• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt/router/busybox/archival/libunarchive/unxz/
1/*
2 * LZMA2 decoder
3 *
4 * Authors: Lasse Collin <lasse.collin@tukaani.org>
5 *          Igor Pavlov <http://7-zip.org/>
6 *
7 * This file has been put into the public domain.
8 * You can do whatever you want with this file.
9 */
10
11#include "xz_private.h"
12#include "xz_lzma2.h"
13
14/*
15 * Range decoder initialization eats the first five bytes of each LZMA chunk.
16 */
17#define RC_INIT_BYTES 5
18
19/*
20 * Minimum number of usable input buffer to safely decode one LZMA symbol.
21 * The worst case is that we decode 22 bits using probabilities and 26
22 * direct bits. This may decode at maximum of 20 bytes of input. However,
23 * lzma_main() does an extra normalization before returning, thus we
24 * need to put 21 here.
25 */
26#define LZMA_IN_REQUIRED 21
27
28/*
29 * Dictionary (history buffer)
30 *
31 * These are always true:
32 *    start <= pos <= full <= end
33 *    pos <= limit <= end
34 *
35 * In multi-call mode, also these are true:
36 *    end == size
37 *    size <= size_max
38 *    allocated <= size
39 *
40 * Most of these variables are size_t to support single-call mode,
41 * in which the dictionary variables address the actual output
42 * buffer directly.
43 */
44struct dictionary {
45	/* Beginning of the history buffer */
46	uint8_t *buf;
47
48	/* Old position in buf (before decoding more data) */
49	size_t start;
50
51	/* Position in buf */
52	size_t pos;
53
54	/*
55	 * How full dictionary is. This is used to detect corrupt input that
56	 * would read beyond the beginning of the uncompressed stream.
57	 */
58	size_t full;
59
60	/* Write limit; we don't write to buf[limit] or later bytes. */
61	size_t limit;
62
63	/*
64	 * End of the dictionary buffer. In multi-call mode, this is
65	 * the same as the dictionary size. In single-call mode, this
66	 * indicates the size of the output buffer.
67	 */
68	size_t end;
69
70	/*
71	 * Size of the dictionary as specified in Block Header. This is used
72	 * together with "full" to detect corrupt input that would make us
73	 * read beyond the beginning of the uncompressed stream.
74	 */
75	uint32_t size;
76
77	/*
78	 * Maximum allowed dictionary size in multi-call mode.
79	 * This is ignored in single-call mode.
80	 */
81	uint32_t size_max;
82
83	/*
84	 * Amount of memory currently allocated for the dictionary.
85	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
86	 * size_max is always the same as the allocated size.)
87	 */
88	uint32_t allocated;
89
90	/* Operation mode */
91	enum xz_mode mode;
92};
93
94/* Range decoder */
95struct rc_dec {
96	uint32_t range;
97	uint32_t code;
98
99	/*
100	 * Number of initializing bytes remaining to be read
101	 * by rc_read_init().
102	 */
103	uint32_t init_bytes_left;
104
105	/*
106	 * Buffer from which we read our input. It can be either
107	 * temp.buf or the caller-provided input buffer.
108	 */
109	const uint8_t *in;
110	size_t in_pos;
111	size_t in_limit;
112};
113
114/* Probabilities for a length decoder. */
115struct lzma_len_dec {
116	/* Probability of match length being at least 10 */
117	uint16_t choice;
118
119	/* Probability of match length being at least 18 */
120	uint16_t choice2;
121
122	/* Probabilities for match lengths 2-9 */
123	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
124
125	/* Probabilities for match lengths 10-17 */
126	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
127
128	/* Probabilities for match lengths 18-273 */
129	uint16_t high[LEN_HIGH_SYMBOLS];
130};
131
132struct lzma_dec {
133	/* Distances of latest four matches */
134	uint32_t rep0;
135	uint32_t rep1;
136	uint32_t rep2;
137	uint32_t rep3;
138
139	/* Types of the most recently seen LZMA symbols */
140	enum lzma_state state;
141
142	/*
143	 * Length of a match. This is updated so that dict_repeat can
144	 * be called again to finish repeating the whole match.
145	 */
146	uint32_t len;
147
148	/*
149	 * LZMA properties or related bit masks (number of literal
150	 * context bits, a mask dervied from the number of literal
151	 * position bits, and a mask dervied from the number
152	 * position bits)
153	 */
154	uint32_t lc;
155	uint32_t literal_pos_mask; /* (1 << lp) - 1 */
156	uint32_t pos_mask;         /* (1 << pb) - 1 */
157
158	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
159	uint16_t is_match[STATES][POS_STATES_MAX];
160
161	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
162	uint16_t is_rep[STATES];
163
164	/*
165	 * If 0, distance of a repeated match is rep0.
166	 * Otherwise check is_rep1.
167	 */
168	uint16_t is_rep0[STATES];
169
170	/*
171	 * If 0, distance of a repeated match is rep1.
172	 * Otherwise check is_rep2.
173	 */
174	uint16_t is_rep1[STATES];
175
176	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
177	uint16_t is_rep2[STATES];
178
179	/*
180	 * If 1, the repeated match has length of one byte. Otherwise
181	 * the length is decoded from rep_len_decoder.
182	 */
183	uint16_t is_rep0_long[STATES][POS_STATES_MAX];
184
185	/*
186	 * Probability tree for the highest two bits of the match
187	 * distance. There is a separate probability tree for match
188	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
189	 */
190	uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
191
192	/*
193	 * Probility trees for additional bits for match distance
194	 * when the distance is in the range [4, 127].
195	 */
196	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
197
198	/*
199	 * Probability tree for the lowest four bits of a match
200	 * distance that is equal to or greater than 128.
201	 */
202	uint16_t dist_align[ALIGN_SIZE];
203
204	/* Length of a normal match */
205	struct lzma_len_dec match_len_dec;
206
207	/* Length of a repeated match */
208	struct lzma_len_dec rep_len_dec;
209
210	/* Probabilities of literals */
211	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
212};
213
214struct lzma2_dec {
215	/* Position in xz_dec_lzma2_run(). */
216	enum lzma2_seq {
217		SEQ_CONTROL,
218		SEQ_UNCOMPRESSED_1,
219		SEQ_UNCOMPRESSED_2,
220		SEQ_COMPRESSED_0,
221		SEQ_COMPRESSED_1,
222		SEQ_PROPERTIES,
223		SEQ_LZMA_PREPARE,
224		SEQ_LZMA_RUN,
225		SEQ_COPY
226	} sequence;
227
228	/* Next position after decoding the compressed size of the chunk. */
229	enum lzma2_seq next_sequence;
230
231	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
232	uint32_t uncompressed;
233
234	/*
235	 * Compressed size of LZMA chunk or compressed/uncompressed
236	 * size of uncompressed chunk (64 KiB at maximum)
237	 */
238	uint32_t compressed;
239
240	/*
241	 * True if dictionary reset is needed. This is false before
242	 * the first chunk (LZMA or uncompressed).
243	 */
244	bool need_dict_reset;
245
246	/*
247	 * True if new LZMA properties are needed. This is false
248	 * before the first LZMA chunk.
249	 */
250	bool need_props;
251};
252
253struct xz_dec_lzma2 {
254	/*
255	 * The order below is important on x86 to reduce code size and
256	 * it shouldn't hurt on other platforms. Everything up to and
257	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
258	 * which allows using smaller instructions to access those
259	 * variables. On x86-64, fewer variables fit into the first 128
260	 * bytes, but this is still the best order without sacrificing
261	 * the readability by splitting the structures.
262	 */
263	struct rc_dec rc;
264	struct dictionary dict;
265	struct lzma2_dec lzma2;
266	struct lzma_dec lzma;
267
268	/*
269	 * Temporary buffer which holds small number of input bytes between
270	 * decoder calls. See lzma2_lzma() for details.
271	 */
272	struct {
273		uint32_t size;
274		uint8_t buf[3 * LZMA_IN_REQUIRED];
275	} temp;
276};
277
278/**************
279 * Dictionary *
280 **************/
281
282/*
283 * Reset the dictionary state. When in single-call mode, set up the beginning
284 * of the dictionary to point to the actual output buffer.
285 */
286static void XZ_FUNC dict_reset(struct dictionary *dict, struct xz_buf *b)
287{
288	if (DEC_IS_SINGLE(dict->mode)) {
289		dict->buf = b->out + b->out_pos;
290		dict->end = b->out_size - b->out_pos;
291	}
292
293	dict->start = 0;
294	dict->pos = 0;
295	dict->limit = 0;
296	dict->full = 0;
297}
298
299/* Set dictionary write limit */
300static void XZ_FUNC dict_limit(struct dictionary *dict, size_t out_max)
301{
302	if (dict->end - dict->pos <= out_max)
303		dict->limit = dict->end;
304	else
305		dict->limit = dict->pos + out_max;
306}
307
308/* Return true if at least one byte can be written into the dictionary. */
309static __always_inline bool XZ_FUNC dict_has_space(const struct dictionary *dict)
310{
311	return dict->pos < dict->limit;
312}
313
314/*
315 * Get a byte from the dictionary at the given distance. The distance is
316 * assumed to valid, or as a special case, zero when the dictionary is
317 * still empty. This special case is needed for single-call decoding to
318 * avoid writing a '\0' to the end of the destination buffer.
319 */
320static __always_inline uint32_t XZ_FUNC dict_get(
321		const struct dictionary *dict, uint32_t dist)
322{
323	size_t offset = dict->pos - dist - 1;
324
325	if (dist >= dict->pos)
326		offset += dict->end;
327
328	return dict->full > 0 ? dict->buf[offset] : 0;
329}
330
331/*
332 * Put one byte into the dictionary. It is assumed that there is space for it.
333 */
334static inline void XZ_FUNC dict_put(struct dictionary *dict, uint8_t byte)
335{
336	dict->buf[dict->pos++] = byte;
337
338	if (dict->full < dict->pos)
339		dict->full = dict->pos;
340}
341
342/*
343 * Repeat given number of bytes from the given distance. If the distance is
344 * invalid, false is returned. On success, true is returned and *len is
345 * updated to indicate how many bytes were left to be repeated.
346 */
347static bool XZ_FUNC dict_repeat(
348		struct dictionary *dict, uint32_t *len, uint32_t dist)
349{
350	size_t back;
351	uint32_t left;
352
353	if (dist >= dict->full || dist >= dict->size)
354		return false;
355
356	left = min_t(size_t, dict->limit - dict->pos, *len);
357	*len -= left;
358
359	back = dict->pos - dist - 1;
360	if (dist >= dict->pos)
361		back += dict->end;
362
363	do {
364		dict->buf[dict->pos++] = dict->buf[back++];
365		if (back == dict->end)
366			back = 0;
367	} while (--left > 0);
368
369	if (dict->full < dict->pos)
370		dict->full = dict->pos;
371
372	return true;
373}
374
375/* Copy uncompressed data as is from input to dictionary and output buffers. */
376static void XZ_FUNC dict_uncompressed(
377		struct dictionary *dict, struct xz_buf *b, uint32_t *left)
378{
379	size_t copy_size;
380
381	while (*left > 0 && b->in_pos < b->in_size
382			&& b->out_pos < b->out_size) {
383		copy_size = min(b->in_size - b->in_pos,
384				b->out_size - b->out_pos);
385		if (copy_size > dict->end - dict->pos)
386			copy_size = dict->end - dict->pos;
387		if (copy_size > *left)
388			copy_size = *left;
389
390		*left -= copy_size;
391
392		memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
393		dict->pos += copy_size;
394
395		if (dict->full < dict->pos)
396			dict->full = dict->pos;
397
398		if (DEC_IS_MULTI(dict->mode)) {
399			if (dict->pos == dict->end)
400				dict->pos = 0;
401
402			memcpy(b->out + b->out_pos, b->in + b->in_pos,
403					copy_size);
404		}
405
406		dict->start = dict->pos;
407
408		b->out_pos += copy_size;
409		b->in_pos += copy_size;
410
411	}
412}
413
414/*
415 * Flush pending data from dictionary to b->out. It is assumed that there is
416 * enough space in b->out. This is guaranteed because caller uses dict_limit()
417 * before decoding data into the dictionary.
418 */
419static uint32_t XZ_FUNC dict_flush(struct dictionary *dict, struct xz_buf *b)
420{
421	size_t copy_size = dict->pos - dict->start;
422
423	if (DEC_IS_MULTI(dict->mode)) {
424		if (dict->pos == dict->end)
425			dict->pos = 0;
426
427		memcpy(b->out + b->out_pos, dict->buf + dict->start,
428				copy_size);
429	}
430
431	dict->start = dict->pos;
432	b->out_pos += copy_size;
433	return copy_size;
434}
435
436/*****************
437 * Range decoder *
438 *****************/
439
440/* Reset the range decoder. */
441static void XZ_FUNC rc_reset(struct rc_dec *rc)
442{
443	rc->range = (uint32_t)-1;
444	rc->code = 0;
445	rc->init_bytes_left = RC_INIT_BYTES;
446}
447
448/*
449 * Read the first five initial bytes into rc->code if they haven't been
450 * read already. (Yes, the first byte gets completely ignored.)
451 */
452static bool XZ_FUNC rc_read_init(struct rc_dec *rc, struct xz_buf *b)
453{
454	while (rc->init_bytes_left > 0) {
455		if (b->in_pos == b->in_size)
456			return false;
457
458		rc->code = (rc->code << 8) + b->in[b->in_pos++];
459		--rc->init_bytes_left;
460	}
461
462	return true;
463}
464
465/* Return true if there may not be enough input for the next decoding loop. */
466static inline bool XZ_FUNC rc_limit_exceeded(const struct rc_dec *rc)
467{
468	return rc->in_pos > rc->in_limit;
469}
470
471/*
472 * Return true if it is possible (from point of view of range decoder) that
473 * we have reached the end of the LZMA chunk.
474 */
475static inline bool XZ_FUNC rc_is_finished(const struct rc_dec *rc)
476{
477	return rc->code == 0;
478}
479
480/* Read the next input byte if needed. */
481static __always_inline void XZ_FUNC rc_normalize(struct rc_dec *rc)
482{
483	if (rc->range < RC_TOP_VALUE) {
484		rc->range <<= RC_SHIFT_BITS;
485		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
486	}
487}
488
489/*
490 * Decode one bit. In some versions, this function has been splitted in three
491 * functions so that the compiler is supposed to be able to more easily avoid
492 * an extra branch. In this particular version of the LZMA decoder, this
493 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
494 * on x86). Using a non-splitted version results in nicer looking code too.
495 *
496 * NOTE: This must return an int. Do not make it return a bool or the speed
497 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
498 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
499 */
500static __always_inline int XZ_FUNC rc_bit(struct rc_dec *rc, uint16_t *prob)
501{
502	uint32_t bound;
503	int bit;
504
505	rc_normalize(rc);
506	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
507	if (rc->code < bound) {
508		rc->range = bound;
509		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
510		bit = 0;
511	} else {
512		rc->range -= bound;
513		rc->code -= bound;
514		*prob -= *prob >> RC_MOVE_BITS;
515		bit = 1;
516	}
517
518	return bit;
519}
520
521/* Decode a bittree starting from the most significant bit. */
522static __always_inline uint32_t XZ_FUNC rc_bittree(
523		struct rc_dec *rc, uint16_t *probs, uint32_t limit)
524{
525	uint32_t symbol = 1;
526
527	do {
528		if (rc_bit(rc, &probs[symbol]))
529			symbol = (symbol << 1) + 1;
530		else
531			symbol <<= 1;
532	} while (symbol < limit);
533
534	return symbol;
535}
536
537/* Decode a bittree starting from the least significant bit. */
538static __always_inline void XZ_FUNC rc_bittree_reverse(struct rc_dec *rc,
539		uint16_t *probs, uint32_t *dest, uint32_t limit)
540{
541	uint32_t symbol = 1;
542	uint32_t i = 0;
543
544	do {
545		if (rc_bit(rc, &probs[symbol])) {
546			symbol = (symbol << 1) + 1;
547			*dest += 1 << i;
548		} else {
549			symbol <<= 1;
550		}
551	} while (++i < limit);
552}
553
554/* Decode direct bits (fixed fifty-fifty probability) */
555static inline void XZ_FUNC rc_direct(
556		struct rc_dec *rc, uint32_t *dest, uint32_t limit)
557{
558	uint32_t mask;
559
560	do {
561		rc_normalize(rc);
562		rc->range >>= 1;
563		rc->code -= rc->range;
564		mask = (uint32_t)0 - (rc->code >> 31);
565		rc->code += rc->range & mask;
566		*dest = (*dest << 1) + (mask + 1);
567	} while (--limit > 0);
568}
569
570/********
571 * LZMA *
572 ********/
573
574/* Get pointer to literal coder probability array. */
575static uint16_t * XZ_FUNC lzma_literal_probs(struct xz_dec_lzma2 *s)
576{
577	uint32_t prev_byte = dict_get(&s->dict, 0);
578	uint32_t low = prev_byte >> (8 - s->lzma.lc);
579	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
580	return s->lzma.literal[low + high];
581}
582
583/* Decode a literal (one 8-bit byte) */
584static void XZ_FUNC lzma_literal(struct xz_dec_lzma2 *s)
585{
586	uint16_t *probs;
587	uint32_t symbol;
588	uint32_t match_byte;
589	uint32_t match_bit;
590	uint32_t offset;
591	uint32_t i;
592
593	probs = lzma_literal_probs(s);
594
595	if (lzma_state_is_literal(s->lzma.state)) {
596		symbol = rc_bittree(&s->rc, probs, 0x100);
597	} else {
598		symbol = 1;
599		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
600		offset = 0x100;
601
602		do {
603			match_bit = match_byte & offset;
604			match_byte <<= 1;
605			i = offset + match_bit + symbol;
606
607			if (rc_bit(&s->rc, &probs[i])) {
608				symbol = (symbol << 1) + 1;
609				offset &= match_bit;
610			} else {
611				symbol <<= 1;
612				offset &= ~match_bit;
613			}
614		} while (symbol < 0x100);
615	}
616
617	dict_put(&s->dict, (uint8_t)symbol);
618	lzma_state_literal(&s->lzma.state);
619}
620
621/* Decode the length of the match into s->lzma.len. */
622static void XZ_FUNC lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
623		uint32_t pos_state)
624{
625	uint16_t *probs;
626	uint32_t limit;
627
628	if (!rc_bit(&s->rc, &l->choice)) {
629		probs = l->low[pos_state];
630		limit = LEN_LOW_SYMBOLS;
631		s->lzma.len = MATCH_LEN_MIN;
632	} else {
633		if (!rc_bit(&s->rc, &l->choice2)) {
634			probs = l->mid[pos_state];
635			limit = LEN_MID_SYMBOLS;
636			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
637		} else {
638			probs = l->high;
639			limit = LEN_HIGH_SYMBOLS;
640			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
641					+ LEN_MID_SYMBOLS;
642		}
643	}
644
645	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
646}
647
648/* Decode a match. The distance will be stored in s->lzma.rep0. */
649static void XZ_FUNC lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
650{
651	uint16_t *probs;
652	uint32_t dist_slot;
653	uint32_t limit;
654
655	lzma_state_match(&s->lzma.state);
656
657	s->lzma.rep3 = s->lzma.rep2;
658	s->lzma.rep2 = s->lzma.rep1;
659	s->lzma.rep1 = s->lzma.rep0;
660
661	lzma_len(s, &s->lzma.match_len_dec, pos_state);
662
663	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
664	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
665
666	if (dist_slot < DIST_MODEL_START) {
667		s->lzma.rep0 = dist_slot;
668	} else {
669		limit = (dist_slot >> 1) - 1;
670		s->lzma.rep0 = 2 + (dist_slot & 1);
671
672		if (dist_slot < DIST_MODEL_END) {
673			s->lzma.rep0 <<= limit;
674			probs = s->lzma.dist_special + s->lzma.rep0
675					- dist_slot - 1;
676			rc_bittree_reverse(&s->rc, probs,
677					&s->lzma.rep0, limit);
678		} else {
679			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
680			s->lzma.rep0 <<= ALIGN_BITS;
681			rc_bittree_reverse(&s->rc, s->lzma.dist_align,
682					&s->lzma.rep0, ALIGN_BITS);
683		}
684	}
685}
686
687/*
688 * Decode a repeated match. The distance is one of the four most recently
689 * seen matches. The distance will be stored in s->lzma.rep0.
690 */
691static void XZ_FUNC lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
692{
693	uint32_t tmp;
694
695	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
696		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
697				s->lzma.state][pos_state])) {
698			lzma_state_short_rep(&s->lzma.state);
699			s->lzma.len = 1;
700			return;
701		}
702	} else {
703		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
704			tmp = s->lzma.rep1;
705		} else {
706			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
707				tmp = s->lzma.rep2;
708			} else {
709				tmp = s->lzma.rep3;
710				s->lzma.rep3 = s->lzma.rep2;
711			}
712
713			s->lzma.rep2 = s->lzma.rep1;
714		}
715
716		s->lzma.rep1 = s->lzma.rep0;
717		s->lzma.rep0 = tmp;
718	}
719
720	lzma_state_long_rep(&s->lzma.state);
721	lzma_len(s, &s->lzma.rep_len_dec, pos_state);
722}
723
724/* LZMA decoder core */
725static bool XZ_FUNC lzma_main(struct xz_dec_lzma2 *s)
726{
727	uint32_t pos_state;
728
729	/*
730	 * If the dictionary was reached during the previous call, try to
731	 * finish the possibly pending repeat in the dictionary.
732	 */
733	if (dict_has_space(&s->dict) && s->lzma.len > 0)
734		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
735
736	/*
737	 * Decode more LZMA symbols. One iteration may consume up to
738	 * LZMA_IN_REQUIRED - 1 bytes.
739	 */
740	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
741		pos_state = s->dict.pos & s->lzma.pos_mask;
742
743		if (!rc_bit(&s->rc, &s->lzma.is_match[
744				s->lzma.state][pos_state])) {
745			lzma_literal(s);
746		} else {
747			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
748				lzma_rep_match(s, pos_state);
749			else
750				lzma_match(s, pos_state);
751
752			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
753				return false;
754		}
755	}
756
757	/*
758	 * Having the range decoder always normalized when we are outside
759	 * this function makes it easier to correctly handle end of the chunk.
760	 */
761	rc_normalize(&s->rc);
762
763	return true;
764}
765
766/*
767 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
768 * here, because LZMA state may be reset without resetting the dictionary.
769 */
770static void XZ_FUNC lzma_reset(struct xz_dec_lzma2 *s)
771{
772	uint16_t *probs;
773	size_t i;
774
775	s->lzma.state = STATE_LIT_LIT;
776	s->lzma.rep0 = 0;
777	s->lzma.rep1 = 0;
778	s->lzma.rep2 = 0;
779	s->lzma.rep3 = 0;
780
781	/*
782	 * All probabilities are initialized to the same value. This hack
783	 * makes the code smaller by avoiding a separate loop for each
784	 * probability array.
785	 *
786	 * This could be optimized so that only that part of literal
787	 * probabilities that are actually required. In the common case
788	 * we would write 12 KiB less.
789	 */
790	probs = s->lzma.is_match[0];
791	for (i = 0; i < PROBS_TOTAL; ++i)
792		probs[i] = RC_BIT_MODEL_TOTAL / 2;
793
794	rc_reset(&s->rc);
795}
796
797/*
798 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
799 * from the decoded lp and pb values. On success, the LZMA decoder state is
800 * reset and true is returned.
801 */
802static bool XZ_FUNC lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
803{
804	if (props > (4 * 5 + 4) * 9 + 8)
805		return false;
806
807	s->lzma.pos_mask = 0;
808	while (props >= 9 * 5) {
809		props -= 9 * 5;
810		++s->lzma.pos_mask;
811	}
812
813	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
814
815	s->lzma.literal_pos_mask = 0;
816	while (props >= 9) {
817		props -= 9;
818		++s->lzma.literal_pos_mask;
819	}
820
821	s->lzma.lc = props;
822
823	if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
824		return false;
825
826	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
827
828	lzma_reset(s);
829
830	return true;
831}
832
833/*********
834 * LZMA2 *
835 *********/
836
837/*
838 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
839 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
840 * wrapper function takes care of making the LZMA decoder's assumption safe.
841 *
842 * As long as there is plenty of input left to be decoded in the current LZMA
843 * chunk, we decode directly from the caller-supplied input buffer until
844 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
845 * s->temp.buf, which (hopefully) gets filled on the next call to this
846 * function. We decode a few bytes from the temporary buffer so that we can
847 * continue decoding from the caller-supplied input buffer again.
848 */
849static bool XZ_FUNC lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
850{
851	size_t in_avail;
852	uint32_t tmp;
853
854	in_avail = b->in_size - b->in_pos;
855	if (s->temp.size > 0 || s->lzma2.compressed == 0) {
856		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
857		if (tmp > s->lzma2.compressed - s->temp.size)
858			tmp = s->lzma2.compressed - s->temp.size;
859		if (tmp > in_avail)
860			tmp = in_avail;
861
862		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
863
864		if (s->temp.size + tmp == s->lzma2.compressed) {
865			memzero(s->temp.buf + s->temp.size + tmp,
866					sizeof(s->temp.buf)
867						- s->temp.size - tmp);
868			s->rc.in_limit = s->temp.size + tmp;
869		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
870			s->temp.size += tmp;
871			b->in_pos += tmp;
872			return true;
873		} else {
874			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
875		}
876
877		s->rc.in = s->temp.buf;
878		s->rc.in_pos = 0;
879
880		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
881			return false;
882
883		s->lzma2.compressed -= s->rc.in_pos;
884
885		if (s->rc.in_pos < s->temp.size) {
886			s->temp.size -= s->rc.in_pos;
887			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
888					s->temp.size);
889			return true;
890		}
891
892		b->in_pos += s->rc.in_pos - s->temp.size;
893		s->temp.size = 0;
894	}
895
896	in_avail = b->in_size - b->in_pos;
897	if (in_avail >= LZMA_IN_REQUIRED) {
898		s->rc.in = b->in;
899		s->rc.in_pos = b->in_pos;
900
901		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
902			s->rc.in_limit = b->in_pos + s->lzma2.compressed;
903		else
904			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
905
906		if (!lzma_main(s))
907			return false;
908
909		in_avail = s->rc.in_pos - b->in_pos;
910		if (in_avail > s->lzma2.compressed)
911			return false;
912
913		s->lzma2.compressed -= in_avail;
914		b->in_pos = s->rc.in_pos;
915	}
916
917	in_avail = b->in_size - b->in_pos;
918	if (in_avail < LZMA_IN_REQUIRED) {
919		if (in_avail > s->lzma2.compressed)
920			in_avail = s->lzma2.compressed;
921
922		memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
923		s->temp.size = in_avail;
924		b->in_pos += in_avail;
925	}
926
927	return true;
928}
929
930/*
931 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
932 * decoding or copying of uncompressed chunks to other functions.
933 */
934XZ_EXTERN NOINLINE enum xz_ret XZ_FUNC xz_dec_lzma2_run(
935		struct xz_dec_lzma2 *s, struct xz_buf *b)
936{
937	uint32_t tmp;
938
939	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
940		switch (s->lzma2.sequence) {
941		case SEQ_CONTROL:
942			/*
943			 * LZMA2 control byte
944			 *
945			 * Exact values:
946			 *   0x00   End marker
947			 *   0x01   Dictionary reset followed by
948			 *          an uncompressed chunk
949			 *   0x02   Uncompressed chunk (no dictionary reset)
950			 *
951			 * Highest three bits (s->control & 0xE0):
952			 *   0xE0   Dictionary reset, new properties and state
953			 *          reset, followed by LZMA compressed chunk
954			 *   0xC0   New properties and state reset, followed
955			 *          by LZMA compressed chunk (no dictionary
956			 *          reset)
957			 *   0xA0   State reset using old properties,
958			 *          followed by LZMA compressed chunk (no
959			 *          dictionary reset)
960			 *   0x80   LZMA chunk (no dictionary or state reset)
961			 *
962			 * For LZMA compressed chunks, the lowest five bits
963			 * (s->control & 1F) are the highest bits of the
964			 * uncompressed size (bits 16-20).
965			 *
966			 * A new LZMA2 stream must begin with a dictionary
967			 * reset. The first LZMA chunk must set new
968			 * properties and reset the LZMA state.
969			 *
970			 * Values that don't match anything described above
971			 * are invalid and we return XZ_DATA_ERROR.
972			 */
973			tmp = b->in[b->in_pos++];
974
975			if (tmp >= 0xE0 || tmp == 0x01) {
976				s->lzma2.need_props = true;
977				s->lzma2.need_dict_reset = false;
978				dict_reset(&s->dict, b);
979			} else if (s->lzma2.need_dict_reset) {
980				return XZ_DATA_ERROR;
981			}
982
983			if (tmp >= 0x80) {
984				s->lzma2.uncompressed = (tmp & 0x1F) << 16;
985				s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
986
987				if (tmp >= 0xC0) {
988					/*
989					 * When there are new properties,
990					 * state reset is done at
991					 * SEQ_PROPERTIES.
992					 */
993					s->lzma2.need_props = false;
994					s->lzma2.next_sequence
995							= SEQ_PROPERTIES;
996
997				} else if (s->lzma2.need_props) {
998					return XZ_DATA_ERROR;
999
1000				} else {
1001					s->lzma2.next_sequence
1002							= SEQ_LZMA_PREPARE;
1003					if (tmp >= 0xA0)
1004						lzma_reset(s);
1005				}
1006			} else {
1007				if (tmp == 0x00)
1008					return XZ_STREAM_END;
1009
1010				if (tmp > 0x02)
1011					return XZ_DATA_ERROR;
1012
1013				s->lzma2.sequence = SEQ_COMPRESSED_0;
1014				s->lzma2.next_sequence = SEQ_COPY;
1015			}
1016
1017			break;
1018
1019		case SEQ_UNCOMPRESSED_1:
1020			s->lzma2.uncompressed
1021					+= (uint32_t)b->in[b->in_pos++] << 8;
1022			s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1023			break;
1024
1025		case SEQ_UNCOMPRESSED_2:
1026			s->lzma2.uncompressed
1027					+= (uint32_t)b->in[b->in_pos++] + 1;
1028			s->lzma2.sequence = SEQ_COMPRESSED_0;
1029			break;
1030
1031		case SEQ_COMPRESSED_0:
1032			s->lzma2.compressed
1033					= (uint32_t)b->in[b->in_pos++] << 8;
1034			s->lzma2.sequence = SEQ_COMPRESSED_1;
1035			break;
1036
1037		case SEQ_COMPRESSED_1:
1038			s->lzma2.compressed
1039					+= (uint32_t)b->in[b->in_pos++] + 1;
1040			s->lzma2.sequence = s->lzma2.next_sequence;
1041			break;
1042
1043		case SEQ_PROPERTIES:
1044			if (!lzma_props(s, b->in[b->in_pos++]))
1045				return XZ_DATA_ERROR;
1046
1047			s->lzma2.sequence = SEQ_LZMA_PREPARE;
1048
1049		case SEQ_LZMA_PREPARE:
1050			if (s->lzma2.compressed < RC_INIT_BYTES)
1051				return XZ_DATA_ERROR;
1052
1053			if (!rc_read_init(&s->rc, b))
1054				return XZ_OK;
1055
1056			s->lzma2.compressed -= RC_INIT_BYTES;
1057			s->lzma2.sequence = SEQ_LZMA_RUN;
1058
1059		case SEQ_LZMA_RUN:
1060			/*
1061			 * Set dictionary limit to indicate how much we want
1062			 * to be encoded at maximum. Decode new data into the
1063			 * dictionary. Flush the new data from dictionary to
1064			 * b->out. Check if we finished decoding this chunk.
1065			 * In case the dictionary got full but we didn't fill
1066			 * the output buffer yet, we may run this loop
1067			 * multiple times without changing s->lzma2.sequence.
1068			 */
1069			dict_limit(&s->dict, min_t(size_t,
1070					b->out_size - b->out_pos,
1071					s->lzma2.uncompressed));
1072			if (!lzma2_lzma(s, b))
1073				return XZ_DATA_ERROR;
1074
1075			s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1076
1077			if (s->lzma2.uncompressed == 0) {
1078				if (s->lzma2.compressed > 0 || s->lzma.len > 0
1079						|| !rc_is_finished(&s->rc))
1080					return XZ_DATA_ERROR;
1081
1082				rc_reset(&s->rc);
1083				s->lzma2.sequence = SEQ_CONTROL;
1084
1085			} else if (b->out_pos == b->out_size
1086					|| (b->in_pos == b->in_size
1087						&& s->temp.size
1088						< s->lzma2.compressed)) {
1089				return XZ_OK;
1090			}
1091
1092			break;
1093
1094		case SEQ_COPY:
1095			dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1096			if (s->lzma2.compressed > 0)
1097				return XZ_OK;
1098
1099			s->lzma2.sequence = SEQ_CONTROL;
1100			break;
1101		}
1102	}
1103
1104	return XZ_OK;
1105}
1106
1107XZ_EXTERN struct xz_dec_lzma2 * XZ_FUNC xz_dec_lzma2_create(
1108		enum xz_mode mode, uint32_t dict_max)
1109{
1110	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1111	if (s == NULL)
1112		return NULL;
1113
1114	s->dict.mode = mode;
1115	s->dict.size_max = dict_max;
1116
1117	if (DEC_IS_PREALLOC(mode)) {
1118		s->dict.buf = vmalloc(dict_max);
1119		if (s->dict.buf == NULL) {
1120			kfree(s);
1121			return NULL;
1122		}
1123	} else if (DEC_IS_DYNALLOC(mode)) {
1124		s->dict.buf = NULL;
1125		s->dict.allocated = 0;
1126	}
1127
1128	return s;
1129}
1130
1131XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_reset(
1132		struct xz_dec_lzma2 *s, uint8_t props)
1133{
1134	/* This limits dictionary size to 3 GiB to keep parsing simpler. */
1135	if (props > 39)
1136		return XZ_OPTIONS_ERROR;
1137
1138	s->dict.size = 2 + (props & 1);
1139	s->dict.size <<= (props >> 1) + 11;
1140
1141	if (DEC_IS_MULTI(s->dict.mode)) {
1142		if (s->dict.size > s->dict.size_max)
1143			return XZ_MEMLIMIT_ERROR;
1144
1145		s->dict.end = s->dict.size;
1146
1147		if (DEC_IS_DYNALLOC(s->dict.mode)) {
1148			if (s->dict.allocated < s->dict.size) {
1149				vfree(s->dict.buf);
1150				s->dict.buf = vmalloc(s->dict.size);
1151				if (s->dict.buf == NULL) {
1152					s->dict.allocated = 0;
1153					return XZ_MEM_ERROR;
1154				}
1155			}
1156		}
1157	}
1158
1159	s->lzma.len = 0;
1160
1161	s->lzma2.sequence = SEQ_CONTROL;
1162	s->lzma2.need_dict_reset = true;
1163
1164	s->temp.size = 0;
1165
1166	return XZ_OK;
1167}
1168
1169XZ_EXTERN void XZ_FUNC xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1170{
1171	if (DEC_IS_MULTI(s->dict.mode))
1172		vfree(s->dict.buf);
1173
1174	kfree(s);
1175}
1176