• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-armeabi-2013.11/arm-none-eabi/include/c++/4.8.1/bits/
1// hashtable.h header -*- C++ -*-
2
3// Copyright (C) 2007-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/hashtable.h
26 *  This is an internal header file, included by other library headers.
27 *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30#ifndef _HASHTABLE_H
31#define _HASHTABLE_H 1
32
33#pragma GCC system_header
34
35#include <bits/hashtable_policy.h>
36
37namespace std _GLIBCXX_VISIBILITY(default)
38{
39_GLIBCXX_BEGIN_NAMESPACE_VERSION
40
41  template<typename _Tp, typename _Hash>
42    using __cache_default
43      =  __not_<__and_<// Do not cache for fast hasher.
44		       __is_fast_hash<_Hash>,
45		       // Mandatory to make local_iterator default
46		       // constructible and assignable.
47		       is_default_constructible<_Hash>,
48		       is_copy_assignable<_Hash>,
49		       // Mandatory to have erase not throwing.
50		       __detail::__is_noexcept_hash<_Tp, _Hash>>>;
51
52  /**
53   *  Primary class template _Hashtable.
54   *
55   *  @ingroup hashtable-detail
56   *
57   *  @tparam _Value  CopyConstructible type.
58   *
59   *  @tparam _Key    CopyConstructible type.
60   *
61   *  @tparam _Alloc  An allocator type
62   *  ([lib.allocator.requirements]) whose _Alloc::value_type is
63   *  _Value.  As a conforming extension, we allow for
64   *  _Alloc::value_type != _Value.
65   *
66   *  @tparam _ExtractKey  Function object that takes an object of type
67   *  _Value and returns a value of type _Key.
68   *
69   *  @tparam _Equal  Function object that takes two objects of type k
70   *  and returns a bool-like value that is true if the two objects
71   *  are considered equal.
72   *
73   *  @tparam _H1  The hash function. A unary function object with
74   *  argument type _Key and result type size_t. Return values should
75   *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
76   *
77   *  @tparam _H2  The range-hashing function (in the terminology of
78   *  Tavori and Dreizin).  A binary function object whose argument
79   *  types and result type are all size_t.  Given arguments r and N,
80   *  the return value is in the range [0, N).
81   *
82   *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
83   *  binary function whose argument types are _Key and size_t and
84   *  whose result type is size_t.  Given arguments k and N, the
85   *  return value is in the range [0, N).  Default: hash(k, N) =
86   *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
87   *  and _H2 are ignored.
88   *
89   *  @tparam _RehashPolicy  Policy class with three members, all of
90   *  which govern the bucket count. _M_next_bkt(n) returns a bucket
91   *  count no smaller than n.  _M_bkt_for_elements(n) returns a
92   *  bucket count appropriate for an element count of n.
93   *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
94   *  current bucket count is n_bkt and the current element count is
95   *  n_elt, we need to increase the bucket count.  If so, returns
96   *  make_pair(true, n), where n is the new bucket count.  If not,
97   *  returns make_pair(false, <anything>)
98   *
99   *  @tparam _Traits  Compile-time class with three boolean
100   *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
101   *   __unique_keys.
102   *
103   *  Each _Hashtable data structure has:
104   *
105   *  - _Bucket[]       _M_buckets
106   *  - _Hash_node_base _M_bbegin
107   *  - size_type       _M_bucket_count
108   *  - size_type       _M_element_count
109   *
110   *  with _Bucket being _Hash_node* and _Hash_node containing:
111   *
112   *  - _Hash_node*   _M_next
113   *  - Tp            _M_value
114   *  - size_t        _M_hash_code if cache_hash_code is true
115   *
116   *  In terms of Standard containers the hashtable is like the aggregation of:
117   *
118   *  - std::forward_list<_Node> containing the elements
119   *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
120   *
121   *  The non-empty buckets contain the node before the first node in the
122   *  bucket. This design makes it possible to implement something like a
123   *  std::forward_list::insert_after on container insertion and
124   *  std::forward_list::erase_after on container erase
125   *  calls. _M_before_begin is equivalent to
126   *  std::forward_list::before_begin. Empty buckets contain
127   *  nullptr.  Note that one of the non-empty buckets contains
128   *  &_M_before_begin which is not a dereferenceable node so the
129   *  node pointer in a bucket shall never be dereferenced, only its
130   *  next node can be.
131   *
132   *  Walking through a bucket's nodes requires a check on the hash code to
133   *  see if each node is still in the bucket. Such a design assumes a
134   *  quite efficient hash functor and is one of the reasons it is
135   *  highly advisable to set __cache_hash_code to true.
136   *
137   *  The container iterators are simply built from nodes. This way
138   *  incrementing the iterator is perfectly efficient independent of
139   *  how many empty buckets there are in the container.
140   *
141   *  On insert we compute the element's hash code and use it to find the
142   *  bucket index. If the element must be inserted in an empty bucket
143   *  we add it at the beginning of the singly linked list and make the
144   *  bucket point to _M_before_begin. The bucket that used to point to
145   *  _M_before_begin, if any, is updated to point to its new before
146   *  begin node.
147   *
148   *  On erase, the simple iterator design requires using the hash
149   *  functor to get the index of the bucket to update. For this
150   *  reason, when __cache_hash_code is set to false the hash functor must
151   *  not throw and this is enforced by a static assertion.
152   *
153   *  Functionality is implemented by decomposition into base classes,
154   *  where the derived _Hashtable class is used in _Map_base,
155   *  _Insert, _Rehash_base, and _Equality base classes to access the
156   *  "this" pointer. _Hashtable_base is used in the base classes as a
157   *  non-recursive, fully-completed-type so that detailed nested type
158   *  information, such as iterator type and node type, can be
159   *  used. This is similar to the "Curiously Recurring Template
160   *  Pattern" (CRTP) technique, but uses a reconstructed, not
161   *  explicitly passed, template pattern.
162   *
163   *  Base class templates are:
164   *    - __detail::_Hashtable_base
165   *    - __detail::_Map_base
166   *    - __detail::_Insert
167   *    - __detail::_Rehash_base
168   *    - __detail::_Equality
169   */
170  template<typename _Key, typename _Value, typename _Alloc,
171	   typename _ExtractKey, typename _Equal,
172	   typename _H1, typename _H2, typename _Hash,
173	   typename _RehashPolicy, typename _Traits>
174    class _Hashtable
175    : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
176				       _H1, _H2, _Hash, _Traits>,
177      public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179      public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181      public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
182				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
183      public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
184				 _H1, _H2, _Hash, _RehashPolicy, _Traits>
185    {
186    public:
187      typedef _Key                                    key_type;
188      typedef _Value                                  value_type;
189      typedef _Alloc                                  allocator_type;
190      typedef _Equal                                  key_equal;
191
192      // mapped_type, if present, comes from _Map_base.
193      // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
194      typedef typename _Alloc::pointer		      pointer;
195      typedef typename _Alloc::const_pointer          const_pointer;
196      typedef typename _Alloc::reference              reference;
197      typedef typename _Alloc::const_reference        const_reference;
198
199    private:
200      using __rehash_type = _RehashPolicy;
201      using __rehash_state = typename __rehash_type::_State;
202
203      using __traits_type = _Traits;
204      using __hash_cached = typename __traits_type::__hash_cached;
205      using __constant_iterators = typename __traits_type::__constant_iterators;
206      using __unique_keys = typename __traits_type::__unique_keys;
207
208      using __key_extract = typename std::conditional<
209					     __constant_iterators::value,
210				       	     __detail::_Identity,
211					     __detail::_Select1st>::type;
212
213      using __hashtable_base = __detail::
214			       _Hashtable_base<_Key, _Value, _ExtractKey,
215					      _Equal, _H1, _H2, _Hash, _Traits>;
216
217      using __hash_code_base =  typename __hashtable_base::__hash_code_base;
218      using __hash_code =  typename __hashtable_base::__hash_code;
219      using __node_type = typename __hashtable_base::__node_type;
220      using __node_base = typename __hashtable_base::__node_base;
221      using __bucket_type = typename __hashtable_base::__bucket_type;
222      using __ireturn_type = typename __hashtable_base::__ireturn_type;
223      using __iconv_type = typename __hashtable_base::__iconv_type;
224
225      using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
226					     _Equal, _H1, _H2, _Hash,
227					     _RehashPolicy, _Traits>;
228
229      using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
230						   _ExtractKey, _Equal,
231						   _H1, _H2, _Hash,
232						   _RehashPolicy, _Traits>;
233
234      using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
235					    _Equal, _H1, _H2, _Hash,
236					    _RehashPolicy, _Traits>;
237
238      // Metaprogramming for picking apart hash caching.
239      using __hash_noexcept = __detail::__is_noexcept_hash<_Key, _H1>;
240
241      template<typename _Cond>
242	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
243
244      template<typename _Cond>
245	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
246
247      // Compile-time diagnostics.
248
249      // When hash codes are not cached the hash functor shall not
250      // throw because it is used in methods (erase, swap...) that
251      // shall not throw.
252      static_assert(__if_hash_not_cached<__hash_noexcept>::value,
253		    "Cache the hash code"
254		    " or qualify your hash functor with noexcept");
255
256      // Following two static assertions are necessary to guarantee
257      // that local_iterator will be default constructible.
258
259      // When hash codes are cached local iterator inherits from H2 functor
260      // which must then be default constructible.
261      static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
262		    "Functor used to map hash code to bucket index"
263		    " must be default constructible");
264
265      // When hash codes are not cached local iterator inherits from
266      // __hash_code_base above to compute node bucket index so it has to be
267      // default constructible.
268      static_assert(__if_hash_not_cached<
269		    is_default_constructible<
270		      // We use _Hashtable_ebo_helper to access the protected
271		      // default constructor.
272		      __detail::_Hashtable_ebo_helper<0, __hash_code_base>>>::value,
273		    "Cache the hash code or make functors involved in hash code"
274		    " and bucket index computation default constructible");
275
276      // When hash codes are not cached local iterator inherits from
277      // __hash_code_base above to compute node bucket index so it has to be
278      // assignable.
279      static_assert(__if_hash_not_cached<
280		      is_copy_assignable<__hash_code_base>>::value,
281		    "Cache the hash code or make functors involved in hash code"
282		    " and bucket index computation copy assignable");
283
284    public:
285      template<typename _Keya, typename _Valuea, typename _Alloca,
286	       typename _ExtractKeya, typename _Equala,
287	       typename _H1a, typename _H2a, typename _Hasha,
288	       typename _RehashPolicya, typename _Traitsa,
289	       bool _Unique_keysa>
290	friend struct __detail::_Map_base;
291
292      template<typename _Keya, typename _Valuea, typename _Alloca,
293	       typename _ExtractKeya, typename _Equala,
294	       typename _H1a, typename _H2a, typename _Hasha,
295	       typename _RehashPolicya, typename _Traitsa>
296	friend struct __detail::_Insert_base;
297
298      template<typename _Keya, typename _Valuea, typename _Alloca,
299	       typename _ExtractKeya, typename _Equala,
300	       typename _H1a, typename _H2a, typename _Hasha,
301	       typename _RehashPolicya, typename _Traitsa,
302	       bool _Constant_iteratorsa, bool _Unique_keysa>
303	friend struct __detail::_Insert;
304
305      using size_type = typename __hashtable_base::size_type;
306      using difference_type = typename __hashtable_base::difference_type;
307
308      using iterator = typename __hashtable_base::iterator;
309      using const_iterator = typename __hashtable_base::const_iterator;
310
311      using local_iterator = typename __hashtable_base::local_iterator;
312      using const_local_iterator = typename __hashtable_base::
313				   const_local_iterator;
314
315    private:
316      typedef typename _Alloc::template rebind<__node_type>::other
317							_Node_allocator_type;
318      typedef typename _Alloc::template rebind<__bucket_type>::other
319							_Bucket_allocator_type;
320
321      using __before_begin = __detail::_Before_begin<_Node_allocator_type>;
322
323      __bucket_type*		_M_buckets;
324      size_type			_M_bucket_count;
325      __before_begin		_M_bbegin;
326      size_type			_M_element_count;
327      _RehashPolicy		_M_rehash_policy;
328
329      _Node_allocator_type&
330      _M_node_allocator()
331      { return _M_bbegin; }
332
333      const _Node_allocator_type&
334      _M_node_allocator() const
335      { return _M_bbegin; }
336
337      __node_base&
338      _M_before_begin()
339      { return _M_bbegin._M_node; }
340
341      const __node_base&
342      _M_before_begin() const
343      { return _M_bbegin._M_node; }
344
345      template<typename... _Args>
346	__node_type*
347	_M_allocate_node(_Args&&... __args);
348
349      void
350      _M_deallocate_node(__node_type* __n);
351
352      // Deallocate the linked list of nodes pointed to by __n
353      void
354      _M_deallocate_nodes(__node_type* __n);
355
356      __bucket_type*
357      _M_allocate_buckets(size_type __n);
358
359      void
360      _M_deallocate_buckets(__bucket_type*, size_type __n);
361
362      // Gets bucket begin, deals with the fact that non-empty buckets contain
363      // their before begin node.
364      __node_type*
365      _M_bucket_begin(size_type __bkt) const;
366
367      __node_type*
368      _M_begin() const
369      { return static_cast<__node_type*>(_M_before_begin()._M_nxt); }
370
371    public:
372      // Constructor, destructor, assignment, swap
373      _Hashtable(size_type __bucket_hint,
374		 const _H1&, const _H2&, const _Hash&,
375		 const _Equal&, const _ExtractKey&,
376		 const allocator_type&);
377
378      template<typename _InputIterator>
379	_Hashtable(_InputIterator __first, _InputIterator __last,
380		   size_type __bucket_hint,
381		   const _H1&, const _H2&, const _Hash&,
382		   const _Equal&, const _ExtractKey&,
383		   const allocator_type&);
384
385      _Hashtable(const _Hashtable&);
386
387      _Hashtable(_Hashtable&&);
388
389      // Use delegating constructors.
390      explicit
391      _Hashtable(size_type __n = 10,
392		 const _H1& __hf = _H1(),
393		 const key_equal& __eql = key_equal(),
394		 const allocator_type& __a = allocator_type())
395      : _Hashtable(__n, __hf, __detail::_Mod_range_hashing(),
396		   __detail::_Default_ranged_hash(), __eql,
397		   __key_extract(), __a)
398      { }
399
400      template<typename _InputIterator>
401	_Hashtable(_InputIterator __f, _InputIterator __l,
402		   size_type __n = 0,
403		   const _H1& __hf = _H1(),
404		   const key_equal& __eql = key_equal(),
405		   const allocator_type& __a = allocator_type())
406	: _Hashtable(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
407		     __detail::_Default_ranged_hash(), __eql,
408		     __key_extract(), __a)
409	{ }
410
411      _Hashtable(initializer_list<value_type> __l,
412		 size_type __n = 0,
413		 const _H1& __hf = _H1(),
414		 const key_equal& __eql = key_equal(),
415		 const allocator_type& __a = allocator_type())
416      : _Hashtable(__l.begin(), __l.end(), __n, __hf,
417		   __detail::_Mod_range_hashing(),
418		   __detail::_Default_ranged_hash(), __eql,
419		   __key_extract(), __a)
420      { }
421
422      _Hashtable&
423      operator=(const _Hashtable& __ht)
424      {
425	_Hashtable __tmp(__ht);
426	this->swap(__tmp);
427	return *this;
428      }
429
430      _Hashtable&
431      operator=(_Hashtable&& __ht)
432      {
433	// NB: DR 1204.
434	// NB: DR 675.
435	this->clear();
436	this->swap(__ht);
437	return *this;
438      }
439
440      _Hashtable&
441      operator=(initializer_list<value_type> __l)
442      {
443	this->clear();
444	this->insert(__l.begin(), __l.end());
445	return *this;
446      }
447
448      ~_Hashtable() noexcept;
449
450      void swap(_Hashtable&);
451
452      // Basic container operations
453      iterator
454      begin() noexcept
455      { return iterator(_M_begin()); }
456
457      const_iterator
458      begin() const noexcept
459      { return const_iterator(_M_begin()); }
460
461      iterator
462      end() noexcept
463      { return iterator(nullptr); }
464
465      const_iterator
466      end() const noexcept
467      { return const_iterator(nullptr); }
468
469      const_iterator
470      cbegin() const noexcept
471      { return const_iterator(_M_begin()); }
472
473      const_iterator
474      cend() const noexcept
475      { return const_iterator(nullptr); }
476
477      size_type
478      size() const noexcept
479      { return _M_element_count; }
480
481      bool
482      empty() const noexcept
483      { return size() == 0; }
484
485      allocator_type
486      get_allocator() const noexcept
487      { return allocator_type(_M_node_allocator()); }
488
489      size_type
490      max_size() const noexcept
491      { return _M_node_allocator().max_size(); }
492
493      // Observers
494      key_equal
495      key_eq() const
496      { return this->_M_eq(); }
497
498      // hash_function, if present, comes from _Hash_code_base.
499
500      // Bucket operations
501      size_type
502      bucket_count() const noexcept
503      { return _M_bucket_count; }
504
505      size_type
506      max_bucket_count() const noexcept
507      { return max_size(); }
508
509      size_type
510      bucket_size(size_type __n) const
511      { return std::distance(begin(__n), end(__n)); }
512
513      size_type
514      bucket(const key_type& __k) const
515      { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
516
517      local_iterator
518      begin(size_type __n)
519      {
520	return local_iterator(*this, _M_bucket_begin(__n),
521			      __n, _M_bucket_count);
522      }
523
524      local_iterator
525      end(size_type __n)
526      { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
527
528      const_local_iterator
529      begin(size_type __n) const
530      {
531	return const_local_iterator(*this, _M_bucket_begin(__n),
532				    __n, _M_bucket_count);
533      }
534
535      const_local_iterator
536      end(size_type __n) const
537      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
538
539      // DR 691.
540      const_local_iterator
541      cbegin(size_type __n) const
542      {
543	return const_local_iterator(*this, _M_bucket_begin(__n),
544				    __n, _M_bucket_count);
545      }
546
547      const_local_iterator
548      cend(size_type __n) const
549      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
550
551      float
552      load_factor() const noexcept
553      {
554	return static_cast<float>(size()) / static_cast<float>(bucket_count());
555      }
556
557      // max_load_factor, if present, comes from _Rehash_base.
558
559      // Generalization of max_load_factor.  Extension, not found in
560      // TR1.  Only useful if _RehashPolicy is something other than
561      // the default.
562      const _RehashPolicy&
563      __rehash_policy() const
564      { return _M_rehash_policy; }
565
566      void
567      __rehash_policy(const _RehashPolicy&);
568
569      // Lookup.
570      iterator
571      find(const key_type& __k);
572
573      const_iterator
574      find(const key_type& __k) const;
575
576      size_type
577      count(const key_type& __k) const;
578
579      std::pair<iterator, iterator>
580      equal_range(const key_type& __k);
581
582      std::pair<const_iterator, const_iterator>
583      equal_range(const key_type& __k) const;
584
585    protected:
586      // Bucket index computation helpers.
587      size_type
588      _M_bucket_index(__node_type* __n) const
589      { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
590
591      size_type
592      _M_bucket_index(const key_type& __k, __hash_code __c) const
593      { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
594
595      // Find and insert helper functions and types
596      // Find the node before the one matching the criteria.
597      __node_base*
598      _M_find_before_node(size_type, const key_type&, __hash_code) const;
599
600      __node_type*
601      _M_find_node(size_type __bkt, const key_type& __key,
602		   __hash_code __c) const
603      {
604	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
605	if (__before_n)
606	  return static_cast<__node_type*>(__before_n->_M_nxt);
607	return nullptr;
608      }
609
610      // Insert a node at the beginning of a bucket.
611      void
612      _M_insert_bucket_begin(size_type, __node_type*);
613
614      // Remove the bucket first node
615      void
616      _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
617			     size_type __next_bkt);
618
619      // Get the node before __n in the bucket __bkt
620      __node_base*
621      _M_get_previous_node(size_type __bkt, __node_base* __n);
622
623      // Insert node with hash code __code, in bucket bkt if no rehash (assumes
624      // no element with its key already present). Take ownership of the node,
625      // deallocate it on exception.
626      iterator
627      _M_insert_unique_node(size_type __bkt, __hash_code __code,
628			    __node_type* __n);
629
630      // Insert node with hash code __code. Take ownership of the node,
631      // deallocate it on exception.
632      iterator
633      _M_insert_multi_node(__hash_code __code, __node_type* __n);
634
635      template<typename... _Args>
636	std::pair<iterator, bool>
637	_M_emplace(std::true_type, _Args&&... __args);
638
639      template<typename... _Args>
640	iterator
641	_M_emplace(std::false_type, _Args&&... __args);
642
643      template<typename _Arg>
644	std::pair<iterator, bool>
645	_M_insert(_Arg&&, std::true_type);
646
647      template<typename _Arg>
648	iterator
649	_M_insert(_Arg&&, std::false_type);
650
651      size_type
652      _M_erase(std::true_type, const key_type&);
653
654      size_type
655      _M_erase(std::false_type, const key_type&);
656
657      iterator
658      _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
659
660    public:
661      // Emplace
662      template<typename... _Args>
663	__ireturn_type
664	emplace(_Args&&... __args)
665	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
666
667      template<typename... _Args>
668	iterator
669	emplace_hint(const_iterator, _Args&&... __args)
670	{ return __iconv_type()(emplace(std::forward<_Args>(__args)...)); }
671
672      // Insert member functions via inheritance.
673
674      // Erase
675      iterator
676      erase(const_iterator);
677
678      // LWG 2059.
679      iterator
680      erase(iterator __it)
681      { return erase(const_iterator(__it)); }
682
683      size_type
684      erase(const key_type& __k)
685      { return _M_erase(__unique_keys(), __k); }
686
687      iterator
688      erase(const_iterator, const_iterator);
689
690      void
691      clear() noexcept;
692
693      // Set number of buckets to be appropriate for container of n element.
694      void rehash(size_type __n);
695
696      // DR 1189.
697      // reserve, if present, comes from _Rehash_base.
698
699    private:
700      // Helper rehash method used when keys are unique.
701      void _M_rehash_aux(size_type __n, std::true_type);
702
703      // Helper rehash method used when keys can be non-unique.
704      void _M_rehash_aux(size_type __n, std::false_type);
705
706      // Unconditionally change size of bucket array to n, restore
707      // hash policy state to __state on exception.
708      void _M_rehash(size_type __n, const __rehash_state& __state);
709    };
710
711
712  // Definitions of class template _Hashtable's out-of-line member functions.
713  template<typename _Key, typename _Value,
714	   typename _Alloc, typename _ExtractKey, typename _Equal,
715	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
716	   typename _Traits>
717    template<typename... _Args>
718      typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
719			  _H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_type*
720      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
721		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
722      _M_allocate_node(_Args&&... __args)
723      {
724	__node_type* __n = _M_node_allocator().allocate(1);
725	__try
726	  {
727	    _M_node_allocator().construct(__n, std::forward<_Args>(__args)...);
728	    return __n;
729	  }
730	__catch(...)
731	  {
732	    _M_node_allocator().deallocate(__n, 1);
733	    __throw_exception_again;
734	  }
735      }
736
737  template<typename _Key, typename _Value,
738	   typename _Alloc, typename _ExtractKey, typename _Equal,
739	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
740	   typename _Traits>
741    void
742    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
743	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
744    _M_deallocate_node(__node_type* __n)
745    {
746      _M_node_allocator().destroy(__n);
747      _M_node_allocator().deallocate(__n, 1);
748    }
749
750  template<typename _Key, typename _Value,
751	   typename _Alloc, typename _ExtractKey, typename _Equal,
752	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
753	   typename _Traits>
754    void
755    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
756	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
757    _M_deallocate_nodes(__node_type* __n)
758    {
759      while (__n)
760	{
761	  __node_type* __tmp = __n;
762	  __n = __n->_M_next();
763	  _M_deallocate_node(__tmp);
764	}
765    }
766
767  template<typename _Key, typename _Value,
768	   typename _Alloc, typename _ExtractKey, typename _Equal,
769	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
770	   typename _Traits>
771    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
772			_H1, _H2, _Hash, _RehashPolicy, _Traits>::__bucket_type*
773    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
774	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
775    _M_allocate_buckets(size_type __n)
776    {
777      _Bucket_allocator_type __alloc(_M_node_allocator());
778
779      __bucket_type* __p = __alloc.allocate(__n);
780      __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
781      return __p;
782    }
783
784  template<typename _Key, typename _Value,
785	   typename _Alloc, typename _ExtractKey, typename _Equal,
786	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
787	   typename _Traits>
788    void
789    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
790	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
791    _M_deallocate_buckets(__bucket_type* __p, size_type __n)
792    {
793      _Bucket_allocator_type __alloc(_M_node_allocator());
794      __alloc.deallocate(__p, __n);
795    }
796
797  template<typename _Key, typename _Value,
798	   typename _Alloc, typename _ExtractKey, typename _Equal,
799	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
800	   typename _Traits>
801    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
802			_Equal, _H1, _H2, _Hash, _RehashPolicy,
803			_Traits>::__node_type*
804    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
805	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
806    _M_bucket_begin(size_type __bkt) const
807    {
808      __node_base* __n = _M_buckets[__bkt];
809      return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
810    }
811
812  template<typename _Key, typename _Value,
813	   typename _Alloc, typename _ExtractKey, typename _Equal,
814	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
815	   typename _Traits>
816    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818    _Hashtable(size_type __bucket_hint,
819	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
820	       const _Equal& __eq, const _ExtractKey& __exk,
821	       const allocator_type& __a)
822    : __hashtable_base(__exk, __h1, __h2, __h, __eq),
823      __map_base(),
824      __rehash_base(),
825      _M_bucket_count(0),
826      _M_bbegin(__a),
827      _M_element_count(0),
828      _M_rehash_policy()
829    {
830      _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
831      _M_buckets = _M_allocate_buckets(_M_bucket_count);
832    }
833
834  template<typename _Key, typename _Value,
835	   typename _Alloc, typename _ExtractKey, typename _Equal,
836	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
837	   typename _Traits>
838    template<typename _InputIterator>
839      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
840		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
841      _Hashtable(_InputIterator __f, _InputIterator __l,
842		 size_type __bucket_hint,
843		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
844		 const _Equal& __eq, const _ExtractKey& __exk,
845		 const allocator_type& __a)
846      : __hashtable_base(__exk, __h1, __h2, __h, __eq),
847	__map_base(),
848	__rehash_base(),
849	_M_bucket_count(0),
850	_M_bbegin(__a),
851	_M_element_count(0),
852	_M_rehash_policy()
853      {
854	auto __nb_elems = __detail::__distance_fw(__f, __l);
855	_M_bucket_count =
856	  _M_rehash_policy._M_next_bkt(
857	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
858		     __bucket_hint));
859
860	_M_buckets = _M_allocate_buckets(_M_bucket_count);
861	__try
862	  {
863	    for (; __f != __l; ++__f)
864	      this->insert(*__f);
865	  }
866	__catch(...)
867	  {
868	    clear();
869	    _M_deallocate_buckets(_M_buckets, _M_bucket_count);
870	    __throw_exception_again;
871	  }
872      }
873
874  template<typename _Key, typename _Value,
875	   typename _Alloc, typename _ExtractKey, typename _Equal,
876	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
877	   typename _Traits>
878    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
879	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
880    _Hashtable(const _Hashtable& __ht)
881    : __hashtable_base(__ht),
882      __map_base(__ht),
883      __rehash_base(__ht),
884      _M_bucket_count(__ht._M_bucket_count),
885      _M_bbegin(__ht._M_bbegin),
886      _M_element_count(__ht._M_element_count),
887      _M_rehash_policy(__ht._M_rehash_policy)
888    {
889      _M_buckets = _M_allocate_buckets(_M_bucket_count);
890      __try
891	{
892	  if (!__ht._M_before_begin()._M_nxt)
893	    return;
894
895	  // First deal with the special first node pointed to by
896	  // _M_before_begin.
897	  const __node_type* __ht_n = __ht._M_begin();
898	  __node_type* __this_n = _M_allocate_node(__ht_n->_M_v);
899	  this->_M_copy_code(__this_n, __ht_n);
900	  _M_before_begin()._M_nxt = __this_n;
901	  _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin();
902
903	  // Then deal with other nodes.
904	  __node_base* __prev_n = __this_n;
905	  for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
906	    {
907	      __this_n = _M_allocate_node(__ht_n->_M_v);
908	      __prev_n->_M_nxt = __this_n;
909	      this->_M_copy_code(__this_n, __ht_n);
910	      size_type __bkt = _M_bucket_index(__this_n);
911	      if (!_M_buckets[__bkt])
912		_M_buckets[__bkt] = __prev_n;
913	      __prev_n = __this_n;
914	    }
915	}
916      __catch(...)
917	{
918	  clear();
919	  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
920	  __throw_exception_again;
921	}
922    }
923
924  template<typename _Key, typename _Value,
925	   typename _Alloc, typename _ExtractKey, typename _Equal,
926	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
927	   typename _Traits>
928    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
929	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
930    _Hashtable(_Hashtable&& __ht)
931    : __hashtable_base(__ht),
932      __map_base(__ht),
933      __rehash_base(__ht),
934      _M_buckets(__ht._M_buckets),
935      _M_bucket_count(__ht._M_bucket_count),
936      _M_bbegin(std::move(__ht._M_bbegin)),
937      _M_element_count(__ht._M_element_count),
938      _M_rehash_policy(__ht._M_rehash_policy)
939    {
940      // Update, if necessary, bucket pointing to before begin that hasn't moved.
941      if (_M_begin())
942	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
943      __ht._M_rehash_policy = _RehashPolicy();
944      __ht._M_bucket_count = __ht._M_rehash_policy._M_next_bkt(0);
945      __ht._M_buckets = __ht._M_allocate_buckets(__ht._M_bucket_count);
946      __ht._M_before_begin()._M_nxt = nullptr;
947      __ht._M_element_count = 0;
948    }
949
950  template<typename _Key, typename _Value,
951	   typename _Alloc, typename _ExtractKey, typename _Equal,
952	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
953	   typename _Traits>
954    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
955	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
956    ~_Hashtable() noexcept
957    {
958      clear();
959      _M_deallocate_buckets(_M_buckets, _M_bucket_count);
960    }
961
962  template<typename _Key, typename _Value,
963	   typename _Alloc, typename _ExtractKey, typename _Equal,
964	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
965	   typename _Traits>
966    void
967    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
968	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
969    swap(_Hashtable& __x)
970    {
971      // The only base class with member variables is hash_code_base.
972      // We define _Hash_code_base::_M_swap because different
973      // specializations have different members.
974      this->_M_swap(__x);
975
976      // _GLIBCXX_RESOLVE_LIB_DEFECTS
977      // 431. Swapping containers with unequal allocators.
978      std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator(),
979							__x._M_node_allocator());
980
981      std::swap(_M_rehash_policy, __x._M_rehash_policy);
982      std::swap(_M_buckets, __x._M_buckets);
983      std::swap(_M_bucket_count, __x._M_bucket_count);
984      std::swap(_M_before_begin()._M_nxt, __x._M_before_begin()._M_nxt);
985      std::swap(_M_element_count, __x._M_element_count);
986
987      // Fix buckets containing the _M_before_begin pointers that
988      // can't be swapped.
989      if (_M_begin())
990	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
991      if (__x._M_begin())
992	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
993	  = &(__x._M_before_begin());
994    }
995
996  template<typename _Key, typename _Value,
997	   typename _Alloc, typename _ExtractKey, typename _Equal,
998	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
999	   typename _Traits>
1000    void
1001    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1002	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1003    __rehash_policy(const _RehashPolicy& __pol)
1004    {
1005      size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
1006      __n_bkt = __pol._M_next_bkt(__n_bkt);
1007      if (__n_bkt != _M_bucket_count)
1008	_M_rehash(__n_bkt, _M_rehash_policy._M_state());
1009      _M_rehash_policy = __pol;
1010    }
1011
1012  template<typename _Key, typename _Value,
1013	   typename _Alloc, typename _ExtractKey, typename _Equal,
1014	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1015	   typename _Traits>
1016    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1017			_H1, _H2, _Hash, _RehashPolicy,
1018			_Traits>::iterator
1019    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1020	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1021    find(const key_type& __k)
1022    {
1023      __hash_code __code = this->_M_hash_code(__k);
1024      std::size_t __n = _M_bucket_index(__k, __code);
1025      __node_type* __p = _M_find_node(__n, __k, __code);
1026      return __p ? iterator(__p) : this->end();
1027    }
1028
1029  template<typename _Key, typename _Value,
1030	   typename _Alloc, typename _ExtractKey, typename _Equal,
1031	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1032	   typename _Traits>
1033    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1034			_H1, _H2, _Hash, _RehashPolicy,
1035			_Traits>::const_iterator
1036    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1037	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1038    find(const key_type& __k) const
1039    {
1040      __hash_code __code = this->_M_hash_code(__k);
1041      std::size_t __n = _M_bucket_index(__k, __code);
1042      __node_type* __p = _M_find_node(__n, __k, __code);
1043      return __p ? const_iterator(__p) : this->end();
1044    }
1045
1046  template<typename _Key, typename _Value,
1047	   typename _Alloc, typename _ExtractKey, typename _Equal,
1048	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1049	   typename _Traits>
1050    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1051			_H1, _H2, _Hash, _RehashPolicy,
1052			_Traits>::size_type
1053    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1054	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1055    count(const key_type& __k) const
1056    {
1057      __hash_code __code = this->_M_hash_code(__k);
1058      std::size_t __n = _M_bucket_index(__k, __code);
1059      __node_type* __p = _M_bucket_begin(__n);
1060      if (!__p)
1061	return 0;
1062
1063      std::size_t __result = 0;
1064      for (;; __p = __p->_M_next())
1065	{
1066	  if (this->_M_equals(__k, __code, __p))
1067	    ++__result;
1068	  else if (__result)
1069	    // All equivalent values are next to each other, if we
1070	    // found a non-equivalent value after an equivalent one it
1071	    // means that we won't find any more equivalent values.
1072	    break;
1073	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1074	    break;
1075	}
1076      return __result;
1077    }
1078
1079  template<typename _Key, typename _Value,
1080	   typename _Alloc, typename _ExtractKey, typename _Equal,
1081	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1082	   typename _Traits>
1083    std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1084				  _ExtractKey, _Equal, _H1,
1085				  _H2, _Hash, _RehashPolicy,
1086				  _Traits>::iterator,
1087	      typename _Hashtable<_Key, _Value, _Alloc,
1088				  _ExtractKey, _Equal, _H1,
1089				  _H2, _Hash, _RehashPolicy,
1090				  _Traits>::iterator>
1091    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1092	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1093    equal_range(const key_type& __k)
1094    {
1095      __hash_code __code = this->_M_hash_code(__k);
1096      std::size_t __n = _M_bucket_index(__k, __code);
1097      __node_type* __p = _M_find_node(__n, __k, __code);
1098
1099      if (__p)
1100	{
1101	  __node_type* __p1 = __p->_M_next();
1102	  while (__p1 && _M_bucket_index(__p1) == __n
1103		 && this->_M_equals(__k, __code, __p1))
1104	    __p1 = __p1->_M_next();
1105
1106	  return std::make_pair(iterator(__p), iterator(__p1));
1107	}
1108      else
1109	return std::make_pair(this->end(), this->end());
1110    }
1111
1112  template<typename _Key, typename _Value,
1113	   typename _Alloc, typename _ExtractKey, typename _Equal,
1114	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1115	   typename _Traits>
1116    std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1117				  _ExtractKey, _Equal, _H1,
1118				  _H2, _Hash, _RehashPolicy,
1119				  _Traits>::const_iterator,
1120	      typename _Hashtable<_Key, _Value, _Alloc,
1121				  _ExtractKey, _Equal, _H1,
1122				  _H2, _Hash, _RehashPolicy,
1123				  _Traits>::const_iterator>
1124    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1125	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1126    equal_range(const key_type& __k) const
1127    {
1128      __hash_code __code = this->_M_hash_code(__k);
1129      std::size_t __n = _M_bucket_index(__k, __code);
1130      __node_type* __p = _M_find_node(__n, __k, __code);
1131
1132      if (__p)
1133	{
1134	  __node_type* __p1 = __p->_M_next();
1135	  while (__p1 && _M_bucket_index(__p1) == __n
1136		 && this->_M_equals(__k, __code, __p1))
1137	    __p1 = __p1->_M_next();
1138
1139	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1140	}
1141      else
1142	return std::make_pair(this->end(), this->end());
1143    }
1144
1145  // Find the node whose key compares equal to k in the bucket n.
1146  // Return nullptr if no node is found.
1147  template<typename _Key, typename _Value,
1148	   typename _Alloc, typename _ExtractKey, typename _Equal,
1149	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1150	   typename _Traits>
1151    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1152			_Equal, _H1, _H2, _Hash, _RehashPolicy,
1153			_Traits>::__node_base*
1154    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1155	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1156    _M_find_before_node(size_type __n, const key_type& __k,
1157			__hash_code __code) const
1158    {
1159      __node_base* __prev_p = _M_buckets[__n];
1160      if (!__prev_p)
1161	return nullptr;
1162      __node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);
1163      for (;; __p = __p->_M_next())
1164	{
1165	  if (this->_M_equals(__k, __code, __p))
1166	    return __prev_p;
1167	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1168	    break;
1169	  __prev_p = __p;
1170	}
1171      return nullptr;
1172    }
1173
1174  template<typename _Key, typename _Value,
1175	   typename _Alloc, typename _ExtractKey, typename _Equal,
1176	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1177	   typename _Traits>
1178    void
1179    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1180	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1181    _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1182    {
1183      if (_M_buckets[__bkt])
1184	{
1185	  // Bucket is not empty, we just need to insert the new node
1186	  // after the bucket before begin.
1187	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1188	  _M_buckets[__bkt]->_M_nxt = __node;
1189	}
1190      else
1191	{
1192	  // The bucket is empty, the new node is inserted at the
1193	  // beginning of the singly-linked list and the bucket will
1194	  // contain _M_before_begin pointer.
1195	  __node->_M_nxt = _M_before_begin()._M_nxt;
1196	  _M_before_begin()._M_nxt = __node;
1197	  if (__node->_M_nxt)
1198	    // We must update former begin bucket that is pointing to
1199	    // _M_before_begin.
1200	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1201	  _M_buckets[__bkt] = &_M_before_begin();
1202	}
1203    }
1204
1205  template<typename _Key, typename _Value,
1206	   typename _Alloc, typename _ExtractKey, typename _Equal,
1207	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1208	   typename _Traits>
1209    void
1210    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1211	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1212    _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1213			   size_type __next_bkt)
1214    {
1215      if (!__next || __next_bkt != __bkt)
1216	{
1217	  // Bucket is now empty
1218	  // First update next bucket if any
1219	  if (__next)
1220	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1221
1222	  // Second update before begin node if necessary
1223	  if (&_M_before_begin() == _M_buckets[__bkt])
1224	    _M_before_begin()._M_nxt = __next;
1225	  _M_buckets[__bkt] = nullptr;
1226	}
1227    }
1228
1229  template<typename _Key, typename _Value,
1230	   typename _Alloc, typename _ExtractKey, typename _Equal,
1231	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1232	   typename _Traits>
1233    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1234			_Equal, _H1, _H2, _Hash, _RehashPolicy,
1235			_Traits>::__node_base*
1236    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1237	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1238    _M_get_previous_node(size_type __bkt, __node_base* __n)
1239    {
1240      __node_base* __prev_n = _M_buckets[__bkt];
1241      while (__prev_n->_M_nxt != __n)
1242	__prev_n = __prev_n->_M_nxt;
1243      return __prev_n;
1244    }
1245
1246  template<typename _Key, typename _Value,
1247	   typename _Alloc, typename _ExtractKey, typename _Equal,
1248	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1249	   typename _Traits>
1250    template<typename... _Args>
1251      std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1252				    _ExtractKey, _Equal, _H1,
1253				    _H2, _Hash, _RehashPolicy,
1254				    _Traits>::iterator, bool>
1255      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1256		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1257      _M_emplace(std::true_type, _Args&&... __args)
1258      {
1259	// First build the node to get access to the hash code
1260	__node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
1261	const key_type& __k = this->_M_extract()(__node->_M_v);
1262	__hash_code __code;
1263	__try
1264	  {
1265	    __code = this->_M_hash_code(__k);
1266	  }
1267	__catch(...)
1268	  {
1269	    _M_deallocate_node(__node);
1270	    __throw_exception_again;
1271	  }
1272
1273	size_type __bkt = _M_bucket_index(__k, __code);
1274	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1275	  {
1276	    // There is already an equivalent node, no insertion
1277	    _M_deallocate_node(__node);
1278	    return std::make_pair(iterator(__p), false);
1279	  }
1280
1281	// Insert the node
1282	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1283			      true);
1284      }
1285
1286  template<typename _Key, typename _Value,
1287	   typename _Alloc, typename _ExtractKey, typename _Equal,
1288	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1289	   typename _Traits>
1290    template<typename... _Args>
1291      typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1292			  _H1, _H2, _Hash, _RehashPolicy,
1293			  _Traits>::iterator
1294      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1295		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1296      _M_emplace(std::false_type, _Args&&... __args)
1297      {
1298	// First build the node to get its hash code.
1299	__node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
1300
1301	__hash_code __code;
1302	__try
1303	  {
1304	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v));
1305	  }
1306	__catch(...)
1307	  {
1308	    _M_deallocate_node(__node);
1309	    __throw_exception_again;
1310	  }
1311
1312	return _M_insert_multi_node(__code, __node);
1313      }
1314
1315  template<typename _Key, typename _Value,
1316	   typename _Alloc, typename _ExtractKey, typename _Equal,
1317	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1318	   typename _Traits>
1319    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1320			_H1, _H2, _Hash, _RehashPolicy,
1321			_Traits>::iterator
1322    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1323	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1324    _M_insert_unique_node(size_type __bkt, __hash_code __code,
1325			  __node_type* __node)
1326    {
1327      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1328      std::pair<bool, std::size_t> __do_rehash
1329	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1330
1331      __try
1332	{
1333	  if (__do_rehash.first)
1334	    {
1335	      _M_rehash(__do_rehash.second, __saved_state);
1336	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v), __code);
1337	    }
1338
1339	  this->_M_store_code(__node, __code);
1340
1341	  // Always insert at the begining of the bucket.
1342	  _M_insert_bucket_begin(__bkt, __node);
1343	  ++_M_element_count;
1344	  return iterator(__node);
1345	}
1346      __catch(...)
1347	{
1348	  _M_deallocate_node(__node);
1349	  __throw_exception_again;
1350	}
1351    }
1352
1353  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1354  // already present). Take ownership of the node, deallocate it on exception.
1355  template<typename _Key, typename _Value,
1356	   typename _Alloc, typename _ExtractKey, typename _Equal,
1357	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1358	   typename _Traits>
1359    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1360			_H1, _H2, _Hash, _RehashPolicy,
1361			_Traits>::iterator
1362    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1363	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1364    _M_insert_multi_node(__hash_code __code, __node_type* __node)
1365    {
1366      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1367      std::pair<bool, std::size_t> __do_rehash
1368	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1369
1370      __try
1371	{
1372	  if (__do_rehash.first)
1373	    _M_rehash(__do_rehash.second, __saved_state);
1374
1375	  this->_M_store_code(__node, __code);
1376	  const key_type& __k = this->_M_extract()(__node->_M_v);
1377	  size_type __bkt = _M_bucket_index(__k, __code);
1378
1379	  // Find the node before an equivalent one.
1380	  __node_base* __prev = _M_find_before_node(__bkt, __k, __code);
1381	  if (__prev)
1382	    {
1383	      // Insert after the node before the equivalent one.
1384	      __node->_M_nxt = __prev->_M_nxt;
1385	      __prev->_M_nxt = __node;
1386	    }
1387	  else
1388	    // The inserted node has no equivalent in the
1389	    // hashtable. We must insert the new node at the
1390	    // beginning of the bucket to preserve equivalent
1391	    // elements' relative positions.
1392	    _M_insert_bucket_begin(__bkt, __node);
1393	  ++_M_element_count;
1394	  return iterator(__node);
1395	}
1396      __catch(...)
1397	{
1398	  _M_deallocate_node(__node);
1399	  __throw_exception_again;
1400	}
1401    }
1402
1403  // Insert v if no element with its key is already present.
1404  template<typename _Key, typename _Value,
1405	   typename _Alloc, typename _ExtractKey, typename _Equal,
1406	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1407	   typename _Traits>
1408    template<typename _Arg>
1409      std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1410				    _ExtractKey, _Equal, _H1,
1411				    _H2, _Hash, _RehashPolicy,
1412				    _Traits>::iterator, bool>
1413      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1414		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1415      _M_insert(_Arg&& __v, std::true_type)
1416      {
1417	const key_type& __k = this->_M_extract()(__v);
1418	__hash_code __code = this->_M_hash_code(__k);
1419	size_type __bkt = _M_bucket_index(__k, __code);
1420
1421	__node_type* __n = _M_find_node(__bkt, __k, __code);
1422	if (__n)
1423	  return std::make_pair(iterator(__n), false);
1424
1425	__n = _M_allocate_node(std::forward<_Arg>(__v));
1426	return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1427      }
1428
1429  // Insert v unconditionally.
1430  template<typename _Key, typename _Value,
1431	   typename _Alloc, typename _ExtractKey, typename _Equal,
1432	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1433	   typename _Traits>
1434    template<typename _Arg>
1435      typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1436			  _H1, _H2, _Hash, _RehashPolicy,
1437			  _Traits>::iterator
1438      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1439		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1440      _M_insert(_Arg&& __v, std::false_type)
1441      {
1442	// First compute the hash code so that we don't do anything if it
1443	// throws.
1444	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1445
1446	// Second allocate new node so that we don't rehash if it throws.
1447	__node_type* __node = _M_allocate_node(std::forward<_Arg>(__v));
1448
1449	return _M_insert_multi_node(__code, __node);
1450      }
1451
1452  template<typename _Key, typename _Value,
1453	   typename _Alloc, typename _ExtractKey, typename _Equal,
1454	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1455	   typename _Traits>
1456    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1457			_H1, _H2, _Hash, _RehashPolicy,
1458			_Traits>::iterator
1459    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1460	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1461    erase(const_iterator __it)
1462    {
1463      __node_type* __n = __it._M_cur;
1464      std::size_t __bkt = _M_bucket_index(__n);
1465
1466      // Look for previous node to unlink it from the erased one, this
1467      // is why we need buckets to contain the before begin to make
1468      // this search fast.
1469      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1470      return _M_erase(__bkt, __prev_n, __n);
1471    }
1472
1473  template<typename _Key, typename _Value,
1474	   typename _Alloc, typename _ExtractKey, typename _Equal,
1475	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1476	   typename _Traits>
1477    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1478			_H1, _H2, _Hash, _RehashPolicy,
1479			_Traits>::iterator
1480    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1481	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1482    _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1483    {
1484      if (__prev_n == _M_buckets[__bkt])
1485	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1486	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1487      else if (__n->_M_nxt)
1488	{
1489	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1490	  if (__next_bkt != __bkt)
1491	    _M_buckets[__next_bkt] = __prev_n;
1492	}
1493
1494      __prev_n->_M_nxt = __n->_M_nxt;
1495      iterator __result(__n->_M_next());
1496      _M_deallocate_node(__n);
1497      --_M_element_count;
1498
1499      return __result;
1500    }
1501
1502  template<typename _Key, typename _Value,
1503	   typename _Alloc, typename _ExtractKey, typename _Equal,
1504	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1505	   typename _Traits>
1506    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1507			_H1, _H2, _Hash, _RehashPolicy,
1508			_Traits>::size_type
1509    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1510	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1511    _M_erase(std::true_type, const key_type& __k)
1512    {
1513      __hash_code __code = this->_M_hash_code(__k);
1514      std::size_t __bkt = _M_bucket_index(__k, __code);
1515
1516      // Look for the node before the first matching node.
1517      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1518      if (!__prev_n)
1519	return 0;
1520
1521      // We found a matching node, erase it.
1522      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1523      _M_erase(__bkt, __prev_n, __n);
1524      return 1;
1525    }
1526
1527  template<typename _Key, typename _Value,
1528	   typename _Alloc, typename _ExtractKey, typename _Equal,
1529	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1530	   typename _Traits>
1531    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1532			_H1, _H2, _Hash, _RehashPolicy,
1533			_Traits>::size_type
1534    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1535	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1536    _M_erase(std::false_type, const key_type& __k)
1537    {
1538      __hash_code __code = this->_M_hash_code(__k);
1539      std::size_t __bkt = _M_bucket_index(__k, __code);
1540
1541      // Look for the node before the first matching node.
1542      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1543      if (!__prev_n)
1544	return 0;
1545
1546      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1547      // 526. Is it undefined if a function in the standard changes
1548      // in parameters?
1549      // We use one loop to find all matching nodes and another to deallocate
1550      // them so that the key stays valid during the first loop. It might be
1551      // invalidated indirectly when destroying nodes.
1552      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1553      __node_type* __n_last = __n;
1554      std::size_t __n_last_bkt = __bkt;
1555      do
1556	{
1557	  __n_last = __n_last->_M_next();
1558	  if (!__n_last)
1559	    break;
1560	  __n_last_bkt = _M_bucket_index(__n_last);
1561	}
1562      while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1563
1564      // Deallocate nodes.
1565      size_type __result = 0;
1566      do
1567	{
1568	  __node_type* __p = __n->_M_next();
1569	  _M_deallocate_node(__n);
1570	  __n = __p;
1571	  ++__result;
1572	  --_M_element_count;
1573	}
1574      while (__n != __n_last);
1575
1576      if (__prev_n == _M_buckets[__bkt])
1577	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1578      else if (__n_last && __n_last_bkt != __bkt)
1579	_M_buckets[__n_last_bkt] = __prev_n;
1580      __prev_n->_M_nxt = __n_last;
1581      return __result;
1582    }
1583
1584  template<typename _Key, typename _Value,
1585	   typename _Alloc, typename _ExtractKey, typename _Equal,
1586	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1587	   typename _Traits>
1588    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1589			_H1, _H2, _Hash, _RehashPolicy,
1590			_Traits>::iterator
1591    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1592	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1593    erase(const_iterator __first, const_iterator __last)
1594    {
1595      __node_type* __n = __first._M_cur;
1596      __node_type* __last_n = __last._M_cur;
1597      if (__n == __last_n)
1598	return iterator(__n);
1599
1600      std::size_t __bkt = _M_bucket_index(__n);
1601
1602      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1603      bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1604      std::size_t __n_bkt = __bkt;
1605      for (;;)
1606	{
1607	  do
1608	    {
1609	      __node_type* __tmp = __n;
1610	      __n = __n->_M_next();
1611	      _M_deallocate_node(__tmp);
1612	      --_M_element_count;
1613	      if (!__n)
1614		break;
1615	      __n_bkt = _M_bucket_index(__n);
1616	    }
1617	  while (__n != __last_n && __n_bkt == __bkt);
1618	  if (__is_bucket_begin)
1619	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1620	  if (__n == __last_n)
1621	    break;
1622	  __is_bucket_begin = true;
1623	  __bkt = __n_bkt;
1624	}
1625
1626      if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1627	_M_buckets[__n_bkt] = __prev_n;
1628      __prev_n->_M_nxt = __n;
1629      return iterator(__n);
1630    }
1631
1632  template<typename _Key, typename _Value,
1633	   typename _Alloc, typename _ExtractKey, typename _Equal,
1634	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1635	   typename _Traits>
1636    void
1637    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1638	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1639    clear() noexcept
1640    {
1641      _M_deallocate_nodes(_M_begin());
1642      __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1643      _M_element_count = 0;
1644      _M_before_begin()._M_nxt = nullptr;
1645    }
1646
1647  template<typename _Key, typename _Value,
1648	   typename _Alloc, typename _ExtractKey, typename _Equal,
1649	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1650	   typename _Traits>
1651    void
1652    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1653	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1654    rehash(size_type __n)
1655    {
1656      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1657      std::size_t __buckets
1658	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1659		   __n);
1660      __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1661
1662      if (__buckets != _M_bucket_count)
1663	_M_rehash(__buckets, __saved_state);
1664      else
1665	// No rehash, restore previous state to keep a consistent state.
1666	_M_rehash_policy._M_reset(__saved_state);
1667    }
1668
1669  template<typename _Key, typename _Value,
1670	   typename _Alloc, typename _ExtractKey, typename _Equal,
1671	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1672	   typename _Traits>
1673    void
1674    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1675	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1676    _M_rehash(size_type __n, const __rehash_state& __state)
1677    {
1678      __try
1679	{
1680	  _M_rehash_aux(__n, __unique_keys());
1681	}
1682      __catch(...)
1683	{
1684	  // A failure here means that buckets allocation failed.  We only
1685	  // have to restore hash policy previous state.
1686	  _M_rehash_policy._M_reset(__state);
1687	  __throw_exception_again;
1688	}
1689    }
1690
1691  // Rehash when there is no equivalent elements.
1692  template<typename _Key, typename _Value,
1693	   typename _Alloc, typename _ExtractKey, typename _Equal,
1694	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1695	   typename _Traits>
1696    void
1697    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1698	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1699    _M_rehash_aux(size_type __n, std::true_type)
1700    {
1701      __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1702      __node_type* __p = _M_begin();
1703      _M_before_begin()._M_nxt = nullptr;
1704      std::size_t __bbegin_bkt = 0;
1705      while (__p)
1706	{
1707	  __node_type* __next = __p->_M_next();
1708	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1709	  if (!__new_buckets[__bkt])
1710	    {
1711	      __p->_M_nxt = _M_before_begin()._M_nxt;
1712	      _M_before_begin()._M_nxt = __p;
1713	      __new_buckets[__bkt] = &_M_before_begin();
1714	      if (__p->_M_nxt)
1715		__new_buckets[__bbegin_bkt] = __p;
1716	      __bbegin_bkt = __bkt;
1717	    }
1718	  else
1719	    {
1720	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1721	      __new_buckets[__bkt]->_M_nxt = __p;
1722	    }
1723	  __p = __next;
1724	}
1725      _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1726      _M_bucket_count = __n;
1727      _M_buckets = __new_buckets;
1728    }
1729
1730  // Rehash when there can be equivalent elements, preserve their relative
1731  // order.
1732  template<typename _Key, typename _Value,
1733	   typename _Alloc, typename _ExtractKey, typename _Equal,
1734	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1735	   typename _Traits>
1736    void
1737    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1738	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1739    _M_rehash_aux(size_type __n, std::false_type)
1740    {
1741      __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1742
1743      __node_type* __p = _M_begin();
1744      _M_before_begin()._M_nxt = nullptr;
1745      std::size_t __bbegin_bkt = 0;
1746      std::size_t __prev_bkt = 0;
1747      __node_type* __prev_p = nullptr;
1748      bool __check_bucket = false;
1749
1750      while (__p)
1751	{
1752	  __node_type* __next = __p->_M_next();
1753	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1754
1755	  if (__prev_p && __prev_bkt == __bkt)
1756	    {
1757	      // Previous insert was already in this bucket, we insert after
1758	      // the previously inserted one to preserve equivalent elements
1759	      // relative order.
1760	      __p->_M_nxt = __prev_p->_M_nxt;
1761	      __prev_p->_M_nxt = __p;
1762
1763	      // Inserting after a node in a bucket require to check that we
1764	      // haven't change the bucket last node, in this case next
1765	      // bucket containing its before begin node must be updated. We
1766	      // schedule a check as soon as we move out of the sequence of
1767	      // equivalent nodes to limit the number of checks.
1768	      __check_bucket = true;
1769	    }
1770	  else
1771	    {
1772	      if (__check_bucket)
1773		{
1774		  // Check if we shall update the next bucket because of
1775		  // insertions into __prev_bkt bucket.
1776		  if (__prev_p->_M_nxt)
1777		    {
1778		      std::size_t __next_bkt
1779			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
1780							    __n);
1781		      if (__next_bkt != __prev_bkt)
1782			__new_buckets[__next_bkt] = __prev_p;
1783		    }
1784		  __check_bucket = false;
1785		}
1786
1787	      if (!__new_buckets[__bkt])
1788		{
1789		  __p->_M_nxt = _M_before_begin()._M_nxt;
1790		  _M_before_begin()._M_nxt = __p;
1791		  __new_buckets[__bkt] = &_M_before_begin();
1792		  if (__p->_M_nxt)
1793		    __new_buckets[__bbegin_bkt] = __p;
1794		  __bbegin_bkt = __bkt;
1795		}
1796	      else
1797		{
1798		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1799		  __new_buckets[__bkt]->_M_nxt = __p;
1800		}
1801	    }
1802	  __prev_p = __p;
1803	  __prev_bkt = __bkt;
1804	  __p = __next;
1805	}
1806
1807      if (__check_bucket && __prev_p->_M_nxt)
1808	{
1809	  std::size_t __next_bkt
1810	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
1811	  if (__next_bkt != __prev_bkt)
1812	    __new_buckets[__next_bkt] = __prev_p;
1813	}
1814
1815      _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1816      _M_bucket_count = __n;
1817      _M_buckets = __new_buckets;
1818    }
1819
1820_GLIBCXX_END_NAMESPACE_VERSION
1821} // namespace std
1822
1823#endif // _HASHTABLE_H
1824