
130    if (avctx->codec->id == CODEC_ID_WMAV1) {
131        s->version = 1;
132    } else {
133        s->version = 2;
134    }
135
136    /* compute MDCT block size */
137    s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
138
139    s->frame_len = 1 << s->frame_len_bits;
140    if (s->use_variable_block_len) {
141        int nb_max, nb;
142        nb = ((flags2 >> 3) & 3) + 1;
143        if ((s->bit_rate / s->nb_channels) >= 32000)
144            nb += 2;
145        nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
146        if (nb > nb_max)
147            nb = nb_max;
148        s->nb_block_sizes = nb + 1;
149    } else {
150        s->nb_block_sizes = 1;
151    }
152
153    /* init rate dependent parameters */
154    s->use_noise_coding = 1;
155    high_freq = s->sample_rate * 0.5;
156
157    /* if version 2, then the rates are normalized */
158    sample_rate1 = s->sample_rate;
159    if (s->version == 2) {
160        if (sample_rate1 >= 44100) {
161            sample_rate1 = 44100;
162        } else if (sample_rate1 >= 22050) {
163            sample_rate1 = 22050;
164        } else if (sample_rate1 >= 16000) {
165            sample_rate1 = 16000;
166        } else if (sample_rate1 >= 11025) {
167            sample_rate1 = 11025;
168        } else if (sample_rate1 >= 8000) {
169            sample_rate1 = 8000;
170        }
171    }
172
173    bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
174    s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
175
176    /* compute high frequency value and choose if noise coding should
177       be activated */
178    bps1 = bps;
179    if (s->nb_channels == 2)
180        bps1 = bps * 1.6;
181    if (sample_rate1 == 44100) {
182        if (bps1 >= 0.61) {
183            s->use_noise_coding = 0;
184        } else {
185            high_freq = high_freq * 0.4;
186        }
187    } else if (sample_rate1 == 22050) {
188        if (bps1 >= 1.16) {
189            s->use_noise_coding = 0;
190        } else if (bps1 >= 0.72) {
191            high_freq = high_freq * 0.7;
192        } else {
193            high_freq = high_freq * 0.6;
194        }
195    } else if (sample_rate1 == 16000) {
196        if (bps > 0.5) {
197            high_freq = high_freq * 0.5;
198        } else {
199            high_freq = high_freq * 0.3;
200        }
201    } else if (sample_rate1 == 11025) {
202        high_freq = high_freq * 0.7;
203    } else if (sample_rate1 == 8000) {
204        if (bps <= 0.625) {
205            high_freq = high_freq * 0.5;
206        } else if (bps > 0.75) {
207            s->use_noise_coding = 0;
208        } else {
209            high_freq = high_freq * 0.65;
210        }
211    } else {
212        if (bps >= 0.8) {
213            high_freq = high_freq * 0.75;
214        } else if (bps >= 0.6) {
215            high_freq = high_freq * 0.6;
216        } else {
217            high_freq = high_freq * 0.5;
218        }
219    }
220    dprintf(s->avctx, "flags2=0x%x\n", flags2);
221    dprintf(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
222            s->version, s->nb_channels, s->sample_rate, s->bit_rate,
223            s->block_align);
224    dprintf(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
225            bps, bps1, high_freq, s->byte_offset_bits);
226    dprintf(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
227            s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
228
229    /* compute the scale factor band sizes for each MDCT block size */
230    {
231        int a, b, pos, lpos, k, block_len, i, j, n;
232        const uint8_t *table;
233
234        if (s->version == 1) {
235            s->coefs_start = 3;
236        } else {
237            s->coefs_start = 0;
238        }
239        for (k = 0; k < s->nb_block_sizes; k++) {
240            block_len = s->frame_len >> k;
241
242            if (s->version == 1) {
243                lpos = 0;
244                for (i = 0; i < 25; i++) {
245                    a = ff_wma_critical_freqs[i];
246                    b = s->sample_rate;
247                    pos = ((block_len * 2 * a) + (b >> 1)) / b;
248                    if (pos > block_len)
249                        pos = block_len;
250                    s->exponent_bands[0][i] = pos - lpos;
251                    if (pos >= block_len) {
252                        i++;
253                        break;
254                    }
255                    lpos = pos;
256                }
257                s->exponent_sizes[0] = i;
258            } else {
259                /* hardcoded tables */
260                table = NULL;
261                a = s->frame_len_bits - BLOCK_MIN_BITS - k;
262                if (a < 3) {
263                    if (s->sample_rate >= 44100) {
264                        table = exponent_band_44100[a];
265                    } else if (s->sample_rate >= 32000) {
266                        table = exponent_band_32000[a];
267                    } else if (s->sample_rate >= 22050) {
268                        table = exponent_band_22050[a];
269                    }
270                }
271                if (table) {
272                    n = *table++;
273                    for (i = 0; i < n; i++)
274                        s->exponent_bands[k][i] = table[i];
275                    s->exponent_sizes[k] = n;
276                } else {
277                    j = 0;
278                    lpos = 0;
279                    for (i = 0; i < 25; i++) {
280                        a = ff_wma_critical_freqs[i];
281                        b = s->sample_rate;
282                        pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
283                        pos <<= 2;
284                        if (pos > block_len)
285                            pos = block_len;
286                        if (pos > lpos)
287                            s->exponent_bands[k][j++] = pos - lpos;
288                        if (pos >= block_len)
289                            break;
290                        lpos = pos;
291                    }
292                    s->exponent_sizes[k] = j;
293                }
294            }
295
296            /* max number of coefs */
297            s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
298            /* high freq computation */
299            s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
300                                          s->sample_rate + 0.5);
301            n = s->exponent_sizes[k];
302            j = 0;
303            pos = 0;
304            for (i = 0; i < n; i++) {
305                int start, end;
306                start = pos;
307                pos += s->exponent_bands[k][i];
308                end = pos;
309                if (start < s->high_band_start[k])
310                    start = s->high_band_start[k];
311                if (end > s->coefs_end[k])
312                    end = s->coefs_end[k];
313                if (end > start)
314                    s->exponent_high_bands[k][j++] = end - start;
315            }
316            s->exponent_high_sizes[k] = j;
317#if 0
318            tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
319                    s->frame_len >> k,
320                    s->coefs_end[k],
321                    s->high_band_start[k],
322                    s->exponent_high_sizes[k]);
323            for (j = 0; j < s->exponent_high_sizes[k]; j++)
324                tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
325            tprintf(s->avctx, "\n");
326#endif
327        }
328    }
329
330#ifdef TRACE
331    {
332        int i, j;
333        for (i = 0; i < s->nb_block_sizes; i++) {
334            tprintf(s->avctx, "%5d: n=%2d:",
335                    s->frame_len >> i,
336                    s->exponent_sizes[i]);
337            for (j = 0; j < s->exponent_sizes[i]; j++)
338                tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
339            tprintf(s->avctx, "\n");
340        }
341    }
342#endif
343
344    /* init MDCT windows : simple sinus window */
345    for (i = 0; i < s->nb_block_sizes; i++) {
346        ff_init_ff_sine_windows(s->frame_len_bits - i);
347        s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
348    }
349
350    s->reset_block_lengths = 1;
351
352    if (s->use_noise_coding) {
353
354        /* init the noise generator */
355        if (s->use_exp_vlc) {
356            s->noise_mult = 0.02;
357        } else {
358            s->noise_mult = 0.04;
359        }
360
361#ifdef TRACE
362        for (i = 0; i < NOISE_TAB_SIZE; i++)
363            s->noise_table[i] = 1.0 * s->noise_mult;
364#else
365        {
366            unsigned int seed;
367            float norm;
368            seed = 1;
369            norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
370            for (i = 0; i < NOISE_TAB_SIZE; i++) {
371                seed = seed * 314159 + 1;
372                s->noise_table[i] = (float)((int)seed) * norm;
373            }
374        }
375#endif
376    }
377
378    /* choose the VLC tables for the coefficients */
379    coef_vlc_table = 2;
380    if (s->sample_rate >= 32000) {
381        if (bps1 < 0.72) {
382            coef_vlc_table = 0;
383        } else if (bps1 < 1.16) {
384            coef_vlc_table = 1;
385        }
386    }
387    s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2    ];
388    s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
389    init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
390                  s->coef_vlcs[0]);
391    init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
392                  s->coef_vlcs[1]);
393
394    return 0;
395}
396
397int ff_wma_total_gain_to_bits(int total_gain)
398{
399         if (total_gain < 15) return 13;
400    else if (total_gain < 32) return 12;
401    else if (total_gain < 40) return 11;
402    else if (total_gain < 45) return 10;
403    else                      return  9;
404}
405
406int ff_wma_end(AVCodecContext *avctx)
407{
408    WMACodecContext *s = avctx->priv_data;
409    int i;
410
411    for (i = 0; i < s->nb_block_sizes; i++)
412        ff_mdct_end(&s->mdct_ctx[i]);
413
414    if (s->use_exp_vlc) {
415        free_vlc(&s->exp_vlc);
416    }
417    if (s->use_noise_coding) {
418        free_vlc(&s->hgain_vlc);
419    }
420    for (i = 0; i < 2; i++) {
421        free_vlc(&s->coef_vlc[i]);
422        av_free(s->run_table[i]);
423        av_free(s->level_table[i]);
424        av_free(s->int_table[i]);
425    }
426
427    return 0;
428}
429
430/**
431 * Decode an uncompressed coefficient.
432 * @param s codec context
433 * @return the decoded coefficient
434 */
435unsigned int ff_wma_get_large_val(GetBitContext* gb)
436{
437    /** consumes up to 34 bits */
438    int n_bits = 8;
439    /** decode length */
440    if (get_bits1(gb)) {
441        n_bits += 8;
442        if (get_bits1(gb)) {
443            n_bits += 8;
444            if (get_bits1(gb)) {
445                n_bits += 7;
446            }
447        }
448    }
449    return get_bits_long(gb, n_bits);
450}
451
452/**
453 * Decode run level compressed coefficients.
454 * @param avctx codec context
455 * @param gb bitstream reader context
456 * @param vlc vlc table for get_vlc2
457 * @param level_table level codes
458 * @param run_table run codes
459 * @param version 0 for wma1,2 1 for wmapro
460 * @param ptr output buffer
461 * @param offset offset in the output buffer
462 * @param num_coefs number of input coefficents
463 * @param block_len input buffer length (2^n)
464 * @param frame_len_bits number of bits for escaped run codes
465 * @param coef_nb_bits number of bits for escaped level codes
466 * @return 0 on success, -1 otherwise
467 */
468int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
469                            VLC *vlc,
470                            const float *level_table, const uint16_t *run_table,
471                            int version, WMACoef *ptr, int offset,
472                            int num_coefs, int block_len, int frame_len_bits,
473                            int coef_nb_bits)
474{
475    int code, level, sign;
476    const uint32_t *ilvl = (const uint32_t*)level_table;
477    uint32_t *iptr = (uint32_t*)ptr;
478    const unsigned int coef_mask = block_len - 1;
479    for (; offset < num_coefs; offset++) {
480        code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
481        if (code > 1) {
482            /** normal code */
483            offset += run_table[code];
484            sign = get_bits1(gb) - 1;
485            iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
486        } else if (code == 1) {
487            /** EOB */
488            break;
489        } else {
490            /** escape */
491            if (!version) {
492                level = get_bits(gb, coef_nb_bits);
493                /** NOTE: this is rather suboptimal. reading
494                    block_len_bits would be better */
495                offset += get_bits(gb, frame_len_bits);
496            } else {
497                level = ff_wma_get_large_val(gb);
498                /** escape decode */
499                if (get_bits1(gb)) {
500                    if (get_bits1(gb)) {
501                        if (get_bits1(gb)) {
502                            av_log(avctx,AV_LOG_ERROR,
503                                "broken escape sequence\n");
504                            return -1;
505                        } else
506                            offset += get_bits(gb, frame_len_bits) + 4;
507                    } else
508                        offset += get_bits(gb, 2) + 1;
509                }
510            }
511            sign = get_bits1(gb) - 1;
512            ptr[offset & coef_mask] = (level^sign) - sign;
513        }
514    }
515    /** NOTE: EOB can be omitted */
516    if (offset > num_coefs) {
517        av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
518        return -1;
519    }
520
521    return 0;
522}
523
524